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MOVIMIENTO DE SATELITES ARTIFICIALES. ELIMINACION
DE PEQUENOS DIVISORES EN UNA TEORIA DE SEGUNDO ORDEN®™

JosE F. Lanurna

Facultad de Ciencias. Universidad de Zaragoza

Summary

In the present paper a revision of the second order solution given by Kozay is de-
rived. The expressions for the secular and periodic perturbations are transformed and
obtained in form more available for the elimination of the small divisors.

The equations employed in the von Zeipel’s method are developped in invariant
form with the aid of the Poisson brackets. This invariance of the equations offers the
possibility of carrying out the elimination of the small divisors. Concrete results for
the case e ~ 0 are given,

I. Prélogo

1. NOTA PREVIA SOBRE EL PROBLEMA PLANTEADO Y CONCLUSIONES OBTENIDAS: Desde el
lanzamiento del primer satélite artificial en 1957, puede decirse que ha comenzado una
nueva era para la Mecdnica celeste, y si bien muchos de los problemas planteados son
anélogos a los que ya fueron resueltos en el estudio del movimiento de planetas, pequefios
planetas, etc., otros han dado lugar a cuestiones especificas, no tratadas hasta enton-
ceg, o tratadas inguficientemenfe. En este sentido, deben citarse los problemas de opti-
mizaecién, cases de resonancia, lanzamiento, ete.

Nuestro trabajo se refiere de forma mé&s conereta al problema de pequeiios divisores
en una teoria de segundo orden. Como se verd, aparte los ftrabajos ya cldsicos dedica-
dos a esta cuestién, algunos autores (G. Hori, Smits, Lyppane, GARrrINXEL, MORANDO,
Cip, efc.) han desarrollado recientemente aspectos distintos de esta teorfa, aunque por
lo regular dedicados a una teoria de primer orden, Por eso, y teniendo en cuenta la
precisién alcanzada en los célculos, parece necesario extender los resultados obtenidos
a una teoria de segundo orden.

Asf, en este articulo se comienza en el capitulo IT por hacer una breve exposicién
del estado actual del problema de movimiento de satélites, con especial referencia al
problema de pequenos divisores. En esta parte nuestra contribucién es meramente ex-
positiva.

El capitulo III, reproduce la solucién de segundo orden dada por Kozar, en la que
el autor reconoce la existencia de posibles errores de célculo o impresién. Por esta ra-
z6n, se ha efectuado una cuidadosa revisién de dicho tfrabajo, esencial para nosotros,
en la que los términos seculares y de corto o largo periodo, se han dado, a veces, en

(*) Memoria de Tesis Doctoral en Ciencias Matematicas.
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forma distinta. Asi, pues, nuestra contribucién en este capitulo, ha supuesto un enor-
me trabajo, aunque su originalidad sea menor.

El capitulo IV constituye la parte mds original de este trabajo. En ¢l se comienza
reduciendo algunas expresiones a la forma de paréntesis de Poisson, con el fin de es-
tudiar los cambios producidos por transformaciones canénicas en las ecuaciones deri-
vadas del método de von Zeipel. Asimismo se buscan las condiciones que deben verifi-
car los sistemas para que dichas transformaciones sean totalmente invariantes, o la co-
rreccién que debe anadirse cuando se usan sistemas que no satisfacen las condiciones
anteriores. A continuacién se da la forma general de los sistemas canénicos que nos
conducen a la eliminacién de pequenos divisores en una teorfa de segundo orden y fi-
nalmente se hace un estudio mds detallado, dando la formulacién, de un sistema de
variables canénicas que elimina la excentricidad como pequeiio divisor.

II. Movimiento de un satélite artificial

2. ECUACIONES DEL MOVIMIENTO DE UN SATELITE ARTIFICIAL: Cada elemento material (),
de masa dm, de la Tierra atrae a un punto exterior P, de masa unidad, con una fuerza
dada por la ley de Newton.

Sea O el origen de coordenadas, que supondremos interior a la Tierra, y sean (z, y, z)
las coordenadas de P y (g, w, t) las del punto Q; llamaremos A a la distancia QP y G
la constante de gravitacién universal.

El potencial que ejerce el punto Q es:

. Gdm

du = 2.1)
A

y el potencial U debido al conjunto de elementos () de la Tierra:

G dm
U =fff (2.2)
y A

siendo V el volumen de la Tierra.
Suponiendo que la densidad de Q es K (g n, ¢), la expresién (2.2) podré ponerse en

la forma :
GK (g n, t) dt dn dg
szff (& ©) S @9
yN(E—8)2 + (Y—n)? + (5 —0)2

y las ecuaciones del movimiento de P serdn:

d2z U dzy oU d2z oU
dt2 or dt? Y dt2 %

La infegral (2.3) se efectiia por desarrollo en serie,

Llamemos » a la distancia de P al origen de coordenadas, ¢ a la distancia 00, ¢ al
dngulo que forman OP y 0.

Se cumple:
A% =12 4+ 172 — 211" co8 §
y de aqui:
1 = 1 -
== = (1 + 1" —2rcosf) 2=——(1+ p>—2pc080) 2 (2.5)
i :

—
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donde
1./

O

7

Ahora bien, si o es menor que la unidad, se puede desarrollar (2.5) en serie de po-
tencias de o, obteniendo fécilmente aplicando la férmula binémica :

1 1 e 2 n
— = £ —— P (cos6) + P, (co80) + ...+
A 7e r e 2"

P, (cos0) + ... (2.6)

donde los coeficientes P (cos §) son los polinomios de Legendre de orden n, delinidos
por la férmula de Rodrigues:
1 dr(z2—1)r

Pn. (.’L‘) —
2" n ! dan
log primeros son:
P il 12 & i 2 !
= = €08 0 = —— €08 %) — ——

0 1 2 2 2

5 3

B = Cos i Cosy (2.7)
; 2 2

Sustituyendo (2.6) en (2.2), el potencial puede ponerse en la forma:

l——-fff o P, (cos 6) ) dm +.. T———J.jf P, (cos §) dm + ..

(2.8)
Si es m la masa de la Tierra, el primer sumando de (2.8) serd:

G Gm
U, = ——fffdm = (2.9)

= - -
=——f{f—P (cos §) dm =

pues, por (2.7), P, = cos 6; teniendo en cuenta qce 77 cos § es el producto escalar de
los vectores OP y 0Q:

{fffomafffmeff =] o
211

tomemos como origen O el centro de gravedad de la Tierra, Oxy el plano ecuatorial,
siendo Oz la interseccién de dicho plano con el plano del meridiano de Greenwich. Lla-
mando ¢ y A la latitud y la longitud de P, respectivamente, y ¢’ y %’ la de , se tiene:

El segundo:

117 cos § dm

Para calcular

4 n
) P, (cos §) dm

€OS f = sen ¢ Sen g’ + CoS ¢ cos g’ cos (A — 1) (2.11)

e
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Si empleamos como variables las de Delaunay (L, G, H, I, g, h) con:

L=ypa G=Ly1—e H=Gcosi [=anomalia media

(2.19)
g = argumento del perigeo h = longitud del nodo ascendente
las ecuaciones del movimiento (2.4) se convierten en:
dL oF dG or dH oF
a3l at a9 dt . ok
(2.20)
dl oF dg oF dh oF
T Gt nG e
que forman un sistema canénico con
2
L
2 L2
y por (2.18):
- n? Gm g I P ( )
Y= e = = (Seli 2.21)
2 L2 T n=2 ,mn 0 (

Hasta ahora, se ha considerado tinicamente la perturbacién debida a la forma de Ia
Tierra, y aunque es la mds importante, un satélite estd sometido a otras perturbaciones
que influyen en su movimiento, entre ellas:

a) Influencia de la atmésfera: Si un satélite se mueve en un medio atmosférico,

éste ejerce sobre su movimiento una resistencia, en la direccién de la velocidad y de
sentido contrario, dada en médulo por:

siendo S Ia secci6n, o la densidad del aire, que es de la forma p = p, €% siendo h
la altitud, » la velocidad y K una constante.

La influencia del frenaje atmosférico es despreciable en altitudes superiores a los
500 Kms,

b) Perturbaciones solares y lunares: La luna ejerce una atraccién sobre el satélite,
dando lugar a una perturbacién R, de valor:

R Gm’[—— =

A 2

1 7 cos S
J (2.22)

siendo m’ la masa de la Luna, 7 la distancia del origen de coordenadas al satélite M, +
la distancia del origen a la Luna, y S el 4ngulo que forman OM y OL.

i
La expresién
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o tomando el radio ecuatorial como unidad

wk = nlk
La expresién del potencial, dada por (2.8), toma la forma:

i
>

k=1 m

Gm il
1—> — P, (sen ) +

r n=2 4m n

nk

U=

M g

Pk (sen o) cos k (L — 1) (2.15)

Notemos que al tomar como origen el centro de gravedad de la Tierra, se anula el
término U,, ya que, en la expresién de U dada por (2.10), las tres infegrales que apa-
recen representan las coordenadas del cenfro de gravedad.

Los términos

G 2.

n

P (sen ¢)

r n=2 m

se llaman arménicos zonales, y los

(g Sl
——— D D ——— P E(8en.q) co8 (k=1 )

r M=2 k=1 gmn

reciben el nombre de armonicos lesserales.
Si se supone que la Tierra tiene simetria de revolucién, los armoénicos tesserales se
anulan y el potencial se reduce a:

Gm el
U=l N D (Seni o) (2.16)

r n=2 jpn

Si, ademds, existe simetria con respecto al plano ecuatorial, s6lo aparecen los' armo-
nicos pares, ya que, los polinomios de Legendre P, ., (sen ¢) son funciones impares de
@ Y queda:

Gm

U= e ) =
7 P2 o 1

1’4 (sen (p) Sl

El valor adoptado para J, es:

J

J,

= 1.082,7 x 10-¢

y los restantes coeficientes son, por lo menos, del orden de J,2. Los J & son aun mds
pequenos, por lo que se desprecian los armoénicos tesserales en la expresién (2.15) del
potencial,

Las ecuaciones del movimiento del punto P, vienen dadas por (2.4), donde U, dado
por (2.16), se puede expresar en la forma:

Gm
7o g (2.17)
”
con
Gm = T
== o Pn (sen ) (2.18)

=3

r n=1 m

a8 R se le llama funcién perturbadora.
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T~

25
Reemplazando cos ¢ en (2.7) por su expresién dada por (2.11), Tisserand, tomo II
(1891), obtenemos en general:

T (n—-lr).

—— P ¥ (gen ¢) P * (sen o) cos I (A—N)
=1 (m + k)

P (cos ) = P, (seng) P, (seng’) + 2

(2.12)

donde las funciones P * (u), llamadas funciones asociadas de Legendre, estin defini-
das por:
: d! 1 - dntk (uz — 1
= Ic = n-K u« — n
PF(u) = (1—u?? [P, (W)] = ——— (1 —u?)? ( )
uk 2

e nl duntk

Sustituyendo (2.12) en U, :

Gm i
Usi= Vi (sen o f (sen ¢’) dm + (2.13)
ﬂ

Gm (n—k)!l ol 70 .
T (sen = P (sen cosk (O — 1) dm
Pl Ty ’ ff o) ( )

La integral del primer sumando

Prn

P (sen ¢’) dm

serd una constante, funcién de la forma de la Tierra y de la distribucién de masas, que
se suele expresar en la forma:

I=—1J ap (2.14)
siendo a, el radio ecuatorial terrestre, y si se toma dicho radio como unidad:

L= ]

n n
Anélogamente, en el segundo sumando, llamando :
(n — k)

/u
(n e ff —P” (sen ¢’) cos kk )/ dm = I, cosk) .

(n— k)
I

con I y j . constantes, se tendré:

(n—k
a fffﬁp"ienq;)covl\(}—/)dm_lnkcoshu. M)

y, al igual que (2.14), se puede poner

n

)senkjp’ dm =1_senk})

— n
nk ]nk 4z

=y [ | e

i s i
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r
puede desarrollarse en serie de potencias de —— obteniendo:
7%

1 1 P 72
— = 1+ —P (cosS) +— P, (cosS) + ...
A 7 i Mg

que llevada a (2.22) nos da:

r2 3 1
R, = Gm/ [——« cos2 S — ]
773 2 2

Anélogamente se calcula la perturbacién R debida al Sol.

¢) Radiaciones de origen solar: Un satélite estd sometido a una presién de radia-
cién proporcional al cociente de la superficie expuesta a la radiacién y la masa del sa-
télite, y de direccién paralela a la recta que une el centro de Boleil y el centro de la
Tierra.

d) Perturbaciones de muy diversos tipos: Electromagnéticas, choques con meteo-
ritos, etc. que pueden modificar su trayectoria.

3. IpEa pEL METODO DE VON ZEIPEL: Uno de los métodos més empleados para integrar
las ecuaciones del movimiento de un satélite artificial, se debe a von Zeipel (1916).

Su fundamento es el siguiente: Se consgidera un sistema canénico del tipo (2.20),
cuyo hamiltoniano F no dependa explicitamente del tiempo ¢. Entonces, dada una fun-
ci6n determinante S (L, G’, II’, I, g, h) tal que:

S S S
I o e 9 o= a_
ol oy oh
(3.1)
3S oS 3S
o=, g’ = N =—
oL’ PLed oH’

es bien conocido que esta funcién determinante transforma el sistema (2.20) en ofro
sistema canénico :

ar’  gF* aG’  QF* dH’ oF*
B ol ds 9 dt _ah'
(3.2)
dl’ oF* dg’ oF* dh’ oF*
G T g e it oH
cuyo hamiltoniano, en virtud de la integral F = constante, cumple la condicién :
FE(Ls G aHGE S gaohy) = B (L, G, H; ;i g."h) (3.3)

Como S es una funcién arbitraria, von Zeipel la determina de modo que el nuevo
hamiltoniano F* no contenga una de las variables angulares contenidas en F. Reiteran-
do este proceso se llegard a la eliminacién de todas las variables angulares.

En el caso que nos ocupa, inicialmente es:
F=F(L: G» }I: l: gr——) (34)

S Sh e
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por tanto, una funcién determinante S (L, G’, H’, [, g, h) nos conducird a un sistema
(3.2) con hamiltoniano

G e (3.5)

lo que constituye la eliminacién de los términos de corto perfodo.
Finalmente, una nueva funcién determinante

SELe G Hr e

que cumple las condiciones :

2S* oS* oS*
L= ——— =i g J [ Sty
al/ agl ah/
(3.6)
oS* d8* oS*
l/l o g// MRS ]l” ==
aL” aG// a[ ”
dard lugar a un sistema:
dL” oF** dG” oF** dH” oF**
o o Wi mme
(3.7)
dl” oF** dg” oF** dh” oF**
g 7 e e e i
con hamiltoniano
EEE— FRE (7 =G L e —) (3.8)

transformacién que recibe el nombre de eliminacién de términos de largo periodo.
Las tres primeras ecuaciones (3.7) al ser los segundoz miembros nulog nog dan:

L” = cte G” = cte H” = cte
dléEsdgtas dh%

dt = d
son también conslantes, por lo cual resultan [7, 9”, h” funciones lineales del tiempo,
que determina los (érminos seculares en L, g, h.

Por medio de las ecuaciones (3.1) y (3.6) tendremos las variables iniciales L, G, H,
l, g, h en funcion de L7, G7, 1”7, 17, ¢”, h”, o lo que es igual, funciones del tiempo y
de las constantes de integracién.

y llevando estos valores constantes a las fres tltimas se deduce que

4. Sorucl6N DE PRIMER oRDEN: La solucién del problema para el primer orden ha
sido dada por Buouwer (1959) basdndose en el método anterior.

En esta solucién se considera J, como un pequeiio pardmefro y se busca la solucién
suponiendo que tanto S como F son desarrollables en serie de potencias de J,, es decir:

E—k Py
SI=8 9 S+ (4.1)
BE=—p A P

donde los subindices indican el orden correspondiente a las distintas potencias de J,.
Se comprueba fécilmente que para poder aplicar el método de von Zeipel es condi-

cién necesaria que F, no dependa de las variables angulares,

=g
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Asimismo interesa escoger:
S =Ll + G'qg + Hh (4.2)

0

por tanto, segin (3.1), tendremos:

35 3s, as 3s,
L =—=1"+—+ ... /=—-=1 + — +
ol dl oL’ oL’
9S 3S, 3S 35,
G=—=0G + + .. g = et i il (4.3)
o9 o9 oG oG’
S oS oS S
H=3—=H'+ 1-}—... h'=——-:/l+—a—-1~
oh oh oH’ oH’

Sustituyendo estas expresiones de L, G, H, I/, g/, W’ en la igualdad (3.8) y conside-

rando los desarrollos hasta los términos de J,2, se obtiene:

2S, 195 98, S
F |L + — +F]L+ , G+ e HaT v Log — | =
ol ol o9 ah

(4.4)

AQ

3 ' * ” VI’ I, ! ;
oG’ 2 g J

EFD. ik P‘l‘ [L,! G,y Hly e/ 3y

Desarrollando cada término en el entorno del punto (L’, G’, H’, I, g, h) por la fé6r-
mula de Taylor resulfa:

oF, a8 1 9°F, ( 3S,)?
F,(l) + ——+——|—2| +F U, G H,1g —)+
oL ] 2 aL2 | a3l
oF 23S oF. 23S oF.* aS
e e e R R TGS g ey
L 3l 3G 3y 7 ol
SRS G HE g (4.5)

Identificando los términos del mismo orden en J, de ambos miembros, se obfiene el
zigtema

Orden 0 ],‘0 (L’) T Fot (L/)
oF 23S
Orden 1 0 F, =F>*
oL" 3l
Orden 2 _1~ otk [_al‘ 2-|- & _aS] + & co +8F1 33, =
2 Q9L? ol oL” 2l oG’ 3y o’ B3h
oF,* 23S
=F + ——— (4.8)
9y ot
=g
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La primera ecuacién (4.6) nos determina F.* (L) en la forma:

Por otra parte, F, puede descomponerse en dos sumandos :
i e I4uz

donde F, es la parte independiente de I, y I la que contiene términos en . Con esto,
la segunda ecuacién (4.6) puede desdoblarse en dos: una donde intervienen los térmi-
nos que contienen la anomalia media I:

-

oF, 98,
ol 3l =0 (4.7)

y otra que no contiene tal variable :

Fr = Fls (4.8)
Asi se obtiene ficilmente de (4.8), la funcién
p,“ Jz 1 3 H2
F*r=——— 4 (4.9)
73 G2 4 4 G2
del mismo modo que la ecuacién (4.7) permite determinar por integracién respecto de [:
L3
S, = f ug F_ (L5 G, B, 1 g,—)dl (4.10)

Separando la parte independiente de ! de la fercera ecuacién (4.6), resulta:

! aep“ 381 : aFl asl aFl aSl
Fr=|——— S + —

2 QL2 \ 3l oL" 2l oG" 39 |y
como S, F, y F, son conocidos podemos hallar F,*, que consta de una parte Ko tun-
cién solamente de L/, G/, H’ y otra F,,* dependiente ademds de g.

Una vez eliminada [ se trata de eliminar g, para lo cual se hace un nuevo cambio
de variables canénicas del tipo

(4.11)

@GS gl h ) = L G, HEeR % R g hi)

donde el nuevo hamiltoniano, es:

F*=F* {F* 1 F %, F w? utd, 1 9 =z
RSN 2T + e o e e +F *+ F *
0 1 28 20 912 L3 73 4 4 G2 28 4
Tomando como funcién determinante
S*=LV + G’¢g’ + H' I + SIS G RGUSH =0 —) (4.12)

segin (3.6), tendremos:




=
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as* oS, * as* as,*
I = P I = e e (4.18)
aL/I aL/I ‘aG/I ‘aGU
38* oS, *
R = =1 + i
aHI/ aHI/

y sustituyendo estas expresiones de L', G/, H’, 17, ¢g”, h” en la ecuacién:
S EEGHEH e — gl —) — R (LG HE ) (4.14)
resulfa :

¥

: oS
AR (L G” + agl }"J FREEI O SR B L e 15)

)
’

Desarrollando en el entorno del punto (L”, G”, H”, I, ¢/, k') y separando los diver-
sos 6rdenes con el mismo criterio que acabamos de ver, se obtiene el sistema :

FO** =F0i
Fl&* =F1i
(4.16)
Fz*t =F25&
FF.* 35+
‘l 1 F,’ﬂ. 0
el oyl

Las tres primeras ecuaciones (4.16) determinan F_ **, F.** y F,**, en tanto que la

ultima sirve para obtener por integracién S *, es decir

szo, (L”, G”, H”, — g/’ _)

S = d g
1 oF * g
aGIl
Finalmente integrando el sistema canénico :
dL” dG” dH”
dt dt dt
(4.17)
ar oF** dg” oF** dh” oF**
dt R aL// dt o aG// dt T aH//
donde :
3 Wil 1 S HL
pen s o sl o sl ) P (4.18)
2LI/2 LIISGIIS 4 4 Gllz
eg s6lo funcién de L”, G”, H” obtenemos:
L” =L G” =G H" = H
: : : (4.19)
7 = 'n, (t == tO) g” _ ‘n'g (t — [0) h” = 71"[ (t —_— tD)

que resuelve el problema para el primer orden.

S he
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5. Soruci6y bpE SEGUNDO ORDEN: El estudio de la solucién de segundo orden, mnece-
saria para obtener una informacién més exacta de la posicién del satélite, fue abordada
inicialmente por Musex (1959), Perry y BreEakwerr (1960), Strusre (1961), pero es
Y. Kozar (1962), quien, baséndose en el método de von Zeipel, da la solucién del pro-
blema en forma analitica, pudiendo considerarse como una extensién de la solucién
de Brouwer.

Como el proceso es el mismo que se ha seguido para el primer orden, nos limitare-
mos a sefialar las' cuestiones més especificas de esta solucién.

En este caso las ecuaciones obtenidas, comparando los diversos oOrdenes en F = F*,
son :

para el orden cero

F(A) =2 (00) (5.1)
para el primer orden
aFo aSl % 17 , % (T’ ’ ’
= ERER(LE S GG g = B (5 G HY) (5.2)
C

para el segundo orden
OF, 85, 1 BF, (8S,Y' OF, 85, oF 35,
oL 2l 2 oL? \ a3l oL 9l oG’ By
Fe Bl G g) = WSl GHHE ) (5.3)

y para el tercer orden
aQFr] aql agg i 1 asF() [ asl )3 4 aFl aql ' aFl aSZ
L= Bl gl 6 gbs i\E 5l YDA i

1 B7F, (951 ] . *F, 38, 3, 1. 9?%F, (aS1 )2+ 5)1«‘2_;98I

+
aL'aG” 3l 3y 2 36>

ST

2 L2 o9 oL’ ol
an aSl e an)‘ aSl
e e (aRGa s He = g ) =F* (L, G, H, g) (54)
a6’ 99 9y oG
Las dos primeras y la parte independiente de [ de la tercera, nos dan F *, I *, F,*
y S,, que son los mismos que los obtenidos por Brouwrr para el primer orden,
Tomando la parte periddica de la tercera:
S L 1 32F dS. Y* DQF, 3S oF. 28
3 _ 0 ( 1] i 1 ton: 1 ia Fz (5.5)
al w? 2 L2 \ ol oL’ ol 2G" 9y »

y teniendo en cuenta la relacién diferencial
df = /=2 (1 + ¢’ cosf)2dl

enfre la anomalia media [, y la anomalia verdadera f, (5.5) se puede integrar obteniendo
asi el término S, de la funcién determinante.

Una vez obtenidas S, y S,, las variables L, G, H, [, g, h, en funcién de las nuevas,
vendrdn dadas por expresiones de la forma '

s - (5.6)
o a2 oL  alay oy
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an las que el cdlculo de las diferenies derivadas habréa de hacerse teniendo en cuenta
que S,, S, dependen de L y G, no sélo explicitamente, sino también por medio de e y f,
siendo por tanto

aS S G2 3S S S Giw9s
PASIE ( i G (RIS Sl R e T A
oL ( aL] e L3 e i ( 8(;) eL? Qe
35 38 a 55
i [ )+(——+n-2]—50n/ (5.7)
oe ¢ I of

donde

o) S S
G5

oL oG oe
representan las derivadas parciales con respecto a L, G, e, cuando estas variables apa-
recen en forma explicita.

Por estar en una feorfa de segundo orden, en las perturbaciones de corto periodo
se deben de considerar los términos del tercero y cuarto arménicos del potencial.

Tomando la parte independiente de [ de la ecuacién (5.4) se calcula F *, que cons-
tard de una parte F,* en que no aparece g’, y ofra I, * que contendrd g'. Una vez
calculados F *, F *, F *, F * las perturbaciones de largo periodo se obtienen a parlir

3 )

0 3
de las ecuaciones:

R (E) = (5.8)
i U AR N (5.9)
oFt 1 8s;! 2 : ,
Aol SRR (T G g (5.10)
26" 3y’

BFI‘ aszt 1 azFlt ( aslv )2+ ana aS];

o067 By’ 2 967 \ oy 36" 3y

De las tres primeras obtenemos F **, F,**, F,** y S *; y separando la iltima en
dos partes, fendremos: 1) la parte que no contiene g/, nos dard F **, 2) integrando
respecto a g’ la parte dependiente de g’ nos dard S,*.

Conocidas S, * y S,*, se calculan 17, ¢”, k", L”, G”, H” por simple derivaci6n.

En las perturbaciones de largo periodo, Kozai estudia los efectos del quinto al octavo
armonico, calculando los incrementos de cada variable.

Aqui nos hemos limitado a sefialar el aspecto tedrico, mas adelante daremos las ex-
presiones corregidas que se obtienen al realizar el cdlculo.

6. ENFOQUE MAS GENERAL DEL PROBLEMA: Una forma algo mds general que la expues-
ta anteriormente, ha sido dada por R. Cid (1967), en la cual se usa un sisfema de va-
riables canénicas (z,, y,) cualquiera, no restringido restringiendo a las variables de
Delaunay.

Se parte de un sistema de variables (z,, y,), de hamiltoniano F(z,, y,), desarrollable
en serie de potencias de un pequeiio pardmetro ¢

F(@, y,) =FO+e FO 42 FO+ ... (6.1)

R i
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y Be desea pasar a otro sistema de hamiltoniano

F* (z,% y,*) = F*© 4+ ¢ F*O) 4 2 F*® + ... (6.2)

donde los términos con una raya en la parte superior, se supone que no contienen Ila
variable angular y,.

La funcién determinante utilizada para pasar del sistema (z,, y,) al (v, y,*) es:

St ) =D et vy e SO 8 ap )2 IS Gl (@ g e (6.3)
k
tal que:
S aSM™) a8®)
T, = =z  +e + g2 + ...
Yy, oYy, Yy,
(6.4)
aS 3S(1) 5@
Y, = =Y, + & — At +oe..
axk* azk‘ axh‘

donde S estd determinada por la condicién de que el nuevo hamiltoniano F* (z,*, ,*)
no contenga la variable y *.

Desarrollando F (z,, y,) ¥ F* (z,%, y,*) en el entorno del punto (z,*s vy, ), ten-
dremos:

SOl (n)
F(=,y)=F(@*y,) + ZLTII: 2 (#— ") ] F(z* y) =

= k ox,*
(6.5)
: il © 38() 2 Q)
= (S ) S e D) B 2 )
n=1 Tll k 1 a‘y;_ al-kf
y anélogamente F* (z,°*, Yz
e s £ o 1 2 S 2 Jm =
s PRl R il G S e DO N J | o @GS )
fe=lam;! k b9zt Y,

(6.6)

llevando estas expresiones a la igualdad:

B ) — e S ) (6.7)
e identificando los distintos 6rdenes, se tendré
0) F(©) = F*(9) (6.8)
a8 F©O)  _ 381 F*(®
1) JHEY) st SRt e =P (6.9)
£ oY, - ox” W R T,
351 pF™) S(2) gF () 1 S(1) 3S(1) 2F (%)
(ZF(2)+2 +23 ° +__za___9___§ —
9y, ot K S Y T 21 M 3y, 09y; 9r,'dr*

— =
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3s(™m afmu) 35 aiﬁi(o) 1 S pSM) azf'(m
_Fo 43 e iy ‘
a'Tk‘ ayk : aIJ.-. ayk L 8-7:;: ax}.‘ aykayi
(6.10)
29S(1) JF () 3S(2) F@) 1 S 3S(M)  2F(1)
3) F® +> R 0% FEe=02 — — +
9y, ot k. 9y, ox’ 21 ® 3y, 9y, ooz’
3S(3) gF(0) 1 S 3S(2)  G2F®
+ s = = s
K Bii 9] ki oY, ay]_ a.tk‘al'j'
1 S S 3S(Y) °F ()
s ) =
3l My, Y, Y, 0% ox o’
= 9S() pF*(2) 98 PF* () 1 98 S F2F*®
= F*G) 4 > ot S D : +
9wt By, k9wt Uy 21 ¥ Qz* 9z  9Y,0Y;
9S®) JF*(©) 1 9SU) 5S(2)  F2F*(©)
+— 3 +
k 2z, 9y, 2! ¥ 9m* 8z Qy,0Y;
1 S S 3S(Y) . PF*(0)
+ 5 (6.11)

Bl 0z 95 10T« 0Y,0U,0Y;

Tenemos asi las ecuaciones de las que partiremos para estudiar el problema de pe-
quefios divisores en una teoria de segundo orden.

7. EL PROBLEMA DE PEQUENOS DIVISORES EN LA SOLUCIGN DE PRIMER ORDEN: En las fér-
mulas dadas por Brouwer para calcular las perturbaciones, aparece la excentricidad en
el denominador de algunos términos de corto y largo periodo y el seno de la inclina-
ci6n en los de largo periodo. Por tanto la solucién de Brouwer resulta inadecuada cuan-
do la excentricidad sea muy pequefia o la inclinacién sea préxima a 0° 6 180°.

Para eliminar los pequeiios divisores en cada’ caso concreto se puede emplear un
método apropiado, distinto del de von Zeipel. Por ejemplo, en el caso de excentricidad
nula, el método de Hill, usado principalmente en el problema de la teoria de la Luna.

En el caso de satélites artificiales se han dado diversas soluciones al problema.
Smita (1961) ha propuesto un método basado en las series de Taylor, que elimina los
pequeiios divisores en excentricidad; pero es Lyppane (1963) quien da la solucién més
adecuada para eliminar los pequefios divisores en excentricidad e inclinacién préxima
a cero, usando las variables de Poincaré.

Sin embargo, este método tiene algunos inconvenientes en su generalizacién al se-
gundo orden que no aparecen en la solucién propuesta por R. Cip (1967) para el primer
orden.

Teniendo en cuenta que la ecuacién (6.9) puede expresarse en la forma:
[F*(©), SM] = — FM 4 F*) (7.1)

y que los paréntesis de Poisson son invariantes bajo transformaciones canénicas, se
trata de buscar nuevos sistemas de variables que eliminan los pequefios divisores.

SR
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Para eliminar las distintas singularidades, R. Cip propone los siguientes sistemas
canénicos :
1) Pequenos divisores en excentricidad

Y, = #/2(L —G) cosl Y,=6 Y, =H
(7.2)
Y, = N2 (L —G) senl Yy, =1+ g Yy, =h
2) Pequenos divisores en excentricidad e inclinacién 0°
Yili=1G Y, = V2(L— G)cosl Y, = ¥2 (G— H) cos h
(7.3)
y,=l+g+h Yy, = ¥2(L—G) sen | Y, = — ¥2(G—H)senh
3) Pequenos divisores en excenftricidad e inclinacién 180°
Y =G Y, = V2 (L—G)cos Y, = ¥2(G + H) cos h
(7.4)
y, =L+ g—h Y, = ¥2(L—G) sen | y, = V2 (G + H) sen h

La continuacién de la integracién en las nuevas variables exige la invariancia de
la ecuacién (6.10), condicién que estudiaremos mds adelante.

En los términos de largo periodo, aparece como denominador la expresién 1 — 5 cos? i;
por tanto, si el coseno de la inclinacién es préximo a 1/4/5, existe otro pequefio divisor,
que corresponde a la inclinacién critica (i, ou 63° 26').

La solucién de este problema ha sido dada por G. Horr (1960), basidndose en el mé-
todo de von Zeipel, siguiendo el procedimiento empleado en casos similares, que resuel-
ve este tipo de problemas a base de desarrollos en serie en funcién de las potencias de
la raiz cuadrada del pequefio pardmetro a que hemos hecho referencia hasta ahora. Es
decir tomando como base una funcién determinante desarrollada en la forma

SU=1SE S H S TR RS

2

]

III. Solucion de segundo orden

8. REVISION DE LA SOLUCION DE SEGUNDO ORDEN: Hemos visto el problema de pequefios
divisores en la solucién de primer orden dada por Brouwer y sus diversag soluciones.
Nos proponemos ahora estudiar el mismo problema para la solucién de segundo orden
dada por Y. Koza1r (1962).

Para ello, antes de enfrar en el problema propiamente dicho, vamos a revisar la so-
luci6n de Kozai, de una parte para poner algunas expresiones en forma m&s convenien-
te a nuestros propésitos, de ofra porque el mismo autor, a causa de la complejidad de
los célculos efectuados, reconoce haber cometido algunos errores.

Las ecuaciones de partida, como ya hemos visto en el epigrafe 5, son:

FO) (L) = F*©) (L)
9F () 3S1)
oL’ ol

L FO (I G, H, L, g) = F*) (L4 G HY
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4 R—
T

1% ol Gl b

al

22F (%) 3S() 1 92F©) [ 3S1) \2 oF()  3S) AF(Y) aS(®)
[ JT oL’/ 3l 3G’ | 'ag

+ FO (I, &, H, 1, g) = F*®) (I, &, I g)

azl,w(u) aS(x) ag(z) 1 a.aF(D) as(l) 3 a[,‘(]) aS(z)
SR i +
Srrel 6 aL» ( al ) ol ilig]

F@W  3S(2) 1 92F() [asm)z 2R 3S()  3S()
+

+._—
oG" 99 2 L2 ol oLaG" 3l oy

+
oL’ ol 96" 3y

1 92F@) (asm)z OF(2) 3SM  JF®  35M)
| + : 5

+ !
2 G2 Rl
AF*(2) 38@)

Y oG’

Ul e Gl My

- O (L, G, I, g)

Las dos primeras mos dan las expresiones de F*(©) (L), F*() (L, @, HY). iy S@);
que son las mismas que en la solucién de primer orden.

Pasemos a la tercera ecuacién, en la que aparece S(2) y corresponde propiamente
a una solucién de segundo orden.

Calculado de ella las funciones F*(2), S(2), se obtiene para F*(2) la misma expresién
dada por Brouwer, esto es:

Fnid
128 3G

[=5 (1 —20% —764) + 4’ (1 —302)> + 1/ (5— 186 + 56™4)] +
(8.1)

3pcl?

64 LG’

(I —67) (1 — 1566%) cos 2¢g”

Y para S(*), después de hallar la parte dependiente de [, e integrar con respecto a
esla variable, por medio de la anomalia verdadera f, la siguiente expresién :

4] 2
G okl

= 2196 [—5n2 (1 — 202 — 704 + n* (5 — 1802 + 56%)] (f— 1) +
T [ lE=ion i 70%) + m =)

+ {768 (1 — 362)2 (n 0 J + 48 e [4n® (1 — 362)2 + e? (53 — 13002 — 1164) +

Lt
+ 30 — 4462 + 110¢4] } sen f + 6[87 (11 — 3092 + 27p*)— 212 (389 — 8342 +4370%)—
— 64 7% (1 —302)2 + m* (93 — 24202 + 7764)] sen 2f + 8e [41 (11 — 3092 +

+ 276%) — 2 (191 — 39002 + 2076%) — 8 43 (1 — 30)2] sen 3f +

+ 24 e [5 (11 — 3002 + 276%) — 8 y2 (1 — 62)2] sen 4f +

+ 24 3 (11 — 3002 + 276%) sen 5f + 2 et (11 — 3062 + 276%) sen 6f +

(i SRS
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+ (1 —62) {192 e2 12 (1 — 1502) (f — I) cos 2g — 12 e* (1 — 362) sen (4f — 2g) —

— 144 e% (1 — 302) sen (3f —2g) + 48 e2 (1 —30%) (— 15 + 2m?) sen 2 (f — g) +

1
+48 e (1 —302) (—41 + 1572 + 2nd)sen (f — 2g) + {384 (1 —302)],] + i )+
m

+ 96 e [—5n° (1—302) + 21 —1356% +2 ¢ (1 + 330%)] } sen (f + 29) +

1l
+ 384 [— 2 (A + 70%) + 4n*6*)sen 2 (f + g) — {896 (1 — 362) [n + 2 ) 3
+m

+ 32 ¢ [n® (1 — 867 + 51 —1130% + 2 ¢ (1 — 2302)] } sen (3f + 29) +

+ 12 [3 (1 — 30%) (— 87 + 16 1) +2 12 (61 — 16162 — n* (1 —1962)] sen (4f + 2g) +
+ 48 e (1 —302) (— 41 + Tn> + 2 n?®) sen (5f + 29) +

+ 16 e2 (1 — 302) (— 45 + 2 ?) sen (6f + 2¢g) — 144 e3 (1 — 302) sen (7f + 2g) —
— 12 e4 (1 — 302) sen (8f + 2g) + 9 e* (1 — 62) sen (2f — 4g) +

+ 108 €3 (1 — 62) sen (f — 4g) + 36 e (1 — 02) (— 41 + 29 42) sen (f + 4g) +

+ 3 [ 783 (1—62) + 2n2(335— 2390%) + n* (65 — 25702)] sen (2f + 4g) +

+ 24 e [e2 (17 — 656%) — 98 + 14662] sen (3f + 4g) + 24 [— n? (51 — 9102) +

+ n* (11— 276%)] sen (4f + 4g) + 24 e [e? (39 — 5502) + 42 — 2602] sen (5f+4g) +
+ [2349 (1— %) — 2 4% (861 — 8926?) + ~* (157 — 22162)] sen (6f + 4g) +

+ 36 e(1 — 62) (41 — 13n2) sen (7/+4g) + 12 €2 (1 — 6%) (45 — 4?) sen (8f +4g) +

+ 108 €3 (1 — 62) sen (9f +4g) + 9 et (1 — 62) sen (10f + 4g) + 4 [783 (1 — 3¢?) —
— 7 (535 — 13172) — 8 )3 (13 — 7562) — 24 n* (1 — 1502) (1 — )] sen 29 —

— 36 €2 (1 — §2) (156 — 4v?) sen 4y l{] (8.2)
donde :
H G*
0 = n? = =1—e? (8.3)
G L2

Esta expresién de S(2) coincide con la dada por Kozar, si bien la férmula consigna-
da aqui difiere de aquélla ligeramente, por haber agrupado convenientemente algunos
términos, de acuerdo con las igualdades:

1—]] 1— V1 —e2 e 1—1‘\3 €
= = =t = + eq (8.4)
e e 1+ e 1+ q

para que en la expresién de S(2) no aparezca la excentricidad como pequefio divisor.

Conocidas S(*) y S(2) ge pueden calcular las expresiones para las seis variables de
DeLauxay por simple derivaci6n, Los resultados obtenidos se consignan en lo que sigue:

S
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l"'z"zj 1 ars ; 3 a’ )3 ]
L=L+ (——(1—30’2) 7 “‘1_3]‘*:(1—0”) — | cos2 (f'+¢°)

+
L3 4 ’ j
S 122 s
+ ——— [86% (1 — 562) + €% (6 — 1862 + 56%) — 2 e (1 — 63) (1 — 1562) cos 2g] +
128 G7
3{;" 122 .(1 3
e 8 (9 — 2602 +496%) + 4e? (837 — 9862+ 376%) +16 n® (1 — 32)2 +
512 G°L \ r

1
+ 2e[16 (1 — 3p2)2 (n +1—) +4(19 — 3002+ 350%) + €4 (73 — 23462+1216%)] cos f+
+m

1
+ 4 e2[4 (1 — 3022 (n + 1——] + 29 — 6602 + 4504] cos 2f +
|

+ 2e3 (11 — 3002 + 270%) cos 3f + 4 (1 — 62) {——3 e3 (1 — 362) cos (f — 2g) —

1 i
— 22 (1 — 36?) (Tl+ +8]cos2g+e[4(1——362) (n+ )—32—
1+ q Lgs )

— 2 (17 — 14762)] cos (f + 2g) — 4 [13 — 2762 + 2 e2 (1 — 962) +
1

+ 3n% (1—36%)] cos 2 (f + g) —e [28 (1 — 36?) (n i ] + 32 (1 — 407) —
T

—e2 (15 —7762)] cos (3f + 2g9) —2e2 (1 — 362 [5 (q + ] +4] cos (4f +2g) —

)

— 3 2 (1 — 392) cos (5f+29) ] + (1 — 622 [9 ¢ cos (f+4g) +54 e cos (2f+4g) +

f

+ e (148 — 13 e2) cos (3f + 4g) + 20 (2 + 7 e2) cos4 (f + g) +

+ 3 e(28 + 17 e2) cos (5f + 4g) + 54 e cos (6f + 4g) + 9 e3 cos (7f+ 4g)]] (8.5)
donde :
L gy (8.6)
”a g/_ R 02 S Y
. 4 G+
w7
G =G + 4_G’: (I —6) [3e cos (f + 2g9*) + 3cos 2 (f + ¢g*) + e cos (3f + 2¢%)] +
pt J,?
—— (1 —0%){— 12 e (1 — 1562) (f — [) sen 2g —
et ){ (1 —150%) (f—1)

— 4 (7T — 256%) — 8 e2 (T — 1762) — 96 e (1 — 302) cox f — 24 e2 (1 — 362) cos 2f +

+ 6 (1l —36% (1 —mn) cos (f— 2g) + e2 [20 (1 — 3¢?) ir

1o 0

SStogee




1 1
+ —— (239 — 158162) — 6y (1 —1562)] cos 2g + 6 e [4 (1 — 362) i
4 1im
+ 3 (3—416%) — 5 n (1 —30%)] cos (f + 29) —36 [2 (1 — 02) +
1
+ e2(1—3p2)]cos2 (f + g) —2e [28 (1 — 302) + 43 — 16102 +
1 +q

1
+ n (1 —362)] cos (3f + 29) —3e2[12 (1 —30%) —— + 7 —
NEkEm

— 33 6%] cos (4f + 2g) —6¢ (1 36%) (1 — ) cos (5f + 2g) +
+ 3 (1 —6%) [5e?cos (2f + 4g) + 4 ecos (3f + 4.g) —

— (4 —e?)cosd (f + g) — 4 ecos (5f + 4g) — e? cos (6f + 49)] }

H=H
el e 6
=l — - - — 30’2 (4 — e’?) sen f'+ 6 gen 2f e’ gen 3f
i )| e sen e f } +
= .j
+ (1—672)[3esen (f—2¢") —18sen2g* — —— (4 + 5¢e2) sen (' + 2g*) +
o

1 i
e (28 — ) sen (3f" + 2g%)+ 18 sen (4f'+2g*) + 3¢ sen (5f + 29%)] }
“—1‘]: j‘]rj.)].x [3__180_' 25 'j""'—') (1_02) (1__]')'{).’) L‘O“‘) ] (’/’ I) i1
100660 | : : S
48

+

1

=F

e 1+ 7

+ 2 e? (T —220% + 1550%) — e* (47 — 16602 + 1670%) } sen [ +
32

+ 6 [——— (12 — 5002 + 616%) + 16 (103 — 31802 + 175¢%) —
e2

— 262 (483 — 161402 + 5630%) — e* (13 — 8202 + 12504)

+ 32 (— 4 + 2402 — 3604)

+ 1281 (1— 302 (e2—2) | sengf +
1+ m

8
+ —— [B (47 — 10292 + 630%) + 40 e2 (10 — 3902 + 309%) —
e

— et (325 — 11460° + 5976%) + 2 n* (1 — 392)2 (64 — 11 €2)] sen 3f +
+ 24 [2 (39 — 860° + 5501) — 2 e (5 + 1402 — 276%) — et (13 — 5092 + 2904) +
+ 167® (1 —30%)%] sen4f + 24 e [4 (5— 1262 + 9p4) — 9 e2 (1 — 02)2 +
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{2(1—362)2[8 [n + uh_J — 3 (8 —3e2)] + 4 (29— 7462 — 1104) +

i)

!

e

bl
)

&
t\
o
&
)
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+ 213 (1 — 302)2] sen 5f + 2 e? (11 — 3002 + 276%) (2 — e2) sen 6f +
il B (— 3e2 (1 — 30%) (2 — e2) sen (4f — 2g) — Ge (1 — 362) (11 —

— 52 + ) sen (3f — 2g) — 12 [2 (1 —302) (12 + n®) — 6 e2 (1 + §2) —

— 36t (1—119%)] sen 2 (f —g) — [(1 — 362) (96 — 13 e2 p3) +

e

+ €2 (25 — 38702) — 39 et (1 — 1162)] sen (f —29) + ':- e (L SO ICE

+ 96 (1 — 362) [1] i J 112 (113 —'134762) '+ 2 e2 (221 — 327 §2) —

it

— et (269 — 215102) — 1602 (11 + 3%) — 72 €2 3 (1— 1502) ] sen 2¢ +

12
1 g) 8 (n i ] L33 (L8 T e2)] 4R (11— 402)i+
e

I m

( 1
+ e* (53 — 3156%) +et (41 —1502) }sen (f + 2g) — 48 { (1 — 362) [16 Lq + ] ==
L+ n

—om’] + 17 — 12302 — 4 e (7— 3962) — 5et (1 — 36%) Lsen 2 (f + g) —
4 1

— —— { (1 —3¢?) [56 (,, +— = (152 + 11 e2)] + 16 (12 — 5992) +
e 160 g

+ e2 (61 — 1739%) — e (137 — 79962) } sen (3f + 2¢) — 3.{8 (1 — 3¢) [17 +

D)

7
+ 4 q° (— - 3) Jot 2.e2 (17 — 27962) — e (29— 1830%) } sen (4 + 2g) —
62

5
— [ €2 (37 — 3902) + 9 et (5—2302) + n® (1 — 302) (128 — 9 e2)] sen (5f + 2¢) —
. )

—4[2(1 —302) (10 + 333 + 2e2 (7T —902) + et (11 — 5702)] sen (6f + 2g9) —
—6e (1—30%) (7T—e? + 5y?) sen (7f + 2¢) — 3 e2 (1 — 302) (2 — e?) sen (8f+2¢) } +

+ (1 — 92%)2 (9 e? (2 —e?) sen (2f — 4¢) +108 e (2 — e2) sen ([ — 4g) —

12

— 12(66 — 34 e24+13 e*) sen 49 — (72+2 e2+49 e4) sen (f+4g) —

e

96 216
—3 (%+368+158 e+ 161 et ) sen (2f+4g) — —— (445 e4) sen (3f +4g) +

e2 e
24
+ 144 (17 — 16 e2 — e4) sen 4 (f+g)+ (212 — 88 e2 — 43 et) sen (5f +4¢) +
(]
e
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1568 12
+ + 4112 — 3238 e2 — 93 e* | sen (6f + 4g9) + —— (168 + 50 ez —
e? e

— 95 e%) sen (7f + 4g) + 12 (82 — 26 e2 — 11 e*) sen (8f + 4g) +

+ 108 e (2 — e2) sen (9f + 4g) + 9 e2 (2 — e2) sen (10f + 49) ] ]‘ (8.9)
g =gl b J‘— 2 (1— 302) L0 (4 —e2) sen f* + 6sen 2f + ¢ sen 3| +
32 G* l e

3
+ (1 —02) [3 e sen (f —2¢*) — 16sen 2g* — —— (4 + 5 e’2) sen (f* + 2g*) +
e/

1
+ —— (28 — e2) sen (3f + 2¢*) + 18 sen (4f + 2¢*) + 3e sen (5 + 2¢°)] —
el

— 18 (1 —56"2) (f* — U'+e sen ') +3 (3 — 50’2) [3e sen (f+2¢°)+3sen 2 (f'+g°)+
i u( J 2

e’ sen (3f + 2g* ———2—;4825+1802—215e4
+ € sen (3f + g)]j 2088 G* | [2 ( ) ar

+ e2 (25 —1260° + 456Y)] (f — 1) — 96 [2 (1 — 62) (1 — 1562) +
1

48
+ e (5 — 1129 + 1356%] (f — 1) cos 29 + —— {8 (1 — 36?)? +
e

1+ k|
+ 2 (17 + 2202 — 19164) + 4 e (20 — 10562 — 3304) + n (1 — 302) [24 (1 — 562) —

16
— 2 (5— 2762)] } sen f+6 [—-— (13 — 5002 +616*) + 32 (23 —5062 — 1364) +
eZ

+ €2 (173 — 73802+ 30104) +16 (— 4+ 2462 — 36¢4) 5

141
8
+ 64 q (1 — 36%) (1 — 66?) ]Een 2f+—~{4 (47 — 10202 +6304) + 6 e?(41 — 11262+ 376%) +
€

+m (1 — 302) [64 (1 — 362) +e2 (5— 396%)] } sen 3f + 12 [2 (39 — 86% + |
+ 5664) + €2 (21 — 6692 + 376%) + 167 (1 — 362)2] sen 4f + :
+ 24 € [2 (5 —120° + 99%) + (1 — 36%)?] sen 5/ + 2 e* (11 — 306> + 2764) sen 6f —

— 12 e2 (1—6?) (1—62) (1—362) sen (4/—2g)—12 e (1—02) (1—362) (11+n) sen (3f—2¢)—

12
— 24 (1—62) [9 (1—30%) (12 7) + e? (5—390%)] sen 2 (f—g)— — [96 (1—6?) (1—367) +
€

+ €2 (57 — 53262 + 4596%) + e? q (1 — 362) (3 — 1162)] sen (f — 29) +

S

DR e R e
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288 1
+ 2 (I —02% (1 —36% + 96 (1 — 62) (1 — 362) =
e2 1+ |

+ 2 (169 — 179602 + 14670%) — e2 (709 — 676462 + 8739 04) —

— 167 [3 + 1062 — 336* — 6 e? (1 — 2462 + 3064)] ] sen 2g +

24
e B =6 567) — 8 (9 — 446 + 399%) —
e

14+
— e2 (139 — 202002 + 23376%) + n (1 — 362) [8 (7 — 962) +

1
+ e2 (19 — 3962)] } sen (f + 29) — 96 {(1—62) (1 — 362 [16 3 — b :l S
)
+ (19 — 25602 + 2370%) — e? (1 + 4462 — 33¢4) } sen 2 (f +9) —
8 1
—— {56 (1 —06%) (1 —30%) —— + 8 (3 — 4492 + 13p%) —
e Lty
— e? (69 + 32462 + 796%) + n (1 — 302) [8 (9 — 2362) —
— e2 (19 — 2362) | } sen Gf + 29) + 12 {12 (7 — 3262 + 336%) +

e3

+ €2 (21 — 7602 + 1590%) — 16 ) (1 — 3¢2) [ (1—62) +3 (1—292)] } sen (4f + 2g) +

12
+

{e? (43 — 25202 + 29504) — n (1 — 3¢?) [128 (1 — 62) +

e
+ €2 (7 —1562)] } sen (5f + 2g) — 8 (1 — 62) [2 (1 — 362) (10 + 33 1) —
—3e2(3—176%)] sen (6f + 29) —12e (1 —62) (1 — 362) (7 + 5n) sen (7 + 2g) —
— 12e2 (1 — 62) (1 — 302) sen (8f + 2¢) + 9 €2 (1 — 02)2 sen (2f — 4g) +

+ 108 e (1 — 62)2 sen (f — 4g) — 6 (1 — 62)2 (66 — e?) sen 4g —

12 3
— — (1—67)2 (36 + 19 e2) sen (f + 4g) — 3 [16 (1 — ¢2)2 (_~ ! 13) B
€ e2

24
+ e2 (7 + 19402 — 904)] sen (2f + 4g) — — [18 (1 — 62)2 —
e
— e2 (19 — 10262 + 350%)] sen (3f + 4g) + 12 [2 (83 — 21062 + 103¢4) +

24
+ e? (11 — 6662 + 236%)] sen 4 (f + ¢g) + —— [106 (1 — 62)2 + e2 (68 —
e

1
— 13862 + 6994] sen (5f + 49) + —— [16 (1 — 62)% (49 + 153 e2) +
e2

12
+ e* (197 — 53802 + 2776%)] sen (6f + 4g9) + — (1 — 62)2 (84 +
e
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+ 67 e2) sen (7f + 4g) + 6 (1 — 02)2 (82 + 15 e2) sen (8f + 4g) +
+ 108 ¢ (1 — 6%)2 sen (9f + 4g) + 9 e2 (1 — 62)2 sen (10f + 4¢) ‘»

ll2 J
By e i S g [—6(f—U + e’zen f’) + 3 e sen (f + 2¢*) + i
4 G4 {

+ 3sen 2 (f + g*) + e sen (3f + 29%)] + ——— 0

— 2 (9—156%) + 2 (8—150%) cos2g] (f— 1) + 12 {3 (1 — i
il 1 ,";

—302) |4—4n | — QA7 + 216%) } sen [+ 6[12 (1 —30%) —— —
1) 1+ i

— (9 —56%)] sen 2f+12 e (1 — 302) (1—) sen 3f — 6 e (1 — 30%) (1 — y) sen (f — 2g) —

1053 i
6% + 12 1 (8 — 156%)] sen 2g + it

— ez [4 (T + 362) Lot

1+ q 2

+6e {(1— 367 \:4

—5m |+ 3 (35— 17302 } sen (I + 2¢) + g
et

1
+2406(1 —6%) + e (4 —06%)]sen2(f + 9) —2e{d— 363 [28 + ‘l] —

+n

— (21 + 976%) } sen (3f + 2g) — 6 €2 [6 (1 — 36?) — 13 e2 2] sen (4f + 2¢9) —

1 + n f
—6e(1—36%) (1 —n) sen (5f + 29) — 3 e2 (7 + 50%) sen (2f + 4g) —

—12e (5 + 62) sen (3f + 49) — 3[4 (4 —02) + e2 (7T + 0°)] sen4 (f + ¢) —

— 12 e (3 — 6?) sen (5f + 4g) — e (7 — 302) =en (6f + 4¢) : (8.11) i

Notemos que en la expresion de S(2) se han omitido las primas de e, L, G, 6 y m.

Los resultados oblenidos, coinciden con los de Kozar salvo en el caso de la expresion
de [. Sin embargo en las férmulag incluidas se han hecho las modificaciones convenien-
tes para eliminar en lo porible la aparicién de la excentricidad como denominador.

Refiriéndonos de manera mds concreta a la expresién de [, diremos que el coefi-
ciente de sen (3f + 2¢) que hemos obtenido es:

4
— —— {(1—30?) [56 — n® (56 + 162 €2 + 11 e4)] }[e®

€

en lugar del dado por Kozar
4

——— {(1—307) [56 —n® (56 + 152 e? + 11 ¢4)]}
e

o
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Las expresiones anteriores han sido calculadas tomando en el potencial solamente

el arménico debido a J,. Si se consideran también el tercero y cuarto arménicos, las

funciones S(®), F*(2) y las seis variahbles de Delaunay, sufrir4n unog incrementos.
Asi para F*(2), tendremos :

p’s J4. ! l"s ‘[a 3 lLG ]4
AF*(2) = ——2L3 % H’N (2 + 3 e?) + —_L 5 e’ B, seng + ————L 7 I}'42 e’2 cos 2q’
’. ‘7 ’3 (M5 AL3 G7
(8.12)
donde
: 3
B o = — —— (3 — 306’2 + 35074
Wiy )
3
B = — w8— (1 —02)% (1 — 502) (8.13)
B ;
— (L—1072) (1—702)
SANTe )

que difiere del dado por Kozar, pues en el ultimo sumando dicho autor omite el fac-
tor e”2.

Los restantes incrementos coinciden con los incluidos en el mencionado trabajo.

Pasemos a las perturbaciones de largo periodo; las ecuaciones que se obtienen, com-
parando los diversos 6rdenes del hamiltoniano, son:

F*(0) (L") = F**(0)
F*(1) (L//J G", 11/1) = Fr**(1)
IF*M) 35+

+ F*@ (L7, G”, B, ') = F**®

367 5y

oF* (1) 2S@) 1 2F*(W) (3S* (1) \ 2 F*(® pS8* (V)

TR 2 6™ ( ) + — 4+ F0) = F**@
aG ag/ 2 aC”-, agr aG/l ag/

De la tercera, tomando la parte independiente de g’, obtenemos

F*4@) = e 2(7 [ 61 — 2672 — 76"4) + 4 3" (1 — 3072)2 4 n"2 (5 —
L L
e JA

IS 180”2 + 50//4)] it
2 L”8 G7

B,,” (2 '+ 3¢7) (8.14)

y considerando la parte dependiente de ¢/, e integrando respecto a ¢/, deducimos

% n? Jz ]4
S = — —— 2 (1 —92) (1—502)-1[1—1502 + 5 (1 — 76%)] sen 2¢" —
32 G3 ]22
J
s Jons (1 — 62)% cos ¢’ (8.15)
27, G

=90,
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Andlogamente, de la cuarta se obtiene F**(®) y S§*(2),
La expresién de F**(), es:
3pdJ3

F**C) = ————— {65 + 363”2 — 13930”4 + 15250”% — 0”2 (35 + 3170”2 —

512 L8 G711
— 9390" + 7316”°) + 57" (1 — 30”2) [3 (1 — 2072 — 797+) — n’% (6—

15 u8J, J,
2048 L3 G”11
+ 23" (16 — 5631972 + 7050”4 + 14767¢) + 3 n" (— 3 + 63p”2 —
— 125674 + 490”¢) + 121" €2 (3 — 390”2 + 1250”4 — 1050”%)] +

— 1862 + 5074)] } + [19 + 513672 + 5250”4 — 2065076 +

3 pt I8 3ptle
—— 2 (1 §7) (1—5p"2)2e2P 4 — S (3 o4z
2048 L3 G/11 827, L3 G
+ 25074 — 2 0”2 (1 — 99”2 + 10974)] (8.16)

P = (1—15§"2) [6 — 1320”2 + 6156”4 — 6000”5 — 1”2 (3 — 906”2 + 495074
n

J

— 45067¢)] + 10 J‘ [6 — 1590”2 4 1491¢”+ — 48650”6 4 42000”8 —
2
2

A 2
— "2 (3 — 1039”2 + 1007”4 — 33850”* + 31500"%)] + 25 ( s ] (e
:

— 767%) [6 — 766”2 + 303p"+ — 2806”¢ — "2 (3 — 500”2 +2096”+ — 2100”¢)] (8.17)
En la expresién dada por Kozar para F**©) el sumando
2 ok J“Ts
2048 L7 G"11

(1—072) (1 — 5072)~2 e”2 p
debe ser sustituido por el siguiente

3utl? _
i — (1 —072) (1 — 5¢”2)=2 6”2 P
2048 L3 G711

Para S*(2) da Kozar un resultado en el que aparece la excentricidad como pequerio
divisor. Nosotros andlogamente a lo que hemos hecho para los términos de corto pe-
riodo, transformamos dicha expresién en otra en la que desaparece la excentricidad
del denominador. Asfi resulta:

I,4 J 2
Srepslia? & (1 —62) (1 —562)~1 [— e2 (233 — 228462 + 511504) +
1024 G7
1
+ 16 1) e2 (4 — 7502 + 2250%) + 16 e - (5 — 500% + 10564)] sen 29 +
+ m
p,s J. e
3 2 = ‘ ¢ 2
+ i (1—6%) 4 (1 —562)-* {18 [6n (1 —362) (1 — 562) — 13 + 13092 —

g

1
&
2
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1
— 459¢ — 562 (1 —62) (1 — 76%) + 10 (1 — %) (1 — 762) + (n + 1) 2 — 1602 +
n +
) 562 (1 — 6?) (1 — 2107) cos 3 Sl i
+ 3064)] cos g + 5 ¢ — 0 — 2162%) cos 3 g} + ————— (1 — 62) (1 — 5p2)-1
) g al 4096 G7 : )
x {4 [n? e? (19 — 21462 + 3716%) — e (51 — 8860 + 1491p4) +
16
+ ez (1—3¢2) (1 — 762 (40 Nk J ] sen 2g + et (1 — 0%) (5 — 1190%) sen 4g) +
T
s ‘Iz ;
= S*() (1 — 562)~1 {— 5 (7 — 1802 — 776%) + 24 n (1 — 302) (1 — 56°) +
3! 4
+ n? (25 — 12602 + 450%) + b J“z [— (21 — 27002 + 3856%) + 9n2 (1 —
2
[J'4 J22
— 1462 + 2164)]} ————e? (1 —6%) (1 —562)=2 P'sen 4g +
2048 G7
p'Z 132
+——— (1 —56%)~1 [e2 (3 — 2462 + 250%) + n° (1 — 60% + 504)] sen 2¢ +
16 1,2 G*
wJ
+———¢(1—0%)% (1 —56%)~2 [8 — 20162 + 1000p* — 9756° — 1% (56—
192 G*
o u? Js ‘I4. :
— 13862 + 71564 — 7500°)] (3 cos g —cos3g) + ————— ¢ (1 — 02)%
192 7,2 G
x (L—56%)-2 [8 — 12162 + 4966* — 45565 — n> (5 — 8202 + 3550* —
— 3500°)] (3 cos g — cos 3g) (8.18)

Segiin esto, los resultados que hemos obtenido para las variables L, G/, H’, I, g/, K’
son los siguientes:

L' =L (8.19)
p? Jz JA
GE=lGE— e2 (1 —02) (L—562)-1|1— 1562 + 5 (I — 762) | cos 29 +
16 G3 J22
i ]3 P’4 132
¢ (1—02)# 8en g + —— (1 — 2)(1—562)~* [—(153—14849° + 34350¢) -+
27, G 512 G7

+ m?* (233 — 228462 + 511564) — 16 n (1 + 250° — 1206%) — 16 n® (4 — 7502 +

3]
+ 22504)] cos 2 + 2:8 63 (1—02)% (1 —56%)-1 {— 18 [6 e n (1 — 36%) (1 — 502) —

— e (13 — 13002 + 456%) — 5 e3 (1 — 6%) (1 —702) + 10e (1 — 62) (1 — 762) +

e
+ (% +n + 1) (2 — 1602 + 306%)
1+ q

ol A=y

]sen g —15e3 (1 —62) (1 — 2162) sen 39 }+
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_{.
2048 G
x (1 —170%) (3—51n%) + 2n? (35— 5500% + 93161) — n* (19 — 21462 +
2 Jz aS* (1)

T

+ 3710%)] cos 2g + 2 et (1 — 62) (5 — 1196%) cos 49} +
32 Gt 3¢
x (1 —50%)71 {—5 (7T —180% —776%) + 24 v (1 —367) (1 —56%) + n° (26—

J
12602 + 450%) + 5——147 [— (21 — 27062 + 3850%) + 9 (1— 1402 + 2164)]} —

wt 2 T2
Ll = 21— 92) (1 —502)78 Pcosdg + ———— (1 —60%) 71 [3—
o12/G7 8 Jz'-" (63
! ?’L:" 'I:; f
— 2402 + 250* — 2 (1 — 902 + 1004)] cos 2g + i (— e (l—6%)% x
64 G5

X (1 —5p2)-2 [8 — 20102 4 10000%* — 9750° — n? (6 — 13807 + 7150* —

¢ GHTARS "4
— 75005)] (sen 3g —sen g) + ————— ¢ (1 —0%)% (1 — 56%)72 [8 — 1210* +
j 6472 G

+ 49604 — 45565 — 2 (5 — 8202 + 3556 — 3500°) ] (sen 3g — sen g) (8.20)
He="H¢ (8.21)
w?J, J,
="+ ——1—0*)1—56%)"1|1—150% + 5 (1—76%) | sen2g +
16 G L J,2
wl, G Vi
+ ———— (1 —6%)%cos g + —— (1 —67) (1 — 56%) 71 [ (233 — 228492 +
2J Lie 512 G® L?

+ 51156%) — 8 (1 + 2502 — 1200%) — 24n? (4 — 7502 + 2250?)] sen 2g +
w’ "a
+ ———
16 G* L2 e?
4 27 (10 — 9302 + 550%) — n? (33 — 29002 + 18504) + 1543 (1 — 2) x
Sptd,
% (1—179%)] cosg + ————— (1 — 02) (1 — 502)~1 [6 (1—362) (1—762) (1—5n?) +
256 G° L2
+ 1 (35— 55002 + 9316%) — n® (19 — 21402 + 371¢*)]| sen 2y +

1—02) 1 —02)72 [2(1—302) (1—5602) (3—121% + 814 +

w2l
N T kG e sy g (T Spsy (1 e a2y n (25 — 12602 + 4504) +
16 G* L2

w ]2:

2 (1—0?) (1—56%)-3 fe2 [(1— 150%) x
e )2 {e2 [ )

J
4 451—“3,1 (1 — 1402 + 216%)] +

x (3 — 9062 + 4256 — 45006) + 10 —= (3 — 10302 + 10076% — 338505 -+

2

C

{
2

e e g

SESISS S
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L

I, \? A
+ 31500%) + 25 [ ]4 ) (1— 76%) (3 — 5007 + 2096 — 2100%)] + P} sen 4g —
2
2
w2 5u37, 7,
— % (1—50?)-1(1—992 + 10p4) sen 2g ——— "L (1423 x
472 GLS 6472 G L3 e

x (1 — 562)=2 [6— 9502 + 4020% — 38505 — % (5 — 8202 + 3550¢ —

; 5 w? Js s e =
: — 3500°)] (3 cos g — cos 3g) — T (I1—02)% (1 — 56022 [6— 15902 +
i; + 810g¢ — 82565 — n2 (5 — 13802 + 7150 — 75065)] (3 cos g — cos 3g) —
i f e e (1— 02)%/2 (1 — 562)~ (1 — 2162) cos 3g —
g 96 G° L
| l Wb e? (1 — 62)2 (1 — 562)~1 (5 — 119¢2) sen 4g —
1024 G5 L '
e o (1 —50%)~" {—5(7 — 1802 — 7764 + 247 (1 — 302) (1 — 50%) <
i 32G%2L3e Qe
i J
+ n? (25 — 12692 + 450¢) + 5 14-: [— (21 — 27092 + 3856%) +
2
+ 92 (1— 1402 + 2189)]) (8.22)
i
‘ e 50%)=7 [3 — 1002 + 156% — n2 (1 + 202 + 56%)] x
| 32 G
{ = 4 5“’2‘12 ‘74\
x [1—150% + 5 (1 —76%)] sen 2g+ e? 62(1—6%) (1—562)-1f3+7 — |sen 29—
12 16 G+ ( 122)
?E I" Ja 2 2 IL4 J22 =2 2 F 7 5 :
i v (1 — 6974 (L — 02 —e® ) cos g + —— (1 —5%)== [ 1071+ 1855602 —
§ — 1114046* + 26601005 —1889250F) + 2 (1165 — 2111442 +
j{ + 1295160+ — 3152300° + 2301756%) — 32 (3 + 8602 — 10856¢ +
4 + 362005 — 30000%) — 32 n? (8 — 2576% + 19906% — 562565 4+

pt Jg
288 G® e
x [e? (2 — 8902 + 3520 — 5250°) + 3 (1 — 02) (1 — 2162) (1 — 562)] cos 3g +
+ 18 [2 (— 15 + 26502 — 9040* + 7050° + 1256%) + 24y (1 — 562) x

X (1 — 362 + 420* — 300°) + m?2 (77 — 119562 + 469564 — 586505 +

+ 20000%) — 4 3 (7 — 9662 + 50564 — 11506¢ + 75008) —

+ 45000%)] sen 2g + (=024 (I —562)52 {5 2 (1 — 92) x

nt4+nd—n+2
St 02) (b= 6dpr 'y 2910t =13106%) 4 ot N WG
1+ q

SR

SR bR i e R S S A R T At e

Sz
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. wtdy =

x (2 —1662 + 306¢) (1 —6%) (1 —592)] cos g} + s (1 — 562)—2 x

x {4 [— 245 + T7246% — 4316804 + T47126° — 427350° +

+ 48y (1 — 02) (3 — 5102 + 2776% — 5256°) + 2 n? (175 — 462002 +

+ 279540* — 620760° + 418956%) — 160 1 (1 — 62) (1 — 1802 + 1039¢ — 2100°) +
+ nt (—57 + 126062 — 759004 + 17964° — 129850%)] sen 2¢ +

+e2(1—02) [4 (1 —02) (1—562) (5—11992) + e? (15 — 65662 + 29810 —

2]
— 41656°)] sen 4g} + 1”—6(-;%8*(1) (1 —562)=2 {5 (—14 + 8992 +

+ 1286 — 11550%) + 36 5 (1 — 56%) (1 — 1062 + 256¢) +

J
+ m? (26 — 26207 + 7650* — 4500°) + & 14 [—42 + 91502 — 424004 + 577660° +
2
2
P'Z Jz 8™
+ 9 n? (1 —280% + 133p* — 2106°)] T (1 — 5p2)-1 x
32 G+ 2G

x {—5(7—1862 —T776%) + 24n (I —367) (1 —56%) + n? (25 — 12607 + 456¢) +

J
+5 J‘o [— (21 — 27067 + 3850%) + 942 (1 — 1462 + 216¢)] } —

2

w J'z2
_ %72 1 55)-4P [e2(5—20° + 504 + 2 (1—02) (L — 502 4
L P e ) +2(1—0%) (1 —56%)] sendg +
172 P 272
; 3
Gt G L penye LS ey LS g ey
2048 G7 G 16 7,2 G4
x [9— 13562 + 5350¢ — 62565 — 22 (1 + 1492 — 1656¢ + 2509%)] sen 2g +
pl ]3
+ 273 (1 ¢2)-3 (1— 562)-3 [40 — 14956° + 137030 — 497450¢ +
192 Gé e

+ 758250° — 390091°) — 2 (47 — 193192 + 179800% — 663400 +

+ 1055256° — 5662501°) + n* (10 — 51762 + 49566* —

— 188450° + 324750® — 1875081°)] (3 cos g — cos 3g) +

i k] (1 — 62)-% (1 — 502)=% [40 — 93502 + 732704 —
1927,2 G¢ ¢

— 247856° + 362660° — 18200010 — 72 (47 — 117162 +

+ 94526% — 328846° 4 504056° — 264250°) +

+ m* (10 —2936% + 251504 — 92450° + 1547508 — 8750910)] x

x (3 cos g — cos 39)
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2 J
W= b — T2 g2 g (1 — 50%)-2 [11— 3007 + 7504 + 5 —— (3 — 1462 + 3504)] x
16 G* iz
uty pt J?
x sen2 —————e0 (1 —02)"2cosg———0(1— 50272 [2 (436 — 491962 +
27, G 512 G

+ 174500¢ — 171750%) — 16 7 (29 — 2906° + 10850* — 12009%) —
— 2 (1352 — 1479802 + 523409° — 511506°) + 16 n? (59 — 60092 +
w7
4 21756* — 22500%)] sen 29 + ———~ e § (1 — 62)~% (1 — 502)~2 x
288 G
x {18 [6 1 (1 — 562) (7 — 4402 + 4564) — 73 + 3502 4 1250* — 3756° +
n+n+ 1
+5e2(1—02) (—7 + 400> — 1050¢) + 2— (7 — 792 +
s 1
+ 26504 — 2250°)] cos g + 252 (1 — 62) (7 — 2262 + 636¢) cos 39} +
5 l‘*li J4
+ —
1024 G#
+ 81 (83— 512 (3— 3162 + 1096* — 1056°) + 2 n? (205 — 148192 +

f (1 —562)-2 {4 [— 293 + 478562 — 110550 + 57750° +

+ 50996¢ — 46550°) + n* (— 69 + 58562 — 20196* + 18556°)] sen 29 +

4 J.’
+ et (1 — 02) (52 — 19162 + 5950+) sen 49} — = (1 —502)-2 x
32 G>
S* (1)

x [(1 — 562) + 10 ¢ ] {—5(7— 180> —776%) + 24 (1 —362) (1 —56%) +

J4
+ 02 (25 — 12602 + 456%) + 5 - [— (21 — 2700% + 3850%) +

2

1]
+ 92 (1 — 1402 + 2164)]} + Gf 08*(1) (1 —56%)~1 {— 5 (9 + 776%) +

Jd
+ 24y (4 —1502) + 12 (63 — 4502) + 5 = [—135 + 38502 +
63 12 (1 — 362)] BT (1 —502)-4 [ 2) (1 — 562) oR
+ 6312 (1 — e O (s OV &) — 6 — 9 +
! b o e
IJ-2] 2
+ 40P (7T—562)] sendg —— > ¢ (1 — 50%)=2 [—9 + 5002 — 1256* +
87,2 G+
w
+ 442 (2— 1002 + 2504)] sen 29 — — > ¢ g (1 —02)-% (1 — 502)=3 x
| ] g T ( Jt( )

x [—250 + 247392 — 984564 + 2157506 — 146256° + 72 (181 — 181962 +

SR orTE
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+ 73850+ — 163250° + 112500%)] (3 cos g — cos 3g) —

5“‘3‘73‘14 B a2\ —3 2 4
— - " ef(1—02)3%(1—506%)2[— 90 + 10176 — 4606 +

+ 102150° — 68250° + n2 (69 — 77162 + 34650* — 77256 +

+ 525008)] (3 cos g — cos 39) (8.24)

Finalmente, de acuerdo con los valores obtenidos para F**(0), F**(1), F¥*(2), F**(3),
y recordando que ahora la funcién F** = F**(0) 4 F**(1) 4 F**(2) 4 F**(®) no depen-
de mds que de las variables L”, G”, H”, bastard aplicar dichos resultados al sistema
can6nico fundamental para obtener los términos seculares, que se escriben a conti-
nuacién :

Aoy il e AT

—_—= + — + — 15 (1 — 262 — 76%) + 1 — 3¢2)2

R n e
L

+ 5n2 (65— 1802 + 56%)] + [3 (65 + 36362 —

40 —+.

2 L+ GT
— 139364 + 15256%) + 60 n (1 — 302) (1 — 20> — 76%) — 52 (35 + 31762 —
93904 + 7316¢) — 15 1° (1 — 362) (5 — 1862 + 564)] +
+ bl [3 (19 + 51362 + 5250t — 20656°) + 10 42 (15 — 53162 +

2048 L+ G11

+ 7056% + 1476%) + 21 n* (— 3 + 6302 — 1250% + 49¢%) +

+ 20 (2—3n2) (38— 397 + 1250* — 1050°5)] +

3utl? oP
+——— (1 —6%) (1 —56%)=2| B—5n?) P + ne?
ST ( ) ( ) [( °) n on ] il
3usl2
————— [3(3 — 2462 + 256*) — 10 12 (1 — 992 + 106 .25
I, L0 " B 5
dg” 3utd, a 2 3psJ,2
e o 3 L s S B Bt e 1= 3927) (7 — 3392
dt 4 L3 G 128L368[ ( Gl % L
15,57,
+ 2 (35— 16202 + 5504)] — —— % [91 — 97062 + 3850% —
128 L3 G8
d!.LSJ 3

— In2(1 — 1462 + 216%)] + [715 + 47196% — 20895p% + 259366° —

512 L? G12
— 12 (385 + 412167 — 140850% + 124276°) + 15 (11 —6567 — 1564 + 35768) —
: 15u2J, 7,
— 5 (55 — 4296° + 8850% — 2550°)] + —— > % [209 + 666962 +
2048 L3 G12
+ 787564 — 351056° + 61?2 (55 — 230102 4 35256% + 833¢%) 4
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+ 3m* (— 33 + 8196% — 18756 + 833 6°) + 36 (11 — 16992 +
+ 6256 — 5950°) — 12 (27 — 42902 + 16250% — 15750°¢)] +
3us s

: P
i ..(1_503)"3}63 (9 —366% + 3504) P + 0 (1 —02) (1 — 502) — |+
2048 L? G2 {

20
|, Budy
+2(01—62) (1—502) P+ ——— = [2] — 21662 + 2750% —
f  3275,L36G®
— 22 (7 — 8162 + 1106%)] (8.26)
dh” 3putd, 0 3usT20
—— = — n? (562 —9) + 12m (362 —1) + 5 (702 4 1)] —
at ol oh b ) i lioment )]
15u87, 0 : 3utll 0
——————— (762 —38) 812 —5) — ———— [363 — 278602 + 45750* —
32 L3 G 956 L2 G12

— 2 (317 — 18786 + 21930%) — 15m (5 + 202 — 6364) +
15u87,7, 6

1024 L G12

+ 22 (— 531 + 141007 + 4416%) + 3 q* (63 — 25002 + 1476%) +
+ 124 €2 (— 39 + 25062 — 31504)] —

+ 6n° (33 — 11802 + 456%)] —

[513 + 105062 — 61956+ +

3 p,s 123 & E: d 3 P
————e? (1 —56%)-2120(9—562) P + (1 — 62) (1 — 56%) — | —
2048 L3 G2 20
3u87.2¢ :
= ob o iosgr 20 Longa) (8.27)
87, L3 Go

IV. El problema de pequefios divisores en una teoria de segundo orden

9. ALGUNAS PROPIEDADES RELATIVAS A TOS PARENTESIS DE PoIsson: Comprobada Ia
solucién de segundo orden, pasemos a deducir algunas propiedades que serdn tiles
para expresar las ecuaciones (6.10), (6.11) en forma de paréntesis de Poizsson.

Propiedad 1: Siendo (@, y,) un sistema de variables candnicas y F (2, Y,.)s
G (z,, ¥,), @ (z,, y,) tres funciones arbitrarias, continuas con derivadas continuas
hasta un cierto orden, se verifica :

oF 3G 3% F oG % oG 3lg, F] 5 oF Qle; G]
Mgy, Y, 85,37, M 31, 3T, W, 9Y;, F oy, oI, B QY Png e

oF 3G
= [G, [(Pr JEEIS [2 ’] (9.1)

»
£ ayl: a'rl.‘
donde los términos [F, G] representan paréntesis de Poisson.

SEOT AR
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Ly sl oF 9G ?d% 1
En efecto, sumando y restando el término —— >} —_— — a la expresién :
2 M 9w, JY; I%; Yy
1 oF oG 22 1 oF G &7
i it P e 9.2)
2 M 3y, 0Y; 0T, oT; 2 M om 9T, 9Y, dY;
obtenemos :
1 ) oG 1 X oF
~2[ ‘P,F]-—+—2 [—"’G]—
2 k| 27, oY 2 ¥ | 9y, T,
y teniendo en cuenta que
op ] g, G] [ oG ]
) (J S R = D b q»)’ B,
ayk ayk ayk
nos queda: 1
1 oF oG B 1 o 3G 2% 1 = [ o I‘] oG 1
=== _— —_— = e S e gk e
2 M 3y, 9Y; T, %, 2 H 3z, 9%, Y, Y, 2 k| 2z, oY
1 dlg, G] oF 1 oG oF
e SNy e — 3 | Eass
Zipek ayk a'rl: 2 . ayh Ly
1 oF 3G o : :
Andlogamente, sumando y restando —— > — — — a la diferencia (9.2)
2 M Qy, 9oT; 9T, 09Y,
obtenemos :
1 oF 2G % 1 oF 3G 9% 1 o oF
e e s
2 H 9y, oYy; 97,07, 2 H 3z, 3T, 0Y, Y, 2 k| 9z, oY,
1 olg, I'] 3G 1 oF oG
e
2 oY, 0T, 2 2 oY, | o1,

Los otros sumandos del primer miembro de (9.1) se pueden poner en la forma: |

olg, F] 26 1 ole, ] 3G 1 G
e e i e |
ke 0T,  9Y, 25t or Ry 2 oz, oYy l
1 oF 1 oG
=7 2 |:(P: ]—_‘ l
2 ¥ al‘k ayh |
olg, G] oF 1 olg, G] BF 1 d or
L - - 5 - = 2[ Gl =
k or, oY, 2l 0T, 09y, Qi o7, oY,
1 oG oF
-
= x aIk ayk
de donde susfituyendo todas estas expresiones en (9.1) resulta:
oF oG 3% oF 3G % 2lp, F] oG [

¥ 9y, 0Y; 0T,9%; M Pz, 9T; 9Y,0U; k oz, Y,
88—
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3 [g, G] oF 1 1 L 3G 1 oF
— S = — [l 6], F] —— {op,F],G———z[ ——]
£oom, oY, L o laein | Y, 107,
1 oG oF 1 oF 1 aG 1 oF oG
Sls R
2 x Ii(p .al‘ ayk 2 % [ ayk azl: 2 ! X al‘k ayk

Esta igualdad puede simplificarse si tememos en cuenta algunas de las conocidas
propiedades de los paréntesis de Poisson, con lo cual se obtiene fdcilmente (9.1).

Anglogamente se obtfiene la relacién:

oF 3G  2%p < oF 9G] 30w dlg, F] 3G
¥ 9y, 0Y; 0T, T, M oz, 2%, oY, oY, F T e
dlg, G] BF oF 3G
S e = [F, [, G]] + [ } (9.3)
Hieor, oy, k. 9z, auh

Corolario: Si (z,, y,) es un sistema de variables canénicas y F (z,,9,), G (,, y,) dos
funciones arbitrarias, con derivadas continuas hasta un cierto orden, se verifica

L _9F F 3% 1 oF oF arp o [o, F] 3
21 ¥ oy, oy, ompw, | 2! om, o2, oupy, ¥ o5, on
=—1——[F) [(p, FJ +—1—[2 ar a[‘ ] (9.4)
2 2 | ¥ oz, By,

Basta hacer en la propiedad anterior F = G.

Propiedead T: Siendo (7,,y,) un sistema de variables canénicas y F (x S
) (:vk, y,) dos funciones arbitrarias, continuas con derivadaz continuas hasta un cierto
orden, se verifica la igualdad

1 5 oF QJF QF 3 % 1 oF QF QJF 2%

31 "9y, 9y, 9Y; ardTPT, 3! Migx, 9T, T, YUY,

1 %[, F] OF QF 1 5 ) [[(p, F1, 1?] oI
2. W 3rior, By, oy, g 3, oY,
oF oF
]
1 oT; 9Y; oF 1 oF JF
+—3 —=——[[¢,F1,2 — | =
2 W oz, oY, 2 Ie T, 9Y,

1 1 92F  oF 3F oF F
—T[F,[[w»F]:F]]wLT[cP,E e ‘]+a[cp,[F§— ]]Jr

& al‘kayl‘ aU,_. a'l} afz CJ]
*F  oF aF:' l: oF 9F QF aF }
+c

e e G s conug e
[ M 3r.0%; Y, oY ¥ 9y, oY; 9T, o
e Ry e
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para cualquier sistema de valores a, b, ¢, que cumplan simulténeamente las condi-
ciones

1 1

’} —_ = —

6 3

a+ C = —

En efecto, aplicando el corolario anterior escribiendo en lugar de ¢ el paréntesis
[@, F], tenemos:

i B eilen s BT
z o, Y, 2 M 9rar, Y, 0Y; 2 ¥ y0y; o, 0%
1 1 oF JF
= i [F, (Lo FI, F’]] 1 T [[q), F], Eh B?c:_a—yf]

sustituyendo en el primer miembro de (9.5), sumando y restando |

1 Al g, F], F1| oF
< s ]

2 T 8.1',: ayl:
resulta :

1 5 oF oF BF e 1 oF JF QF oA

31 M 3y, 9Y; dY; T, dT; dT; 31 Mior, 9z, 9T, Y, dY;dY;
oF QoF

] e gt A AR 2 (! n
. lsnie 0 iy e

2 L a'rl: aI”l 21 & arI: ayk

1 o', Bl aK oE
>

1
—_—— [:F, [[(p, F],F]] -+

2 H 9y,9y; 09z, o1 3
: [oy F], > sl o 1 F], F

bt VP, S — L ,F], F (9.6
o kQr, oy, 6 [ el o

Como los dos tltimos sumandos de (9.6) ya aparecen en el resultado que buscamos,
vamos a considerar solamente los restantes. Estos, con sencillas modificaciones de sim-
plificacién efectuadas entre el tercer término y el sexto, dan:

1 o oF QJF oF %¢ 1 Z ofF oF QF kL)
31w 3y By, By, 9%, 95,6m, 31T gz ow 5n ouou oy, \
oF oF
; ) |i(p, —:l
1 *[p, ] aF oF 1 or; 3Y; | QF
S5 e I + > — .
2 ®  9Y,0Y; 9%, 0 2l oz, Y,
1 o[lg, Fl, F|] BF 1 af g, F], F] oF
____EE—__J_______E_[_.._J___ 9.7)
Bk o, oYy 3% oYy 0%,

=)=
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Los dos primeros sumandos pueden expresarse en la forma:

1 oF QF oF o'y 1 oF oF JF e

31 M5y, 9Y; 9Y; 0T, dT; 7, 3! M3z 9T, 9T, 3Y, dY; dY; 3
1 % oF 3F 1 e oF oF

=—>|—F)F Ak 2l B ——
6 2] al‘kaf]. 8!/,,_ a’/, 6 Kl a!l,, 3Tj 31',_. a’yi

by
T

1 [ 3% ] oF oF
2 —___'J F ATy
6 3y, 3Y; oz, oz,

Con los restantes bastard efectuar las derivadas para expresarlog en forma seme-
jante. Asf, por ejemplo, el cuarto término de (9.7), se escribird:

| i i

1 aF 1 aF #°F
s —=—z[m,— B e
2 %y, oY, 2: oz; 1 Y, 2Y;o7,
1 2p 9F7 oF aF 1 92F oF 3F

e e
2 | 2z, 0%, | 9y, °Y; G 0%, 97; | 9Y, 9Y;
1 or oF  3%F 1 9p JF 7 oF BJF

+ E[np, ]—~ + — [ ,—]———+
2t e 3y, | 9y, 0%, 97, 2 9%, 19Y; |1 0Y, OF;

1 o oF oF
__2[ __] o
215 oy; 0T, | oY, oI,

y andlogamente los demds.

Sustituyendo cada término en (9.7) y simplificando queda:

1 oF 1 oF JF 1 i oF 7 oF Q?%F
__~§ e e D D e e
2 Y, 9Y; | 9T, oz, SR s oy J oY, 0Y; o,
1 ?F 71 oF BJF 2 [ oF 7 OoF R
e e s
_ S 2T, a: oY, dY; 3. M| = oy, | 9y, 9%,0%;
; 1 32F 7 oF 3F 1 o R R 92E
e ,Z PrEmrae S e [N Snmell |G S s e i
3 Y, o, S M| 9%, | 9%, 9y, 9y,
1 oF aF o*F it [ oF oF oF QJF
i P e D e S
] oY, ax o, 3 s Y; Y, a_l‘i oT,
1 F F JF 1 F 3
+_‘2[ﬁ3_]9 o +_*2[5*P3 b
6 * | 9%, Bz, | 2y, 9y, 3 M| 3z, 2y, | 9y, 9%,

SRS
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T8 IG5e r] oF  o°F 1 2[ % ] oF  °F
6 i L 933,-, ay}. ay} aII: 6 ¥ ay ayk a.’l,‘]. aTk
1 [ © oF oF oF 1 ) oF %F
6 * | 9y; 9%, | 9y, 0%, 3 POz, oT; Y, 9Y;
1 [ @ aF o%F
S ST i) F} =l (9.8)
S| Q. SI 0T, 9Y;
Ahora bien, es inmediato comprobar que
1 z—am ar] oF aF 12[acp ar] oF BF
3 H | 9y, Yy, | 2% az,; 6 | 9z, oz, | oY, 2U;
[ Op OF ] oF oF 1 a<p oF  9°F
f—3 | —— | =————73 Bl =
3 M | 9T, 0Y; | Y, 2% Sk 81 oYy, 9Y; 0%
1 [ 8q> oF 82F 1 [ o aF} oF oF
+ — _— —_— —_—
6 8J, oY, “I T, (6 1) Oll 3T, | 2y, o,
1 B 1 ) orF 22F
i e 2 aq’ i) [ ® F] Sk S S
SEEd oYy, aJ 3 % | gy, o%; T, Y,
por lo que (9.8), teniendo en cuenta propiedades conocidas de los paréntesis de Poisson,
se reduce a:
1 2?F Q3F QF 1 o%F alv oF
——,I:UF!E. _——:I+_—|:¢:2 ]1‘
6 ¥ Y, 0Y; 0T, 0%, 3 k9w, ay aJ, o7,
1 *F  oF QJF
3 K9z, 0r; 0Y, Y
Finalmente, la igualdad
oF oF oF oF @F  oF F °F '
s s e |
k5 ayk al:,: ki 8-73,- 833,; E')'y,_. 8!/,» ay;, ay, ally; al’j o

nos lleva al resultado (9.5) que habiamos enunciado.

10. ExXPRESION DE LAS ECUACIONES DE LOS DISTINTOS ORDENES EN FORMA DE PARENTESIS
Partimos de las ecuaciones (6.8),
rar los diversos 6rdenes, en el desarrollo del hamiltoniano.

En primer lugar, observemos que las igualdades (6.8) y (6.9),
ya aparecen escritas bajo forma invariante para toda transformacién candnica.

DE POISSON :

ma (7.1),
Tenemos pues

(6.9), (6.10), (6.11) obtenidas al compa-

ésta tdltima en la for-

A

0
%

FO) = F*(©)
[F*©), SO)] = —F(®) + F*(%)

(10.1)
(10.2)

RERH

e

¥

e e

i E

A
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La ecuaci6n (6.10), de orden 2), en virtud de (10.2), nos queda:

. K g 1 aS™  3S@W  F2F*®)
[F*@, S®] = — F® + F*® — [F*®), SO] + — il
21 H 3z.*  3z* 3Y,3Y,

1 3SM 3S@W  FF*® 3 [F*®, SW] 3S®
TE 2

21 ¥ 3y, 3y, Imtert * 9%, Y,
Ahora bien, por el corolario de la propiedad I, se puede expresar finalmente, como
sigue :
i ) i 1
[F*©), S®] = —F® + F*® — [F*®), SO] + —— [[F‘(O), S, S(l)] +
2
il AW HS®
+i— [F‘(UJ, > ] (10.3)
2 ¥ al‘k‘ ayk
en la cual todos los sumandos aparecen en forma de paréntesis de Poisson.
La ecuacién (6.11), de orden 3), teniendo en cuenta (10.2) y (10.3), es:
2 A 1 2SAW 3SM 3SM  FF*(©)
[F*©, S®)] = —F® + F*G) + —— > =k
GRISRIEEE R s or;t 9z 9y, dY; oy,
1 5 2SS 3S®) a8@) 8317'(01 il aS(l) aS@ aZF!(])
—_— == S RS
31 ¥ Ju. oY; 9Y; %" 9x;" ox;” 9 ki or,* ozt oY, ay;
1l S  aSW ™ 1 9SM 38 FP[F*®), SO
2 F 9y, oY, | 9%, o 2 L 9Yie Yy 9%, 0%~
4 = 3aS®@  [F*®, SM] e
— [F*®), S@] + 3 — [F*®, S®] +
| ' & ayl: al‘k‘
| S J[F*®, S®] 3SW  F[F*®, SO
e + 3 e S
I kY, 0%, £y, oz,*
i SA) FS™)
| - [rp ]
& 1 5 AS®) [ [F*(®, SM], SM] 1 2S@) 79wt 9y,
S ) S S D
2 F oy, 0T 28wy 0T,
_ 38m 38® 2F*(®) 35S 38® 2RO

o

+
3y, 8y, ATroT M aT’ Bzt w0y,

1

Aplicando el corolario de la propiedad I, con F = SO y ¢ = F*() se puede poner
en la forma:

[F*©, S®] = — F®) + F*6) — [F*®), S®] — [F*®), S®] +

g
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AR 1 5 S S i
A [[F*®, s®], S| + — = [1"~(1), ] ¥
2 2 0%, " oYy ';i\“'.
y
3SW  38® O BSW  35@) P i
-+ > e T P Sl :
S 2N oz’ Y,0Y; % Y;. oY; an,;'ar,-‘ i
3s® 3 [f-(o)’ S®] a8A) 9117'(@, S®)] o
b 2 T e | ,
Y, oz,” E 3y, or,* |
1 8™ JSM S  FF*® 1 5™ s 3SM 3F*®
Sl s — AT e e BT T el G L S
Sl omt et Lox s I oyey gy, s Bl ARy gy R or,"9x,*9z,*
1 3SM SM  2[F*®), SM] 1 oS 3 [[F*©®, S, S
e ) I R i ‘
e oyl oy o7,*3x,* 240 oy or,* |

3 | Fr,
1 2S@) i af,-' ayi
2 ’: al// axl:’

SM 38 ]

y si aplicamos la propiedad I, con F = S, G = S(©), ¢ = F*®, y la propiedad II, con
F = S®, ¢ = F*(©), se obtiene finalmente

[F*®, S®)] = —F®) + F*®) — [F*®), S&] — [F*®, SO +

1

2

b 2

) i aS@W S
[F-("l]'_ S(I,Jy S@) S ':I,v.(ljl 2
[ : 2 Eoozt QU

i S@) S® 1 & S aS™®)
4 [F*w), > T ]__ [[F‘(O), sm], 3 g > ] i
: ayl: 'a'.r): X 2 5 a'rk o a’yl:

|+, 0, 507+

1 = 1 i
+ — | Sm; [[F*o, S®, Sor] | — F*©, S
6 [ : J] 3 [ oz ty, oy, oz}

i 35S 38 b 925M) 9S() 38
—a [F’(“), [Sm, = ] = [F“(O), > ’ ]_
Eiome oy, 7 9mrort 9y, 9y,

2281 3SM) a'S(JJ:l

s [‘p»(u.», s O (10.4)

S  3SA  F28() ]
“ogrt 9t By, Y,

para cualquier sistema de valores a, b, ¢, que verifiquen simult4neamente las condicio-
nes ¢ +c=—1/6, b—a=1/3.

Las ecuaciones (10.1), (10.2), (10.3), y (10.4), al igual que otras de Grdenes superio-
res que podrian ser obtenidas de modo semejante, estdn expresadas en forma convenien-
te para poder abordar un estudio sistemético de invariancia, que serd de gran utilidad '
en la resolucién de algunos problemaz relativos a pequeiios divisores, como veremos
en los epigrafes que siguen,

s
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11. INVARIANCIA DE LAS ECUACIONES FUNDAMENTALES: Por conveniencia de notacién
posterior, volvemos a escribir las ecuaciones (10.1), (10.2), (10.3), (10.4), con respecto a
un sistema de variables canénicas (X, z,) que posteriormente serd identificado con el
sistema de variables de Delaunay o cualquier otro. Tendremos

F©) = F*(©) (11.1)
[F¢©, S®] = — FO) + F* (11.2)
i 1 s
[F*®, S@] = — F + F*@ — [F*®), SW] + — [[F*O, SO)], Sw] +
2

(e T aSMW  Fs® ]

LB R o) . (11.3)
2 L ; a‘xk al‘k
[F*®, S®] = — F® + F*® — [F*®), S@] — [F*®), SOV] +

3S® S 2
~] + [[F*©, s®], S&)] +

T o
G TR SO ST+ el e @) s
2 [[ ] ] 2

L 7 an axk
< S S 1 ) S S
+ [F’(“% DY 2 v ]—ﬁ [[F'("), S®], > 2 = x ] +
10X, o, t 0%, om,
1 A Fiap 28 3S™ JSW
+ —— [S®, [[F*®), SM], S]] — — | F*®), 3 ——— R
; 3 ¥ X, o7, oz, 3K,

il e 251 3S®  SMm e e 328 38  PSW
L ]+ Llrog 2
M 9X,, an IT, o, 6 K. 9w, 9T, 9X, aXJ.
(11.4)
Realicemos ahora un cambio de variables
‘\-k = Xk (ij y,)
(11.5)

T, =z, (¥, v,)

y busquemos las condiciones que debe verificar esta (ransformacién, para que las ecua
ciones anteriores sean invariantes; es decir, que las expresiones de S(1) (Yo
S@) (Y., 4,), F*o &,, y,) ... obtenidas del sistema (11.1), (11.2), (11.3), (11.4) en fun-
ci6n de las nuevas variables (Y, y,) sean las transformadas de las funciones S() X 7)),
S@ (X, ), F*() X, z,)... deducidas del mismo sistema cuando e expresa éste en
funcién de las variables antiguas (X )

Una vez conseguido esto nos bastard hacer el cambio en los resultados obtenidos con
lag variables primitivas, sin necesidad de repetir todo el proceso de integracién.

Las ecuaciones (11.1) y (11.2) son evidentemente invariantes para cualquier cambio
de variables canénicas.

Estudiemos ahora la invariancia de la ecuacién (11.3). Fn ella todos sus términos
son sin duda invariantes para cualquier transformacién canénica, con excepcién del
aSM  2SM ]

ultimo [F*(O), >
* X, o7,

) s
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luego, es suficiente a nuestro objeto hallar sistemas canénicos que verifiqguen Ia
igualdad
aS®)  gS® 251 3S®)

Sl )
Jui X oY oy

(11.8)

DY
£
k

en el sentido de que, dada una transformacién del tipo (11.5) y jacobiano distinto de
cero, si efectuamos el cambio correspondiente tendremos :

39S  aS® (B3SO Y, SO By, | (8S® Y,  aSM 3y,
+

Bo9X, 9%, =k11 oY, E oY; a‘\-kj-)\ oY, a—rk oYy 0o, S

o bien después de ordenar sus términos

as®  aS® as® S ‘ Y, oY,
> — =2 B = +
k9w, 90X, a an oY, 1'” X, o=,
oS as® oY, o 8Y, oy
+
oY, oy {k oX, o, 0T, 0X,

aS® 3S® [ 3y, oy |
_ {2 :
e e

oS 3SM
, lo que nos lleva por comparacién de

expresién que debe ser igual a 3}

2 a).k ayk
coeficientes a las igualdades
kX, om, ,
oy; Y
Ll L) Vil (11.7)
¥ a‘\k a'rk

Y, oy A, 3
: [ J = : y'l =0
K an axh a‘rk a\ k

Como por ofra parte, los sistemas que buscamos deben ser canénicos, habrén de
verificar :

siloe oh . 9 O N ek
v\a s e L

S| o0 i

(11.8)

=M
|
|
@

i

S AR R

i

iF,
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luego para que se cumplan simulténeamente (11.7) y (11.8) deberd ser:

Vi gy
L Vi
2 a'\'k azk
¥ 1
oY; oY, i Vil
k an al'k
Y,
_a_j_ ChfL 55 11.9)
ke aAk al‘k
N, 1
Siiinanl Vil
o9z, oX,

Una solucién del sistema (11.9) es evidentemente

Yj = anz\'1 + amX2 e ajak's Y, =0,* T, + @, T, + a,° T, (11.10)

siempre y cuando los coeficientes verifiquen la condici6n :

> T, 0" =8 (11.11)
%

o en forma matricial, si representamos por A la matriz (@) ¥y por A* la(a,*):
AA¥ =1 (11.12)

siendo A* la matriz transpuesta de A*. La transformacién (11.10) es solucién, pues al
no depender YJ. de Z, T, T, ni Y; de Xl, XZ, Xs, se cumplen automditicamente la pri-
meda, segunda y cuarta de las ecuaciones (11.9), mientras que la tercera se traduce
en la condici6n (11.11).
Tratemos de encontrar otros sistemas que verifiquen (11.9). Para ello consideremos
un cambio de variables de la forma:
Y, = w Lo, X, + @, X, + aiaan o; [4;* 2, + 0" Ty + @

ja~ Tgl-

Y = ‘l’j‘ [:ail'\'l " aizxz i aj:sXa] (P;i* [ah* AR ay‘z' LoEcty a:’a* ra]' (11'13)
Poniendo para abreviar

= Y ¢ ¢ = * * *
U= a’jl‘\l i3 uiz‘kz s aja‘\:s ChE U R SR O i (e

y sustituyendo en (11.7) resulta:

d‘Pj d g,
d‘pj* d(p”
. L@t =0

(11.14)

= AT
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d W; dog*
d u; dv

QW [% L5 “zk’] = 9;

1

dy,* dq
du, dv

@7 W [2 a, a!k'] =0
1 k

De aqui se deduce que debe verificarse el sistema

R
D8y 0t = Oy

k

d ‘1’1 d ©; o 0

d U, dv, i

(11.15)

d 11)1.‘ d (p].' Sl

d 9"yt =0

U, d v,

d V; d ‘Pj' 5
= Q0 = 1

d u; d v,

y f4cilmente se comprueba que la tnica solucién posible de (11.15) es la dada por
(11.10) y (11.11).
Si partimos de sistemas de la forma:
Y, = q; [4;X, + 4%, + 4,X; + 0,2, + 0,7, + 0,7,]
le o7 ‘pj [BJ‘IXI + Bj'_"\-z it Bjaxs it bjl‘rl it bjzrn + bjs'T3]
se llega andlogamente a la misma conclusi6n.
Como ejemplo de sistemas de la forma (11.10), tenemos entre otros los siguientes:

) Y, =L Y,=G6—L Y,=H—G
Up =g h Yoot Y, =ik

HhBGRB L,




:
1
3
i
A4
8
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con
B
AL R S O
B =050
R e Yo i V)
Uy 'L Y, =l+yg y, = h
con
I 4
Al=4*=|0 1 0
0= 0o
L P p
Al Y6 = Y,=H——>1©
Py Py Py
Yo =Dyl + D9 + pyh Ys = 0 =
con

P00
A=l = A% = P, 1 0
pre Ul

12." ELIMINACION DE PEQUENOS DIVISORES EN UNA TEORfA DE SEGUNDO ORDEN: El proble-
ma fundamental de la eliminacién de pequefios divisores consiste, pues, en encontrar
sistemas can¢nicos que cumplan las condiciones de invariancia (11.6), y que mno con-
fengan a €stos como denominadores. Hemos visto en el epigrafe anterior (que ambas
condiciones se cumplen para sistemas lineales del tipo (11.10); pero supongamos de
manera més general que la transformacién elegida nos lleva a una igualdad de la forma :

aS@® S aS@® 3SM) S 3SM)
e e L (12.1)
¢ a}k ayk X a"‘k a'rk : an a‘TI:
S 38 aS(1) 35
siendo A > el incremento que experimenta la expresién 3 S
£ oX, Bz, £oX . ag,

al considerar las nuevas variables en lugar de las antiguas. Si el cambio fuera lineal
este incremento gerfa nulo.

Segin esto, las expresiones de S(2) y F*() que obtenemos de la ecuaci6n (11.3) no
son las mismas en ambos sistemas de variables X ), (Y, y,). Se tendrd por tanto:
[S®]y, = [S®]y, + [AS®]y, (12.2)

[EQT  AF O AR

Sustituyendo en la ecuacién (11.3) resulta:

{F*©, [S®],, — [AS®], .} = —F@ ¢ [F*@], — [AF*@],
= 1 a TS S(1) S1) S@) S
—(F*, S(l)}+—}{F"(0), Sw}, smh _{F-@.-, s e s g > =
2 | f=g £ oF oy, ¥ oX, oz,
(12.3)

g
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igualdad que se descompone en dos. La primera:

{fw(o)’ SEN ) == PP [F*@)] Yyi=n [{F‘(l)’ S(l)}] Yy T

1 & ] 1 fiz 25 aSW
+ — [{{F'(O), S(l)}, S@) ] ST - [ (D)5 }] (12.4)
2 j Y.y 2 Q ¥ aYk ayk Y

que es idéntica en ambos sistemas de variables, y la segunda

itk i e S s
{F*®, AS®)} = AF*® + — {F'@), AS } (12.5)

* oX, oz,

que nos dard AS® e AF*(), expresiones que deben afiadirse a S@) y F*@®).

En resumen, si empleamos sistemas canénicos no lineales, podemos también sustituir
directamente el cambio en S() y F*®), aunque habrdn de afiadirse unos términos correc-
tivos que ge obtienen resolviendo la ecuaci6n en derivadas parciales (12.5).

En este epigrafe se han representado los paréntesis de Poisson con llaves.

13. ELIMINACION DE LA EXCENTRICIDAD COMO PEQUENO DIVISOR EN UNA TEORfA DE SEGUN-
po ORDEN: Tratemos primeramente de eliminar la excentricidad del denominador de las

expresiones que lo contienen, en una teoria de segundo orden, empleando sistemas li-
neales

-_— — *
Y, = %aijk y; = % a,* T,

con AA* =1

Teniendo en cuenta que en G, H, h y |l + g no aparece la excentricidad como pe-
queiio divisor, nos interesa considerar cambios del tipo

Y, =G Y, =H

Yy, =l+g Y, = h
al que habrén de afadirse las variables

Y,=L—G =

para que el sistema sea canénico. Asi se comprueba que la excentricidad solamente in-
terviene como pequefio divisor en la variable y, = [

Puesto que el sistema anterior no resuelve el problema de manera completa, consi-
deremos sistemas con las mismas variables Y, y,, Y, y,, tales que:
Y, =y, (L—G) vy, (L 9)

Y= L — 6) Py ()

(18.1)

Tenemos que hallar de que tipo han de ser las funciones v, vy,, ¢@,, ¢, para que el
nuevo gistema sea canénico.

Ahora bien, las condiciones de canonicidad (11.8) se reducen en este caso a las si-
guientes:

oY,
29

=0

Ee




sl

MOVIMIENTO DE SATELITES ARTIFICIALES

dvy, O, M, i Py

s e

Vs ) L (13.2)

o9,
o9

con u =L —G.
Por la primera y tercera ecuacién (13.2) se deduce que Y., y, no pueden depender
de g, quedando en la forma
Yl =, (L TR G) W, (l)
Yy = 0 L G) g, ()

donde v, v,, ¢,, @, deben cumplir Gnicamente la condicién

d Py ¢ Pa do, d Y,
S D@ S =l (13.3)
Lo du dl R du dl

De entre las infinitas soluciones de esta ecuacién podemos tomar las que responden
a la forma

Y = 9% Y, = P ) P51 (13.4)
donde ¢, es una constante arbitraria.
Sustituyendo (18.4) en (13.8) y simplificando los resultados obtenemos

do d P
P <, ¢, +1 — =
o dl du
: d g, do
Por tanto, separando los términos ¢,° 5 Y @54t = en miembros distintos
u

de la igualdad e integrando, se llega a las condiciones

.+

1
Q, = ‘/(c1 + 1) (¢, u + ¢,)

1 dl
G e +c,
Ga (p201+1

. C,, constantes arbitrarias.
Llevando todas estas expresiones a (13.1), obtenemos las siguientes funciones:

. cx+1 : (chl dl
Y, = — U + (G u + 0)]n— Uw“ +cs]
3 i

3

(13.5)

giendo G230y C

(13.6)

Cx+1
Yy = (g +1) (cu + ¢,) o,

donde ¢, es una funcién arbitraria de [.

Sl
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En particular, haciendo ¢, =c, =1 y ¢, = ¢, = 0, resulta el gencillo cambio

7 ol G p
)1:—-—;\/2([/—(1)({)2 RN
Pa”
(13.7)
Yy = V2 (L —G)q,
De aqui se obtienen algunos cambios mds simples, tales como los siguientes:
1) Si ¢, = sen [, obtenemos v, = cos !
y el sistema es:
Y, = 3/2(L—G)cosl = (G Y, =H
Y, = A2 (L —G)senl Y,=1l+g Yy, =h (18.8)
2) Si hacemos g, = [, resulta y, = 1
y el sistema es:
Y =2({L—0) Y, =G Y, =H
(13.9)
Yy =N2L—G)1 Yy,=1l+yg Yy, = h
3) Sies g, =1, entonces ¢, = —1
Y =— /2(L—06G)! Y, =G Y, =H
(13.10)
Yy, = /2L —0) y,=1l+g Yy, = h
En todos ellos el jacobiano de la transformacién es uno.
9S(™) SA)
14. CGircuro pEL A 3 . EN ESTOS SISTEMAS: Los sistemas anteriores son
ko 2X, o,

SM  S®

canénicos, pero no dejan invariante el término 3 . Calculemos por tanto

ax\'k oz,
su incremento.
Si hacemos para abreviar
351 8™ S S 23S S
Py = - f = De e Ap, = A2 =
COF K, o, © Y on, = o
la expresi6n (12.1) podré escribirse en la forma
By = gy + Ay, (14.1)

Si tomamos, por ejemplo, el sistema (13.9), las variables L, G, H, 1, g, h, en fun-
ciéon de las nuevas son

13
L G=Y, H=Y,
Y (14.2)
l=y1 g:yz—.— ,J h—-ya
Yl )l
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En el nuevo sistema de variables las
obtienen por lag férmulas:

derivadas parciales de S(*) respecto a Y., Y 8e

2S™) aS™ X, aS™  Jz,
= +
oY, BieX, - Y, Poor - 9y,
(14.3)
2S() 3as™ X, 9S8  Jz,
= -
oYy v 9X, oy, tooT oY,
Es decir, segin (14.2), tendremos
S aS™ ]!
o Y, S0 — ! [S,0 —8,0] = — [SM—S,0)]
oY, ha oY, ¥
s aS™m
= Sy Suay =S @ (14.4)
oY, oY,
oS® 28
= SH(l) = Sh(l)
oY, oY,
de donde se deduce
yl =
Byis o Y [S,® — §,™]2
0 bien
s [SMH—S ®]2 = = [S,H — 8 ]2 (14.5)
Lt Yls 1 a Q(L =0 (.;) 1 g
y la ecuacién (12.5) que nos daba AS®), AF*(), serd ahora:
F*©), AS( P - F( . M — S« |
*(0), AS@)Y = AF*(2) — (0), 1) — S ®J2 L (14.6
( ) e )

Si usamos el sistema (13.8), las variables L, G, H, I, g, h,

SLSEg

en funcién

de las nue-

vas son :
Y2 4 g2
fey e b o H-T
2 2
(14.7)
y1 yl
! = are. {g > -g:yz—arc.lgy h =y,
3 1 1
y aplicando (14.3), obtenemos
2S™ 2 2S™m
e SO Y [S;®—.8 D] =y, S, 0+ L [S®—S 0]
aY Y2 +y2 2 oy Y2 4 9.2 =
1 1 1 1 1 1
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2S®™ )
=8,® + §,® —SE@D) (14.8)
Y, Y, -
S@) S
: T SH() i_ =8,
oY, oY,
y de aquf resulta
sen 2[
Ap, = (L—G) sen 2L [S; ]2 ———— [SM) —S ]2 — 2gen? L[S, — S B]S O
e i 4(L — G)
(14.9)
la ecuacién (12.5) serd en este caso
F F*@) +{F*© 1(L G S, @ i S S ()
F*©®), AS® Y= AF*®) 4+ {F*©), — (L — G) sen 21 N2 —————— S @S @)]2—
{ ) B e,
—sen2 [ (S, —S ] S, A1 (14.10)

de la cual obtendremos AS®) e AF*().

15. ExpresI6N DE A(2) EN EL sIsTeEma (13.8): El sistema que utilizaremos para eli-
minar los pequefios divisores en excentricidad serd el dado por (13.8); necesitaremos,
por tanto, conocer el incremento de la funci6n determinante al emplear estas variables.

Teniendo en cuenta que, para las perturbaciones de largo periodo, S*(») no depende
de la anomalfa media I, la ecuacién (14.10) queda reducida a la forma:

{F'“(O‘/, AS*®} = AF**®) + I'(F'*(O), (L” — G”) sen 2" (S*,.,(1)2

sen 2 I

S(L” s G//)

S, M)z + sen? I S+ SL:,"(‘)} (15.1)

En adelante, suprimiremos las primas de las variables L”, G”, H”, I, ¢’, h".

Resolviendo la ecuacién (15.1) después de sustituir en ella los valores de S,.*(®) y
S,*() obtenidos derivando respecto a L” y g’ la expresién de S*() dada por (8.15), se
ha obtenido para AS*() el siguiente resultado:

st = Yl g e — 56%)=2 (* ®en 4y~—”3—2 nE G0l du
1024 15 G4 o0
L UL i a0 )
32 G2 L

Con lo cual, S*(2) una vez afiadido su incremento, es:
S*@ =2 (1—9?) (1— 56%)-1 [— (233 — 228462 + 511564) +

+ 16 v (4 — 7562 + 2256%) + 16

(5 — 500* + 10504)] sen 29 +
14+

—
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s e
+——2— (1 —02)# (1 — 5p2)~1 {18 [6n (1 — 362) (1 — 562) — 13 + 13062 —
S ( 1 {18 [6n ( )
n?2+n+1
— 4504 + 5 (1 —62) (1 —1762) (n2 + 1) + e (2 — 1662 + 306%)] cos g +
Nt

+ (1 —067) [5e2 (1 —216%) + 9m® Q] cos3g} +

5utl, e?

Btena i S ey ) f 4 | n2 (19 — 21462 + 3719%) — 51 +
4096 G

2 ©
+ 88662 — 149104 + 8 (1 — 32) (1 — 7¢2) (5 L 1 ] ] sen 2 +
+m

20

P' 2

+ e2 (1 — 62) (5 — 11962) sen 4 I+————-S*(1) 1 —50%)-1f—5 (7—18p2 —
( ) ( ) gj 2 G ( ) { (

— 7764 + 24 (1 — 302) (1 — 50%) + n? (25 — 12662 + 456¢) +

+ [—21 + 270> — 3850 + 9 m2 (1 — 146% + 216¢4)]} +
2
}L4 J22 e2
=2 (1—62) (1—56%)°[2n® (1 —062) (1 — 502) Q> — P] sen 4g +
- n® (1—02) (1—567) ] sen 4g
g2 e < ; ; S i
———— (1—56%)71 [ 2 (1 —96% + 100%) + (1 —02) (1 —562) — — |sen 2g+
16 ]22 G3 1]+1
B (1— 62)# (1 — 56%)=2 [8 — 2016 + 1000¢
+—— (11— — 562)~2 [8 — 20162 + ¢ 97508 —
192 G5 :
—n® (6 — 13862 + 7150 — 7500¢)] (3 cos g — cos 3g) +
5 “,3 Js 14 e a3
— (1 —9 1 — 56%)—2 [8 — 12192 + 4966* — 4550 —
192]22G5( )2 ( Jailt + 4966 0
—n? (65— 8267 + 3550* — 35008)] (3 cos g — cos 3¢) (15.3)
donde P viene dado por (8.17) y Q vale:
]4
Q=1—152 15 - 1 — 762) (15.4)
2

2

Anglogamente se calcula el incremento de la funcién determinante para las pertur-
baciones de corto perfodo y la expresién final de S(2).

T
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16. EMPLEO DEL SISTEMA (13.8) PARA ELIMINAR LA EXCENTRICIDAD COMO PEQUENO DIVISOR
EN UNA TEORfA DE PRIMER ORDEN: Veamos ahora el empleo del sistema

Y = v2(L—G) cosl W= Y=l
Yy, = ¥2(L—G) sen Yy, =l+g Yy, = h

en una teoria de primer orden.

Teniendo en cuenta el valor de S(@), dado por BrouwEr, para log términox de corto
periodo, esto es:

2

2

S = o {6B,, (f—1+esenf) + B, [3e sen (f + 29) + 3sen 2 (f + g) +
+ ¢’ sen (3f + 29)]} (16.1)
con
1
B = T (A= 002)
(16.2)
s 3
By = )

hemos obtenido S, ™), S,(M, S, @), S®, S, @, S,®™, y de aquf, por las expresiones (14.4)
S, ™ S @ S MS ™S M S O
1 ¥g 51 Yy ’ U3

Finalmente las férmulas (6.3) para el primer orden, nos han permitido llegar a los
resultados que siguen:

¥

2J sen |
Y=Y1'+ we sy

{6 B,,senf+ B, [3sen (f + 2¢) + sen (3f +2 +
S G oL i .

u? J, sen fsen [ a
2

— + 072 [{2B,, (1 + ecosf) + B, [e cos 2
G L2 2L(1+n) ]{ 2 ! 22[ e

el
+2cos2(f + g) + ecos (3f + 29)]} + H—fﬁ,— V2L —G) @ ) =
' @2l e
X [Byy + By co8 2y +2f)] cosl + —=— YL T+ ) (Beosf +

+ 3ecos® f + e2cos®f) [B,, + B,, cos (29 + 2f)] cosl —

2

w?J

2L G

2

V2L(1+ m) B,, [cos (29 + f) +

cos (29 + 3f)] cos I(g'91)

24
. 5 flas2
Y= ¥elq = B,, [ecos (f + 29) + cos 2 (f + g) +

— co8 (3f + 2¢)]

1E
| &
3
I
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Y =Y/ (16.5)
!ALZ J2 cos [ :
Il {6B,,senf + B, [3sen (f + 29) + sen (3f+2¢)] } —
3L2G /2L (1 + 7)

w2 J, sen fecos a
o aweeeeEe e B B2 B0 ST e doR ) 1 B Snle coRY(fRE g fien
GIL2 2L +m) VT

2 J L2
W R TR :
4+ 2COS2(f+g) 4+ € COS (;f ar 29)]} 3 TZ}S \/2 (L!——-‘(I) (1 aF M=tz 11") X
“‘ZJzL‘).
X [B,, + B,, cos (29 + 2f)] sen [+ S V2L (A + 1) (3cosf +

+ 3ecos® f + e2cos®f) [B,, +B,, cos (29 + 2f)] sen [ —

2 7 1
Wiy '
s —Q—A—L = N2L 1+ m) By, [cos (29 + f) + ——3 cos (2g + 3f)] =en [ (16.6)
P‘g ]2
Y=Yk { —3@1—56%) (f—1 + esenf) +
= 4 G4 =
1

+ 2—(3—502) [Besen(f +29) + 3sen2 (f + g) + esen (3f + 2¢9)]} +

L
B e BOPD S SENTEED S I 3s8eT - 2g) + 8en (3f + 2g +
6L {6 B,, & + 9)1}

utJ, m*e a : D o -
e 2 1+ ecosf) + B,, [ecos (f + 2¢9) +
T ]{ n L2 e

+ 2008 2(f + g) + ecos (3f + 29)] } sen f (16.7)
| w7, 6
Yse=rys +—-4—(—}4—[—-6(f——l + esen f) + 3e gen (f + 2g9) +
+ 38en 2 (f + g) + e sen (3f + 2¢9)] (16.8)

En los segundos miembros de estas expresiones se han suprimido las primas de los
términos que las contienen,

Anglogamente, teniendo en cuenta el valor de S*() dado por (8.15), para los térmi-
nos de largo perfodo, se obtiene :

r "y wdy e 5
Y'=Y"” + ——— (1—62) 1 —562)-10Q[(1 + v) cos 2g cos [ —
16 G3,/2 (L+G)
5 TS Ss
—2y?coslsen2g] — ———— (1 —¢2)3 [(1 + ) sengcosl +
27, G\/2(L+G)
+ 272 coslcosg] (16.9)
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.u,z J

J
e 2 62 (1—02) (1—50%)~1Q cos2g + P e(1—62)tseng (16.10)
¥ i 16 G 27, G
a1 (16.11)
ug .12 e
y' =y," + ————-————‘ (1—6%) (1 —50%)"10[1 + m) sen [ cos 2g +
16 G*\/2(L+ G)
) Ja y
+ 2n2coslsen2g] — — (1 —62)2 (1 + n) sen lsen g —
27, Gy/2L+0C)
— 22 cos [ cos g] (16.12)
’ 7 s (11— 63712 | 1—20% + (1 — 0?) e ] o8 g
B 217, G* 194
}.LQ J‘) e2 2
— 2 (156230 |3 1002 + 150% + 2/(1 — 62) (1 — 562) sen 2 +
32 G* 1+q
5u2 T, e? i
+—— 92(1—062) (1—56%)1 [8+7—2 |sen2g ° (16.13)
16 G4 2
2
w?J,
il — e*0 (1 —56%-2[11 — 300% + 756 +
16 G+
= 4 ¢ 2 ar w Js 30
+5——(3— 1497 + 356%)] sen 2 — ————e g (1 —62)~1/2cos g (16.14)
J,2 217, G2

donde () viene dada por (15.4).

Al igual que en las expresiones de corto perfodo hemos suprimido lag primas de los
términos que las contienen.

La simple inspeccién de las férmulas precedentes nos permiten comprobar que la
excentricidad ha sido eliminada como pequefio divisor en todas ellas.

El paso de éstas a las variables orbitales que se utilizan m&s corrientemente es in-
mediato.

17. EMPLEO DEL SISTEMA (13.8) PARA ELIMINAR LA EXCENTRIGIDAD COMO PEQUENO DIVISOR
EN UNA TEORfA DE SEGUNDO ORDEN: Hemos visto al comenzar el epigrafe 13 que el sistema
Y =L—G =16 e —H

2 3

17.1)
y, =1 Yy, =l+g y, = h

no eliminaba completamente la excentricidad como pequefio divisor en una teorfa de se-
gundo orden, pues segufa apareciendo ésta en la expresién de T
De este sistema pasamos al siguiente

Z = \/2(L—G)cosl Z, =G 7. = H

2 3

S (17.2)
z, = /2 (L—G)senl z, =l+g R

Como Z,, Z,, %, %, son las mismas, nos ocuparemos solamente de 255
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Las expresiones de Z,, Z,, z, han sido dadas en (8.7), (8.8), (8.11) para los términos
de corto periodo, y en (8.20), (8.21), (8.24) para los de largo periodo; la variable Z, se
obtiene fdcilmente de (8.9) y (8.10) para corto perfodo y de (8.22), (8.23) para largo
periodo.

Notemos que el sistema (17.2) es el mismo que empleamos en el epigrafe 16 para la
eliminacién de la excentricidad como pequefio divisor, en una teorfa de primer orden.

Por tanto, nos bastard considerar las variables Z , z, y ain de éstas solamente la
parte correspondiente a una teorfa de segundo orden, esto es:

2S @) z,
=7 5, — (S, —8,®)
aZl le +:12
(17.3)
2S5 Z,
=z §® + —— (§® —50)
a‘zl Z12+z12

de donde las férmulas completas de transformacién para los términos de corto periodo
en Z,, z, seré:

M2 ((L—G)cosl= /2(L'—G)cosl + /2 (L' —@&) S, M sen I” +

50 —8,®
e CORUIG L /ORI Gl S, Asgenl’ +

VI —@)
5,3 — 8 (2

+ IT——L—— cos I’
V2 (L — @)

V2L —G)senl= /2 (L' —G)senl'— \/2(L'—G) S, Mcos " +

S —S.® TS cEne
T ————isen [t — VAONII==G) S, @ cos " +

V2 (L — @)
(17.4)
8,2 —8, @
e e
W2 (L — &)

Las mismas expresiones son vélidag para los términos de largo perfodo, salvo en las
modificaciones de notacién de variables, y asi resultardn:

N2 (L' —G)cosl = /2 (L7 —G") cos I” + /2(L” — G”) S, *D gen I” +

Sl.‘(l)—-Sg," @
+ —_—

VB —C)

Sl,'(2)—Sa,*(2)
4+ ——cos I”
~/2 (L” _‘ Gn)

cos I” + /2 (L” — G”) S;»*® sen [” +

V2 (L'—G)senl = /2 (L” — G”) sen 1" — /2 (L” — G”) S;»*®cos I” +

Eg



REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES
Sl,‘(l)_Sg,"(l)

+ ———— sen I — /2 (L’ — G”) SL,,"(2) cos l” +
~/2 (L” Sty G//)
Sl,’(2)_sg,*(2)
4+ —— —gsenl”
VEl — @)
(17.5)

Recordemos, sin embargo, que los términos de primer orden ya fueron considerados
en el epigrafe anterior, por lo cual bastard calcular los términos:

5,5 — 8,
V2L —G)S @®senl  ——————cosl
V2 I —G)
S, —8,®
— 2 —G) S, @cosl + ———————senl (17.6)
V2 L — @)

para corto perfodo, y
S S, @—8 *®
NAZLE=6Y) S, A@ sen |7 £ — - cosil®
JQ (Lﬂ ey G//)

e S Slr'(z)—sa,'(z)
— N 2L — G") S *®) cos I” + ———
V2 (L” — G”)

gen [” (17.7)

para largo perfodo.

S,/® ha sido dado en (8.9), aunque en algunos términos aparece en el denominador
e?, agrupéndolos convenientemente, sélo aparece la excentricidad en el denominador con
exponente unidad.

Esto se ve ficilmente observando que la expresién de S(2) dada por (8.2) mno contie-
ne este pequefio divisor, y que su derivada con respecto a la variable L es:

38 5@ Gz 38S®
= e
oL [ oL —J el® Qe

que nos demuestra lo que hemos indicado, ya que s6lo podrd aparecer e-! en el desarro-
Lo de los términos del segundo sumando.

Por consiguiente, al multiplicar S,.(*) por el factor
A i e A2 L
V2 (L —G6G) = ———

V1t

desaparecerd la excentricidad del denominador.

El mismo razonamiento puede emplearse para demostrar que en S, .*(* tampoco
aparece la excentricidad como pequeiio divisor por venir multiplicado por

(I B
SV
V147"

60 =

T i
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Por otra parte las diferencias S;(2) —80(2) tanto para los términos de corto periodo
como para los términos de largo perfodo tienen la excentricidad como factor, de ahi
82— Sﬂ(ﬂ) S,*2) —Sa,'(z)

Y no contengan la excenfricidad como
V2 (L' — @) N2 (L” — G”)
pequeiio divisor.
Por ejemplo, para largo periodo, es:

que los cocientes

“’4 J 2 02
@S greE) Lt
¢ 512 G7

(L= 0%) (1 —56%) -1 [— (233 — 9298492 511504) +

80
+ 16 1 (4 — 7502 + 22504) +

(I — 1062 + 216¢)] cos 2¢ +
T )] g

w? 'Ia e

e R 00 {B6n 0 (11 ber) 05 L g

B0 = B 1]2+1]+1
=0l S e D o g 156¢)] sen g +
n+ 1

+ (1—6%) [5e2 (1—210%) + 9 47 Q] xen 39} —

5psd ez
e (e G2)5( ih02) 20 2 (19 — 21442 4 5 2
T ) ) {[n( 462 + 37194 — 51 + 886¢2

2 S
— 149164 + B(1 — 36%) (1 — 742) (5 + ] } cos 29 + e* (1 — 62) (5 — 11962) cos 49}
1+q

u? J2 2S*()
326G+ Qg

(L=056%)71 {6 (7 — 1802 — 7764) + 24 4 (1 — 302) (1 — 5p2) ¢

J

2
MA _]2: e2 [
= (1 —62) (1 —562)=2[2%° (1 —62) (1 — 562) 02 — P] cos 4g —
S 1 ) ( ) Q ] cos 4g
w*d, e n+n+1
—————— (1 — 5¢2)~1 [2 (I —962 + 1064) + (1 —62) (1 — 52) — cos 29 +
87,2 G n+ 1 7
pt I e ( i
+ ——— (1 —6%)% (1 —502)-2 [8 — 20162 + 10009* — 97505 —
o ( 2] + 10004 — 9756
—mn* (5 — 13802 + 71564 — 7500°)] (sen g — sen 39) +
5 pf{ Ja ]‘ e
——— (1 —6%)% (1 —502)-2 [8 — 12162 + 4960% — 45565 —
64 J,2 G5
—1* (56— 8262 + 35560* — 3506%)] (sen g — sen 3g) (17.8)

gl =
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Tenemos asi eliminada la excentricidad como pequeiio divisor, en una teorfa de se-
gundo orden.
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REACCIONES DE ALGUNOS NITRATOS METALICOS
CON CLORURO DE BENZOILO®

POR

V. Riera y R. Uséx

Departamento de Quimica Inorganica (Centro Coordinado con el C. S. I. C.)
Universidad de Zaragoza

Summary

Solvolytic reactions of lithium, sodium, potassium, ammonium and thallium (I) with
benzoyl cloride are described. There is a quantitative transformation of anhidrous alkali
metal nitrates into the coresponding anhidrous chlorides heating under reflux, whereas
there is no interchange at room temperature. In these reactions chlorine and nitrogen
dioxide are evolved and a mechanism with nitryl chloride as intermediate is propossed.

Thallium (I) nitrate gives rize to the thallium (I) hexachlorothallate (III).

Introduccién

El cloruro de benzoilo ha sido estudiado como sistema disolvente de compuestos inor-
génicos a partir de 1957 por V. Gutmann (1, 2, 3, 4) y R. C. Paul (5, 6, 7, 8, 9); en
estos trabajos se ha considerado el comportamiento frente a este reactivo de compuestos
inorgénicos en aspectos como solubilidad, cardcter &cido-base, formacién de complejos,
valoraciones &cido-base seguidas conductimétrica y potenciométricamente, espectrofoto-
metria, polarograffa, etc. Sin embargo, son pocos los compuestos inorgénicos cuyas reac-
ciones solvoliticas hayan sido estudiadas de manera detallada.

En este Departamento ge ha realizado un estudio muy amplio de reacciones solvo-
liticas de compuestos inorgénicos con cloruro de acetilo (10, 11, 12, 13, 14) por lo que
presentaba interés el conocimiento de este tipo de procesos en cloruro de benzoilo, ya
que, ademds de la posibilidad de establecer las correspondientes analogias y diferencias,
el mayor rango de temperaturas como liquido para el cloruro de benzoilo (—0,6° a
197°C) iba a permitir forzar muchos de los procesos que en cloruro de acetilo no se
producen dado su bajo punto de ebullicién (51°C).

Damos cuenta en el presente trabajo de los primeros resultados que hemos obtenido
al abordar de manera sistemdtica los procesos =olvoliticos que se producen al tratar
nitratos con cloruro de benzoilo.

Resultados obtenidos

Se han tratado los nitratos de litio, sodio, potasio, amonio y talio (I) con cloruro
de benzoilo.

El comportamiento de los cuatro primeros nitratos es esencialmente andlogo; la
adicién del reactivo orgdnico sobre la sal anhidra, seca y pulverizada produce, en los
procesos realizados a temperatura ambiente (durante 24 horas) sélo un ligero amari-
lleamiento, m4s intenso cuanto mds grande sea el catién; en los casos de las sales de
litio y sodio no se llega a identificar ni NO, ni Cl, en los vapores del matraz de reac-

* Este trabajo ha sido realizado con la ayuda de una Beca de Iniciacién a la Investigacién y For-
macién del Profesorado concedida a uno de nosotros (V. R.).
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cién, pero si en los casos de potasio y amonio. Se procedié entonces al filtrado y lavado
con éter anhidro, aisldndose s¢lidos incoloros cuyos andlisis, una vez alcanzada la
constancia de peso, revelan (Tabla I, Exp. I, III, V, VII), que el proceso de sustituci6n
de nitrato por cloruro se ha producido en pequefia proporcién, pero ésta es claramente
tanto mayor cuanto mayor sea el catién de la sal tratada. En el caso del nitrato de
litio el producto final contiene una pequena proporcién de materia indeterminada. Los
filtrados recogidos, una vez hidrolizados, no contienen en ningin caso el ani6n nitrato
(investigado con brucina y difenilamina).

TABLA I
| Relacién % Solvo- |
Ezper. 1L, 9Ol |- hNO =l ol Mel Cl:Me! lisis Mel
I 18 0,61 79,75 8,93 0,01:1 1 Li
1T 18 2,34 69,64 27,42 0,05:1 5 Na
AT 18 3,07 58,29 38,84 0,09:1 9 K
viI 18 7,58 68,42 23,75 0,16:1 16 NH,+

Estas mismas reaciones presentan cursos diferentes al ser realizadas a la temperatu-
ra de reflujo del cloruro de benzoilo (196-198°); en estos casos de nitratos alcalinos (el
de amonio se realiza a 80-100°C) se producen intensificaciones de color al poner en
contacto los reactivos con abundante deapremhmlento de NO, y Cl, que cesa al poco
tiempo, quedando suspensiones de colores rojo o rojo- D&I‘&Il]d. mtensos Por filtracién
y lavado con éter anhidro se llega a liquidos en los que la identificacién de nitrato da
resultado negativo y sé6lidos blancos algo sucios de color marrén, cuyos andlisis indican
que la solvoligis ha sido cuantitativa ya que son los corespondientes clorurog anhidros,
a no ser el de litio que presenta una pequeiia solvatacién (Tabla II, Expr, II, IV, VI
y VIO).

TABLA 1II
Relacion % Solvo-
Exper. Ta2G 9% Gl= | =9 NO = | =0/ =Mel Cl:Me! losis Mef
I 196-198 73,50 — 13,63 1,05:1 100 Li
IV 196-198 59,97 — 38,72 1,01:1 100 Na
VI 196-198 47,39 —_ 51,88 1,01:1 100 K
VI 80-100 | 66,19 S 33,55 1,01:1 100 NH,*

Cuando se trata el nitrato amémico con cloruro de benzoilo a la temperatura de re-
flujo se produce la fusién de la sal origindndose dos fases liquidas diferenciadas y se va
formando un depésito blanco en las paredes del refrigerante de reflujo, a la vez que hay
un desprendimiento de vapores en los que hay NO, y Cl,; finalmente se produce un
cambio de color del liguido desde el anaranjado al negro sin que se deposite s6lido al-
guno; de ahi que se realice este proceso a 80-100°C en bafio de agua con lo que ge
logra aislar el cloruro aménico como producto final sélido.

El nitrato de talio (I) al ser tratado con cloruro de benzoilo a temperatura ambiente
permanece aparentemente inalterado, pero dejando los reactivos en contacto 24 horas
la solucién se hace amarillo-rojiza y el s6lido amarillo; sin embargo, por suave calenta-
miento por debajo de 100°C el amarilleamiento es instantdneo pero sin observarse des-
prendimiento gaseoso. Si el calentamiento se realiza en bafio de agua a 100°C la sus-
pensién se hace roja y se identifica cloro en los vapores del matraz de reaccién, pero
no NO,; a la temperatura de reflujo (196-198°) el desprendimiento de cloro llega a tedir
el refrlgerante de reflujo de color amarillo, pero sin detectarse NO,, quedando una sus-
pensién rojo oscura. Tras filtrar y lavar con éter anhidro se llega a un gblido amarillo
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cuyo anélisis (Tabla III, Exp. IX) corresponde al complejo [TIZI Cl ] TLI. El filtrado
no contiene nitratos.

TABLA III
| : Relacion % Solvo-
Ezper. VIC Crsilblle= % TIIII) % TUI) | TUIH) :TI(I) :Cl~ lisis
IX 194-196 21,22 19,76 60,48 1:3,03:6,19 100

Discusion

El cloruro de benzoilo posee caracteristicas que le hacen anélogo al cloruro de acefi-
lo; se autoioniza de acuerdo con

0H.COCL - € H.CO0f & Gl

presentando una conductividad especifica del orden de 10-8 ohm~-! . cm-! (15); su
constante dieléctrica es 23 a 20°C y posee un “numero donor”, de acuerdo con la es-
cala propuesta por Gutmann (16), de 2,3, lo que le sifiia en el grupo de los disolventes
con bajo nimero donor. De estos datos se deduce debe comportarse como un buen di-
solvente de compuestos covalentes aunque mds bien pobre para combinaciones idnicas,
como efectivamente se constata en los estudios realizados.

Respecto al cloruro de acetilo presenta un rango de temperaturas en fase liquida
més alto y por ofra parte se caracteriza por la lentiud de su hidroligis a temperatura
ambiente, dando cloruro de hidrégeno que se desprende y &cido benzoico que queda
diguelto en el resto del cloruro de benzoilo, lo que le hace muy manejable, aunque por
calentamiento se pone de manifiesto su capacidad deshidratante.

Los nitratos alcalinos estudiados frente al cloruro de benzoilo a temperatura de re-
flujo (menos el de amonio realizado a 80-100°C) llevan al correspondiente cloruro an-
hidro; podemos aceptar que se ha producido un ataque nucleofilico al carbono del gru-
po carbonilo G,H.C+=0 por el i6n nitrato, en analogia a las conocidas sustituciones
nucleofilicas por hidrolisis o alcoholisis de los derivados de 4cilo, y de acuerdo asimis-
mo con nuestras aportaciones para el caso del cloruro de acetilo (12); el compuesto
de benzoilo formado, en nuestro caso nitrato, parece descomponerse inmediatamente y
V. Gutmann (1) y R. G. Paul (9) citan en sus trabajos los mecanismos propuestos por
Diels y Okada (17) gque implican una descomposicién del supuesto nitrato de benzoilo
segin uno de los dos esquemas:

a) 4 GH,CONO, — 2 (C,H,C0),0+4 NO, +0,
o bien segin
b) GH,CONO, +3 G H COCL — 2 (G H,C0),0+NOCL+CL,

Sin embargo, los estudios realizados por nosotros en el caso del cloruro de acetilo
(12) descartaron los mecanismos a) y b), pues en las reacciones con nitratos no se pro-
duce oxigeno ni cloruro de nitrosilo. Dado el comporfamiento esencialmente andlogo
del cloruro de benzoilo estimamos razonable proponer el mismo mecanismo establecido
para el cloruro de acetilo, es decir:

¢) 2C,H,CONO,+2 G H,COCl — (CH,G0),0+2 CINO,
seguido de
2 CINO, — Cl,+2 NO,

La presencia de cloro y diéxido de nitrégeno ha sido comprobada en todos los casos,

y es asimismo otra constante de los procesos estudiados la ausencia de nitratos en los

liquidos de filtrado lo que revela la inestabilidad del nitrato de benzoilo que podemos
suponer se forma tfransitoriamente.
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Los procesos a femperatura ambiente transcurren con mucha mayor lentitud que
en el caso del cloruro de acetilo y que a temperaturas mds altas, ya que sélo se alcan-
zan en 24 horas pequeflas proporciones de solvolisis. Esta situacién concuerda con los
datos acumulados en los estudios cinélicos de la hidrolisis de este cloruro de 4cido
que muestran que las constantes de velocidad del proceso son muy pequeiias comparado
con los mismos pardmetros para la hidrolisis de cloruros de 4cido alifdtico, aunque su
valor aumenta con rapidez al elevar la temperatura. Por otra parte, en estas condicio-
nes, se osberva con claridad la influencia del tamaifio del catién ya que los porcentajes
de solvolisis son crecientes a medida que el tamafo del catién va aumentando y que
puede atribuirse al decrecimiento paralelo que se va produciendo en las energias
de red.

La sal de litio tratada, ya a temperatura ambiente ya a la de reflujo, conduce a los
mismos resultados que en los casos anteriores pero presentando los sé6lidos aislados
una pequeila solvatacién, que estd de acuerdo con el poder polarizador de este catién;
en el proceso a temperatura ambiente, la solvatacién puede interprefarse procede del
dcido benzoico producido por la pequenia cantidad de agua que contiene el nitrato de
partida y atn de algo de éter de lavado (el NO,Li es ligeramente soluble en éter); y en
el que tiene lugar a 196-198° procederd previsiblemente del anhidrido benzoico produ-
cido en el proceso.

Por lo que respecta al comportamiento del nitrato amoénico frente al cloruro de ben-
zoilo a la temperatura de reflujo queda explicado ®i tenemos en cuenta que esta sal
funde a 170°C descomponiéndose de manera compleja entre 170°y 210°C con forma-
cién, dependiendo de las condiciomes, de N,0, H,0, NO H, NH, N, y 0,. La liberacién
de agua justifica la hidrolisis que lleva al depésito de acido benzoico que sublima en
lag partes frias del aparato. Sin embargo temperaturas de 80-100°C son suficientes
para alcanzar la transformacién cuanfitativa en cloruro aménico anhidro.

Finalmente el comportamiento del nitrato de talio (I) difiere totalmente del de los
nitratos alcalinos (incluido amonio) ya que, en el proceso realizado a temperatura su-
perior a la ambiente, se produce juntamente con la fotal hidrolisis la oxidacién parcial
de talio (I) a talio (III) atribuible al color que se libera en estos casos, a la vez que se
fija por el medio orgénico los productos de descomposicién del nitrato de benzoilo
puesto que no se logra detectar 6xidos de nitrégeno. Esta situacién coincide con la en-
contrada para esta sal en cloruro de acetilo (18) por lo que las razomes alli aducidas
son también aqui pertinentes; ahora bien, se presentan dos aspectos no coincidentes:
por una parte a temperatura ambiente la reaccién con cloruro de benzoilo se produce
con mucha mayor lentitud ya que el amarilleamiento no es inmediato sino que requiere
varias horas de contacto para que se produzca, atribuible al igual que en los nitratos
alcalinos a facfores cinéticos; y por otra se produce cloro al calentar por encima de
100°, lo que procede légicamente del cloruro de talio (IL[) que permanece en disolucién
y que se descompone térmicamente dando cloro, sifuacién que no fue observada en el
cloruro de acefilo dado su mucho més bajo punto de ebullicién.

Parte experimental

Si bien el cloruro de benzoilo presenta una mayor lentitud en su hidrolisis al aire,
ge han fomado las precauciones necesarias que eviten su contacto con la humedad del
ambiente. Se emple6 cloruro de benzoilo Fluka calidad pract., que ge purificé inicial-
mente por destilacién, seguido de una redestilacién sobre 6xido de calcio. Las técnicas
empleadas pueden encontrarse en las publicaciones (10, 11, 12).

Ensayo num. 1

La neaccion de witrato de litio con cloruro de benzoilo.

Se preparé el nitrato de litio por disolucién en &cido nitrico del carbonato mante-
niendo el trihidrato obtenido a 110° durante varios dias; el producto asi obtenido con-
tiene atn pequefias cantidades de agua ya que la deshidratacién total exige un trata-
miento més severo (19).
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Acabada la reaccién, se filtra y se lava con éter anhidro el sélido retenido en la pla-
ca; se recoge este sélido en pesasustancias seco y se matienen en desecador sobre cal
sodada hasta alcanzar peso consfante en cuyo momento se procede a su andlisis. El
filtrado da, una vez hidrolizado, resultado negativo a la investigacién de nitratos.

Los datos numéricos se exponen a continuacién :

ExPERIENCIA 1

Tiempo de reaccién: 24 horas. Temperatura ambiente.

Reactivos empleados: 3,0372 g. de NO,Li y 25 ml. de CICOCH..

Anélisis del sélido :

Cloro (por Volhard): 0,6483 g. se disuelven en agua destilada y se enrasa a 100 ml.
25 ml. — 10 ml. NO,Ag 0,1009N — 9,15 ml. SCNK 0,1071N = 0,63 % Cl-
25 ml. — 10 ml. NO A(r 0,1009N — 9,25 ml. SCNK 0,1071N = 0,40 % (Gl

Litio se determina por transformacién en sulfato (20) en muestras s6lidas.
0,4742 g. dieron 0,3335 g. de SO,Li, = 8,88 9 Lit+
0,4727 g. dieron 0,3361 g. de SO ]1 = 8,98 9 Lit
Nitrato se determina volumétricamente valorando el exceso de sal ferrosa no oxida-
da, con dicromato (21)

0,1918 g. de sblido se disuelven en agua destilada y se enrasa a 100 ml.
10-ml. — ]0 ml. §0,Fe 0,1836N — 11,10 ml. Cr ,0.K, 0, 09()03\—49 52 9% NO, -
10 ml. — 10 ml. q[) ,Fe 0,1836N — 11,05 ml. Cr O Is 0,09905N =79,99 9 T\O =

ExperIENCIA T

Tiempo de reaccién: 20 horas. Temperatura: 196-198°C.

Reactivos empleados: 2,8089 g. de NO,Li y 25 ml. de CICOCH..

Andlisis del s6lido:

Cloro: 0,5039 g. de s6lido se disuelven en agua destilada y se enrasa a 100 ml.

25ml. — 40 m] NO,Ag 0,1009N — 13,35 ml. SCNK 0,1071N = 73,35 9 Cl-
25ml. — 40 ml. \O Ag 0,1009N — 13,25 ml. SCNK 0,1071N = 73,65 9 Cl-

Litio :

0,3586 g. — 0,3843 g. de SO, Li
0,4054 g. —04:4L24£lr de SO, L

, = 13,53 9 Li+
, = 13,72 9 Lit

Ensayo nim. 2

La reaccion de nitrato de sodio anhidro con cloruro de benzoilo.

Se ufiliz6 nitrato de sodio anhidro Merck, p.a. pulverizado y mantenido previamente
en estufa a 110°C.

En las dos experiencias realizadas los productos liquidos de las mismas (filtrados),
una vez hidrolizados, dieron reaccién negativa a la investigacién de nitratos.
ExperIENCIA IIT

Tiempo de reacci6n: 24 horas: Temperatura: ambiente.

Reactivos empleados: 3,5118 g. de NO,Na y 25 ml. CICOC.H._.

Andlisis del s6lido:

CGloro: 1,0370 g. de s6lido se disuelven en agua destilada y se enrasa a 100 ml.

25 ml. —10 m). NO,Ag 0,1009N — 7,80 ml. SCNK 0,1071N = 2,38 % Cl-
25 ml. — 10 ml. NO, Arr 0,1009N — 7,85 ml. SCNK 0, 1071N = 2 ,80 ¢ 0 Cl=
Sodio: Se determiné directamente sobre el producto sélido (20).

0,56779 g. dieron 0,4894 g. S0,Na, = 27,41 9 Nat
0,5200 g. dieron 0,4285 g. SO, \a = 27,44 9% Nat
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Nitrato: 0,1422 g. se disuelven en agua destilada y se enrasa a 100 ml.
10 ml. — 10 ml. SO,Fe 0,1836N — 13,65 ml. Cr,0, K, 0,09905N=70,36 %, NO,—
10 ml. — 10 ml. SO,Fe 0,1836N — 13,75 mi. Cr,0,K, 0,09905N=68,92 % NO,- I
ExpERIENCIA IV

Tiempo de reacci6n: 7 horas. Temperatura: 196-198°C.

Reactivos empleados: 38,5901 g. de NO,Na y 25 ml. CICOC.H,.

Anflisis del s6lido:

Cloro: 0,7165 g. del s6lido se disuelven en agua destilada y se enrasa a 100 ml.

25 ml. — 40 ml. NO,Ag 0,1009N — 9,40 ml. SCNK 0,1071N=59,97 % Cl-
25 ml. — 40 ml. NO,Ag 0,1009N — 9.40 ml. SCNK 0.1071N=59,97 % Cl-

Sodio :

0,2817 g. dieron 0,3373 g. SO Na,
0,3982 g. dieron 0,4760 g. SO ,Na,

38,75 o, Na+
38,69 9 Na+

Il

Ensayo num. 3

La reaccién del nitrato de potasio anhidro con cloruro de benzoilo.

Se ha realizado del migmo modo que las anteriores, partiendo de nitrato de potasio
anhidro Merck p.a., seco y pulverizado.

Los filtrados no contienen nitrato.
ExpERIENCIA V

Tiempo de reaccién: 24 horas. Temperatura: ambiente.
Reactivos empleados: 38,3306 g. de NOK y 25 ml. de CICOGH,.
Anélisis del sélido:
Cloro: 0,8486 g. se disuelven en agua destilada y se enrasa a 100 ml.
25 ml. — 20 ml. NO,Ag 0,1069N — 17,15 ml. SCNK 0,1071N=3,03 9% Cl-
25 ml. — 20 ml. NO,Ag 0,1009N — 17,10 ml. SCNK 0,1071N=3,11 % CI-
Potasio: Se determiné por transformacién en sulfato (20).
0,5716 g. dieron 0,4940 g. SO, K, = 38,78 % Kt
0,6407 g. dieron 0,5555 g. SO,K, = 38,91 9 K+
Nitrato: 0,1532 g. se disuelven en agua destilada y se enrasa a 100 ml.

10 ml. — 10 ml. SO, Fe 0,1836N — 14,15 ml. Cr,0,K, 0,09906N=58,567 % NO,~
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10 ml. — 10 ml. SO, Fe 0,1836N — 14,20 ml. Cr,0, K, 0,00905N=58,02 % NO,-

ExXPERIENCIA VI

Tiempo de reacci6n: 9 horas. Temperatura: 196-198°.
Reactivos empleados: 2,8681 de NO,K y 25 ml. de CICOC,H,.
Anflisis del sé6lido:

Cloro: 0,5753 g. se disuelven en agua destilada y se enrasa 100 ml.
25 ml. — 30 ml. NO,Ag 0,1009N — 10,35 ml. SCNK 0,1071 N=47,33 9 Cl-
25 ml. — 30 ml. NO,Ag 0,1009N — 10,30 ml. SCNK 0,1071 N=47,45 9 Cl-
Potasio :

0,4168 g. dieron 0,4821 g. SO,K, = 51,90 % K+
0,4558 g. dieron 0,5269 g. SO,K, = 51,87 % K+
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Ensayo num. 4

La reaccion del mitrato de amonio anhidro con el cloruro de benzoilo.

Se utiliz6 nitrato aménico anhidro p.a., pulverizado y mantenido en estufa a 110°

variag horas.
De nuevo los liquidos de filtrado, una vez hidrolizados, dan resultado negativo a

la investigaciéon de nifratos con brucina.

ExpERIENCIA VII

Tiempo de reacci6n: 24 horas. Temperatura: ambiente.

Reactivos empleados: 2,5092 g. de NO,NH, y 25 ml. de CICO CH,.
Anglisis del g6lido :

Cloro 0,8208 g. se disuelven en agua destilada y se enrasa a 250 ml.

25 ml. — 10 ml. NO,Ag 0,1001N — 7,70 ml. SCNK 0,1072N=7,58 % Cl-
25 ml. — 10 ml. NO, Ag 0,1001N — 7,70 ml. SCNK 0,1072N=7,568 % Cl-

Nitrato : (sobre alicuotas de la disolucién anterior).

10 ml. — 10 ml. SO Fe 0,1515N — 4,30 ml. Cr,0, K, 0,09905=68,58 % NO,-
10 ml. — 10 ml, SO, e 0,1515N — 4,35 ml. Cr.0K. 0,09905 = 6826%1‘10\“
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Amonio: Se determiné segin el método indirecto (22) sobre alicuotas de la diso-
luci6n anterior.

25 ml. — 50 ml. NaOH 0,1045N — 34,40 ml. CI1H 0,1205N = 5 9% NH,+
25 ml. — 50 ml. NaOH 0,1045N — 34 40 ml. C1H 0,1205N = 23 75 % NH, “+

ExperIENCIA VIII
Tiempo de reaccién: 30 horas. Temperatura: bafio de agua de 80 a 100°C.
Reactivos empleados: 2,1052 g. de NO,NH, y 25 ml. de CICO C.H..
Andlisis del sé6lido:
Cloro: 0,4899 g. se disuelven en agua destilada y se enrasa a 250 ml.
25 ml. — 15 ml. NO,Ag 0,1001N — 5,45 ml. SCNK 0,1072N=66,44 9% Cl-
25 ml. — 15 ml. NO,Ag 0,1001N — 5,50 ml. SCNK 0,1072N=65,95 % Cl-
Amonio :

25 ml. — 50 ml, NaOH 0,1045N — 35,80 ml. CIH 0,1205 N=33,56 9% NH +
25 ml. — 50 ml. NaOH 0,1045N — 35,80 ml. CIH 0,1205 N=33,55 % NH -

Ensayo num. 5

La reacion del nitrato de talio (I) anhidro con cloruro de benzoilo.

Se utiliz6 nitrato de talio (I) anhidro (calidad p.a.) seco y pulverizado.

A temperatura ambiente no se observa reaccién inmediata, aunque si hay coloracién
al cabo de 24 horas; se calienta ligeramente en bafio de agua observdndose enfonces un
amarilleamiento en el s6lido que luego va propagindose a la suspensi6én. A 100° en
bafio de agua se detecta con facilidad cloro en los vapores del matraz de reaccién, pero
no NO,; estos resulfados vuelven a producirse cuando la mezcla reaccionante se man-
tiene a reflujo.

El filtrado no contiene, una vez hidrolizado, nitratos aunque sfi talio (II).

ExpERIENCIA IX

Tiempo de reacei6n: 30 horas. Temperatura: en baifio de agua a 60-80°C a no ser
una hora a 196-198°,
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Reactivos empleados: 6.9201 g. de NO,TI y 25 ml. CICOCH,.

Anflisis del sélido: 2,39791 g. se tratan con soluei6n 1\I cahente de CO,Na,,. fil-
trdndose a continuacién. El filtrado y liquidos de lavado se enrasan a 1000 ml. (sol A).
El preciptado de T1,0, (aq) se disuelve con SO, H, dil. y H,0,, enraséndose la soluci6n
obtenida a 250 ml. (=o] B). 3 g

Cloro:

50 ml. de A — 20 ml. NO,Ag 0,15400N — 22,10 ml. SCNK 0,1069N=21,22 9 Cl-
50 ml. de A — 20 ml. \0 Ag 0,15400N — 22,10 ml. SCNK 0,1069N=21,22 % Cl-

Talio I. (Se determin6 como cromato (23)): 50 ml. de A dieron 0,0930 g. de Cr0,T1, =
= 60,42 9 TI (I).

50 ml. de A dieron 0,0932 g. de CrO,Tl = 60,55 9 TI (I)

Talio (III) : Se disuelve nueva muesira, 3,29775 g. se tratan como en el caso anfe-
rior, obteniéndose una sol. A, enrasada a 250 ml. producto de la disolucién del T1,0,. aq

100 ml. de A, dieron 0,33428 g. de GrO,TI, = 19,74 ¢ TI (III)
100 ml. de A, dieron 0,33502 g. de (‘10 ll = 19,78 9 TI (III)
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CRUZAMIENTOS DE NIVELES EN ESTADO FUNDAMENTAL :
DETECCION POR FLUORESCENCIA*

POR

E. BErNABEU y M. A. REBOLLEDO
Departamento de Fisica Fundamental, Citedra de Optica. Universidad de Zaragoza

Summary

A method based on resonant fluorescence is studied and analized in order to detect
the level crosings in the ground state. The selection rules are given and the accuracy of
this method is discussed.

The Breit formula is derived as a particular case of the general expression of the
resonant fluorescence intensity.

I. Introduccién

El estudio de los cruzamientos de niveles en estado fundamental ha sido tratado por
nosofros en un trabajo anterior?, en el que se desarrolla y analiza su detecci6n, a partir
de las variaciones de la intensidad de radiacién resonante absorbida en las proximida-
des de los puntos de cruzamiento.

La no intervencién de las energias de los subniveles del estado fundamental en la
férmula de Breit?, corrientemente aplicada en la deteccién de cruzamientos en estados
excitados, hace pensar en la imposibilidad de detectar cruzamientos de niveles en estado
fundamental por el método de fluorescencia, habitual en las técnicas de cruzamientos
de estados excitados; o bien en una deficiencia de la férmula de Breit para la descripcién
completa del proceso de fluorescencia.

Bl propdsito de este frabajo es estudiar la deteccién de los cruzamientos de niveles
en estado fundamental por el método de fluorescencia, partiendo de la férmula general
de fluorescencia dada por Barrat y Cohen-Tannoudji® y deducir como caso particular
de ésta, para cruzamientos en estado excitado, la férmula de Breit.

II. Foérmula general de la intensidad de fluorescencia

Consideremos una asamblea atémica sometida a un campo de radiacién de polariza-

— -

cién e,, y a un campo externo @. Designemos por |[u>, [u>, ...; [m>, [m™>, ... los
estados de los subniveles atémicos, bien de estructura fina o hiperfina, de los &tomos
constituyentes de la asamblea, correspondientes a los estados fundamental y excitado
respectivamente. Segin se deriva de los trabajos de Barrat y Cohen-Tannoudji, la inten-

* Este trabajo se ha realizado dentro del Programa de Ayuda a la Investigacién del M. E. y C.
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—
sidad de radiacién resonante de polarizacién e, reemitida por la asamblea atémica, vie-
ne dada en la represenacién de interaccién por

fm % f m’ Jum Im'p? e
IF D= C(y,, p,/) - s 2 = X o e—i ((Du—"mu')t 1)
7"-""' 1+ 1 [(0, — 0,) — (‘”p T copv)]
o

donde C (u, n)) es un factor que varfa segin los niveles a los que pertenezcan
p=>y |u’>; ¢ la vida media del estado excitado; Oy Oyly oo Oy O las energias
de los subniveles |u>, |[u>, ..., |m>,

— —
sidad de la asamblea en el estado fundamental, y f .= <m l e D ]‘p>, Yom =

fsebans
m?

m’>, ... respectivamente; o . la matriz den-

= <1,JIE:- B)| m> lag partes angulares de las amplitudes de probabilidad de ab-

gorcién y reemisién respectivamente. )

III. Derivacion de la férmula de Breit

Supongamos que dos subniveles | 5> y | ¢>> del estado excitado presentan un pun-
to de cruzamiento. Entre los términos de (1) en los que interviene o, — w, s6lo con-
tribuyen aquellos en los que u = u/, ya que para los deméds (o, —ow,) v >>1; ¥
entre los que no figura o, — o, 86lo son apreciables aquellos para los que m = m/,
p = p’ debido a que para los restantes [(0, —0,) — (o, —0o,)] v>>1. Por tan-
to (1) se reduce a

IF = % C(”’“);uu ’ fmu |2 l Jpm {2 *

m#b.c
+ 2 C(PL'P")_P-W (, fbp.‘fpc gub gcp. 1 /cp. 'fu.b 7uc gbp. (2)
£ | 1—iz(o,— o) 1+1i1 (0, — o)

que presenta la misma dependencia de la diferencia de energias, o, — w,, de los sub-
niveles que se cruzan, que la férmula de Breit. Con lo que mostramos que esta férmu-
la se deduce como un caso particular de la férmula general de la intensidad de fluo-
rescencia.

IV. Deteccion de cruzamientos en estado fundamental

a) Andlisis de la sefial de deteccién

Sean |a> y | b > dos subniveles que se cruzan en el estado fundamental. Apli-
cando a este caso la férmula general de fluorescencia y por razonamientos andlogos a
los del apartado anterior, entre log términos en que no figura w, —w, 86lo contribu-
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yen aquellos para los que m = m/, u =y/, y entre los que interviene o, — w, 86lo son
apreciables aquellos en los que nu = m/; obteniéndose por tanto

.
Lo ies | e e
m l 1—11 (0, — o,
L
£ : 2 Pab e—i (wb — (Da)t } (3)
1+ g (0, — w,) (

siendo

2

IFP =0 2 [fmu g]nn |2 (4‘)
m,p

p#Fad

Al = fma fbm I gnm 12
‘42 e fmb fam l gbm |2 (5)
Con una eleccibn conveniente de los ejes puede hacerse f, real, e igualmente

P:'u tomando su fase nula; obteniéndose de esta manera

Ip(t) = IFP it 02& (Ax ar Az) &
m

©

cos [(0, —w,) t] + 7 (0, — w,) 8en [(0; —w,) ]
x (6)

1+ (0, — 0 t?

ya que g6lo la parte real de la intensidad tiene gentido fisico en la deteccién.

La férmula (6) es una expresi6n de la intensidad de fluorescencia para cada instan-
te, que serd preciso promediar temporalmente ya que una intensidad instantinea no
es representativa, pues cualquiera que sea el procedimiento de observacién o medida,
la deteccién se realiza en intervalos suficientemente largos.

La intensidad media de fluorescencia se obtendrd promediando (6)- temporalmente
desde ¢t = O hasta T, suma de las vidas medias de los estados fundamental (tiempo me-
dio de transicién del estado fundamental al excitado bajo la accién de la radiacién) y
excitado, si bien puede ignorarge ésta 1iltima por ser pequeiia frente a la del funda-
mental, obteniéndose

P‘ab 4, + 4,)

Li=lp +C2 e
s A oy R
sen [(w, — w,) T] 08 [(wy —w,) T] = 1
] - ! @
(o, —w,) T r

Por ser 7 muy pequefio, el segundo término del paréntesis es despreciable frente
al primero. Por tanto (7) puede escribirse

L=I,+ L, (8)
con
Pap (A, +4,) sen [(w, — w,) T]
Lyo = cx - X @)
ml A (0, — )2 (0p — ) T
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Teniendo en cuenta que 7 >> ¢, I, serd de la forma mostrada en la figura 1,
ligeramente modulada por una Lorentziana (fig. 2), independientemente de la direec-

cién de observacién.

sen[{cog-wy)T ]
(W= T

- wy

: ; s ) (mb T wa)
Mediante un desarrollo en serie de primer orden, o, —w, = —— (0—0,),
00 @

la férmula (9) puede ponerse en funcién de la diferencia, ® — @, entre los campos
externo y de cruzamiento.

La variacién de la intensidad de fluorescencia en forno a los puntos de cruzamien-
to, permife detectar los mismos midiendo la intensidad de fluorescencia resonante en
una direccién cualquiera. La anchura de la sefial de deteccién vendrd dada aproxima-
damente por la de la curva de la fig. 1.

2 /3

T( 3 (0, — w,) )
Y o,

A(I):
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que coincide con la anchura de la seial de deteccién por absorcién (1). Por consiguien-
te cuanto mayores sean T y la diferencia de pendientes de los subniveles que ge cru-
zan, més fina serd la sefial y més precisa la determinacién de los puntos de cruza-
miento.

DETECTOR
FoToELECTRICO (7

LAMPARA
ESPECTRAL

— SA e

Un montaje expperimental para la deteccién por fluorescencia puede ser como el
esquematizado en la figura 3, consistente en una célula conteniendo vapor del elemen-
to en estudio, mantenida a una temperatura apropiada, sometida a un campo externo
de direccién adecuada e iluminada con radiacién de caracteristicas convenientes. La ra-
diacién de fluorescencia resonante puede captarse con un detector fotoeléctrico.

b) Reglas de seleccion

Para que I, férmula (9), tenga un valor no nulo, es preciso que las amplitudes
d.e transicién f_ ., f.0 mw Gy SEAN distintas ‘d.e cero para algun \'glor de m. Con-
giderando las reglas de selecci6n para las transiciones dipolares eléctricas, es evidente
que deben verificarse para la deteccién por fluorescencia de los cruzamientos de nive-
les en estado fundamental, las siguientes reglas de seleccién

AM=|M,—M,| =210
AF=|F—F, |=21

giendo F el momento angular total de un estado atémico y M su tercera componente.

Los cruzamientos con A M = 0 no pueden detectarse, ya que en este caso no puede
introducirse coherencia en el estado fundamental, anuldndose por ello, el término que
da origen a la detecci6n del cruzamiento.

V. Precisiéon en la deteccion de los cruzamientos en estado fundamental

Las anchuras de las senales de defeccién de cruzamientos en estado fundamental,
por absorcién y fluorescencia, son del mismo orden e inversamente proporcionales a la
vida media, T, del estado fundamental. Las anchuras de las sefiales de fluorescencia para
cruzamientos en estado excitado son inversamente proporcionales a la.vida media, =,
del estado excitado.
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Como T >>> v se prevee, que la sefial de deteccién para el estado fundamental serd
més fina que para el estado excitado, por lo que podrén detectarse con mayor preci-
gi6n los puntos de cruzamiento en estado fundamental.
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APROXIMACION AL EQUILIBRIO EN COLUMNAS DE

DIFUSION TERMICA.

I. DETERMINACION DE CONSTANTES DE LA COLUMNA EN MEZCLAS
BINARIAS ISOTOPICAS*

POR

J. A, MADARIAGA, D, GONZALEZ-ALVAREZ y J. M. SAVIRON

J

Departamento de Fisica Fundamental. Citedra de Termodindmica.
Universidad de Zaragoza. Zaragoza (Espafia)

Summary

The validity of the Majumdar, Debye and Breit approximate formulations for the
approach to equilibrium in thermal-diffusion column are studied, in order to calculate
column constants.

An exact general solution of the approach to equilibrium equation is obtained, in
the following conditions: i/binary isotopic mixtures; ii/without restrictions for the
concentration range, and iii/taking into account the influence on the separation of the
dead end spaces. The results obfained by numerical compulations show that the confi-
dance intervale for the use of the classical formulations is narrow. Experimental con-
ditions for the determination the H column constant are studied.

Introducciéon general

La formulacién del problema de funcionamiento y operacién de columnas de Clusius-
Dickel de difusién térmica es cuestion que ocupa ya hace unos afios la atencién de los
investigadores en este campo.

El fenémeno de la separacién en su aspeclo més importante de obtencién de fac-
tores de separacién altos dentro de tiempos de equilibrio relativamente cortos, es un
problema comin a la difusién térmica y ofros procesos de separacién acumulativos
[1], [2]. En difusién térmica, el problema es importante por el hecho de ser éste un
efecto cinético de segundo orden; esto implica, juntamente con separaciones elementa-
les muy pequeinias, gran sensibilidad del efecto en lo referente a cambios en la tempera-
tura, presién y modelo de interaccién molecular escogido para el gas. También depende
fuertemente de las condiciones geométiricas de las instalaciones.

La operacién experimental estd caracterizada por las tres constantes convencionales
H, K _y K, o constantes de la columna. De ellas, las dos segundas corresponden a pro-
cesos de transporte macroscépicos o de primer orden: conveccién y difusién ordinaria
respectivamente. La constante H es responsable directamente del fenémeno de la se-
paracion.

La medida de las constantes de la columna es importante por varios motivos. Pri-
meramente analizaremos su importancia en el diseio de instalaciones. Los problemas

de este tipo pueden dividirse en dos categorias. De una parte la eleccién de geometria

* Parte de una investigacién parcialmente subvencionada por la J. E. N. Madrid (Espafia) a través
del Instituto de Estudios Nucleares.
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y temperaturas de la instalacién, o indireclamente la eleccion de las constantes de
ila columna para obtener el rendimiento termodindmico mds allo gque permita la irreversi-
bilidad del tenémeno [3]. De olra, la combinacion serie-paralelo mds adecuada de los
diversos elementos de la inslalacién para oblener los mejores resultados dentro de tiem-
pos de equilibrio sulicientemente cortos [4|. El primer problema exige para su solucion
disponer de una teoria para el cdlculo de tales constantes, y e] segundo la posterior
utilizacién de los mismos en una formulacion que dé cuenta de los procesos de apro-
ximacién al equilibrio. Sin embargo, las constantes de la columna calculadas teérica-
mente difieren considerablemente de las medidas indirectamente a partir de datos expe-
rimentales en una columna de tarado, a pesar de haberse introducido recientemente en
la formulacién potenciales muy complejos [6] [6]. Es conveniente por tanto, realizar
medidas de estas constantes para lo que también es necesario una formulacién precisa
de aproximacién al equilibrio que, en otro aspeclo, podria utilizarse para medir la cons-
tante de difusion térmica proporcional al coeficiente H.

Las posibles condiciones de operacién experimental de una columna de Clusius-
Dickel, no difieren mucho entre si. Se emplean tubos concéntricos muy poco separados
para obtener altos gradientes de temperatura con pequeiias diferenciag enfre ellos
—tipo de tubos concéntricos—, o bien se reduce el tubo interior a un hilo fino caldeado
mediante corriente eléctrica —tipo de hilo caliente—. Si se estd interesado en la obten-
ci6n de la méxima separacion de que la instalacién es capaz, se fija en uno de los extre-
mos de la columna la concentracién mediante la insercion de un depdsito de gas de
gran tamano comparado con el de la columna —columna abierta—, o bien la columna
opera en reflujo total —columna cerrada—, cuando la operacién se realiza con los dos
extremos de la instalacién cerrados; este el caso cuando se trata de obtener el isétopo
medio de una mezela ternaria. Una particularidad que debe ser tomada en cuenta, es la
posible existencia de pequefios espacios en alguna de las partes de la instalacién, en
las que el gradienfe de temperalura es prdticamente cero (ausencia de calefaccién, to-
mas de muestras, etc.) y por ello no contribuyen de forma activa a la separacién. Se
les conoce con el nombre de espacios muertos. En principio, hacen el papel de pequeiios
dep6sitos que, a veces deliberadamente insertados, aparecen en los extremos de la
instalacién. Estos espacios muertos retrasan evidentemente el tiempo en que se alcanza
el equilibrio puesto que debe transportarse un poco més de la masa de los componentes
isotépicos para llenar, por asi decirlo, estos espacios a la concentracién de equilibrio
correspondiente al punto de la instalacién donde se hallan situados.

Una formulacién general de la variacién temporal de las concentraciones de las
espcies presentes en la mezcla isotépica, debe incluir junto con las condiciones geomé-
tricas y de temperatura de la columna, los pardmelros adecuados para describir los es-
pacios muertos. Las primeras se engloban en las magnitudes [ = HL/K y vy = H?/uK.
Los segundos se caracterizan fécilmente por la relacién de su volumen al activo de la
columna como se verd en el desarrollo de la formulacién. La inclusién de estos pardme-
tros, con especificacién de las Iracciones molares de los componentes isotépicos de la
mezcla inicial, es suficiente para describir el funcionamiento de una instalacién,

En la actualidad puede disponerse en mezclas isotopicags binarias, de una formula-
ci6n general de aproximacién al equilibrio que incluya todos los casos de operacién ex-
perimental citados arriba, aunque con la importante restriccién de que uno de los com-
ponentes tenga concentracién inicial muy pequefia. Existe también, y se muestra parti-
cularmente correcta, una formulacién [7], sin restriccién de concentracién inicial, ade-
cuada tnicamente al caso de columna ideal, es decir, sin espacios muertos.

En lo que respecta a mezclas isot6picas multicomponentes el problema de la aproxi-
macién al equilibrio es complejo pues se ha de resolver un sistema de ecuaciones dife-
renciales no lineales en derivadas parciales con condiciones de contorno también no li-
neales. No parece fdcil encontrar una solucién analitica, ni siquiera una transformacién
que linealice simulténeamente la ecuacién y las condiciones de contorno. De hecho, para
mezclas isotépicas multicomponentes no hay ninguna formulacién, hoy dfa, capaz de
representar adecuadamente los perfiles de concentracién no estacionarios en una
columna.
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Es el objeto de este trabajo obtener, por medios analiticos o numéricos, la solucién
al problema de la aproximacién al equilibrio, en el caso de mezclag isot6picas binariasg,
gin restricciones de concentracién inicial y con espacios muertos. Asimismo se utilizard
la formulacién para calcular lag congtantes de la columna y determinar los posibles
errores que pueden introducirse por hacer uso de una formulacién incorrecta.

Como consecuencia de los resultados, analizaremos las condiciones de validez de las
formulaciones aproximadas que registra la bibliografia, formulaciones en general v4li-
das para tiempos muy bajos.

I. Teoria.

En una mezcla isotépica binaria, la densidad de flujo por difusién térmica correspon-
diente al componente ligero viene dada por [8], [9]

—
Jp=pDac(l—c)gradlnT,

donde ¢ es el factor de difusién térmica, D el coeficiente de difusién de la mezcla isoté-
pica y c la fraccién molar del componente ligero. La densidad de flujo asociada al fe-
némeno de difusién ordinaria es

=S
Jp, = —opDgradec.

El gradiente radial de temperatura que se establece en una columna de Clusius-
Dickel da lugar a un flujo por difusién térmica en su secci6n horizontal y a un mo-
vimiento convectivo en la direcci6n del eje de la columna. Por tanto, teniendo en cuenta
el efecto de difusién ordinaria, que se opone a cualquier gradiente de concentracién, la
densidad de flujo del componente ligero en un punto de la columna vendrd dada por

- —
J,=plcv—D(gradc—ac(l—c)gradInT)] (1)
Con objeto de estudiar el enriquecimiento de un componente en cualquier punto de
la columna, interesa obtener el transporte a través de una seccién horizontal. Conside-

rando un campo de velocidades en la direccién del eje de la columna y una distribuci6n
radial de temperatura, el tramsporte serd

- —> ac
q1=f11-ds=2n-frpvcdr—f2n-pD r dr,
3 s s 0z

o, teniendo en cuenta la distribucién de temperaturas, dada por conduccién,

aT/dr = Q/r)

queda

T, dc T,
g, = | PPrvecpdl —K,—— con e = 27 Do dT,
. 0z -
1 1

siendo T, y T, las temperaturas de la pared fria y caliente respectivamente.

Para el célculo de la primera integral se precisa conocer la distribuci6n radial de
velocidades en una seccién del tubo. Considerando despreciable la dependencia de la
dengidad y de los coeficientes de transporte con las concentraciones, la ecuacién de

Sy
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Navier-Stokes junto con la ecuacién de continuidad, permiten expresar dicha integral
con suficiente aproximacién, para el estado estacionario, en la forma

Tl dT = Hec (10 —F %
— 2L 0 C '"=Hc¢(l—c¢) —K, ;
Oss) g 3z
con
21:' T: PD 3 277 ‘Tz PD
H = —a G (1) dT, K=—V\| —G((M)dT
O] M) il

siendo G(T) una funcién calculable mediante la ecuacién hidrodindmica previa adop-
cién de un modelo molecular de interaccién [10].
Teniendo en cuenta las tultimas relaciones, el transporte serd

dc
q1=Hc(1—c)——K—a—z—- 2

siendo K = K, + K,

En el estado estacionario que consideramos, el transporte habra de anularse quedan-
do en consecuencia
de
Hc(@l—c¢c)—K— =0. 3)
dz

Una sencilla integracién conduce a la relacién fundamental

[¢/A—0)],
[C/(l_ C)]B

donde Q es el factor de separacién y [, viene definida por I = HL/K. Los subindices
A y B indican que las concentraciones correspoden a los exiremos superior e inferior
de la columna.
La ecuacién (3) permite obtener la distribucién de concentraciones en la columna
para el estado estacionario. Sin embargo, es de interés el conocimiento de la distribu-
ci6n en cualquier instante de tiempo; ello requiere la expresién del transporte fuera de
las condiciones estacionarias. Partiendo de la ecuacién general de continuidad de un :
componente Bardeen [11] ha demostrado que, salvo un término despreciable del orden '
de (aAT/T)?, la expresién obtenida se cumple en todo instante de tiempo, viniendo
dada la ecuacién de aproximacién al equilibrio por

oc o2c ac
=K —H@1—2¢) — 4)
81 022 0z

@

II. Métodos de determinacién de las constantes de la columna.

La ecuacién de aproximacién al equilibrio contiene las constantes de la columna
H, K_y K, que determinan por tanto el comportamiento de la misma. Es pues de inte-
rés fundamental para realizar un proyecto de separacién el conocimiento de estas cons-
tantes. Pueden determinarse teéricamente, previa eleccién de un modelo molecular de

— 8% —
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interacci6n apropiado, o bien a partir de datos experimentales en el equilibrio y en
tiempos inferiores al del equilibrio.

Para la determinacién teérica de las constantes, es conveniente escribir las integra-
les que las definen en la forma usual en la literatura [10]

2r (0% g 2 3 g2
H=— i Tl‘"h, Kc=—— Bt Tak,
A 91 \ D ),

Kd = 2:1 (P 1))1 )‘13 /id
donde »,, 7,, T, y T,, son los radios y temperaturas de las paredes irfa y caliente res-
pectivamente y h, k_y k; son los llamados factores de forma, funciones de la razén de
temperaturas y de la relacién de radios, siendo esta relacién funcional dependiente del
modelo molecular de interaccién adoptado para la descripcién del comportamiento del
gas en la columna. El subindice 1, indica que las magnitudes que se encuentran en-
tre paréntexis han de calcularse a la temperatura de la pared fria. Los factores de for-
ma han sido calculados para el modelo pofencial con diferentes indices de viscosidad
[13], [14], [156], [16], [17] y se hallan tabulados para el modelo de Lennard-Jones
[15] y el modelo de Buckingham [6].

Para la determinacién experimental se parte de la relacién fundamental en el estado
de equilibrio

In ) = HL/(K, + K,),
que en funci6n de la presién, teniendo en cuenta las siguientes dependencias
H=Hp, K =Kpt y Kd=K/p
puede escribirse
In Q = ap?/(b + p*)
con
a=HL/K' y b=K/K’

Un ajuste por minimos cuadrados de los datos experimentales de factor de separa-
ci6n con la presién en el equilibrio, permite segun las tultimas expresiones determinar
los pardmetros a y b y por consiguiente las relaciones que definen entre las constantes
de la columna. Esta es la méxima informacién que puede obtenerse a partir de datos
experimentales en el equilibrio, siendo por tanfto necesaria una tercera relacién con
datos de aproximacién al equilibrio para resolver el problema totalmente.

La tercera relacién necesaria para el cdlculo de las constantes H, K, y K, puede
ger obtenida de la variacién de la concentraci6n con el tiempo en un punto de la co-
lumna. Un procedimiento corrientemente usado es el de utilizar aproximadamente de
la relacién general

¢ = c(H?t/pK, c, 3) (5)

que da la variacién temporal de la concentracién. Existen algunas aproximaciones, ade-
cuadas a diversas condiciones experimentales de operacién, considerablemente més sen-
cillas que la relacién general. Mé4s adelante serdn consideradas algunas de ellas. Otro
procedimiento es el emplear directamente la ecuacién (2) en condiciones en las que
0¢/2z ~ 0. En columnas con depésito infinito en un extremo, la condicién anterior
se cumple en las cercanfas de aquél para tiempos muy bajos. Entonces, la masa trans-
portada desde el depésito a la columna viene expresada por

m=Hec, (1—¢))x

=i fqgie
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Midiendo la masa transportada y conociendo la concentracién en el depésito puede cal-
cularse el valor de H. Es corriente determinar la masa transportada a la columna, bien
directamente —por medida directa de la variacion de densidad o bien a partir de los
perfiles de conceniracién obtenidos para cada tiempo de operacién. Existe algin otro
procedimiento de medida de H con los datos experimentales obtenidos en una instala-
cién en condiciones de extraccién de gas [18] aunque no enfraremos en detalles.

Por ultimo debe pensarse, que podria deducirse de la relacién general (5) el valor
de H?/uK mediante una comparacién con los resultados experimentales. Es cierto que
la formulacién general incluyendo las variadas condiciones de operacién y construccién,
es en general compleja de obtener. Pero si se dispone de ella y es suficientemente co-
rrecta, los valores de H?/uK obtenidos describirian toda la aproximacién al equilibrio en
conjunto, y no estarian, quizd, afectados de las limitaciones (dificultades de medida a
tiempos bajos, perturbaciones iniciales, etc.) que en principio pueden afectar a los ofros
métodos ; métodos que, por ello, podrian dar valores de la importante magnitud H que
describirian s6lo, posiblemente, la parte inicial del proceso. '

Expondremos en los apartados siguientes, el método y discusiéon de los resultados
obtenidos por este procedimiento escribiendo en primer lugar la forma de la relacién
funcional ().

III. Solucion de la ecuaciéon de aproximacién al equilibrio.

Con el cambio de variable definido por
t = Hg/pK Y z = Hz[K
la ecuacién (4) puede escribirse en la siguiente forma adimensional

oc 2%¢c cc
—_—= — (1L —2c) — (6)

Para ¢ << 1, queda en forma lineal pudiendo resolverse con cualquiera de los métodos
usuales. Bardeen [19], Breit [20] y Cohen [21] dan las soluciones para todos los tipos
de operaci6n que se presentan en la prictica. M4s, recientemente, Majumdar [17] me-
diante el cambio ¢ = 1/2+w_ /w, ha logrado linealizar la ecuacién general (4) transfor-
méndose en la ecuaci6n ordinaria de difusién

2w ow

ox? ot

Las soluciones que se obtienen en forma de series infinitas son, z = [

Ci=lc S Aventn @)
n

con c,, conceniracién en z = [ en el estado estacionario.
Para columna cerrada por los extremos se tiene

el(e%! — 1) n? g2 Izt
c,=——, t = + —
¢ el(et—1) 3 ( 12 4 ]
7/)? (1/4 — o°
e s B

= 1(1/4 — n2z2[12) (62 +n2x2/[1?)

siendo ¢ = 1/2— c,.
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Para columna unida a un depdsito infinito en z = 0, se tiene

e co/|:co+ (1 ey co) el] t" T 1/[1/4 Bz S;'z]
2 S
4,=—(1/4—¢)
l (1/4’ X SnZ) [0(1 N ol)/l-*_snz]

con S solucién de la ecuacién transcendente.
Th (S, 1) = S /o

Dada la complejidad de las soluciones hemos utilizado un ordenador IBM 1620. Te-
niendo en cuenta la convergencia de las series, el ordenador toma el nimero de térmi-
nos necesarios para que el error relativo del resto sea menor que un orden determi-
nado, de acuerdo con el criterio

Sv+1< fmf(n) dn
v

siendo f(n) el valor de A e=*/** y v, el mimero de términos de la serie a sumar, Las
soluciones de la ecuaci6n transcendente se han obtenido mediante el método de iteracién
de Newton.

El ordenador suministra valores de las concentraciones en los extremos de la colum-
na y el factor de separacién en funcién de la variable ¢ y por tanto la comparacién,
punto a punto, con las concentraciones o factor de separacién experimentales, permite
calcular la relacién y = f/r para cada tiempo.

De y = H2/uK y | = HL/K se obtiene inmediatamente
H = yLy/l Y K= ul*/P
y teniendo en cuenta que b = K, p*/K_se tiene

2, b 2 4
el 1(d=”LY/1+p— o
Lot p*

con lo que hemos solucionado el problema propuesto.

IV. Resultados experimentales.

No registra la bibliograffa muchos resultados de variacién de la concentracién con
el tiempo y de ellos no todos son apropiades para una adecuada comparacién con la
teoria. Hemos elegido para la comparacién los cuidadosos resultados experimentales de
Morf [21] obtenidos con neén y columna abierta en el extremo superior.

Dada la escasez del 2'Ne, puede considerarse el ne6n com una mezela binaria de 22Ne
y *Ne, siendo en consecuencia aplicable la formulacién obtenida. Para cada presién Y
para las cuatro concentraciones medidas en los tiempos que figuran en la Tabla I, he-
mos calculado vy, determinando en cada caso los coeficientes H’ K’y K/ Todos ellos
figuran en la Tabla I..

Los datos de equilibrio de la columna de Morf son:

a =179.5 x 10* (mmHg)2
b = 1165.7 x 10% (mmHg)+

g e




REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

Densidad lineal reducida a la temperatura media, y = 2.54 x 1078 gr/cm®*mmHg.
Concentracién inicial del 22Ne = 0,092.
Longitud de la columna 287,9 cm.

Puede observarse la poca desviacién existente entre los resultados obtenidos para
H', K/ y K/ aunque conduzca a valores medios de estas cantidades diferentes de los
obtenidos en [21], que lo han sido utilizando el método de la masa transportada. El
disefio del experimento en [21], utilizando las citadas medidas de masa transportada
en los tiempos iniciales, puede no haber tenido en cuenta algunas de las dificultades
que se presentan en la medida a tiempos tan bajos, debido a la sensibilidad de la for-
mulacién de la masa transportada frente a las concentraciones. Es significativo que los
valores de las constantes de [21] son superiores a los nuestros en un 19,8 9 ; sobre
este hecho volveremos mds abajo. Por ofra parte, la ecuacién (1) es correcta cuando
figuran en ella las fracciones de masa en lugar de las fracciones molares; en la ecuacién
de transporte por lo tanto deben figurar estas fracciones de masa, lo que hace innece-
saria toda correccién en la densidad al hallar la masa de is6topos transportada del depé-
sito a la columna. En cualquiera de los casos los resultados hallados con nuestro
método de obtencién de constantes, suministran valores que interpretan correctamente
la marcha de la curva de variacién temporal de la concentraci6n.

TABLA I

P T t v.104 H'.10% K101 K/.10?
0.50 0.072 0.399 0.765 0.122 0.146

2.00 0.290 0.404 0.774 0.124 0.147

300 3.50 0.505 0.401 0.778 0.123 0.146
8.00 1.129 0.392 0.752 0.120 0.143

0.50 0.165 0.914 0.754 0.121 0.143

2.00 0.701 0.874 0.804 0.129 0.152

420 3.50 1.196 0.949 0.783 0.125 0.149
8.75 2.945 0.935 0.772 0.123 0.147

0.50 0.279 1.556 0.729 0.117 0.139

600 2.00 1.195 1.667 0.781 0.125 0.149
3.50 1.978 1.567 0.735 0.118 0.140

8.00 4.550 1.583 0.742 0.119 0.141

0.67 (0.408 1.687 0.734 0.117 0.140

660 2.00 1.195 1.666 0.723 0.116 0.139
3.50 2.255 1.792 0.780 0.125 0.148

8.00 4.924 1.710 0.744 0.119 0.142

Valor medio ... ... ... 0.759 0.121 0.144

Valor de Morf ... ... 0.910 0.145 0.172

Unidades: p, mmHg; ¢, horas; v, seg=1; H’

, L. 8eg. 1 (_mml{g) il K o ST CIN; Seg. 1
( H )4 K 7 g g_] ; c
mm g Yy i T, CIn, BE .

V. Formulacién aproximada.

La formulacién general expuesta fiene el inconveniente de ser excesivamente com-
plicada. siendo imprescindible el uso de un ordenador electrénico para obtener solucio-
nes numéricas, siempre menos expresivas y manejables que las analfticas. Sin embar-
g0, para tiempos cortos y tiempos préximos al de equilibrio, es posible obtener una

Liano
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formulacién aproximada de gran interés, especialmente por poner de manifiesto el com-
portamiento de la columna al comienzo de la operacién y permitir el célculo sencillo
de tiempos de relajacién. En lo que sigue, se estudiard en primer lugar el caso de
tiempos altos, pasando a continuacién, al estudio del comienzo del proceso.

a) Para tiempos suficientemente altos, basta tomar un solo término en las series
(7). En estas condiciones la concentracién en el extremo superior de la columna puede
escribirse

ci=lci—— A et (8)
con t,, variable ¢ correspondiente al tiempo de relajacién, que viene dada por

t, = 1/(1/4—S,2?)
para columna abierta y
t, = 1/1/4— n*/P?)
para columna cerrada.
Se puede comprobar numéricamente que se cumple

Auce—co

representando por tanto ¢, el valor de la variable ¢ cuando se alcanzan, aproximada-
mente, los dos terciogs de la variaci6n total de concentracién. En la fig. 1 se representa
el valor de ¢, en funcién de [ para columna abierta y diferentes concentraciones ini-
ciales. M4s adelante fendremos ocazién de volver sobre estas curvas.

TIEMPOS DE
RELAJACION

Fic. 1

Qe
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Tomando logaritmos en (8) y pasando a tiempos con v, = uK t,/H? (tiempo de relaja-
¢ién) queda

In(c,—¢c,) =Ind, —q/r,

Representando In (¢, — ¢,) frente a ¢ se obtendrd una recta de cuya pendiente puede
determinarse ¢ y en consecuencia H?/uK. En la fig. 2 puede observarse cémo los datos
experimentales de [21] son perfectamente ajustados por una recta; el valor de H2?/uK
calculado a partir de la pendiente de esta recta concuerda con el obtenido anteriormente
més arriba. El método resulta, al menos en principio, suficientemente preciso aunque
su validez en cuanto se refiere a calecular H requiere una comprobacién experimental
més detallada y sistemédtica.

L 10
p=300
In(c-c)/A,
P=400 mmHg
L 05
T (horas)
| | |
2 4 6
Fic. 2

b) Para tiempos cortos y partiendo de la solucién de Bardeen [19], puede obte-
nerse, siguiendo a Debye [22] la relacién

cijc. =1 4 a Vifp )

vdlida para tiempos muy cortos (t<£ t) y ¢ << 1. En ella ¢, representa la concentracién
en r = I, ¢, concenfracién en x = 0 y a = 2 6 4 seglin se trate de columna abierta o
cerrada respectivamente. A pesar de que (9) es solamente vélida para ¢ L 1 los resul-
tados numéricos que hemos obtenido mediante el ordenador para la solucién exacta in-
dican que, existe inicialmente una dependencia lineal de c,/¢, con A/ t, cualquiera que
sea la concentracién inicial, si bien la pendiente de la recta obtenida al representar las
soluciones frente a #/t, no coinciden con el de la pendiente de (9). Es conveniente por
tanto, determinar el rango de concentracién inicial y también los tiempos y longitudes
de columna para los cuales la relacién de Debye es vélida.

Safag e
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La formulacién aproximada (9) presenta la particularidad de no depender de la lon-
gitud de la instalacién. Este aserto, que puede ser explicado de manera sencilla en tér-
minos fisicos [10], hemos comprobado que es vdlido dentro de todo el rango de valores
de [. Esto elimina uno de los tres pardmetros envueltos en el problema.

El segundo de los pardmetros, la concentracién inicial ¢, tiene una mayor influen-
cia en las desviaciones que se presenfan entre (8) y la solucién exacta. Si para una
concentracién inicial determinada, llamamos ¢, y t a las variables ¢ que se obtienen
con la formulacién de Debye y la exacta, correspondiente a un valor comiin de la or-
denada ¢, dada la linealidad con #/ t, se tendra

t,/t, = H,/H,

en que los subindices de la constante H tienen el mismo significado que los de t. Com-
parando mediante este procedimiento las pendientes de las dos rectas se obtienen Ias
correcciones que deben hacerse al valor de H obtenido con (8). Dichas correcciones,
para diversas concentraciones iniciales, se muestran en la Tabla II.

TABLA 1II
‘, H (%)
0,01 2,1
0,05 3,5
0,10 22
0,20 50

A la vista de estos resultados, se puede afirmar, que la formulacién de Debye es en
principio, aplicable a concentraciones mds bajas del 1 9. Esta limitacién puede salvarse
de la siguiente forma: para bajas concentraciones la expresién ( = c,/c,, es una buena
aproximacién del factor de separacién (), que se define segiin vimos arriba de manera
convencional como

= [c,d—cp)]
[CA(l (e CB)]

Dado el hecho de que existe evidencia de cdlculo de que el factor de separacién no
depende, para cualquier tiempo, de la concentracién inicial, puede modificarse (9) es-
cribiendo

In Q = at/r (10)

En (10) conviene observar que () representa el factor de separacién correcto y ade-
mds que es vdlida para todos los valores de c,. Utilizando los datos numéricos, se ha
representado en la fig. 3 el factor de separacién en funcién de ¢ para diferentes valores
de [ y para los dos tipos de columnas; puede observarse que la validez de (10) estd
restringida a tiempos muy pequefios.

Por iiltimo, interesa fijar un limite superior a la variable ¢ por encima del cual las
desviaciones de la aproximacién de Debye, no sean ya tolerables en lo que al célculo
de H se sefiere. Claro estd que esta eleccién es cuestién de criterio y deben hacerse
sobre ella algunas consideraciones.

Mediante los resultados numéricos se observa que las dos formulaciones dan valores
de H que difieren, para ¢t = ¢, (¢, = 0.01 en columna abierta y t, = 0.0004 en colum-
na cerrada), solamente en el orden del 1 9%, mientras las concentraciones, y por lo tanto
los valores de Q obtenidos con ambas formulaciones, difieren aproximadamente en un

—. 89 —
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orden menos. Podemos, de este hecho concluir, que la solucién exacta puede ser sus-
tituida, para ¢ < ¢, por la solucién de Debye modificada, dentro del margen de error
del 1 9, para H. Se observa de lo dicho, una gran sensibilidad en la dependencia de

=20
- 3
]
20 Col,cerrada (c) (=10
0 i
L 2 S
ik =7 5
= E v
- (=05 ///
’TJebye //
L =20 =050,
15 //
77
//
,/
| 4
ol 7 Debye
a, e
/o (=025
Col. abierta (a)
vVt
10 I i ,
02 04 06

Fic. 3

H con () para tiempos bajos. Para errores relativos de t y Q el error cometido en la
medida de H puede calcularse de (11). Resulta ser

AH AQ 20 At

e AL

H 00

y sustituyendo Q por su valor

AH AQ 1 \/T
SR Oy 1+__ pliis
H 0 [ a t ]

en que se ha omitido el segundo sumando. de (11) por ser varios 6rdenes menor que el
primero. En términos experimentales, una medida de Q con 0,1 9 de error, lo que es
de por si una alta precisién, causaria, para t = t,, un error en H del orden del 1 9.
Para valores mis bajos de t atin deberfamos aumentar la precisién de las medidas para
poder obtener valores de H con precisién semejante. Esto origina el que a tiempos in-
feriores a nuestra cota el trabajo experimental sea dificultoso.

Para tiempos superiores a t,, la sensibilidad de H frente a () es aun grande, y ade-
méds comienza una répida desviacién de la aproximacién de Debye causando todo ello
un répido incremento de la desviacién entre los valores de H obtenidos mediante las

(11)
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formulaciones en estudio, por lo que el empleo de la aproximacién es de dudosa utili-
dad. Si se tiene en cuenta que para una columna como la de [21] las cotas de tiempo
son tan bajas como las indicadas en la tabla IIT debe planearse cuidadosamente el expe-
rimento para obtener, con el empleo de (11), buenos valores de H.

TABLA III
P (mmHg) v (min)
300 4
420 1,5
600 1

Atin se presenta otra dificultad, registrada como tal en la bibliograffa [23]. Puede
observarse en la fig. 3 que cuando se realizan medidas a tiempos no tan bajos como
nuestra cota puede llegar a ser imposible realizar una extrapolacién a cero, presentan-
do la recta una ordenada en el origen.

Resumiendo, atin empleando la ley de Debye modificada propuesta por nosotros, que
hace los resultados independientes de ¢, y de I, se plantean dificultades experimentales
grandes en su aplicaci6n prdctica ya que en el rango de tiempo en que es vélida, es
grande la sensibilidad de la formulacién en orden a calcular H.

Un criterio aproximado del rango de validez, en tiempo real, de la formulacién de
Debye en una instalacién puede ser el utilizar como gufa los resultados de la fig. 3.

VI. Influencia de los espacios muertos.

En los extremos cerrados de una columna ideal, debido a su construccién y a que
las corrientes de convecei6n son horizontales se tienen pequefios depésitos o espacios
muertos que hacen que el enriquecimiento sea m4s lento que en los casos ideales,
sin espacios muertos, considerados hasta el momento. La comparacién de los datos ex-
perimentales medidos en estas condiciones con la teoria de las columnas ideales, puede
dar lugar a errores en la determinaci6n de las constantes de la columna. En este pa-
ragrafo estudiaremos la influencia de un pequefio depésito en el extremo superior
de la columna, en cuyo extremo inferior se encuentra un depésito infinito, en la
determinacién de las constantes de la columna. Para ello, serd necesario resolver la
ecuacién de aproximacién al equilibrio con las condiciones de contorno correspondientes
al caso que nos ocupa.

La ecuacién de aproximacién al equilibrio (4) sigue siendo vélida en nuestro caso.
S6lo habrd de ser alterada la condicién de contorno en el extremo superior; aquella
condicién se expresaba en el caso ideal indicando que el transporte era nulo en el ex-
tremo superior de la columna; ahora deberemos expresar que el depésito se llena
en todo instante de tiempo a la concentracién del extremo superior de la columna (se
supone que el equilibrio de difusién ordinaria se establece en el depésito en un tiempo
despreciable frente al tiempo medio de transporte hacia el extremo superior del depésito).

La ecuacién (4) con el cambio ¢ =1/2 + w_ /w se reduce como se vio ante-
riormente a

Pw  Jw
T o

S oy P
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En el caso que nos ocupa las condiciones de contorno son

g=1 q( t)/m=— 30/t

z=0 ¢ =c,
con m, masa de gas en el pequeiio depésito. Estas condiciones expresadas en funcién
de la nueva variable w se escriben:

ow

i =0 = s (13)
T
1 1 22w 3) 1 ow

.'L'=[; T T T = ] e (14)
4 w  ox? ot W oz

con B = vl/V, siendo v el volumen del depésito y V el volumen de la columna, La con-
dicién inicial ¢ (#, 0) = ¢, en las nuevas variables es

w (z, 0) = e-ow (15)

Integrando (14) respecto a la variable ¢ teniendo en cuenta la condicién inicial (15)
se tiene

1 2w

W =exp |t/4—gl—ofB—B——

w Oor
la cual, deshaciendo el primitivo cambio de valores Yy para B (c— c,) suficientemente
pequeno, foma la forma lineal

w (14 Bo) + Bow/dr = exp (t/4 — ¢ ) (16)

La ecnacién (12) ha de resolverse con las condiciones de contorno (13) y (16) y la
condicién inicial (15). Tanto la ecuacién como las condiciones de contorno son lineales,
por lo tanto es conveniente utilizar el método de Laplace. Debe observarse que la condi-
ci6n sobre B (c — ¢,), que se cumple muy hien para columnas de poca longitud y dep6-
sitos no muy grandes, permite linealizar la ecuaci6n (14) sin lo cual no serfa posible
encontrar facilmente una transformacién adecuada para linealizar simultineamente 1
ecuacién junto con las condiciones de contorno,

Aplicando la transformacién de Laplace [24] se tiene

a

d%h ;
= )
dx? :
con lag condiciones de contorno
dh
z=0; — = —gh (17)
dz
dh
g = {42 (1+B o) h+ﬁ71—= e"”/(p,—l/4), (18)

donde h ex la transformada
h=L (w) = f et w(x, t) dt.
(]
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La solucién de (16) con (17) y (18) es de la forma

(/4 mof)lendh ev(1-2) +E(y) ev(H=)
h (.’L', P) = 5 .
(v*—1/4) (y*—0?) (b+y) +(a—y) E(y) e-2%
o o ot (19)
con
y=+vp,  b=(+8y),
of

€ly) = (6 + ¥) /(6 —1), a=By.

La funcién (19) es meromorfa, sus unicas singularidades a distancia finita son polos
simples en p = 1/4, p = ¢ y p = y,? siendo y_ la solucién de la ecuacién transcendente

Th (v, 1) = v,/[e + B (6* — v, .

Esta solucién cumple todas las' condiciones para ser invertida utilizando el contorno
de Bromwich y conduce a la solucién

exp [it/4 —o U] :[c, e=/2+ (1L —'c;) e=%/2]
C T IR — o)l @+ — o) [1— Bloyje T
 8(1/4—0?) ey, [By, Ch(y,—2)+bSh (v, (—2)]
™ o(l—4y,2) [(B2—6) A —ol (1 —y,2/0?))] +BH,2 —o)/o

de donde la concentracién se obtendrd inmediatamente de
c=1/2 + w, [w.

Arriba hemos expuesto repefidas veces nuestro propésito de utilizar toda la marcha
de la curva experimental de concentracién frente al tiempo para la obtencién de las
constantes H, K _y K,. Las constantes citadas obtenidas de esta forma representardn, en
principio, mejor el comportamiento de la instalacién en estudio para tode tiempo. La
formulacién obtenida para la inclusién de un pequefio espacio muerto en la parte supe-
rior de una instalacién, dotada en la inferior de un depésito infinito, debe ser apro-
piada, pues, para el cédlculo de la constante H de la columna en tanto sean adecuadas
a la realidad las hip6tesis hechas para obtenerla.

La formulacién ha sido obtenida con hip6tesis de partida semejantes a las empleadas
en [19] y [20], aunque sin la restriccién de concenftraciomes iniciales muy bajas hechas
alli. Bl emplear la restriccién sobre 8 (¢ — ¢,) utilizada para linealizar la ecuacién de
contorno en el extremo superior estd perfectamente justificado a partir de la considera-
cién de los 6rdenes de magnitud que intervienen. Con todo, la resolucién de la ecuacién
(12) con las (13) y (14) por un método numérico asegura la validez de la aproximacién
y la solucién obtenida puede emplearse para todo el rango de concentraciones iniciales
y para valores de B < 0,1. En estas condiciones la solucién obfenida, para cualquier
c,, es general y se reduce a la [20] para ¢, < 1 y a la [7] para B8 = 0.

Serfa deseable una detallada comparacién con la experiencia para poder juzgar en
ultima instancia sobre la utilidad de esta formulacién. Sin embargo el material expe-
rimental que registra la bibliografia es escaso y no siempre aparece reseiiado de mane-
ra suficientemente detallada para ser apropiado para su comparacién con la teoria. Ha
gido realizada alguna comparacién con la formulacién de Breit [20] por [23], [25] ¥y
log resultados confirman la existencia de un razonable acuerdo cuantitativo.

En el plano teérico pueden obtenerse sin embargo, algunas consecuencias de la for-
mulacién, en orden a estudiar la influencia de los espacios muertos en la medida de H.
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Para una columna abierta puede observarse (fig. 4) que la pendiente inicial de las

curva de concentracién frente a 4/ ¢, para distintos B8, es cero para todo B finito mien-
tras es finita para 8 = 0. Esto ya indica que habré grandes diferencias entre aplicar la
formulacién con espacios muertos y la formulacién ideal a tiempos bajos.

INFLUENCIA INICIAL DE A3

- 20.

B=0.

=] C,:IO"/- ﬁ:007\~
AN

Fic. 4
3=00
v ='
i /3le =10
C.'-‘10'/-
B=10
1 —
1
1 2
Fic. 5

Para un caso de espacio muerto tan pequefio como B = 0,01 —aproximadamente
1 9, del volumen de la instalacién de la figura 4— se deduce que, para una concentracién

o4
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———
determinada, los valores de H son mayores por el factor 04 que los dados por la for-
mulaci6n ideal. Este factor, un 20 9, aproximadamente, ya indica en prinecipio el orden
de los errores que pueden ser cometidos en la apreciacion de H por medidas a tiempos
bajos con el empleo de una formulacién no adecuada. Por ofra parte, la estimacién
en una instalacién, de espacios muertos tan pequeios, es dificil; piénsese que las co-
rrientes de retorno en el extremo superior de la columna son asimilables a un espacio
muerto diffcil de calibrar. Una interpretacién de este tipo podria ser dada para explicar
la discrepancia enfre nuestros valores y los de [21] dados en V.

En resumen, la gensibilidad de H frente a la concentracién y los espacios muertos
es muy grande a bajos tiempos. Y como quiera que esta sensibilidad es menor cuando
aumenta el tiempo (fig. 5), parece conclusién obligada que, en cualquiera de los casos,
es conveniente determinar H de la medida en todo el rango de tiempo.
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II. UNA FORMULACION GENERAL PARA MEZCLAS ISOTOPICAS
MULTICOMPONENTES*
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Universidad de Zaragoza. Zaragoza (Espaiia)

Summary

A generalization of the explicit method of finite diferences is presented, for the
numerical solution of a non linear-second order system of equations in partial deriva-
tives with non linear boundary conditions. This type of systems rules the approach to
equilibrium in Clusius-Dickel thermal-diffusion colums. In a similar way, the generali-
zation of the Crank-Nicholson implicit metod of finite diferences is solved for the generali
problem and bhoth methods are compared. Both types of solutions are able for inter-
preting fairly well the experimental non-stationary concentration profiles inside the
column, repported by Muller (Kr) and Morf (Ne). Earlier formulations by Debye et al.
do not deseribe the non-stationary profiles in column operation.

I. Introduccién

La obtencién de las constantes caracteristicas de una columna de separacién de iso-
topos del fipo Clusius-Dickel depende fundamentalmente del tipo de deseripcién que se
utilice para representar el conjunto de fenémenos, estacionarios o no, que tienen lugar
en ella [1].

En el trabajo 1 de esta serie se analizaron en detalle el conjunto de condiciones gue
deben ser tomadas en cuenta para describir con correccién el fenémeno de la separacién
de mezclas isotépicas binariag en la columna [2]. Fueron también investigadas las di-
versas aproximaciones dadas en la bibliografia para representar las citadas situaciones
no estacionarias a la vez que se daban las cotas impuestas por los limites de precisién
experimental alcanzable en la practica.

Los problemas que aparecen en este terreno pueden resumirse como sigue:

Al ftener las aproximaciones registradas una validez dudosa, para que las constantes
obtenidas del experimento tengan una precisién aceptable, es necesario manejar solu-
ciones exactas. Estas soluciones se obtienen, en el caso general, por soluci6n de una
ecuacién diferencial no lineal con condiciones de contorno también no lineales. Esto
conduce a tener que emplear el célculo numérico sobre un computador o, bajo ciertas
hipétesis restrictivas, a soluciones analiticas de gran complejidad; tanto con la solucién
numérica como con una analitica complicada, resulta dificil aislar las dependencias de

Este trabajo es parte de una investigacién parcialmente subvencionada por la J. E. N. Madrid
(Espafia) a través del Instituto de Estudios Nucleares.

*
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la separacién de las magnitudes de interés como son la concentracién de partida, la
longitud de la instalacién, etc. Estas soluciones dan pues una informacién directa
escasa.

Todas las dificultades anteriores se acrecientan cuando la mezela isotépica tiene varios
componentes de proporciones relativas comparables, como es el caso de las mezclas na-
turales de Kr y Xe con seis y nueve is6topos respectivamente [3], [4] ,[5]. En estos
casos, y en los que el mimero de componentes de la mezcla sea artificialmente incre-
mentado por la adicién, por ejemplo, de un “gas filtro” [6], las soluciones no estacio-
narias que dan los perfiles de concentraciéon de cada isétopo a lo largo de la columna
dependen de la solucién de un sistema no lineal en derivadas parciales. Aun es més
complejo el problema de cédlculo si las condiciones de contorno, impuestas generalmente
por el tipo de operacién experimental, son asimismo no lineales [7].

Realmente no se dispone por el momento de ninguna formulaci6n analitica para
describir estos procesos con generalidad y tampoco el escaso material experimental
registrado en la bibliografia permite en general comparaciones seguras que puedan ser
utilizadas como comprobacién de cualquiera de las formulaciones existentes. En este tra-
bajo nos ocuparemos de poner a punto los métodos de solucién numérica de los pro-
cesos transiforios en una columna, realizando un test experimental de su validez en la
interpretacién de los perfiles de concentracién no estacionarios en instalaciones de se-
paracién por difusién térmica.

II. Teoria

Mediante un tratamiento andlogo al de las mezelas isotépicas binarias, se puede cal-
cular el transporte de un isétopo a través de una seccién horizontal para una mezcla
isot6pica multicomponente. Considerando un coeficiente de difusién D de la mezcla, de
acuerdo con Jones [7] el flujo del isétopo ¢ en un punto de la columna viene dado por

— —
J, =0 [c,v—D(grad ¢ + ¢, (X oy, ¢,) grad In T)]
13

donde o, = a, (m,—m,), siendo g, el factor de difusién térmica de una pareja de
is6topos de diferencia de masa unidad.

Siguiendo el procedimiento corrientemente utilizado en el caso de mezclas isotdpicas
binariag, el transporte en el estado estacionario es

oc,
Hoci Eflk ck—K 1)
;.- oz

%

con f, =m,—m,.
Teniendo en cuenta que > ¢, = 1, puede eliminarse la concentracién de un igétopo.

k
En efecto, la concentracién del isétopo n serd
c, = 1—-—'2;‘Ck (1—6,‘“)
y por tanto
szu« Gk =f4n_?ack Fen @
3

puesto que f,. = f,, —f,..
Segtin esto el transporte queda en la forma

ac‘ 3
q{ = Hg C‘ [f,‘,, Seresd 2 f}m Cl.-] -—-K__ (.‘)
k oz

eogg=
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En el estado estacionario, se verifica para cualquier isétopo g, = 0 y de (3) se ob-
tiene la relacién fundamental andloga a la correspondiente de mezclas binarias

(C‘/Ck)A/(C‘/Ck)B = exp (H,kL/K)
conH ——=H_f.
La anulaciéon de (3), permite obtener la distribucién de concentracién en el estado
estacionario [8].
De acuerdo con Bardeen el transporte tiene la forma (3) atin fuera de las condicio-
nes estacionarias. Por tanto, aplicando la ecuacién de continuidad al transporte

o¢; g,

”ar_az

queda la ecuaci6n de aproximacién al equilibrio para el is6topo i

e, . azc‘ o 0 "
L [ e [
e e (

Introduciendo las nuevas variables definidas por
t = H02 r/uK Yy Rt HOZ/K
la ecuacién (4) toma a la forma adimensional

8, o%, @

[Ci 2 fin C] (5)

o~

ot ox2 or

o teniendo en cuenta la expresién obtenida para el sumatorio

—"=_’_—_7[f|'n——2fknck] Ci (6)

Finalmente, el transporte en las nuevas variables es

oc,
ql' = HO [Gi O‘l’u“ 2 fkn ck) s ——] (7)
% oz
Para cada is6topo se tiemen una ecuacién no lineal anéloga (6) y el conjunto de
ecuaciones constituye un sistema no lineal en derivadas parciales. Tal sistema habré de
resolverse con las condiciones de contorno y las condiciones iniciales correspondientes
a los tipos de operacién con que se trabaja en la préctica. Las condiciones de contorno
para exfremo cerrado traducen la anulacién del transporte de cada isétopo en dicho ex-
tremo. De (7) se tiene por tanto
ac;
Ol = ) —— =0 =52 o, (8)
k oz e 9 RN
Para exfremo unido a un depésito infinito, las condicioneg de contorno corres-
ponden a concentracién constante en dicho extremo

bl B n— T ©)

con ¢, concentracién inicial del ig6topo 1.
Las condiciones iniciales corresponden generalmente a un comienzo de operacién con
las concentraciones naturales. Se tiene en consecuencia

==20; ¢ (=, 0) = c,, fe=nlS s

C. = C

i 10’

o0
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La falta de linealidad del sistema de ecuaciones y de las condiciones de contorno,
hace que el método operacional sea impracticable y por otra parte, no parece posible
hallar alguna transformacién capaz de linealizar (6), habiéndose optado en consecuencia,
por utilizar un método numérico con la ayuda de un ordenador IBM 1620.

III. Soluciones numéricas. Método explicito.

El primer paso en orden a obtener soluciones numéricas, consiste en transformar
cada ecuacién diferencial en un sistema de ecuaciones en diferencias finitas. Para ello,
dividiremos la longitud equivalente [ de la columna en un niumero I de intervalos de
igual longitud Az, y consideraremos un intervalo temporal Af. De este modo se puede
trazar en la banda 0 <z < !; ¢ > 0, un reticulado, estando definido cada nudo de la
red por los valores mAx de = y nAt de ¢, siendo m y n numero enteros y positivos ta-
les que 0 < m << I y n> 0. En cada nudo el sistema de ecuaciones (6) tendrd una so-
lucién de la forma ¢, (mAw, mAt) para cada isétopo y llamaremos c*(m) a un valor
aproximado en ese nudo. Se tendrd asf

¢,"(m) o~ ¢, (MA®T, nAt)

De acuerdo con este esquema general se puede pasar a sustituir las derivadas por
diferencias finitas. Tomando s6lo el primer término del desarrollo de Taylor en torno
a r = mAz y t = nAt, la derivada temporal queda en la forma

~

2
—— ¢, (mAT, nAt) o —— [cH(m) — ¢(m) ]
ot i

La expresién de la derivada segunda respecto a la variable x, se obfienen inmedia-
tamente de los siguientes desarrollos de Taylor en torno a mAx, nAt. Para el nudo
(m—1) Az, nAt se tendré

o2¢(m)
cim—1) = ¢*(m) ———— AT +
ox
o%cr (m) Az?
s
ox? 2!
y de igual modo para (m+1) Az, nAt
oc¢ (m) 0%¢ (m) Ax?
cM(m+1) = ¢*(m)+ AT+ dui
ox o2 2!

Sumando las dos ecuaciones queda finalmente
e%c (m)
o~ (e (m+1) — 2 ¢ (m) +cp (m+1)) [Az?
0z
Procediendo de forma andloga se tiene
0

o [e,(m) 87(m)] = [er (m+1) § (m+1) —c (m—1) §,* (m — 1)] 2/Ax
z

con

87(m) = f, — 1 ¢ (M) f,,.
k
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Llevando estas igualdades a la ecuacién (6) y ordenando los términos adecuadamen-
te queda

crt(m) = o cMm) +B2 (m+1) ¢t (m+1) +y® (m—1) ¢ (m — 1), (10)
siendo
o =1—2At/A%r,
Bp (m+1) = At/ — (f,, — 3 [y, 6,(m+1) at/a?,
. :

yim — 1) = At[Az2+ [f. — D [, 6" (mv—1)] At/2 Ax.
k

Para todo m, tal que 1 < m < I—1, tendremos para cada is6topo una ecuacién
anéloga a (10), en que aperecen de forma explicita (método explicito) los valores apro-
ximados ¢/*** (m), siendo por tanto su célculo inmediato una vez conocida la distribu-
ci6n en nAt para 0 < m < L.

Para el célculo de lag concentraciones ¢+ (0) y ¢r+! (I), en los extremos de la
columna, consideraremos extendido el rango en z a log puntos (— Az) y (L+Az), fuera
del rango definido en las condiciones de conforno. Si son ¢ (—1) y ¢ (I+1) los va-
lores aproximados en estos puntos en t = n At, aplicando (10) a m =0 y m =1 se
tiene

e+ (0) = o 07 (0) 482 (1) 62 (1) +y (—1) g(—1), (1)
et (I) = aop (D +Bp (T+1) op I+1) +yp (I —1) cp I —1). (12)

Medianle las ecuaciones (10), (11) y (12) pueden determinarse las concentraciones
en (n+1) At para 0 < m < I, conociendo las concentraciones en mAt en el mismo ran-
go de m y en los dos puntos exteriores a dicho rango. El célculo en esos dos puntos
exige el planteo de las condiciones de contorno.

Para columna cerrada por los dos extremos las condiciones de contorno escritas en
forma de diferencias finitas son

e (0) [, — D fn & O] — [ (@) — ¢ (—1)]/2 A2 =0, (13)
k
¢ (D) [fy— 3 fy 6 D] — [P I+1) — et [ —1)]/247 = 0. (14)
ke
Las ecuaciones (13) y (14) permiten calcular ¢ +1 (—1) y ¢! (I+1) una vez de-

terminada con (10), (11) y (12), las concentraciones en el resto de los puntos. Por tan-
lo, partiendo de la condicién inicial

¢ (m) = ¢, —1lg<m<I+ 1,

mediante sucesivas operaciones puede determinarse para un tiempo cualquier la distri-
buciéon de concentraciones a lo largo de la columna.

En el caso de tener un depésito infinito en x = 0 el problema se simplifica pues
la condicién de contorno correspondiente es ¢ (0) = ¢, de modo que (10), (12), y (14)
resuelven totalmente el problema.

IV. Método implicito.
El método explicito expuesto, da lugar a unas ecuaciones en diferencias donde las
variables ¢! (m) aparecen de forma explicita siendo por tanto su célculo inmediato.

Existen varios procedimientos para sustituir las derivadas por diferencias dando lugar
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a otros métodoz numéricos de solucién de ecunaciones en derivadas parciales. A pesar
de su aparente dificultad ofrece sin embargo, ciertas ventajas, que sefialaremos mas
adelante, el método implicito de diferencias finitas de Crank-Nicolson [9]. En el sistema
de ecuaciones en diferencias finitas a que da lugar, las variables ¢/ *+! (m) no figuran
como antes de forma explicita sino que su célculo exige la solucién de un sistema im-
plicito, y ademds, en el caso que nos ocupa, no lineal.

En orden a obtener las ecuaciones en diferencias procederemos de modo andlogo al
seguido en el método explicito, con la diferencia de calcular las derivadas en mAwz,
(n + 1/2) At, en lugar de hacerlo en mAz, nAt. Asi se tendrd con mayor aproximacién
que anteriormente, para la derivada temporal

)

1
—— ¢, (mAZ, (n+1/2) At) v~ —— [¢+1 (m) — ¢ (m)],
ot At

y para la derivada de segunda respecto a la variable x
o2¢,+1/2(m)

ot

o [ertt/2 (mit1) — 2 ert1/2 (m) 42 ctl/2 (m — 1) Az (15)

Las concentraciones en (n+1/2) At se obtienen por interpolacién lineal a partir de
las concentraciones en nAt y (n+1) At. Asi se tiene, por ejemplo,

1
oH/2m) = — [op(m) — ov+i(m)],

Segiin esto (15) se escribird en funcién de los valores en los nudos
62('1-"+Il/2 (”l)

ox2
=[ept(m —1) +er(m — 1) — 2 ¢ (m) — 2 ¢M(m) +c¢ M (m+1) +c(m+1)]/2 Az?.

De igual modo, se tendrd

)
= e, (f,— 2 F 0)1 = [erH2m+1) 30+ (mi+1) +ef(m+1) 52 (m+1) —
or K
— ¢ (m—1) 5 (m — 1) — ¢M(m — 1) §*(m — 1)]/4 Az,
con

ain(n.") = fin i 2 flm Ck"(171)'
Llevando estas derivadas a la ecuacién diferencial y pasando al primer miembro los
términos en (n+1) At, queda finalmente
e m+1) [2 — Az §(m+1)] — 4 crHi(m) [1+Az2/AL] +
+ ¢t (m—1) [2+Az 8pHi(m —1)] = Ba(m) (16)
donde
BMm) = ¢r(m+1) [—2+Az §(m+1)] +
+ der(m) [1 — Az%AL] — crm—1) [2 + Az §(m — 1)].
El problema que se plantea con (16), es calcular las concentraciones en (n+1) At

suponiendo’ conocidas las correspondientes en nAt. El hecho de que en aquella ecuacion
figuren productos de concentraciones de los diferentes isétopos, juntamente con la for-

— 102 —



=

S TS

APROXIMACION AL EQUILIBRIO EN COLUMNAS DE DIFUSION TERMICA

ma implicita en que aparecen, complica el célculo siendo necesario introducir algin
procedimiento de interaccién con vistas a suprimir la falta de linealidad.

Si consideramos extendido el rango en z a los puntos —Az y 1+Az, tendremos
para cada m comprendido entre —1 < m < I y cada is6topo, una ecuacién del tipo
(16). Para un isétopo, el nimero de ecuaciones es por tanto (I + 1) y el nimero de in-
c6gnitas correspondiente a ese is6topo es (I+3); sin embargo, las condiciones de con-
torno en z = 0 y z = | suministran dos ecuaciones mds con lo que el problema queda
determinado. Estas condiciones, puesto que han de verificarse en todo instante de tiempo,
tienen idéntica forma a las (13) y (14) del método explicito.

En un principio, se utiliz6 un método iterativo de sustitucién directa mediante el
cual, introducidos valores aproximados en los términos no lineales en (m+1), y par-
tiendo de m = 1, con (16) se obtfienen sucesivamente valores mds aproximados en m,
con los que el proceso iterativo puede comenzar de nuevo. Sin embargo, el tiempo de
cdlculo es excesivamente largo debido a la poca convergencia de las iteraciones sobre
todo para pequenos intervalos espaciales. Esta circunstancia hizo que el procedimiento
fuera desechado.

Para obtener soluciones con suficiente rapidez, se ha utilizado otro. procedimiento
iterativo segtin el cual evaluando los términos no lineales de (16), siempre pequefios
por venir multiplicados por Az, mediante valores aproximados, se llega para cada is6to-
po a sistemas lienales que pueden resolverse cémodamente con el método de inversi6n
en linea [10]. Resuelto el sistema para un isétopo, las soluciones se utilizan para cal-
cular, junto con los ofros valores aproximados de entrada, los términos no lineales
correspondientes a ofro isétopo y asi sucesivamente. Resueltas las ecuaciones para to-
dos los is6topos, con las soluciones, si no son suficientemente aproximadas, se reali-
zard una nueva interacién.

Pasando al segundo miembro los términos no lineales que como dicho se calculan
de modo aproximado, la ecuacién (16) queda en la forma

— 2 ¢ (m+1) +4 [1+AZ?/AL] ¢ H(m) — 2 ¢~ Y(m — 1) = s(m), 17)
con
s(m) = —Br + AT [— e 5 (m + 1) + ¢ (m—1) §,2+(m — 1)].
Sin pérdida de generalidad, supondremos que en z = [, se tienen extremo cerrado.

Seguin esto, eliminando del primer miembro de (17) correspondiente a m = I el térmi-
no en I = 1, mediante la condicién de contorno (14), se tiene

— 4 cMHIT — 1) +4 [1+Ax2/At] erHH(I) = s(I), (18)
siendo
si(l) = 13{11(1) di AT [_ Cin+1([+1) 6n+1 +C‘.'l+1(l et 1) 5‘n+1‘(1__ 1) i 4 cin+1(1) 8"+1(1)].
Para columna unida a un depésito infinito en z = 0, se tiene ¢,*(0) = ¢, de modo
que la ecuacién (17) correspondiente a m = 1 es
— 2 ¢M1(2) +4 [1+Ax?/At] e HI(1) = s/(1), (19)

con
(1) = — B2(1) + Ax [— ¢M1(2) §7H1(2) + 6, 1(0)] + 26,

Las ecuaciones (17), (18) y (19), permiten calcular, mediante el método de inversi6n
en linea, los valores de ¢rt! (m) desde m = 1 hasta m = I. Segin el citado método,
las soluciones se obtienen en la forma siguiente

e+1(D) = E(I)
¢"Hi(m) = R (m) crti(m+1) +E,(m), me=-15 25 == (20)
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con
R(m)=2/[4B—2R (m—1)], B =1+As2/At,
E(m) = [S,(m) +2E, (m—1)]/[4B—2 R (mi—1)]
ME=E2 3 s ] — 2
Y

E(1) =S,1)/4B, E{) = [Sd)+4E(I—1)/[4B—4R (I —1)],
R@©@ =1/2B, R () =0.

El cédlculo recurrente de R(m) y E,(m), proporciona mediante (20) la solucién del
problema, toda vez que la estabilidad del método estd asegurada [10].
Para columna cerrada en x = 0, se tiene para m = 0 la ecuacién

4 Be+Y(0) — 4 crti(1) = S;(0),
siendo

S(0) = — BAO) + Az [— o/H(D) 574H(1) + opti— 1) 8+ (— 1) — 46741(0) 87H1(0)],
de modo que al aplicar el método de inversién en linea ha de tenerse presente que
E(0) = S,0)/4 B y R(0) = 1/B

estando extendidas las ecuaciones de recurrencia desde m = 1 hasta m = I — 1. El res-
to del proceso continiia invariable.

Una vez calculado de este modo ¢! (m) para un is6topo y para todos los puntos
de la columna, se determinan los puntos externos con las condiciones de contorno in-
troduciéndose a continuacién estos valores en los términos no lineales de otro is6topo
y procediendo con él de idéntico modo.

Los valores iniciales para el comienzo de una iteracién pueden obtenerse, o bien
mediante un método explicito o, sencillamente, por extrapolacién. Se ha observado que
con la extrapolacién se obtienen valores inciales suficientemente aproximados para que
la iteracién converja rdpidamente no siendo necesario, por tanto, el método explicito
previo. Para n = 1 basta con introducir como valores iniciales los correspondientes a la
distribucién para t = 0.

V. Estudio de las soluciones.

Se ha realizado un estudio de las soluciones obtenidas con los métodos expuestos
para diferentes intervalos Az y At, con mna columna de ¢ = 0,65 y con un dep6sito
infinito en = = [ y concentraciones iniciales lag del neén natural.

Los resultados obtenidos con el método explicito demuestran que existe estabilidad
para At < (Ar)?/2. Este método ha sido prebado con Az = 0,065, 0,030, 0,015 y 0,021
y para cada uno de ellos con intervalos temporales At tales que cumplan la condici6n
de estabilidad. Se ha ohservado, que para todos los Ar considerados, la influencia del
intervalo temporal en la solucién disminuye cuando aumenta .

Esto se debe al error introducido por la singularidad en el origen [11] presentada
por el sistema en x = 0, y a la gradual anulacién de este error con el ntimero de pa-
sos, pues se ha observado que la convergencia para cada Az no viene afectada por los
pequefios At ufilizados.. Una convergencia précticamente completa se ha obtenido con
Az = 0,03 y At = 0,0004; sin embargo, en estas condiciones el consumo de tiempo es
excesivamente alto.

Con objeto de obfener soluciones con la suficiente rapidez, se ha utilizado el méto-
do implicito de Crank-Nicolson. El sistema de ecunaciones en diferencias finitas se ha
resuelto mediante un método iterativo evaluando en primera aproximacién los términog
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no lineales y aplicando al sistema resultante el método de inversién en linea. Para cada
Az, se obtienen los mismos resultados que en el método explicito y asf, la convergen-
cia es virtualmente completa para Az = 0,03. Sin embargo, puesto que en el método
implicito la estabilidad no impone ninguna restriceién sobre el intervalo temporal, es
posible utilizar para aquél Az un At mayor que el utilizado en el método explicito. Se
ha observado que es suficiente tomar At = 0,01 siempre que inicialmente, con objeto
de eliminar, ya para ¢t = 0,01, el error debido a la singularidad en el origen, se tome
un intervalo mds pequeno. De este modo el tiempo de céleulo se reduce considerable-
mente a pesar de utilizar un método iterativo para hallar la solucién de las ecuaciones.

En las figuras 1 y 2, se muestran los resultados para « = 0 y para 2?!Ne y 22Ne.
Las curvas de linea continua muestran los resultados obtenidos con el método implicito
para Az = 0,015 y At = 0,01 para ¢ > 0,01, tomando At = 0,0001 para ¢t < 0,01. En la
figura 2, puede observarse la influencia del error inicial y su gradual anulacién, asf
como la buena aproximacién que se consigue con el método explicito.

Como solucién de este estudio, se recomienda el uso del método implicito por el me-
nor consumo de tiempo debido a la estabilidad sin restricciones sobre At. En el caso de
mezclas isot6picas de mdas de tres componentes, el método implicito no es viable por las
limitaciones de nuestro ordenador; sin embargo, a la vista de los resultados obtenidos
con mezclas isotépicas ternariag puede esperarse que un método explicito dard resulta-
dos satisfactorios aungue con un mayor consumo de tiempo.

VI. Resultados experimentales.

Una vez comprobado que los métodos numéricos de resolucién de ecuaciones diferen-
ciales son aplicables a nuestro sistema no lineal en derivadas parciales, y estudiadas
las condiciones de convergencia y estabilidad pasaremos a comparar los resultados con
las medidas experimentales.

Los resultados elegidos han sido los de Morf [12] para Ne y los de Muller [13] para
la mezcla de seis isGtopos del Kr natural. De ellos los primeros son particularmente
apropiados para una comparacién con los resultados teéricos. La instalacién descrita en
[12] estd dotada de tomas de muestra en niimero de siete a lo largo de la columna. Apa-
recen alli registradaz las distribuciones no estacionarias de concentracién que servirdn
para comprobar soluciones para todo z.

El método utilizado para el célculo del valor de H 2?/uK en la mezcla isotépica terna-
ria de Ne ha sido el que se expone a continuacién. Partiendo de un valor inicial de
H 2/uK, aproximado, se han calculado, para cada is6topo, la suma de las desviaciones de
los puntos experimentales respecto a las curvas tedricas en = = 0, obtenidas haciendo ugo
del método implicito. Repitiendo el proceso para un conjunto de valores de H 2/uK, se
han tomado los que hacen minimo tales desviaciones. Los valores de H, correspondien-
tes a los fres minimos coinciden con el obtenido en I, dentro del margen de error ex-
perimental, Las distribuciones obtenidas con este valor, para los distintos tiempos re-
gistrados en la tabla I, de I, se han representado en las figuras 3, 9, 10 y 11 tnicamente
para el is6topo escaso 2'Ne, y puede verse el buen acuerdo entre los perfiles tedricos y
experimentales de concentracién para todos los timpos considerados.

En la comparacién con los datos de Kr ha sido usado el método explicito por las
razones dadas al final de V de limitaciones de capacidad del ordenador. El proceso de
ajuste de datos para la obfencién del mejor valor de H 2/uK es en todo andlogo al se-
fialado arriba por Ne.

En la tabla IV se registran los valores de concenfraciones iniciales y concentraciones

en z = 0 (extremo cerrado) para diversos tiempos. La longitud equivalente de la co-
lumna es [, = 0,24
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TABLA IV

CONCENTRACIONES NO ESTACIONARIAS PARA Kr.

Tiompo 78K 80Ky 82Ky 83y 840y SO K
(mam.)

0. 0.358 2.346 11.78 11.67 57.40 16.45
11.13 0.290 2.013 10.99 11.33 57.52 17.85
16.36 0.279 1.939 10.76 11.14 57.91 11.97
60. 0.199 1.567 9.77 10.69 58.01 19.76

120. 0.142 1.955 8.68 10.13 58.05 21.83
360. 0.0912 0.952 7.58 9.31 = 24.7

Del ajuste por minimos cuadrados de las curvas de aproximacién de los distintos
is6topos se han obtenido los valores de H 2/uK. que se muestran en la Tabla V.
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TABLA V
78Kr 0.0068
S0Kr 0.0080
S2Kr 0.0084
83Kr 0.0083
84K ; 0.0084
86Kr 0.0081

Se ha expresado H 2/uK en (h)-?'.

Tomando el valor medio 0.0080, se ha representado en la figura 4 la marcha de la
concentracién con el tiempo en x = [ para los tiempos de la tabla IV. Puede obser-
varse la concordancia existente con los valores de Miiller, dentro de los errores expe-
rimentales, Es de sefialar el extrafio comportamiento inicial del S4Kr.

VII. Formulacién aproximada.

Para una rdpida deferminacién de las constantes de la columna se necesita utilizar
una formulacién sencilla y al mismo tiempo suficientemente aproximada. En el cazo de
mezclas isotépicas multicomponentes dada la complejidad del sistema a resolver y la
carencia de formulacién, no es fécil llegar a férmulas de aplicacién inmediata. Unicamen-
te para tiempos préximos al de comienzo de operaci6n, es posible partiendo de (5 llegar
a aproximacionez tanto mejores cuanto mds equefio sea el tiempo. En la practica, se ha
hecho uso de este tipo de formulacién para determinar las constantes de la columna
[13], [14].

En este apartado estudiaremos la validez de las aproximaciones mediante los resul-
tados numéricos obtenidos.

Considerando en (5)

k

2 [ G /2 T Conr

se tiene
oc, 0%c, oc;

— = — (32 f ) = =12 ..,n,
at a2 T fi s ot

ecuacién andloga, salvo un factor constante, a la de mezclas isotépicas binariag para
= [. Teniendo esto en cuenta y la aproximacién de Deybe, se tiene para tiempos proé-
ximos al de comienzo de operacién y en el caso de columna abierta

4t
= ctc (Do) =
13 ™
0 bien

¢, — ¢, \/—_ o
lO (2 fzk L

Segun esta expresién, representando ¢, — ¢, /c, > f, ¢,, en funcién de ¢ se ha-
bré de obtener una recta cualquiera que sea el is6topo considerado. Utilizando los re-
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sultados numéricos del método explicito hemos comparado la formulacién exacta con
(21) para una columna con depésito en el exfremo superior. De la comparacién, que
no reseilamos, se desprende que salvo los isGtopos 78Kr, 89Kr y $4Kr se cumple para
tiempos no muy altos la relacién (21), aunque sobre su rango de validez pueden ha-
cerse las mismas consideraciones que en I.

Es nuestra opinién que también en el caso de mezelas multicomponentes es preferi-

— 109 —




REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

ble deducir las constantes de la columna utilizando la marcha de la concentracién con
el tiempo. En cualquiera de los casos, seria deseable una sistemdtica investigacién ex-
perimental sobre este tema.
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ESTUDIO DE LA INTERACCION MOLECULAR DE GASES
MONOATOMICOS MEDIANTE COLUMNAS
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Summary

A glass concentric-tube-type thermal-diffusion column is used to study column ope-
ration for inert gases. The formal criteria how to introduce column construction faults

in the formulation is investigated, It seems that the relations In Q% .. =m. In 0 ,.oe

and p* . = p_.p'theom hold for all inert gases, m and p being geomefric, constants,
independent of temperatures and gases in the column. The aforesaid relations are ex-
tended to kryton in a hot-wire-type column. An excelent proportionality between FIJO
theory and experiment is found.

I. Introduccién

El efecto conocido como difusién térmica fue descubierto por Ludwig y Soret,2 en
1856. En contraposicién a los efectos cinéticos de viscosidad, conductividad calorifica y
difusién ordinaria su interpretacién cinética se hizo esperar algin tiempo?®.

Los tratamientos de Jeans, Maxwell y Boltzmann% de la teoria cinéfica de los gases,
aunque formulados con toda generalidad por este tltimo, presentaban grandes dificul-
tades a la hora de obtener resultados cuantitativos. La ecuacién integrodiferencial de
Boltzmann, con las adecuadas condiciones de contorno proporciona la descripeién del
comportamiento de log gases a presiones ordinarias,

Esta ecuacién ha sido tradicionalmente resuelta por aproximaciones sucesivas utili-
zando un modelo previo de interaccién molecular. Puesto que la forma analitica de estos
modelos es relativamente compleja, cada nuevo orden de aproximacién lleva consigo
un considerable esfuerzo en la obtencién de resultados numéricos. La aproximacién de
orden cero es valida para describir un gas en estado uniforme, es decir, en equilibrio
termodindmico: con gradientes de presién, temperatura y potencial quimico nulos a
través del gas. La solucién coincide, como es evidente, con la distribucién de Maxwell
para las moléculas que forman el gas. Cuando el gas esti en estado no uniforme, es
decir, cuando existen gradientes de presién, temperatura y potencial quimico a través
del gas, se producen, en el lenguaje de la Termodindmica de Procesos Irreversibles, flu-
jos de calor, materia y momento en el gas. El conocimiento, microscépico, de estos fené-
menos se obtiene de la primera aproximacién en la solucién de la ecuacién de Boltz-
mann, Los coeficientes de viscosidad, conductividad calorifica y difusi6n ordinaria, o de
concentracién, responden de estos efectos y de su relacién con los pardmetros de in-
teraccién molecular.
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La existencia de un gradiente de concentraciones en presencia de gradientes de tem-
peratura y presién, son efectos cinéticos de segundo orden. La aproximacién corres-
pondiente en la solucién de la ecuacién de Boltzmann pone de manifiesto estos fend-
menos. La difusién de presién viene caracterizada por el coeficiente de barodifusién,
que puede ser expresado en funcién de magnitudes termodindmicas del gas., La difusién
térmica por el confrario no puede serlo y el factor o de difusién térmica depende de
magnitudes puramente cinéticas y de interaccién molecular.

La complejidad de los desarrollos a que da lugar la obtencién de sucesivas aproxi-
maciones ha hecho que el efecto de difusién térmica fuera descubierto por via tedrica
considerablemente més tarde que los coeficientes ordinarios de transporte. Segiin hemos
dicho la resolucién del término de colisién en la eeuacién de Boltzmann, requeria el co-
nocimiento previo del potencial de interaccién. Es de desear (ue, para una primera pros-
peccion de propiedades moleculares, la forma analitica del potencial sea sencilla. En
las primeras elaboraciones Jeans y Maxwell utilizaron el modelo de esferas rigidas
y el modelo maxweliano de interaccién. Calculando con ellos se obtienen valores nulos
para el factor o de difusién térmica. Este hecho, retragé considerablemente el conoci-
miento del fenémeno hasta los trabajos de Chapman y Enskog® 7.

No es nuestra intencién el hacer una revisién completa del estado en que se encuen-
tra la teorfa cinética en lo referente al factor de difusién térmica. Sencillamente indi-
caremos que hoy se dispone de formulaciones adecuadas con modelos de interaccién
tan complejos como los del tipo Lennard-Jones y Buckingham (Exp.-6). El trabajo de
Chapman y Enskog ha sido completado por Grad®, Burnett®, Ikenberry!®, Kihara!!,
Hirschfelder!?, Kagan!®, Beenaker'4 y otros. Las formulaciones incluyen la posible pre-
sencia de campos externos magnéticos y eiéetricos y una variada gama de condiciones
experimentales.

Para terminar esta exposicién general haremos una rdpida revisién de la situacién
en que se encuentra la experimentacién en este campo.

El hecho de ser el factor o de difusién térmica un efecto de segundo orden hace
que sea extraordinariamente sensible a la interaccién molecular y por lo tanto permite
medir o detectar las peculiaridades de aquélla. Por ello son interesantes cuantos méto-
dos sean propuestos para la medida de factores de difusién térmica. Mds aelante pasa-
remos revista detallada a los procedimientos actualmente existentes.

La pequeiiez del efecto hace dificil su medida y aun cuando existe gran cantidad
de material experimental acumulado no parece sea el suficiente. Especialmente la situa-
cién en mezclas binarias a temperaturas bajas o moderadas hace pensar en que la in-
fluencia de los grados internos de libertad!® y de las colisiones ineldsticas's va a obli-
gar a un serio retoque de la teoria construida en general para el tratamiento de mo-
léculas puntuales con interaccién de simefria central. En cualquier caso es un campo
que debe recibir més contribuci6én experimental y el fin de este trabajo, expuesto en
concreto méas adelante, es el presentar puesto a punto un nuevo método de test de
pardmetros de interaccién molecular.

La columna de separacion

La separacién estadistica producida por la presencia de un gradiente de temperatu-
rag, puede ser y ha sido aprovechada para la separacién de mezelas gaseosas. La intro-
duccién por Clusius y Dickel'” de la columna termogravitacional, provocé un répido de-
sarrollo de las técnicas de separaci6én de mezclas isotdépicag, consiguiéndose pronto la
separacién de pequefias cantidades de is6topos puros o altamente enriquecidos.

La columna en su concepcién original utilizaba el efecto acumulativo producido por
la conveccién libre que tenja lugar en el espacio anular existente entre un cilindro ca-
liente y ofro frio.
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En una seccién del tubo se produce el efecto simple de difusién térmica, el compo-
nente ligero de la mezcla se enriquece cerca del cilindro caliente y el pesado en la
superficie del cilindro exterior, mds frio. El efecto de flotacién a causa de la distribu-
cibn de densidades en el gradiente de temperatura existente, hace que en promedio,
haya una corriente ascendente de gas en las proximidades del cilindro caliente y una
descendente en lag del tubo frio. La ascendedente estd enriquecida en el componente
ligero mientras que la descendente lo estd en el pesado.

CGomo consecuencia el efecto acumulativo de la conveccién se traduce en transportes
netos hacia los extremos del tubo de las dos especies moleculares presentes. Esta acu-
mulacién continuaria indefinidamente; sin embargo la difusién ordinaria se opone a las
diferencias ‘de concentracién en secciones diferentes del tubo. De un compromiso entre
los tres efectos, difusién {érmica, difusién de concentracién y conveccién se establecen
las caracteristicas de la separacién que puede alcanzarse en una instalacién. De su tra-
tamiento adecuado se obtiene la formulacién que describe log diversos aspectos del com-
portamiento de la columna. En general cada uno de los fres efectos entra en la formu-
lacién a través de un coeficiente susceptible de medida experimental. Estos coeficientes
H, K y K, correspondientes, respectivamente, a difusién térmica, conveccién y difusién
ordinaria juegan un papel importante en todo lo que sigue. Su exacta significacién se
resefiard m4s adelante.

Las condiciones de operacion experimental de una columna son variadas. Desde ope-
raciones en reflujo total hasta operaciones en que se aprovecha la separacién total que
puede dar la instalacién fijando un depésito de gran capacidad en uno de sus extre-
mos. Estas condiciones se fraducen en la formulacién en condiciones iniciales y de con-
torno para la ecuacién, o ecuaciones, diferenciales que gobiernan el comportamiento
del gas en la columna. Una vez establecidas, la solucién de dichas ecuaciones en con-
diciones estacionarias o no, proporciona cuanta informacién se precise del fen6meno.
En general, las teorias que describen el fenémeno son todas reducibles a la dada por
Jones y Furry'®. Las variantes consisten en la adaptacién de la formulacién citada
a modelos moleculares més y més complejos.

Como es logico, los pardmetros que rigen el fenémeno son, por un lado los pura-
mente geométricos y de temperatura y por otro los cinéficos propios de la mezcla ga-
seosa que llene la instalacién. Enfre los tltimos estdn tanto los coeficientes de trans-
porte de primer orden como la constante de difusién térmica, todos ellos con su de-
pendencia con la temperatura incorporada a la formulacién.

Los resultados obtenidos con una columna puede interpretarse en funcién de todos
los pardmetros antes citados. De esta comparacién pueden, al menos en principio, ser
deducidos los valores de algunas de las constantes que intervienen en la formulacién.

II. Estado del problema

1. Teoria

La teorfa, ya cldsica, de Furry y Jones para la descripcién del comportamiento de
una instalacién convencional de difusién térmica, dentro de sus hip6tesis de partida
explica suficientemente los resultados experimentales obtenidos, en especial los aspec-
tos cualitativos. La falta de concordancia cuantitativa, se debe a las dificultades que
tiene el tratar de incorporar a la formulacién las dependencias correctas de los coefi-
cientes de transporte con la temperatura, para un potencial de interaccién molecular
determinado. Esto y el tratar de aplicarla a situaciones experimentales no previstas
en las hipétesis y la falta de idealidad de las instalaciones experimentales son, en gran
parte, las causas fundamentales de la falta de concordancia teoria-experimento.
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Aun cuando suficientemente conocida expondremos a grandes rasgos la formulacién
que serd empleada a lo largo de este trabajo.

La instalacién consta de dos cilindros coaxiales de radios », y r, mantenidos a tem-
peraturas T, y T,. El espacio anular esta ocupado por una mezcla bmama isotopica, a
presién moderada sobre la que se hacen las siguientes hip6tesis:

a) El gas puede considerarse como perfecto en lo que se refiere a la dependencia
local de su densidad con la temperatura y presion.

b) En esta aproximacién se suponen los coeficientes de transporte independientes
de la concentracién.

c) Se adopta para el gas un modelo de interaccién con simefria central.

d) Los efectos de flotacion y demds aspectos del problema hidrodindmico se verifi-
can en régimen laminar.

Bajo estas hip6tesis, obtenemos para el fransporte hacia arriba de una de las dos
especies moleculares de la mezcla binaria la expresién'®,

dc
gyli=cHici(li— o)i=— (K ) =

@)

z

en que el transporte g, viene medido en gramos/seg. y ¢, es la concentracién en &tomos
por cien de la especie 1, z la coordenada vertical de longitud y H, K y K;, ya conocidos,
son las constantes de la columna cuyas expresiones son:

rT

H=—@x/0,) J * (oD a/d) G (T) dT/T @
T
T,
~ @/0,") f (o D/3) GX(T) T @
T’
K, = (2”/Ql)f Ao Dr?dl 4)
T

en donde o es la densidad, r la coordenada radial, T, y T, las temperaturas de ambos
cilindros y 2z , es el flujo radial de calor enfre ellos por *unidad de longitud. La fun-
cién G(T) es la solucmn de la ecuaci6n diferencial de cuarto orden

s Bl s e 5
e e e s e <

con las condiciones de contorno:
G = 6T — GUL) =G (L) =0 (6)

Como es costumbre las v, & y D representan los coeficientes de viscosidad, conduc-
tividad térmica y difusién ordinaria para la mezcla, g representa la acelerac16n de la
gravedad y « la constante de difusi6n térmica*.

Si se quiere incorporar el tiempo en la ecuacién de ftransporte basta afiadirle la
ecuaci6én de conservacién de la masa en la columna

ac oq,
— = @
2 61; 0z

* Las notaciones utilizadas son las de ref. 18.

— 114 —



ESTUDIO DE LA INTERACCION MOLECULAR DE GASES MONOATOMICOS

en que y es la masa por unidad de longitud en la columna. Las ecuaciones (5) y (7)
permiten prever las operaciones estacionarias y no estacionarias en la columna,

Cuando hay un flujo neto de gas a través de la columna, caso que se presenta cuan-
do se extrae continuamente fracei6n enriquecida, la ecuacién de (ransporte (1) debe
modiiicarse anadiendo a su derecha el término que tenga en cuenta dicho transporte.
Si ¢ es el flujo neto de gas en la instalacién es obvio que

cc

g =Hc(l—c)— (K +K) +ac (8)

oz

la ecuacion anterior y (7) permiten preveer la operacién de la columna en condiciones
de flujo.

) Estos son, resumidos, los resultados fundamentales de la teoria fenomenolégica. Para

it obtener resultados analiticos es necesario conocer, o adoptar, el modelo molecular de

) interaccion que mejor describa el gas. Con esto puede obtenerse de (5) la funcién G(T)

i y posteriormente, por infegracion, obtener las expresiones (2), (3) y (4) de los coefi-

j cientes de transporte de la columna.

‘ La cleccion de modelo molecular debe ser cuidadosa. Sobre este punto ha habido
iltimamente una gran contribucién. Varios autores han extendido los resultados a gran
variedad de modelos moleculares, desde el modelo de Maxwell hasta el de esferas du-
ras eldsticas (r. e. s.) cubriendo todo el rango de la ley de la potencia inversa'® & 26,

También se ha extendido al modelo Lennard-Jones (12-6) por McInteer2? y al Lennar-
Jones (9-5) y Buckingham (Exp.-6) recientemente?+.

Para hacer una puesta a punto clara del problema lo dividiremos en dos apartados.
El primero se referird a los aspectos cualitativos de la cuestion, el segundo a los cuan-
titativos.

2. Aspectos cualitativos

Denotamos como aspectos cualitativos aquellas consecuencias que pueden obtenerse
sin utilizar expresamente un modelo molecular de interaccion. Analizaremos primero
la aproximacién al equilibrio-

Derivando (8) e igualando a (7) para el caso de ¢ = 0, es decir, operacién en reflujo
total, se obtiene:

i ac Be i 3%
i p,T=—H (l——-QC) +(A0+Kd) -

T z 0z2

©)

Ecuacién diferencial de segundo orden que con las condiciones de contorno, adecua-
das a la operacién, suministra una relacién entre la concentracién y el tiempo de la
forma :

¢ =c(x, t) (10)

en que las variables adimensionales x y ¢ vienen dadas por

x = Hz[(K,+K) t = Hc/p (K, +K,) (11)

, Cuando la funcién (10) se obtiene resolviendo (9), con el contorno adecuado, se

observa una buena coincidencia con los datos experimentales de aproximacién al equi-
librio.

La linealizacién de la ecuacién (9) fue obtenida por Majumdar2s para mezclas bina-

rias. Los métodos de resolucién para mezclas multicomponentes han sido puestos a

punto numéricamente por Madariaga?®, extendiendo los resultados para tener en cuenta
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los espacios muertos de las instalaciones. En todos los casos el acuerdo cualitativo ha
sido excelente.

En lo que se refiere a propiedades de equilibrio, con ¢ = 0, basta considerar que
en el estado estacionario el transporte ¢, es cero en cualquier secci6n del tubo. Igua-
lando (9) a cero y definiendo un factor de separacién () como

= _M (12)

[e/(0—0c)]g

en donde los subindices 4 y B representan, respectivamente, que las cantidades en el
paréntesis deben ser evaluados en z =0 y s = L, extremos superior e inferior de la
instalacién, la integracién de la ecuacién (9) con

oc de
0z 3 dz
para t = oo, da
HL
K + K,

Para poner en claro la dependencia del factor de separacién con la presién debere-
mos explicitar las dependencias individuales de cada uno de los coeficientes H, K y K,
Siguiendo a Furry!® podemos expresarlos como el producto de HC, K, K, magni-
tudes correspondientes al caso ideal de paredes planas®?, y unas correcciones de cilin-
dricidad e interaccién molecular, conocidas como factores de forma (“shape factors”):
R, k’ y k;. Las expresiones de los coeficientes de transporte son:

H = 2x/6) (p* @ g/n)y 7,* I (14)
K, = 27/9) (¢* ¢*/n* D), 7® K/ (15)
K,=2xn-(pD), -7k (16)

las expresiones entre paréntesis deben ser evaluadas a la temperatura T, de la pared de
radio 7,. Los factores de forma son funciones de la relacién de radios, de la temperatura
y de la interaccién a través de cuantos pardmetros ajustables contenga el potencial
molecular.

Las ecuaciones (14), (15) y (16), tras un sencillo anélisis dimensional, pueden es-
cribirse

H = H’ p?, R — K ens) K, = K/ p° (17)
con H’, K’ y K/ independientes de la presién. Empleando (17) en (13) se llega a
a p?
() = =i (18)
b + pt

que determina las depgndencias del factor de separacién con la presién. Comparando
(13) con (18) se obftierfe

¢ = ' L/K/ b = K,/K/ 19)

La expresién (18) es una de las pruebas més utilizadas para comprobar la teoria.
Se encuentra que si los datos experimentales de separacién se representan graficamente,
con p?/In Q en ordenadas y p* en abscisas, la ecuacién (18) queda en la forma
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a =b + pt (20)

In ()

con lo que dichos puntos se sifiian sobre una recta. Este hecho es conocido y de ordi-
nario se acepta siempre#% 59, La ecuacién!® representa otra de las excelentes concor-
dancias cualitativas de la teoria fenomenol6gica.

De (18) se obtienen la presi6n correspondiente a la méxima separaci6n “presién 6p-
tfima” y también la separacién méxima “factor méximo de separacién”. Sus expresio-
nes son

InQ .. = a/2bl/? D= b (21)

En las lineas anteriores hemos intentado dejar bien patente el hecho de la perfecta
concordancia cualitativa entre las predicciones te6ricas y resultados experimentales,
tanto en condiciones estacionarias como en las transitorias. Inmediatamente se ve que,
de un estudio experimental de la separacién estitica, se obtienen ¢ y b. Con ellos y
con las (19), se tienen dos relaciones entre los H, Ky K, ; afiadiendo un estudio de la
separacién en régimen no estacionario se puede obtener el valor de

B2[u(K, + K,)

es decir la tercera relacién experimental, que, junto a las dos anteriores permite la de-
terminacién de H, K y K,

La bibliografia registra gran numero de intentos de comparacién de estos aspectos
cualitativos con la teoria. En general, las conclusiones que se obtienen del examen del
resultado de dichos intentos no son por el momento demasiado claras. Pueden resu-
mirse asf:

a) La expresién (18) para la separacién estdtica es cualitativamente muy correcta.

b) El problema del andlisis transitorio de la operacién en una columna no permite,
en general, obtener conclusiones definitivas. La medida a tiempos bajos es diffcil y poco
precisa2?, 35 en ella se presentan las perturbaciones de falta de régimen en la insta-
lacién que hacen dificil obtener buenas medidas. Sin embargo, es esta precisamente la
zona m4s interesante para la medida de la tercera relaci6n.

B2y (K, + K,)

Los métodos de tranportes iniciales de Dickel3¢, Morf3?, (lusius3s, 3° ¥ 40, Madaria-
ga??, Madariaga y Mendia4l, Rutherford4> y de Narten??, aun cuando bastante elaho-
rados, no han llegado hasta el momento a dar resultados coherentes de los que se
pueda inferir un procedimiento claro de medida. Sobre este campo es deseable una
mayor contribucién experimental, a pesar de que, insistimos, las predicciones de to-
das las formulaciones parecen ser correctas.

3. Aspectos cuantitativos

Pasamos ahora a estudiar los aspectos cuantitativos en la relacién teorfa-experimento.
Nos hemos referido a los resultados cualitativos de la teorfa como aquellas predicciones
que pueden obtenerse de ella sin utilizar ningin modelo molecular. La inclusién en la
formulacién del modelo molecular permite la resolucion de (5) y de las integrales (2),
(3) ¥y (4). Aun cuando se han utilizado muchos modelos moleculares para este fin nos
limitaremos a estudiar el modelo Lennard-Jones (12-6); el cual es lo suficientemente
complejo para describir perfectamente las propiedades de mezclas binarias de is6topos
de un gas monoatémico. El modelo de tres pardmetros Buckingham (Exp-6) tratado por
Savirén y col.?¢ no introduce ninguna ventaja especial en el tratamiento de los datos
de la columna,
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El potencial Lennard-Jones (12-6) viene dado por
V(r) =4e[(c/r)2— (o/7)8] (22)

y predice para los coeficientes de transporte del gas las expresiones!2

n(T) = my [TH2Q CO% (14T, 12 Q G, (23)
MT) = 4y [TH2 @ G2 (T[T 12 @ GD*(T*)] 24)
D(T) = D, [T3/2 Q (% (T,*)/T 312 @ L03(T*)] (25)

a(T) = a5 [k," (T /k;* (1,)] (26)

en que, como siempre m, A ¥ D son la viscosidad, difusién ordinaria y coeficiente de
conductividad, « es el factor de difusién térmica, T es la temperatura, las Q(,1)* gon
integrales reducidas de colisién y k,* es la relacién reducida de difusién térmica’?,
Las magnitudes m,, A, D, ¥ «, son usualmente los mejores dafos experimentales dis-
ponibles de las propiedades de fransporte a una cierta temperatura de referencia T, es-
cogida generalmente como la de la pared fria de la columna T,.

La sustitucién de (23) (26) en la expresién (5) conduce a las (14) a (16) y con ellas
se obtienen las siguientes relaciones para los factores de forma2?, 24

5 dt
K = — 61 (In 2, /f(t,))* f (B Q2B 0C1) y — @)
to
k/ =9! (Inz/f (10))7J. (@2 [ (QMY) y2 dt (28)
k= (Imx,/f (2)) J-n(t/zo Q(1,1) Q(@.2) dt (29)

A la vista de las anteriores expresiones y teniendo en cuenta (14), (15), (16), (27),
(28) y (29) estamos en disposicién de obtener con independencia de los datos experi-
mentales, los valores de H, Ky K, a partir de la teorfa. Los factores de forma para
cada modelo molecular se obtienen de cualquiera de las tabulaciones4, 45 que para ellos
registra la bibliografia, La comparacién entre los coeficientes de transporte medidos y
los calculados por este método proporciona una prueba de la validez de la feorfa. A esta
concordancia, si existe, nos referiremos en lo que sigue como concordancia cuantitativa.

Gran numero de trabajos en difusién térmica se ocupan de este aspecto de la com-
paracién4é. Uno de los problemas que se plantean en este campo es el de disefio de una
ingtalaci6n para separar, de una manera predeterminada, una pareja de isGtopos. Para
ello, sin entrar en problemas de optimizacién y andlogos, es necesario conocer, a priori,
el comportamiento de la instalacién y ello requiere el conocimiento previo de H, K y K.

Una puesta a punto excelente puede encontrarse en Saxena y Raman®?. En general
log diversos investigadores resefian separaciones mucho mds bajas que las previstas.
Medidas recienties y cuidadosas del comportamiento de la columna realizadas por
Rutherford4®, 5°, Miiller4?, Raman® y ofros sugieren que el comportamiento de la co-
lumna debe ser mejor del que generalmente se ha supuesto. Hay razones sin embargo
por las que estos trabajos no constituyen todavia una prueba definitiva de la teorfa.
Los experimentos de Rutherford, por ejemplo, tratan con monéxido de carbono izotd-
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picamente sustituido, sistema para el cual no existen datos para el factor de difusién
térmica. Los resultados experimentales de Miiller son comparados con un potencial to-
talmente inadecuado como es el modelo de la potencia inversa. El trabajo de Raman,
resefiado, emplea tnicamente separaciones estdticas con las que s6lo pueden medirse
dos de las tres relaciones necesaras para la obtencién de los coeficientes de transporte.
La conclusi6én general sobre estos aspectos, es por tanto, que falta todavia gran canti-
dad de trabajo experimental para llegar a conclusiones claras. De momento la teoria
no predice con seguridad de manera cuantitativa el comportamiento de las instalaciones.

Esta situacién unida al hecho de lo excelente de los acuerdos cualitativos hace el
problema atrayente para su estudio. Por parte de varios investigadores se han propues-
to formas de resolver las discrepancias de manera mds o menos sofisticada. Por su in-
terés las resefiaremos.

Los propios autores de la teoria fenomenolégica Furry y Jones proponen la intro-
duccién de un coeficiente de remezcla pardsita, K,. Este término es experimentalmente
no distinguible del Ky tiene en cuenta las remezclas adicionales del gas por efecto de
asimetrfa en el centrado de los tubos.

Saxena y Watsons!, Clusiug’? y Grove’® han estudiado los efectos sobre la sepa-
raci6n producidos por la introduceién de los espaciadores que centran el cilindro inte-
rior (generalmente un hilo caldeado). Sus conclusiones no aportan ninguna solucién
concreta para las discrepancias observadas.

Gonzélez y Saviréns4 han estudiado la influencia de la temperatura en la separacién.
Aunque observan una excelente concordancia cualitativa tampoco resuelven el problema
de obtener las causas de las grandes discrepancias cuanfitativas.

Barua y ofros!®, variando el mimero de espaciadores colocados a lo largo del hilo
caliente, en columnas de este fipo, intentan un procedimeinto de tarado para deducir
los motivos de la discrepancia teoria-experimento. Tampoco en este caso las conclusio-
nes aportan nada sustancialmente nuevo.

Moran y Watson®, Clusius y Flubacher??, Quintanillal® y Huber3¢, han empleado
columnas de tubos concéntricos para, una vez taradas mediante un gas patrén, obtener
resultados acordes con otros gases. El método, simple en principio, se basa en la utili-
zacién de los resultados de una teoria, la de Jensen®®, demasiado simplifacada para que
puedan ser usados con confianza.

4. Medida del factor de difusion térmica

De lo que acabamos de exponer, se desprende que de momento no estd ni con mucho
resuelto el problema del célculo aprioristico de las constantes de la columna. Resulta
entonces diffcil, el disefiar instalaciones en condiciones prefijadag de operacién. Aun con
todo, éste no es el problema mds importante de los que se plantean; existe otro que es
el de la posibilidad de utilizar los datos de separacién de la columna para la medida del
factor de difusi6n térmica.

Indicaremos los métodos tradicionales de medida del factor «. La etapa simple, es
decir dos bulbos mantenidos a temperaturas distintas, permite obtener directamente de
la medida de la separacién el factor . El método tiene el inconvenienfe de que las
separaciones son pequefias y los errores de medida son en general altos. Una mejora
del anterior es el “swing-separator” o ‘‘trennschaukel”?, 37, combinacién en serie de
etapas simples. La separacién crece potencialmente con el niimero de efapas de la serie
y puede medirse con menor error. El método, por ser mis complejo, tiene fambién més
perturbaciones y la separacién debe mantenerse en unos mdrgenes prudentes.

La posibilidad de utilizar la columna para la medida del factor de difusién térmica
fue sugerida por Clusius®®. Las ventajas son evidentes, las separaciones son mayores y
por tanto los errores de medida menores. Existe sin embargo el inconveniente, no pe-
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quefio, de que la constante o y su dependencia con la temperatura entran en la formu-
lacién de manera muy compleja.

A lo largo de este trabajo, se dedica especal atencién a este problema, proponiendo
un método para resolverlo.

III. Método operatorio

1. Iniroduccion tedrica

El propésito de esta Memoria ha sido ya brevemente enunciado. Vamos ahora a
exponerlo detalladamente.

La ecuacién (18) da para la separacién estética la expresion

In Q) = ap?/(b+pY) : (18)

la presién 6ptima y el factor méximo de separacién vienen dados por lag expresiones

a

92 b11/2

In Qmax. = Pop‘ = b/t (21)

Utilizando las expresiones (18) y (13) puede escribirse la nterior en la forma

HL K
K K,

Cc

5=

P (30)

que con las (21), (14), (15) y (16) y firas alguna simplificacién conducen a

V70 o, L 4

In = el 31
Qe R T 5 0 1)
i Vil D k! \/2
Py, = VT — (" ] ( k"’ ) . p (32)
1 (% 1 c

en lag que, como siempre, los subindices 1 se refieren a la pared frfa.

La medida experimental de los In Q. junto con el conocimiento de la combinacién
de factores de forma

Wk - k)12 (33)

permitirfa, en principio, el cdlculo del factor .

Ya hemos hecho mencién de los intenfos de Clusius y colaboradores para tratar de
obtener de medidas de la separacién, valores de . Cuando Se utiliza la teorfa simpli-
ficada de Jensen®® o su equivalente de Jones y Furry®® para el caso de paredes planas
infinitas, la combinacién de factores de forma (33) toma el valor uno. Clusius postula
entonces que el factor o puede escribirse en la forma

mQ . =F:a (34)
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Para una columna y tarando con un gas de « conocida, deduce el valor de F, valor
que utiliza posteriormente para deducir la constante de difusi6n térmica de otros gases.

La teoria del caso plano para la columna, no toma en cuenta la variacién de los
coeficientes del gas con la temperatura, ni el hecho, real, de la geomefria cilindrica de
la instalacién. Los factores de forma incluyen dentro de =i estos dos hechos: por un
lado son correcciones de cilindricidad, por ofro su dependencia de r /r, y T,/T, es dis-
tinta para cada modelo molecular. Un estudio detallado de la validez de la hipGtesis

WYk Ee) o 1 (35)
conduce a que tal suposicién no es admisible, ni siquiera dentro del orden de magnitud
de los errores experimentales. Debemos aceptar entonces

h’ ' :
RN = f (r/ry T,/T,, &/F, o) (36)

si suponemos que el gas puede ser descrito por un potencial Lennard-Jones (12-6). En
este caso, « depende de la interaccién y podemos escribir, con Chapman® o Kihara'!

x = f (e/k) E0)

para una pareja de is6topos de una mezela binaria.
Egcribiendo

&

q_h

T

para una T, y r /r, fijos*, podemos poner la (31) en la forma

In QTh = 0.41883
ma:

X.

@ (e/k, T)) (38)

1

en que el superindice Th. hace mencién de que los factores de separacién han sido
obtenidos de las expresiones tedricas.

El estado actual de las comparaciones teoria-experimento no es, hemos dicho, sufi-
cientemente bueno par autorizarnos a tomar como (QIB el obtenido de medidas en la
columna. Podemos sin embargo ensayar la posibilidad

In Qe = m In QI (39)

en que m es una constante que puede ser determinada por tarado con un gas de inter-
accién hien conocida.

El estudio de la validez de la introduccién de la constante m serd orientado en el
sentido de establecer que no depende de la interaccién ni de las temperaturas T, y T,
de la columna. El ser dicha constante independiente del gas y de las temperaturas de
la instalacién nos autorizard a considerarla como constante geométrica. Hecho este
estudio y pudiendo asegurar que tal cosa ocurre, al menos dentro de mdrgenes razo-
nables de error experimental, la expresi6n (39) nos servird para determinar directa-
mente la interaccién de medidas de la separacién méxima en la instalacién.

* La expresiéon de o en las aproximaciones de Chapman y Kihara no contiene g para mezclas
de isétopos. :
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La segunda de las relaciones (32), nos dard oportunidad de poner a punto una for-
ma anéloga de tarado. Expresando (32) en funcién de los coeficientes de transporte se
obtiene :

72470 1 (:nD p? ka2
Pl . e (40)
op. g. r3 P s k ’

1 c
Las expresiones de los coeficientes de transporte son

VI T VT
n =269 ——F —— 1077 D — 2.698 . 10-3 (41)
o, QED* (T*) P o, QUL* (T%)

en que M es la masa molecular de la mezcla, ¢ el didmetro de interaccién y las Q(*,1)*
las integrales reducidas de colisién correspondientes al modelo molecular adoptado’?, en
este caso el Lennard-Jones (12-6).

Sustituyendo (41) en (40) se obtiene

10=8:08s 71
procmy. sl W (g/k, T,, T,) (42)
5 1‘1 [ g
con
(ky [k 2
W (e/k, T, T,) = ———°—— (43)

0,65 Q0

Tampoco ahora podemos fomar como p27Ti el valor deducido del experimento. Ha-
gamos como en (39):

=T h.
Lt v 2]
Las mismas congideraciones de antes siguen siendo v4lidas, mediante un adecuado

conjunto de experiencias puede llegarse a determinar hasta qué limites p2 es indepen-

diente de la interaccién y de T, y T,, es decir hasta qué limites p? puede ser considerada
como una constante geométrica. Sabremos entonces hasta qué punto el conocimiento
de ¢/k, p? E=- y de las demds magnitudes que intervienen en (42), permite la obten-
cién de los didmetros moleculares ¢ de disfintos gases. Y aiin cuando este procédimien-
to, como tal, no fuera aceptable, los resultados obtenidos serdn un test serio y una
nueva contribucién experimental que ponga en claro la relacién teorfa-experimento.

2. Montaje experimental

La instalaci6on de difusién térmica ex, bdsicamente, una columna de tipo Clusius-
Dickel de tubos concéntricos y con las siguientes caracteristicas geométricas, Fig. 1.

T 51 G e e e el R e 1490 mm.
Didmefro exterior del tubo intermo ... ... ... ... 12,0 mm.
Didmetro interior del tubo externo ... ... ... ... 27,4 mm.
MAterialsy s i se Bt ioe e eV drion Pyrex:
Los liguidos orgénicos empleados en la calefaccion han sido
Ortodiclorobenceno ... ... ... ... ... oo s e T, = 452°K
(B)i e o on Rl el e e s i el T, = 511°K
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La refrigeracién para la pared interior, temperatura T,, se consigue mediante una
circulacién de agua filtrada en circuito cerrado desde un depésito termostatizado con
un margen de 0.1°C. El depésito termostatizado contiene unos 25 litros de agua, la
temperatura T, se toma algo més alta que la ambiente y el calor tomado de la instala-

ci6n se elimina mediante serpentines de refrigeraci6n.

El tubo de calefaccién estd dotado de un arrollamiento
de cinta de Nicrothal sobre el calorifugo para evitar pérdi-
das de calor. Por ser téxicos los vapores de los liquidos
empleados en la calefaccién, sobre todo los de quinoleina, el
flujo al exterior se impide mediante una columna de absor-
ci6n de carbén activo y un burbujeo sobre sulfirico.

La instalacién estd dotada de un sistema convencional de
alto vacio en Pyrex; las llaves cierran con grasa Apiezon-L.
Para evitar el reblandecimiento de los cierres, debido a la alta
temperatura producida por la calefaccién, se han instalado
arrollamientos de tubo fino de plomo, refrigerados por agua,
sobre las llaves de toma de muestra. La calidad de los com-
ponentes de la instalacién hace suficiente utilizar un com-
probador Tesla, para el control del vacio. En 1iltima ins-
tancia el andlisis espectrométrico, repetido sobre cada serie
de medidas, es utilizado como comprobacién -de la estan-
queidad de la instalacién.

El manejo, purificacién y trasvase de los gases se rea-
liza sobre pipetas, desgasificadas a alta temperatura, de
carb6n activo, enfriadas con Nitr6geno liquido o sélido se-
gin la temperatura que se desee alcanzar.

La instalacién estd dotada de automatismos de corte de
energfa controlados por el flujo de agua de refrigeracién.
El tiempo de equilibrio de la columna, alrededor de una
hora y media, aconseja realizar operaciones de mas de tres
horas. Los automatismos aseguran que cada muestra estd
en equilibrio.

Los gases utilizados Ne6n, Arg6n, Kripton y Xenon han
sido suminstrados por la Sociedad Espafiola del Oxigeno.

Todos ellos son de pureza espectroscépica. Trazas de otros F1¢: 1. — Columna de difusion

gases nobles son eliminadas utilizando la propia columna
como separador.

térmica

Las abundancias naturales de los diversos isétopos de estos gases se dan en la
Tabla XVII.
TABLA XVII
ABUNDANGIAS ISOTOPICAS NATURALES DE TOS GASES = UTTLIZADOS
20Ne 21Ne 22Ne
90.92 0.257 8.82
36AT 38AT 40AD
0.337 0.063 99.6
TSKI. SOKI. H2Kr SBKI' 84KI\ SGKI.
0.35 2.27 11.56 11.55 56.9 17.37
124X 126X o 128X o 129X a 130X e 131X 132X e 134X e
0.096 0.090 1.92 26.44 4.08 21.18 26.86 10.44
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3. Métodos de medida y andlisis

La expresién (18) permite aproximar el orden de presiones en el que la instalacién
va a tener la méxima separacién. Conocido el valor aproximado de la presién Gptima
se llena la columna, en frio, a una presién que la supere en unos 100 mmHg. en las
condiciones de trabajo. Cada operacion de equilibrio se realiza disminuyendo la pre-
si6n anterior en unos 15 mmHg. de manera que con doce a quince operaciones se abarca
un rango de presiones en el que queda comprendida la correspondiente a p .

Las muestras se toman simultineamente en ambos extremos de la columna. El ex-
ceso de tiempo sobre el de equilibrio asegura que, los pequeifios tubos de conexién que
unen los extremos de la columna a la toma de muestras propiamente dicha, se hallen
con gas a la concentracién de equilibrio.

Los andlisis de la riqueza isotépica de cada muestra se han realizado en un espec-
trometro de masas Atlas-Mat CH-4, de sector magnético y con registro sobre papel.
Dado que bastantes de los is6topos presentes en las mezclag elegidas tienen abundan-
cias menores del 1 %, y que para éstos el espectrometro las da con errores del orden
del 1 %, cuando se miden por el método convencional, hemos escogido como método
de medida el de compensacién.

El método permite obtener la relacién de alturas, o lo que es lo mismo la relacién
de concentraciones c,/c, para una pareja de isétopos determinada, con una sola medida
y con error menor del 0,1 9. De esta manera el célculo de (°=:, puede hacerse con
mayor precisién que los limites marcados por la reproductibilidad de la propia insta-
lacién. 2

Describiremos el método®?. El espectrémetro ufiliza un inico colector de iones. La
sefial de entrada en el amplificador, para el is6topo més abundante, que es proporcio-
nal a su concentracion, es compensada (hecha cero) mediante la superposicién de z vol-
tios negativos, procedentes de una fuente auxiliar de potencial. El is6topo menos abun-
dante es asimismo compensado por un potencial p.z. Si es R la resistencia de entrada
del amplificador, podemos eseribir

I R—z =0
IS=vhe—"nz—20

con I e I intensidades de corriente iénica para los is6topos abundante y escaso respee-
fivamente. Se tiene entonces para la relacién de concentraciones

La lectura de las primeras cifras de p se hace directamente en un “decapot”, las res-
tantes se leen sobre el registrador por la téenica descrita en ref. 59. La gran ventaja
del método es que permite aumentar de 10 a 30 veces la sensibilidad de medida con la
consiguiente disminucién de errores.

4. Resultados experimentales

Los gases escogidos para nuestro trabajo son la serie de gases nobles Ne6n, Argén,
Kripton y Xenon. Con ellos se han realizado medidas estdticas de separacién a las tem-
peraturas de pared caliente del ortodiclorobenceno y quinoleina y variag temperaturas
de la pared fria. Cada serie ha sido cuidadosamente realizada y consta de un niimero
de puntos suficientemente alto.
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El factor de separacién Q y la presién estdn relacionados por

a p?
n@Q=——— (18)
b + pt

de la cual, por un oportuno ajuste, se pueden deducir las constantes a y b. Cuando (18)
ge pone en la forma

ap?/lnQ = b + p (20)

y se representan z = p*, y = p?/InQ los puntos experimentales deben situarse sobre
una recta de la cual es sencillo determinar a y b.

I1%

p (mm.Hg)
——
GI- | | |
500 600 700
Fic. 2. — Ajuste por minimos cuadrados lineal b y no lineal

a de datos tipicos de separacién estatica

El método elegido para el ajuste es el de minimos cuadrados sobre la ecuacién (20).
Aparentemente se plantea un problema al tratar de utilizar el método anterior de re-
ducei6n de datos. Los puntos de baja presién, importantes para calcular b, tienen me-
nos peso en el ajuste que los de alta presién. Parece entonces que la magnitud b habrd
de venir afectada de gran error. Podria pensarse que seria preferible utilizar la propia
expresi6n (18) para el ajuste. Se han tratado todas las series de datos por los dos pro-
cedimentos y la calidad del ajuste de (20) es lo suficientemente buena para no encontrar
diferencias apreciables, Fig. 2.

Ambos métodos de reduccién se han programado en un computador IBM 1620. Los
regultados tabulados son los del método lineal. La bibliografiat? sefiala recientemente
que existen diferencias entre los dos métodos. No obstante estas diferencias no son
tipicas y son debidas exclusivamente a la mayor dispersién de las medidas.

El programa calcula log valores de a, b, la presién 6ptima, el In QE: y el In Q
como funcién de la presién p. Las magnitudes citadas van acompafiadas de sus corres-
pondientes errores probables.

Todos los resultados obtenidos se han representado gréficamente, Figs. 3 a 18. Aun
a pesar de las pequefias separaciones obtenidas, decrecientes con la masa molecular,
puede observarse el perfecto ajuste de los datos experimentales sobre la ecuacién (18).

— 195 —




TABLA I
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461.

446.

A = 7.2352 + .0516

SerIE. — ORTODICLOROBENCENO

NEoN

T, =290

T, = 452
Alto Bajo
57.908 50.000
42.091 50.000
58.029 50.000
41.970 50.000
57.961 50.00
42.038 50.000
58.120 50.000
41.879 50.000
58.125 50.000
41.874 50.000
58.150 50.000
41.849 50.000
58.218 50.000
41.781 50.000
58.129 50.000
41.870 50.000
58.111 50.000
41.888 50.000
58.106 50.000
41.893 50.000
58.007 50.000
41.992 50.000
57.834 50.000
42,165 50.000
57.630 50.000
42.369 50.000

B = .2686 £ .0040
LJ\':\QM) = ()9796 + 1028

Q LN(Q) LN(Q)R
1.375 3190 6.6997
1.382 8239 6.8032
1.378 3212 6.7454
1.387 3277 6.8821
1.388 3279 6.8866
1.389 3289 6.9078
1.393 3317 6.9666
1.388 3280 6.8896
1.387 3973 6.8745
1.387 3271 6.8700
1.381 3230 6.7850
1,371 3159 6.6355
1.360 3076 6.4602

PO2/LN(QM) = 074260
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Serie O-diclorobenceno
T‘l = 290
T

2-452

450

550 650 750

Fig. 3

TABLA II

349.

339.

328.

315.

R

SErIE. — ORTODICLOROBENCENO

ARGON

T, =290

T, =452
Alto Bajo Q LN(Q) LN(Q)R
54.063 50.000 1.176 .1628 3.0947
45.936 50.000
54.291 50.000 1.187 1721 3.2699
45.708 50.000
54.454 50.000 1.195 1786 3.3943
35.645 50.000
54.703 50.000 1.207 .1887 3.5856
45.296 50.000
54.944. 50.000 1.219 .1984 3.7703
45.055 50.000
55.223 50.000 1.233 .2096 3.9841
44 776 50.000
55.713 50.000 1.258 .2295 4.3609
44 286 50.000
56.036 50.000 1.274 .2426 4.6100
43.963 50.000
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PO = 211.
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248.

231.

204.

193.

183.

172.

162.

147.

A = 7792 = .0010

56.209 50.000 1.283 .2496 4.7437
43.790 50.000

56.444 50.000 1.295 .2592 4.9249
43.555 50.000

56.538 50.000 1.300 .2630 4.9980
43.461 50.000

56.540 50.000 1.300 .2631 4.9995
43.459 50.000 :
56.432 50.000 1.2956 2687 4.9161
43.567 50.000

56.343 50.000 1.290 .2561 4.8470
43.656 50.000

56.109 50.000 1.278 .2456 4.6665
43.890 50.000

55.863 50.000 1.265 .2356 4.4768
44.136 50.000

55.269 50.000 1.235 2115 4.01956
44.730 50.000

B = .0059 + .0000
+. LN(QM) = 5.0455

P02/LN(QM) = .015304
+ .0243

Serie O-diclorobenceno
T, = 290
T, = 452

InQ

plmm Hg)

e
300
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TABLA III
SERIE, — ORTODICLOROBENCENO
KriprTON
T, =290
T, = 452
P Alto Bajo 0 LN(Q) LN(Q)R
52.134 50.000 1.089 .0854 2.3639
183. 47.865 50.000
52.344 50.000 1.098 .0938 2.5966
173. 47.655 50.000
52.548 50.000 1.107 .1020 2.8224.
162. 47.451 50.000
52.711 50.000 1.114 .1085 3.0041
152. 47.288 50.000
52.905 50.000 1.123 .1163 3.2192
140. 47.094 50.000
53.034 50.000 1.129 1215 3.3617
130. 46.965 50.000
53.093 50.000 1.131 1238 3.4278
120. 46.906 50.000
53.139 50.000 1.134 1257 3.4791
110. 46.860 50.000
53.016 50.000 1.128 .1208 3.3421
99. 46,983 50.000
52.299 50.000 1.096 .0920 2.5462
74. 47.700 50.000
51.477 50.000 1.060 L0691 1.6355
55 48,522 50.000
A = 1586 £+ .0006 B = 0005 + .0000 PO2/LN(QM) = .006428
PO =114. + . LN(M()) = 3.5133 + .0410
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KRIPTON
_—

Serie O-diclorobenceno
T1 = 290
T2 = 452

1.7 pimm Hg)

F1G. 5

TABLA IV

SeErIE. — ORTODICLOROBENCENO

XENON
T, =290
T, = 452
P Alto Bajo (0) LN(Q) LN(Q)R
50.893 50.000 1.036 .0357 1.1798
123. 49.106 50.000
51.030 50.000 1.042 .0412 1.3608
113. 48.969 50.000
51.069 50.000 1.043 .0427 1.4114
103. 48,930 50.000
51.323 50.000 1.054 .0629 1.7480
91, 48.676 50.000

B0
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51.465 50.000 1.060 .0686 1.93563
81. 48.534 50.000

51.531 50.000 1.063 .0612 2.0223
70. 48.468 50.000

51.526 50.000 1.063 .0610 2.0161
60. 48.473 50.000

51,307 50.000 1.053 .05623 1.7261
50. 48.692 50.000

51.040 50.000 1.042 .0416 1.3736
40. 48.959 50.000

A = 0336 + .0004 B = .0000 + 0000  PO2/LN(QM) = .004078
PO=69. +1.  LN@QM) = 2.0306 + .1046

XENON

Serie O-diclorobenceno
T1 = 290
T, = 452

p{mm Hg)

50 100 150

Fi1G. 6
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TABLA V
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P Alto

57.272

479. 42.727
57.396

490. 42.603
57.567

500., 42.432
5 57.457
509. 42,642
57.630

520. 42.369
57.561

531. 42,448
57.668

542. 42.331
57.661

554. 42.338
57.748

568. 42.251
57.697

579. 42.302
57.813

591. 42,186
57.729

603. 42.270
57.807,

610. 42.192
57.693

621. 42.306
57.797

635. 42.202
57.537

648. 42.462
57.558

660. 42,441

SErIE. — ORTODICLOROBENCENO

Neon

1l L = 304

T2 = 452
Bajo Q LN(Q) LN(Q)R
50.000 1.340 .2929 6.1523
50.000
50.000 1.347 .2980 6.2685
50.000
50.000 1.356 .3050 6.4061
50.000
50.000 1.350 .3005 6.3115
50.000
50.000 1.360 3076 6.4602
50.000
50.000 1.366 .3043 6.3922
50.000
50.000 1.263 .3091 6.4926
50.000
50.000 1.361 .3088 6.4864
50.000
50.000 1.366 3124 6.5619
50.000
50.000 1.363 .3103 6.56173
50.000
50.000 1.370 .3151 6.6171
50.000
50.000 1.365 .3116 6.6450
50.000
50.000 1.370 .3148 6.6126
50.000
50.000 1,363 .3102 6.5142
50.000
50.000 1,369 3144 6.6033
50.000
50.000 1.355 .3038 6.3798
50.000
50.000 1.356 .3046 6.3984
50.000

A =773710 + 0661 B = .3447 + .0059
PO = 582. +2. LN(QM) = 6.5885 + 1130

PO2/LN(QM) = .089116
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7 Serie O-diclorobenceno
T1 = 304
TZ = 452

o

NEON
=

4.1 p{mmHg)
———— s

450 550 850 750

F1c. 7

TABLA VI

SErRIE. — ORTODICLOROBENCENO

ARGON
T L= 304
T, =452
P Alto Bajo Q LN(() LN(Q)R
55.068 50.000 1.225 .2034 3.8651
165. 44 931 50.000
55.231 50.000 1.223 .2100 3.9903
175. 44.768 50.000
55.269 50.000 1.235 2115 4.0195
186. 44,730 50.000
55.758 50.000 1.260 2313 4.3956
196. 44.241! 50.000
55.791 50.000 1.262 .2326 4.4212
205. 44.208 50.000
55.964 50.000 1.270 .2397 4.5547
213. 44.035 50.000
55.900 50.000 1.267 2371 4.5053
225 44.099 50.000
55.797 50.000 1.262 2329 4.4257
237. 44,202 50.000

Solg3 ==




PO = 230.

248.

264.

278.

290.

303.

312.

324.

332.

340.

364.
A = 8206 +

55.724
44275
55.695
55.343
44656
55.054
44.945

54.999
45.000

54.928
45.071

54.508
45.491

54.502
45.497

54,499
45.500

54.174
45.825

.0076 B = .0084
+

2. LN(QM)

50.000
50.000

50.000
50.000

50.000
50.000
50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

+ .0002

1.218

1,198

1.197

1.197

1.182

PO2/LN(QM) = .020663
4.4559 + 1196

.2299

.2288

2145

.2028

.2006

1977

.1808

.1805

1804

1673

REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

4.3699

4.3473

4.0763

3.8543

3.8123

3.7679

3.4356

3.4308

3.4202

3.1801

Serie O-diclorobenceno

Tl
T2

= 304
= 452
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TABLA VII

SErIE. — ORTODICLOROBENCENO

KrIpTON
T, =304
T, = 452
P Alto Bajo (0] LN(Q) LN(Q)R
51.620 50.000 1.067 .0648 1.7942
65. 48.379 50.000
52.111 50.000 1.088 0845 2.2285
. 47.888 50.000
52.428 50.000 1.102 .0972 2.6896
86. 47.571 50.000
52.754 50.000 1.116 1102 3.0513
101. 47.245 50.000
52.856 50.000 1.121 1143 3.1650
1B6E 47.143 50.000
52.905 50.000 1.123 1163 3.2192
127. 47.094 50.000
52.799 50.000 1.118 1120 3.1008
141. 47 .200 50.000
52.635 50.000 1.111 .1055 2.9196
152. 47.364 50.000
52.509 50.000 1.105 .1004 2.7799
162. 47.490 50.000
52.342 50.000 1.098 .0937 2.5941
172. 47.657 50.000
52.153 50.000 1.090 .0861 2.3842
182. 47.846 50.000
52.036 50.000 1.084 .0814 2.9544;
193. 47.963 50.000
51.923 50.000 1.080 .0769 2.1292
203. 48.076 50.000

A = 1689 + .0010 B = .0006 + 0000  PO2/LN(QM) = .007992
PO =122. +. LN(OM) = 3.2506 + .0629
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KRIPTON

Serie O-diclorobenceno
Tl = 304

TZ = 452

pi{mm Hg)

50 100 150 200
F1G. 9

TABLA VIII

70

166.

144.

134.

124.

114.

108.

SERIE. — ORTODICLOROBENCENO

XENON

T =304

T, = 452
Alto Bajo 0 LN(Q) LN(Q)R
50.497 50.000 1.020 .0199 6567
49.502 50.000
50.531 50.000 1.021 .0212 7019
49.468 50.000
50.746 50.000 1.030 .0298 .9850
49.253 50.000
50.809 50.000 1.032 .0323 1.0682
49.190 50.000
50.905 50.000 1.036 .0362 1.1957
49.094 50.000
51.042 50.000 1.042 .0417 1.3766
48,957 50.000
51.181 50.000 1.048 0472 1.5697
48.818 50.000

s g s

vies

e

o s o b i e
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51.290 50.000 1.053 .0516 1.7042
93. 48.709 50.000

51.371 50.000 1.056 .0548 1.8106
87. 48.628 50.000

51.423 50.000 1.058 .0569 1.8792
81. 48.576 50.000

51.472 50.000 1.060 .0589 1.9446
75. 48.527 50.000

51.444 50.000 1.059 05677 1.9073
67. 48.555 50.000

51.383 50.000 1.056 L0653 1.8262
61. 48.616 50.000

51.269 50.000 1.051 .0504 1.6634
54. 48.740 50.000

51.028 50.000 1.042 .0411 1.3576
45, 48.971 50.000

A = .0360 + 0002 B = .000 + .0000 PO2/LN(QM) = .004756
PO=73. +1.  LN(OM) = 1.9477 + .1016

XENON
e

Serie O-diclorobenceno
T, = 304
TZ = 452

1,5

p (mm Hg)

50 100 150

F1G. 10
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TABLA

IX
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787.

696.

682.

667.

631.

611.

581.

542.

519,

502.

A = 8.5045 + .0695

PO = 672.

2

Alto

56.109
43.890

56.126
43.873

56.373
43.626

56.314
43.685

56.436
43.563

56.366
43.633

56.276
43.723

56.331
43.668

56.140
43.859

56.153
43.846

55.985
44.014

55.612
44.387

55.557
44,442

B = .6130 + .0101

SerIE. — ORTODICLOROBENCENO

NEON

T, =304

T, = 452
Bajo 0 LN(Q) LN(Q)R
50.000 1.278 .2456 5.1677
50.000
50.000 1.279 2463 5.1725
50.000
50.000 1.292 .2563 5.3832
50.000
50.000 1.289 .2539 5.3328
50.000
50.000 1.295 2588 5.4368
50.000
50.000 1.291 .2560 5.3767
50.000
50.000 1.287 2523 5.3002
50.000
50.000 1.290 2546 5.3474
50.000
50.000 1.280 .2468 5.1840
50.000
50.000 1.280 2474 5.1955
50.000
50.000 1.271 2405 5.05623
50.000
50.000 1.252 .2254 4.7346
50.000
50.000 1.250 2232 4.6876
50.000

LN(QM) = 5.4309 + 0894

PO2/LN(QM) = .144167
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Serie O-diclorobenceno
T, = 323
Tl = 452

Fic. 11

TABLA X

e

376.

359.

345.

331.

Alto

53.761
46.238

54.033
45.966

54.243
45.756
54.331
45.668
54.574
45.425
54.656
45.343

SErIE. — ORTODICLOROBENCENO

ARGON

T, = 323

T, = 452
Bajo 0 LN(Q) LN(Q)R
50.000 1.162 1507 2.8641
50.000
50.000 1.175 1616 3.0721
50.000
50.000 1.185 1701 3.2331
50.000
50.000 1.189 1737 3.3003
50.000
50.000 1.201 1834 3.4862
50.000
50.000 1.205 .1868 3.5494
50.000
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54.816 50.000 1.213 .1932 3.6719
280. 45.183 50.000

54.843 50.000 1.214 .1943 3.6923
262. 45.156 50.000

54.851 50.000 1.214 .1946 3.6985
246. 45.148 50.000

54.749 50.000 1.209 .1905 3.6202
227. 45.250 50.000

54.605 50.000 1.202 .1847 3.5009
211. 45.394 50.000

54.364 50.000 1.190 1746 3.3178
192, 45.645 50.000

53.902 50.000 1.169 .1564 2.9717
173. 46.097 50.000

A = 8551 + .0046 B = .0128 + .0002 PO2/LN(QM) = .030107
PO = 255. S= ks LN(QM) = 3.7684 + 0541

Serle O-diclorobenceno
Tl » 323
T, = 452

InG
3.4
Argon
2,4
p{mm Hg)
— |
100 200 300 400
Fic. 12 (5
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TABLA XI

187,

172.

159.

143.

112.

97.

83.

71.

59.

A = 1909 + .0013

PO = 139.

Alto

52.031
47.968

52.178
47.821

52.319
47.680

52.412
47.587

52.485
47.514

52.426
47.753

52.209
47.700

52.019
47.980

51.672
48.327

51.286
48.713

50.915
49.084

B =

SERIE. — ORTODICLOROBENCENO

LN(QM) = 2.8234 + .0480

KriIprTON

T, = 323

T, = 452
Bajo Q LN(Q) LN(Q)R
50.000 1.084 .0813 2.2493
50.000
50.000 1.091 .0871 2.4121
50.000
50.000 1,097 .0928 2.5689
50.000
50.000 1.101 .0965 2.6721
50.000
50.000 1.104 L0994 2.7523
50.000
50.000 1.102 L0971 2.6871
50.000
50.000 1.096 0920 2.5462
50.000
50.000 1.084 .0808 2.2366
50.000
50.000 1.069 .0669 1.8511
50.000
50.000 1.052 .0514 1.4235
50.000
50.000 1.037 .0366 1.0131
50.000

.0011 + .0000  PO2/LN(QM) = .011977

iR
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KRIPTON
Serie O-diclorobenceno
I1 = 323
T, = 452
3.4 ¢
2,
1.
Fic. 13
TABLA XII
SErIE. — ORTODICLOROBENCENO
XENON
T, = 452
T, = 323
P Alto Bajo (0} LN(Q) LN(Q)R
50.859 50.000 1.035 .0344 1.1352
131. 49.140 50.000
50.992 50.000 1.040 .0397 1.3101
120. 49.007 50.000
51.085 50.000 1.044 0434 1.4336
110. 48.914 50.000
51.174 50.000 1.048 .0469 1.5603
98. 48.825 50.000
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51.264 50.000 1.051 0505 1.6697
85. 48.735 50.000

51.221 50.000 1.050 .0488 1.6132
73. 48.778 50.000

51.114 50.000 1.445 0445 1.4714
62. 48.885 50.000

50.898 50.000 1.036 .0369 1.1862
52. 49.101 50.000

50.666 50.000 1.027 .0266 .8791
42. 49,333 50.000

A = 0890 £ .0002 B = .0001 + .0000 PO2/LN(QM) = 006821
PO =8l. +. LNQM) = 1.6013 + 0276

XENON

Serie O-diclorobenceno
Tl
22

323

452

p(mmHg)

S0 100 1%0

Fic. 14

=L




TABLA XIII

REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

631.

611.

593.

574.

554.

A = 10.8588 + .0497

PO = 600.

el

Alto

59.153
40.846

59.402
40.597

59.613
40.386

59.808
40.191

59.861
40.138

60.078
39.921

60.116
39.883
60.282
39.717

60.249
39.750

60.127
39.872

60.133
39.866

60.097
39.902

SErIE. —QUINOLEIN A

NEON
T. = 298

1

T, = 5611

2

Bajo

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.00
50.000

50.000
50.000

50.000
50.000

50.000
50.000

50.000
50.000

B = .3885 + .0046

Q
1.448

1.463

1.476

1.488

1.491

1.405

1.506

LN(Q) LN(Q)R
3703 7.7767
.3806 7.9931
.3894 8.1774
.3975 8.3475
.3997 8.3940
4087 8.5832
4103 8.6167

44172 8.7624
.4158 8.7334
4107 8.6264.
.4110 8.6320
4095 8.5999

PO2/LN(QM) = .071571
LN(QM) = 8.7097 + .0920

S e

R P R e A

s



ESTUD{OD DE LA INTERACCION MOLECULAR DE GASES MONOATOMICOS

Serie Quinoleina
'1‘1 =298

T, =511

%4
] 500 600 700 800
i F16. 15
TABLA XIV
SERIE. —QUINOLEINA
NEeox
T, = 308
e =t51 ]!
P Alto Bajo 0 LN(Q) LN(Q)R
59.123 50.000 1.446 .3690 7.7506
744. 40.876 50.000
59.236 50.000 1.453 3737 7.8491
T24. 40.763 50.000
59.342 50.000 1.459 .3781 7.9414
i 698. 40.657 50.000
19 59.617 50.000 1.476 .3895 8.1803
674. 40.382 50.000
i 59.766 50.000 1.485 .3957 8.3107
656. 40.233 50.000
et 59.711 50.000 1.482 .3934 8.2626
637. 40.288 50.000
59.563 50.000 1.472 3873 8.1333
600. 40.436 50.000
t 59.515 | 50.000 1.470 .3853 8.0919
1] 578. 40.484 50.000

¥ A =11.0739 + 1298 B = 452 + .0127  PO2/LN(QM) = .081753
i PO =623. +4. LN(QM) = 8.2296 + .2123

A S
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z
m
(=]
4

° Serie Quinolefna
TI = 308
= 511

i

500

500 700 800

F1G. 16

TABLA XV

PO = 237.

288.
270.
250.

226.

182.

160.

A = 1.1377 + .0060
A

Serie. —QUINOLEINA

ARGON

T, =308

T, =511
Alto Bajo 0 LN(Q) LN(Q)R
56.739 50.000 1.311 2712 5.1537
43.260 50.000
57.064 50.000 1.329 .2845 5.4055
42.935 50.000
57.366 50.000 1.345 .2968 5.6399
492.633 50.000
57.591 50.000 1.358 .3060 5.8142
42.408 50.000
57.517 50.000 1.353 .3029 5.7667
42.482 50.000
57.096 50.000 1.330 .2851 5.4298
42.903 50.000
56.723 50.000 1.310 .2705 5.1406
43.276 50.000
55.824 50.000 1.263 .2340 4.4468
44175 50.000

B = .0095 + .0001 PO2/LN(QM) = .016799
LN(OM) = 5.8192 + 0699
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ARGON

'I‘| = 308
'l'2 = 511

Serie Quinoleina

p (mm Hg)
3 ! ] J
150 200 250 300
F1c. 17
TABLA XVI
SEriIE. —QUINOLEINA
KRIPTON
T =308
T, =511
P Alto Bajo Q LN(Q) LN(Q)R
51.966 50.000 1.081 .0787 2.1778
257. 48.033 50.000
52.269 50.000 1.095 .0908 2.5133
237. 47.730 50.000
52.588 50.000 1.109 .1036 2.8673
217. 47.411 50.000
52.989 50.000 1.127 1197 3.3127
195. 47.010 50.000
53.445 50.000 1.148 .1380 3.8185
173. 46.554 50.000
53.795 50.000 1.164 1521 4.2086
152. 46.204 50.000
53.959 50.000 1.172 1587 4.3910
131. 46.040 50.000

A = .2674 + .0005
PO = 138. &

B = .0009 + .0000
+ .  LN(OM) = 4.3536 + .0443

PO2/LN(QM) = .007053 ,
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KRIPTON

Serie Quinoleina
T= 308

TZ = 511

P (mmHg)

1
150 200 250
Fig. 18

IV. Discusién de los resultados

1. Factor maximo de separacion

Estudiaremos en primer lugar los resultados experimentales para el factor méximo
de separacién en las muestras de Neon. Un resumen de los mismos figura en la Tabla
XVII.

Empleando la relacién (39) intentaremos obtener una correlacién enfre los valores
de In Q- y los de In Q%% calculados con (38).

TABLA XVIII 5

FACTOR MAXIMO DE SEPARAGION PARA EL NEON !

T.(°K) T,(°K) IO In QT3

290 452 6.98 + 0.9 44,643
298 511 8.71 + 0.09 54.943 1
304 452 6.6 + 0.1 39.925
308 511 9.2 + 0.9 51.643
393 452 5.43 + 0.09 33.882

* Calculado con el mod. L-J (12-6), z/k = 357

Para el cdlculo de los valores de QTh

Th. es mecesario elegir un modelo de interaccién

molecular con los pardmetros adecuados. Como modelo ufilizaremos el de Lennard Jones
(12-6), suficientemente capaz, como hemos dicho, de representar el gas en el intervalo
de temperatura de nuestras medidas.

L el
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Como pardmetro de interaccién apropiado para el Neon tomaremos el que figura en
la Tabla XVIII, con el que pueden interpretarse de una manera razonable tanto las
propiedades de equilibrio como las de transporte.

€/k=357
E
In Qrmx
8=
bi—
=Th
In Qmdx
] i | i
0 20 40 60
F1G. 19. — Correlacién de In Qe}fgk._ In O?“h:;x‘ para el Neon

El célculo de las magnitudes @ y In QIi- a parlir de (38) requiere el conocimiento
previo del valor de la combinacién de factores de forma (36). Aun cuando se han dado
tabulaciones para ellos, hemos preferido proceder a calcularlos directamente mediante
el procedimiento indicado en la referencia. El cdlculo directo evita las posibles impre-
cisiones de una interpolacién de varios pardmetros y la acumulacién de errores causa-
da por la posterior manipulacién de los datos. Para los valores @, se ha tomado la tabu-
lacién de Hirschfelder obtenida con la aproximacién de (‘hapman Cowlings.

Los resultados para In QT8 se muestran, junto con los experimentales, en la Tabla

XVIIL. En la Fig. 19 se han l;gi)rexeulado los valores de In (e frente a los de In QTh

max. max,
Los puntos experimentales se sitian sobre una recta de ecuacién

In Qe = miln QT (39)

que pasa por el origen, ya que en condiciones fisicas de ausencia de separacién tanto
Qs como Q°x. valen la unidad.

Estudiaremos a continuacién la influencia del pardmerto ¢/k en la validez de la re-
lacién (39).

El procedimiento seguido es utilizar para el cdleulo QT valores del pardmetro de
interaccién muy distintos del correspondiente al potencial que describe el gas. Se han
calculado los Qfix. correspondientes a valores de e/k desde 20 a 100°K, ambos muy
alejados de la interaccién real (piénsese que para Helio y Argon ¢/k vale respectivamen-
mente 10 y 124°K). Con los resultados obtenidos se han ajustado los valores de m de
la ecuacién (39). Los resultados para los extremos del intervalo de ¢/k elegido se
muestran graficamente en la Fig. 20.
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In QTh. In Qexp. ara Neon
Q)lax. y Q)Iax‘ p

TABLA XIX

VARIACION DE m CON g/k PARA EL NEON

£€/k =100°K
L PR ke S £/k=20°K
(e}
()
s
In Qlngy
! 1 1
0 20 L0 60
F1c. 20. — Estudio de la influencia de ¢/k en la relacién entre

e/k
20
30
3

31
2
33
34
35
35.4
35.7
36

37
38
39
40
50
60
70
80
90
100

mey Am
Am x 10?
m
.0058 3,5
.0057 3.5
0056 3.4
0055 3.4
.0054 3.3
.0055 3.3
.0054 3.3
.0055 3.3
.0055 3.3
.0056 3.4
.0056 3.4
.0057 3.4
.0058 3.5
.0058 3.5
.0058 3.4
00.58 3.3
.0064 3.4
.0068 3.6
.0074 3.7
.0082 3.9

— 150 —
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Los valores de la pendiente m se obtienen por un ajuste por minimos cuadrados y
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La recta a ajustar tiene de ecuaci6n
Yy=a¢+mzx

si (x; y;) es uno de los puntos medidos, e ¥, es el valor calculado con (38), los errores

probables en a¢ y m vienen dados por7°:

2 \1/2

Ad=q (ED:C‘ ) (45)
£ n \1/2
Am = r, (T] (46)
con
SN2
r, = 0.6745 (_EM)_]
n—2

D=5z 2 == (S 2

Am

Los resultados obtenidos para m, Am y x 102 se muestran en la Tabla XIX.

m

El error probable de cada ajuste en tanto por ciento del valor de la pendiente m se
ha representado en la Fig. 21 tomando en abcisas los valores correspondientes de g/k.
De la figura se desprende que todos los ajustes realizados son igualmente huenos den-
tro del error experimental cometido y, como consecuencia, que la relacién (39) repre-
senta una familia de rectas, es decir se cumple independientemente de la interacci6n es-
cogida para describir el gas, y de las temperaturas de la instalacién.

Am .2
— %10
Lk
Fo) 0 o) 5 [e) o 2
[¢) [e) A2/
2k
E/k(°K)
1 1
0 40 80
F1c. 21. — Variacién del error relativo de 2 con

el porametro de interaccién, para Neon

Este resultado nuevo y en cierto sentido sorprendente es dificil de justificar teéri-
camente dada la complejidad que presenta la formulacién del fenémeno, por ello parece
conveniente asegurarse experimentalmente de su validez con nuevas comprobaciones.

: Los datos que registra la bibliografia no son todos apropiados para una comproba-
cién de este tipo. Los de Moran y Watsons son resultados de experiencias realizadas
' con distintos gases en las mismas condiciones de temperatura, como ocurre con los
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resultados de Reinhold2¢ para los gases nobles. Unos resultados en principio apropiados
son los de Grove et al.53 que abarcan una variada gama de temperatura aunque desa-
fortunadamente, la mezcla empleada para las experiencias (He-H,) estd demasiado lejos
de las condicones que la teorfa FIOQ supone para describir el gas: mezclas isotdpicas
monoatémicas capaces de ser descritas por potenciales convencionales y en las cuales
las correcciones cudnticas no sean importantes. Por ello hemos preferido utilizar los
datos de Savirén y Gonzdlez Alvarez7¢ obtenidos en una columna del tipo de hilo ca-
liente para la mezela isotépica multicomponente de Kripton.

TABLA XX

FACTOR MAXIMO DE SEPARACION PARA EL KrIpTON. LOS DATOS
EXPERIMENTALES SON LOS DE LA REFERENCIA (74).

I,(°K) T, (°K) In Q%3 In Q%%
292 600 28.08 4.737
292 700 41.82 55.963
292 800 51.34 70.400
202 1020 70.53 100.775

* Calculado con el mod. L-J (12-6), ¢/k = 172

Los resultados citados se muestran en la Tabla XX, en ella puede verse que las
condiciones del experimento son parficularmente apropiadas para un test méds severo de
la validez de la relaci6n entre los factores de separacién méxima teéricos y experimen-
tales. Por un lado la relacién de radios es 24.5 frente a 2.28 que tiene nuestra instala-
ci6n, por otro los defectos de construccién seiialados anteriormente son més patentes
en una columna de hilo caliente que en una de tubos concéntricos y por ultimo se em-
plea un gas de interaccién muy diferente al Neon (g/k = 172 °K para el Kripton frente
a g/k = 35.7 °K para Neon).

€/k=220°K
80 Exp.
In Qng, €/k=130°K
o )
o
o () o
o
In Qrg,
1 1 1
0 40 80 120
Fic. 22. — Estudio de la influencia de z/k en la relacién In QTh. —
X,

In Qe;t&-x para los datos de Kripton de Gonzidlez Alvarez
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El tratamiento de los datos experimentales de la Tabla XX se realiza como se ha
descrito anteriormente para las medidas de Neon.

Se escoge primeramente un intervalo de valores del pardmetro ¢/k, que en nuestro
caso va de 130°K a 220°K. Con cada uno de ellos se calculan los valores de QTh. corres-
pondientes a cada pareja de temperaturas T, — T, resefiadas en la Tabla XX, y final-

mente se ajusta por minimos caudrados el valor de m.

En la Fig. 22 se muestran los valores obtenidos para los valores extremos del infer-
valo de g/k elegido.

En la Tabla XXI se muestran los resultados obtenidos para la pendiente m de cada
una de las rectas, el error probable Am de cada uno de loz ajustes y el error relativo
en fantos por ciento, finalmente en la Fig. 23 se representan los errores probables, en
tantos por ciento del valor de la pendiente para cada uno de los ajustes.

TABLA XXI

AT
VALORES DE m, Am ———+102 PARA LOS DATOS EXPERIMENTALES
m
DE KRIPTON, REFERENCIA (74)

o/ K(°K) m Am Am 102
(i s AR m
130 579 .013 2.2
140 .607 .012 2.0
150 637 011 1.8
160 671 012 7
170 .708 .013 1.8
172 716 .013 1.8
180 .748 .015 2.0
190 792 017 2.2
200 .839 .021 2.5
210 .891 .025 2.8
220 947 .031 3.3
2 A_r_”x|02
m
3..
o o O
[5) ) GRS
Ir E/k (°K)
120 ) 150 180 200
Frc. 23. — Variacién del error relativo de mz con el parametro

de interaccién para Kripton, en cclumna de hilo caliente, ref. (74)

Nuevamente se confirma que dentro de un amplio margen de valores del pardmetro
de interaccién la relacién eutre In QTR y In Q%P es lineal independientemente del

max.

valor de e/k escogido para el célculo de QT: . Este resultado obtenido para dos casos

limites de operacién, como son, el empleo de un gas ligero, Neon, en una instalacién
de relaci6én de radios préximo a uno, como la empleada por nosotros, o el uso de un

T [
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gas de alta masa molecular, Kripton, en una columna de alta relacién de radios, pare-
cen confirmar suficientemente que, al menos dentro de los mdrgenes de error experi-
mental, los valores de la separacién para un gas en una instalacién de termodifusion,
pueden ser calculados de la teoria mediante el conocimiento previo del comportamiento
experimental de la misma, en condiciones de temperatura cualesquiera.

El alcance de esta conclusién en lo que respecta a la tan discutida validez de la
teorfa, para ser utilizada en el proyecto de instalaciones de termodifusién serd anali-
zado en las conclusiones generales, juntamente con el resto de los resultados de este

trabajo.
TABLA XXII

it T
VALORES DE m, Am Y —— x 102 PARA LOS GASES UTILILIZADOS EN ESTE TRABAJO
m
Gas s/l (°K) m Am Am/m x 102
Neon: s b 35.7 0.166 0.006 3.3
ATZON e 125 0.169 0.009 5.5
Kripton ... ... 172 0.167 0.006 3,5
Xenons: errs iz 229 0.160 0.004 2.7

El mismo resultado que el que acabamos de exponer, ha sido obtenido para el resto
de los gases que se han ufilizado en nuestras experiencias, Argon, Kripton y Xenon.
En la Tabla XXII se muestran los valores de m asi como los correspondientes errores
para cada uno de los ajustes. Puede observarse que los rangos de validez de los ajus-
tes para cada gas son anélogs a los encontrados para el Neon,

2. Estudio de Ia presién 6ptima de separacién

En este apartado estudiaremos las correlaciones existentes entre los resultados pre-
vistos por la teorfa para las presiones que dan la mdxima separacién en la instalacién
y los correspondientes resultados experimentales.

Es sabido que la expresién que da la presién 6Gptima es

i 106 T13 1 1 k. T.T 42
B o o

1

en donde la funcién ¥ depende de las temperaturas de las paredes fria y caliente y del
parémetro de interaccién escogido para describir el gas.

En la expresién (42) interviene el didmetro de colisi6n g, que aparece en el potencial
molecular, lo cual indica que esta funci6n serd més sensible a las propiedades de trans-
porte de primer orden del gas, que el factor de separaci6n.

La determinacién de la presi6n a la que corresponde la méxima eficiencia termodi-
nédmica en una operacién estd relacionada directamente con el valor de p,  y es por lo
tanto un factor importante en el disefio de una instalacién. Es cierto y se desprenderd
de los resultados que iremos exponiendo, que el cdlculo teérico de tal magnitud conduce
a resultados mucho mayores que los obtenidos experimentalmente para una instalaci6n
convencional de construccién no muy cuidadosa.

Este hecho ha sido constantemente resefiado en la bibliografia.

Por otra parte las predicciones cualitativas de la teorfa, como la dependencia del fac-
tor de separacién con la presi6n, y la variaci6n de la presién 6ptima con la temperatura
del hilo caliente, estudiada por Gonzélez Alvarez’™, se cumplen con gran precisién. Po-
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dria resumirse la cuestién a este respecto indicando que atdn cuando las predicciones
cualitativas son buenas, la validez cuantitativa de la teoria es hoy dia précticamente
nula. Piénsese que en una instalacién convencional, como la descrita en la referencia (74),
un error del 30 9 en la presi6n 6ptima puede conducir, para gases pesados como Kr y
Xe, a la aparicién del régimen turbulento en el proceso de conveccién libre que tiene
lugar en la columna, con la consiguiente pérdida de utilidad de toda la formulacién.

En este apartados se pretenden deducir del estudio de la correlacién entre la presién
6ptima medida y la calculada teéricamente, consecuencias que permitan resolver el es-
tado actual de desacuerdo enftre la teorfa y la experiencia.

Seguiremos para el fratamienfo de los datos experimentales de presi6n 6ptima un
procedimento andlogo al del apartado anterior.

Los resultados de Neon a las temperaturas de calefaccién correspondientes al orto-

diclorobenceno y quinoleina que figuran en las Tablas T a XVI serdn empleados para
estudiar la relacién.

pExvc =ip) pIn (47)

Interesa saber hasta dénde p puede ser considerada como una constante geométrica
independiente, para cada gag, de las temperaturas de las paredes fria y caliente,

Un resumen de los resultados obtenidos para Neon se muestran en la Tabla XXIII
donde figuran junto a las temperaturas de la operacién los valores medidos y los cal-

culados, para la presién Optima, mediante el valor correcto de la interacci6n para este
gas
gas.

TABLA XXIII

VALORES DE LA PRESION OPTIMA, EXPERIMENTALES Y
TEORICOS PARA NEON

T (°K) T (°K) pEs (mmHyg) pEs (mmHg)*
290 452 547.1 2775.6
298 511 600.0 2859.7
304 452 582.3 3052.5
308 511 523.4 3028.4
323 452 672.5 3491.2

* (Calculado con c/k = 35.7, g = 2.786

Con objeto de comprobar si la relacion (47) sigue siendo lineal aun en el caso en
que el valor de ¢/k empleado para calcular pTi- no sea el que propiamente describe la
interacci6n del gas, se ha seguido un proceso anélogo al empleado en el apartado 1. Uti-
lizando valores de g/l desde 20°K hasta 100°K, y el mismo valor de ¢ para todos ellos,
se han calculado con (42) los valores de pTi- corespondientes a todas las operaciones
realizadas. Para cada valor de ¢/k se ha muﬂtado por un procedimiento de minimos
cuadrados la recta (47), obteniéndose de cada ajuste el error probable Ayp con las ex-
presiones (45) 'y (46). En la Tabla XXIV figura un resumen de los resultados obtenidos.
En la Fig. 24 se representan los errores probables en tantos por ciento para cada uno
de los ajustes.

Parece en principio que es posible obtener relaciones lineales entre los valores teé-
ricos y experimentales a la presién éptima, aun empleando para el célculo teérico valo-
res de los pardmetros de interaccién muy alejados del que correctamente corresponde
al gas.
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TABLA XXIV

VARIACION DE 75 CON g/l PARA EL NEON

e/ k(°K) P Ap é_p_xlo2
P
20 .1816 .0055 3.0
30 1934 .0056 3.0
31 1944 .0059 3.0
32 1953 .0059 3.0
33 1962 .0059 3.0
34 1971 .0060 3.0
35 .1980 .0060 3.0
35.4 .1984 .0060 3.0
36.7 .1986 0060 3.0
36 .1989 .0060 3.0
37 1997 .0060 3.0
38 .2006 .0060 3.0
39 .2014 .0061 3.0
40 .2022 .0061 3.0
50 .2099 .0063 3.0
60 2167 .0064 3.0
70 .2230 .0065 2.9
80 .2289 .0067 2.9
100 2402 .0069 2.9
-—A=Ex102
il P

2
&k k)
1 1
0 40 80
F1G. 24. — Variacién del error relativo de p con el paramerto

de interaccién, para Neon

Expondremos a continuacién los resultados obtenidos con las medidas de Kripton, en
una columna del tipo de hilo caliente realizadas por Gonzélez Alvarez. En la Tabla XXV
se resumen los correspondientes datos experimentales. Figuran en ella asimismo los
valores feéricos calculados con los pardmetros de interaccién del Kripton. En la Fig. 25
se representan los valores de pc firente a los de pfh- .

Empleando los valores de ¢/k que figuran en la Tabla XXIV se han realizado tam-
bién sucesivos ajustes por minimos cuadrados de la expresién (47). Los resultadog para
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TABLA XXV

VALORES DE p_. EXPERIMENTALES® Y TEORICOS'® PARA KRIPTON

T (°K) Ti(2K) pES (mmdlg) pis (mmHg)*
i 292 600 325.1 342.9
iy 292 700 314 .4 345.1
i 292 800 321.8 355.0
| 292 900 331.2 369.4
it 292 1020 349.2 390.5

‘g % Los valores experimentales son los de 74)
I “# Calculados con g/k = 172°K, 5 = 3.591

; el error probable se hallan representados en la Fig. 26 en tantos por ciento del valor
5 de 7. Para todos los cdlculos se ha empleado el mismo valor de ¢ que figura en la Ta-
i bla XXV. Un resumen de los resultados se da en la Tabla XXVI.

itl Si se utilizase en €l cdlculo otro valor cualquiera del pardmetro de colisién ¢ los resul-
it tados para 5 y Ap serian afectados tnicamente por un factor de escala y se obtendrian
los mizmos resultados para las dispersiones en tantos por ciento.

El hecho de que exista una relacién lineal entre los valores experimentales y los ted-
’ ricos, calculados con cualquier interaccién, parece pues suficientemente probado. La linea-
i lidad se mantiene variando entre limites muy amplios de temperatura la operacién de la
%»:; instalacién, el gas que la ocupa e incluso, y lo que parece mds significativo, el tipo de
i instalacién, pasando desde una instalacién de tubos concéntricos hasta el otro caso extre-
il mo, la columna de hilo caliente. Las consecuencias que se derivan de este hecho, algunas
¥ nuevas e importantes como para el caso del factor de separacién, serdn pospuestas a las
conclusiones generales. También se ha omitido en este estudio preliminar la consideracién
de los errores experimentales que afectan a los diversos pardmetros utilizados en el célculo
de los valores teéricos, cuestion que serd tratada mds adelante.

TABLA XXVI

VARIAGION DE g5 CON g/k PARA LOS DATOS DE KRIPTON DE GONZALEZ ALVAREZ

&/ k(°K) 7 AD AD/p %102

130 .943 .011 1.3

140 .860 012 1.4

150 .876 .013 1.5

160 .891 .014 1.6

170 .907 .015 1.7
A 172 .910 .016 17
i 180 .922 .017 1.8
! 190 .938 .018 1.9
200 .953 .019 2.0

210 .968 .021 2.1

220 .983 .022 2.2
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Concluiremos este apartado, mostrando en la Tabla XXVII el conjunto de los resultados
obtenidos por nosotros para las operaciones realizadas con Neon, Argon, Kripton y Xenon.
Puede verse en ella que las conclusiones obtenidas para Neon pueden extenderse al resto
de los gases. Los pardmetros de interacci6n utilizados son los reseiiados. Se indican tam-
bién los resultados para el Neon con objeto de facilitar la comparacién. Indicaremos por
ultimo que los errores probables de todos los ajustes son del mismo orden de magnitud.

3751
E
Pop” (mm Hg)
350
325(
PJ: (mm. Hg)
1 1 g
350 400
F1c. 25. — Relacién entre los valores experimental y teérico de
la presién O6ptima para Kripton en columna de hilo caliente,
ref. (74).
i | &R0
P

E/k (°K)
e T

0 140 ' 180 ; 220

F1G. 26. — Variacién del error relativo de 7 con el parametro
de interaccién para Kripton, en columna de hilo caliente, ref. (74)
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TABLA XXVII

RESULTADOS EXPERIMENTALES Y TEORICOS PARA LA PRESION GPTIMA Y VALORES DE P, Ap ¥
Ap/p x10%, PARA LOS GASES UTILIZADOS

Gas T, (°K) T,(°K) pTu(mndg) pe-(mmig) D Ap _AI—TP x 102

Neon 290 452 2775.6 547.1
s/k = 35.7 208 511 2869.7 600.0
o = 2.786 304 452 3062.5 582.3
308 511 3028.3 623.4
323 452 3491.2 672.5

.199 .006 3.0
Argon 290 452 1026.9 210.8
e/ = 125 304 452 1131.8 225.6
o = 3.405 308 511 1132.4 242.1
323 452 1298.1 255.6

.203 .006 2.8
Kripton 290 452 579.5 113.8
e/k = 172 304 452 639.4 120.4
o = 3.601 308 511 643.1 131.6
323 452 734.5 138.4

.199 .006 3.0
Xenon 290 452 331.9 67.1
s/k = 229 304 452 366.6 72.5
¢ = 4.020 323 452 421.8 81.3

197 .004 1.8

3. Influencia de los pardmetros de interaccion en la constante de presion éptima.
Medida del parameiro o

Trataremos de extender en este apartado las conclusiones del anterior, estudiando
en conjunto las operaciones realizadas con los gases Neon, Argon, Kripton y Xenon.

En la Tabla XXVII se resumen los datos correspondientes a la presién O6ptima, asi
como los valores teéricos de la misma.

Para el cdlculo de los valores fteéricos de pfi- se ha utilizado un modelo de interac-
cién molecular convencional, el Lennard-Jones (12-6), y un conjunto de pardmetros
s/k ¥ o, a los que nos referiamos anteriormente como los correctos para deseribir el
gas. Dichos pardmetros son los que figuran en la Tabla XXVII. Aun cuando en el ca-
pitulo siguiente se dan con la debida extensién las razomes por las cuales este conjunto
de pardmetros se ha preferido ha otro, indicaremos aqui que la eleccién ha sido hecha
atendiendo a los siguientes aspectos:

a) Capacidad de interpretar el mayor niumero posible de propiedades de equilibrio.
Las propiedades termodindmicas tomadas en consideracién han sido el segundo coeficien-
te del virial y las propiedades cristalinas.

b) Capacidad de interpretar, simultdéneamente, las propiedades de transporte, vis-
cosidad, difusién ordinaria y conductividad térmica, con exclusién deliberada de la di-
fusi6n térmica.

¢) El conjunto de parémefros escogido debe ser consistente en lo que respecta a
la interpretacién conjunta de todos los gases.
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Una vez escogida la interaccién, puede ser determinada la funcién W dada por (43).
Dicha funci6n puede considerarse como una propiedad de transporte “mezcla”, puesto
que en su determinacién intervienen propiedades microscépicas de transporte, junto con
propiedades hidrodindmicas macroseépicas, como son la velocidad y propiedades termo-
dinmicas locales, que caracterizan el fenémeno de conveceién libre que tiene lugar
en la instalacién.

La interpretacién de los resultados del apartado anterior puede orientarse por dos
caminos que exponemos a continuacién.

El primero consiste en comprobar si la relacién lineal, existente para cada gas, en-
tre las presiones Gptimas medidas y las calculadas, puede extenderse al conjunto de
todos ellos.

Esta comprobacién, de confirmarse, permitirfa concluir que, con los pardmetros ade-
cuados para cada gas, la constante 7 es independiente de las temperaturas de la instala-
cién y de la naturaleza del gas que la ocupa. Es decir p serd una constante geométri-
ca caracteristica de la instalacién.

La segunda posibilidad, consecuencia de la anterior, es que, una vez elegido ¢/, es
decir para un valor dado de la funeién W, el conocimiento de la constante geométrica
P permitiria, en principio, la medida del didmetro de interaccién molecular o, mediante
a relacién (42). Para ello es mnecesario estudiar en primer lugar la validez de la cons-
tancia de p para cualquier gas.

Los resultados experimentales y teéricos de la Tabla XXVII se hallan representados
conjuntamente en la Fig. 27. Los trazos horizontales sobre cada punto representan el
limite superior estimado de los errores que pueden ser cometidos en el célculo teérico de
la presién 6ptima debido a imprecisiones en la medida de T, y 7,. Como se indic6 en la
descripcién de la instalacién, resulta dificil hacer medidas precisas del valor real de las
temperaturas de las paredes en contacto directo con el gas.

|

| p22 (mm. bg)

v g

,x/f’{/‘ pi (mm. Hg )

0 050 7000 3060 7
Fic. 27. — Relacién entre los valores experimentales y teéricos de la presién éptima para los

gases utilizados

Fl gradiente de temperatura entre ambos lados de la pared de vidrio puede estimarse
del flujo de calor por conducci6n entre los cilindros. Por otra parte las temperaturas
de trabajo de las paredes de vidrio deben corregirse para tener en cuenta el efecto del
calor disipado por radiacién. La utilizacién de las expresiones apropiadas para el célculo
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del calor radiado entre dos cilindros coaxiales (supuesto un factor de emisién unidad)
conduce a una estimacién del error mdximo cometido en la determinacién de las tempe-
raturas de 1,5 9% y 2 9% para las series de ortodiclorobenceno y quinoleina respectiva-
mente. En ambos casos se ha incluido el efecto del gradientede temperaturas en las pa-
redes de vidrio.

En la Fig. 27 puede observarse que los puntos experimentales que quedan sistemd-
ticamente altos sobre la recta son los correspondientes a las operaciones realizadas a
511°K. Podria interpretarse esta desviacion concluyendo que, las operaciones con dis-
tintas temperaturas de la pared caliente deben satisfacer relaciones lineales del tipo
(47) con distintos valores de g. kisto evidentemente no parece ser asi, puesto que dentro
del amplio margen de temperaturas 1, que tienen las medidas de la referencia (74),
los resultados pueden ser interpretados como una relacién final unica, véase Fig. 25.

Parece pues més l6gico achacar a la imprecision en la estimacién de las tempera-
turas, la desviacién de los puntos correspondientes.

Un ajuste por minimos cuadrados realizados para el conjunto de las operaciones, da
para el valor de la pendiente p.

p = 0.198 + 0.002

que indica que dentro del 1 9 la constante p intepreta todos los resultados experimen-
tales.

Los datos correspondientes a las series de ortodiclorobenceno se han ajustado inde-
pendientemente de los de quinoleina, obteniéndose

p = 0.194 = 0.001

La disminucién que se observa en el error probable parece indicar que, la imposibi-
lidad de acotar los errores en la presién OGptima para las operaciones con quinoleina,
debe ser la causa de la mayor dispersién antes encontrada.

La conclusién anterior, puede ser la base de un nuevo método de medida del pari-
metro de colisién ¢ que interviene en la funci6n potencial utilizada. Si se conocen con
precisién los valores del pardmefro s para uno o varios gases, basta realizar el sufi-
ciente numero de medidas de presién 6ptima, en una instalacién adecuada, para de-
terminar la relacién teoria-experimento de la Fig. 27. La constante 4 permitird obtener
el valor de ¢ para el gas problema, la precision con que serd obtenido dependerd de
la que se haya obfenido en la deferminacién de g. Por otra parte los valores de ¢ in-
fluyen en el valor de p%% obienido de (42), como un factor ¢—2 que no afecta a la for-
ma lineal de la correlacién ni a la precisién de los ajustes.

No es el objeto especifico de esfe trabajo el completar y poner a punto el método de
medida de ¢ que acabamos de exponer, seria necesario para ello mds estudio experimen-
tal planeado en condiciones de control adecuadas.

4. Dependencia de la constante de separacion maxima de la interaccién

En este apartado se estudiardn las dependencias entre los factores de separacién cal-
culados y los medidos para todos los gases en estudio, siguiendo un proceso anilogo al
del apartado 3.

En la Tabla XXVIII se muestran resumidos los resultados tedricos y experimentales
para las operaciones con todos los gases. Figuran también los resultados de los ajustes
de la ecuaci6n (39). Para el célculo teérico se ha empleado un potencial Lennard-Jones
(12-6) con el conjunto de pardmetros que figuran en la tabla. En la Fig. 28 se muestran
los valores teéricos y calculados para la separacién mdixima, relacionados en la forma

In Q°% =m In QU (39)

— 161 —




TABLA XXVIII

REVISTA DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

RESULTADOS EXPERIMENTALES Y TEORICOS PARA EL FACTOR DE SEPARACION,
MAXIMO, PARA LOS GASES UTILIZADOS

Gas T,(°K) T,(°K) In QEs In Q.
Neon 290 452 6.98 + 0.09 44.643
e/k = 35.7 298 511 8.71 + 0.09 54.943
304 452 6.60 + 0.1 39.925
308 511 8.2 + 0.2 51.643
323 452 5.43 + 0.09 33.882
Argon 290 452 5.06 + 0.02 29.976
g/k = 125 304 452 4.46 + 0,12 97.242
308 511 5.82 + 0.07 36.570
323 452 4.77 + 0.05 23.551
Kripton 290 452 3.61 + 0.04 21.6563
s/k = 172 304 452 3.25 + 0.06 19.916
308 511 4.35 £ 0.04 27.641
323 452 2.82 + 0.05 17.468
Xenon 290 452 2.05 + 0.10 13.235
glk = 229 304 452 1.95 + 0.10 12.444
323 452 1.69 £+ 0.03 11.209
n T2
Neon o
e Zrgon A
Xripton a
Zenon O
i
2+
In 'd,','.:',
i % % % % :
28. — Relacién entre los valores experimentales y tedricos del factor maximo de separacién

F1a.

para los gases utilizados
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Los trazos verlicales sobre cada punto corresponden a los errores experimentales
que figuran en las Tablas I a XVI, y los horizontales a los errores introducidos en el
calculo del factor de separacién mdéximo por la imprecisién en la asignacién de las tem-
peraturas I’ y 7,, como se indic6 en el apartado anterior.

El ajuste por minimos cuadrados de la expresién (39) conduce al resultado

m = 0.160 + 0.001

es decir que dentro de un 0,78 9 m es, para nuestras medidas experimentales, una
constante geomélrica independiente de las temperaturas y de la naturaleza del gas que
ocupa la instalacién.
Algunas de las consecuencias que se desprenden de este resultado son las siguientes.
En el aspecto de construcci6n de las instalaciones se comprueba el hecho, ya rese-
flado en la introduccién, de que la pobre construccién de la misma es causa inmediata

de la disminucién de su rendimiento de operacién2. Del valor de la constante m se de-
duce que nuestra instalacién es de bajo rendimento, un orden menos que el previsto
por la teoria. Este hecho concuerda con los resultados de Clusius y Quintanilla® que
en una columna de dimensiones idénticas obtienen para Neon un resultado un 50 9 més
alto.

Ya se ha dicho en la introduccién lo dificil que resulta incluir en la teoria las di-
versas desviaciones del comportamiento ideal de una instalacién. El descentramiento y
la falta de verticalidad de las paredes cilindricas, son una de las causas principales!s,
que en nuestro caso pueden haber sido causados por una deformacién permanente an-

TABLA XXIX

INFLUENCIA DE LOS ERRORES EN LA ESTIMACION DE LAS TEMPERATURAS

DE LAS PAREDES FRiA Y CALIENTE, EN EL VALOR DE LA CONSTANTE ;71:

Gas T,+AT, T,+AT, m A Amjm x 102

Neon 294 448
308 500
308 448
318 500
327 448

174 .004 2.0
Argon 294 448
308 448
318 500
327 448

175 .002 1.3
Kripton 294 448
308 448
318 500
327 448

73 .002 1.0
Xenon 294 448
308 448

448
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Fic. 29. — Influencia de la estimacién de las temperaturas en el valor de m. La recta de trazo
continuo corresponde a las temperaturas modificadas y la de trazo discontinuo a los valores asignados

8
in T
Yeon o
3 rrgon A
Xripton o
Zenon
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2
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; .
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°
Fic. 30. — Influencia de la relacién y, en el valor de la constante m. La recta de trazo continuo

corresponde al valor de y, modificado y la de trazo discontinuo al medido
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terior a nuestras medidas. Lo sorprendente del resultado, a este respecto, es que la

constante m parece englobar geométricamente todas las correcciones que debieran ser
hechas por las causas citadas.

Algo anélogo ocurre cuando se estudia la variacién de m con las temperaturas de
lag paredes fria y caliente. En la Tabla XXIV se muestran los resultados obtenidos para

m cuando se calcula QT con las temperaturas de las paredes modificadas en las can-

tidades AT, ~1.5 9% y AT, ~ AT,. La constante m se calcula igual que antes ajustando
por mfnimos cuadrados. Puede verse en la Tabla XXIX que gases tan diferente como el

Neon y el Xenon presentan los mismos valores de m. Es decir la constante de la corre-
lacién parece englobar geométricamente los errores cometidos en la medida de las tem-
peraturas T, y T,. En la Fig. 29 se representan los valores obtenidos.

En la Tabla XXX se resefian los valores de m para Ne, Ar Kr y Xe calculados para
un valor de la relacién de radios superior en un 5 9 del valor real de la instalaci6n.

Se ha obtenido para la pendiente m la misma dispersién que la obtenida para la relacién
9, correcta. Puede concluirse que la relacién (39) obtenida es estable frente a peque-

fias variaciones del valor de y,, o lo que es lo mismo la constante m es capaz de absor-

ber variaciones pequefias de la relacién 7 /7,. Los resultados de la Tabla XXX se mues-
tran gréficamente en la Fig. 30.

TABLA XXX

INFLUENCIA DE LA RELACION DE RADIOS %, EN EL VALOR DE m

Yy, = 240 Ay, |y, - 102 ~u 5.

Gas m Am Am[mx 102
Neon .166 .002 1.2
Argon .169 .003 1.9
Kripton .168 .002 S
Xenon .166 .004 2.6

Queda tnicamente por analizar la sensibilidad de m frente al pardmetro de interaccién
escogido. En el apartado IV-1 se han calculado las pendientes de la recta: (39) en funcién

de la interaccién escogida. Por ejemplo, en la Tabla XIX figura la variacién de m para
el neon en funcién de ¢/k. La sensibilidad no es la misma para distintas zonas de varia-
cién del pardmetro de interaccién.

En la Fig. 31 se representa la funcién @ frente al valor de e¢/k. Dicha funcién defi-
nida en (38) es proporcional a In QTt-  y puede considerarse en cierto modo como una
propiedad de transporte “mezcla”, puesto que es el producto de la constante o de difusi6n
térmica por una combinaci6n de factores de forma en cuyo célculo interviene v, 1 y D.
La variacién con g/k de la funcién @ depende del rango de variacién de e/k en forma

andloga a a,, y ésta es la propiedad de transporte mds sensible al pardmetro de inter-
aceién.
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Teniendo en cuenta que tanto «, como &
son funciones tinicamente de g/k y no de g,
a diferencia del resto de las propiedades de
transporte, puede concluirse que la magni-
a (e/k) tud ¢ es preferible ,en principio, para de-
terminar pardmetros de interaccién a las
n, » ¥y D, exactamente por las mismas ra-
zones que lo es o . En el apartado siguien-
te se discutirdn en detalle las razones con-
cretas de esta mayor gensibilidad.

Finalmente expondremos brevemente al-
guna de las consecuencias que se deéducen

50

e(e/k)

30

10 : — — :
de la constancia de m y p respecto a la in-

terpretaciéon de los resultados cualitativos

que la bibliografia sefiala como buenos para
la teoria fenomenolégica de las columnas.

FiaTal A Ut tase A e La \rariacién dfa} factor de sep.araci(.')u con

tTol de lanteraccion la presi6n, ecuaci6n (18), ha sido siempre

Fic. 32 una de las excelentes predicciones cualitati-

vas de la feorfa. Para un gas y una pareja

de temperaturas determinada, la expresién tedrica también fiene la misma forma, pero

es sabido que los valores de a’ y b’ calculadog y los de a y b medidos, difieren a veces

en mis de un orden de magnitud. Puesto que a y b estdn relacionados con In (Q&®. y

Pop. POr (18) y lo mismo ocurre con ¢’ y b’ mediante las correspondientes expresiones
teéricas, la solucién del sistema de ecunaciones permitird expresar a y b en la forma

€/k(°K)
| L] | | {0
10 20 50 200

a==Fk «a b=l bt

en que la relacién entre los valores i y k, y los de m y p es obvia.

Respecto de la operacién experimental, este hecho significa que la medida de un
gas en una instalacién para unas determinadas condiciones de temperatura, permite
predecir inmediatamente la forma completa de la funcién que relaciona el factor de se-
paraci6n y la presi6n, para cualquier ofro gas y cualquier otro par de temperaturas,
dentro probablemente de unos pocos por ciento.

Las conclusiones que hasta la fecha registra la bibliografia, son bastante més pesi-
mistas. Saxena y Raman, en una revisién del trabajo experimental en columnas de di-
fusién térmica32, sefialan mérgenes de hasta el 70 9, y las experiencias de Von Ha-
LLE’® con XEnonx presentan diferencias de hasta un 30 9,. La conclusién anterior es
particularmente interesante en el estudio del enriquecimiento de is6topos de muy baja
abundancia natural. En estos casos el diseio debe ser muy cuidadoso puesto que una
instalacién no apropiada disminuye drésticamente el rendimiento, por otra parte cuan-
do la abundancia natural es muy baja resulta dificil hacer las medidas necesarias para
la correccién de la operacién.

5. Parametros de interaccion de los gases nobles

La determinacién del potencial de interaceién molecular correspondiente a los ga-
ses estudiados en este trabajo, es un problema que ha recibido y recibe gran atencién
por parte de los investigadores en este campo.

Las particularidades especiales de los gases nobles, que los distinguen del resto de
las especies gaseosas, como son poseer capas electrénicas completas, ser moléculas mo-
naotémicag con simetria esférica, tener estructuras cristalinas simples, ete., los hacen
tinicos para un estudio detallado de sus campos moleculares de interacci6n.
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No haremos en este apartado un estudio detallado de la situacién en que se en-
cuentra la cuestién referente a la interaccién molecular de los gases nobles. Daremos
tnicamente una referencia general de aquellos aspectos relacionados con la difusién tér-
mica. Indicaremos también los métodos que generalmente se utilizan para la determi-
nacién de los mejores pardmetros de interacci6n, correspondientes a una funcién po-
tencial dada, cuando se trata de juzgar la capacidad relativa de cada una de esas fun-
ciones, para la interpretacién de datos experimentales de propiedades termodindmicas
y de transporte. Finalmente se realizard una comparacién detallada de los resultados
que da la bibliografia para los pardmetros de interaccién deducidos de difusién térmica
con los resultados de este trabajo.

En lo que sigue serén utilizados los potenciales de pares de Lennard-Jones (12-6) y
Buckingham Exp.-6. El resto de las funciones potenciales que se emplean en la préc-
tica o tienen expresiones analiticas m&s sencillas, y por lo tanto mds cémodas para la
prospeccién primaria de alguna propiedad del gas, o son potenciales empiricos cons-
truidos sobre bases puramente experimentales, o bien no tienen expresién analitica
como los recientemente introducidos por
Smith y Munn? y Gugengheim y Me
Glashan8, Por otra parte, los potencia-

T i les Lennard-Jones (12-6) y Buckingham
15 - Exp.-6 son capaces en principio de des-
7 oy cribir con bastante seguridad el conjun-
o r r to de propiedades de un gas dentro de

(] \f' un rango de temperatura suficientemen-

[ te amplio. Las expresiones analfticas

| “ de estos potenciales vienen dados por la
expresién (48) para el Lennard-Jones

12-6 r (49 ara el Buckingham
Lennard-Jones Buckingham %xp'_)&.‘ 49) p g

Fio. 2 v ) :48[(_:)12—( - )6](48)
ol ]

En la Fig. 32 se muestra gréaficamente el significado de los pardmetros « y e. El pa-
rdmetro » que figura en (49) estd relacionado con g por

m

7,'m = PRI o

La determinacién de pardmefro de interaccién a partir de datos experimentales re-
quiere el conocimiento de alguna propiedad termodindmica o de transporte en un ran-
go amplio de temperaturas. Esta determinacién plantea algunos problemas. El primero
se refiere a la forma de obtener los pardmetros para cada funcién potencial. Si se em-
plean propiedades de transporte de primer orden, como el coeficiente de viscosidad ),
el de conductividad térmica, A o el de difusi6n ordinaria D, por estar todos ellos rela-
cionados por expresiones microscépicas préacticamente independientes del modelo mole-
cular escogido’?, los pardmetros determinados con una de las tres propiedades explican
inmediatamente las ofras dos.

Cuando se emplea el coeficiente de viscosidad, como es la préctica usual, resulla que
la pareja de pardmetros que hace minimas las diferencias enfre los valores calculados y
los medios no eg, en muchos casos, tunica. Distintos conjuntos de pardmetros dan acuer-
dos igualmente buenos dentro del error experimental®?, $1 y lo mismo puede decirse
del empleo de medidas del segundo coeficiente del virial. A estos hechos nos referimos en
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lo que sigue diciendo que las propiedades citadas son sensibles a los pardmetros de in-
teraccion.

El otro problema aparece cuando se trata de discernir, utilizando resultados experi-
mentales, cudl de las funciones potenciales describe mejor el gas. Si se ufilizan simul-
tdneamente dos propiedades, por ejemplo el segundo coeficiente del viral B(T) y la
viscosidad v resulta que la expresién

1]‘1 - BB

s6lo depende de la temperatura reducida T* y no del pardmetro ¢*? 2.
Para tratar de comparar diversag fun-

30— T STl I Tt ciones potenciales sobre una misma es-
9-6 cala fisica, emplearemos magnitudes re-
s 251 56| ducidas, T y V con los parédmetros de
‘= 5 Boyle T, y V,, en vez de seguir la préc-
E 20 i tica usual de reducir lag magnitudes
Pa con g/k y o. En este caso la expresién
>
& 15+ : 3] ;
i) n V. 2/2/(mkT) /2
10 9-6_~12-6 2
es funcién solamente de la temperatura
: — L L1 reducida T/T_ 2. En la Fig. 33 se mues-
B :
2 s 8 T1/T 2 ATLL L tran los resultados para diversos poten-
B ciales. Del examen de la misma se de-
Fic. 33. — Representaciéon grafica de la fun- duce que las medidas experimentales

cién nVB2/3/(mk T)-1/2 para diversos poten- N8Il de ser muy precisas y en amplios
ciales moleculares rangos de temperatura, para que sean ca-
paces de juzgar qué funcién potencial
debe ser preferida a otra. En este senti-
do el par B(T) —n (T) no parece ser muy satisfactorio.

Una representacién de los valores de o, en funcién de T/T, se muestra en la figu-
ra 34; es evidente que los problemas antes expuestos no aparecen. En primer lugar, o,
depende s6lo de T/T, es decir del pard-
metro ¢/k y esta propiedad debe bastar 4,
por si sola para determinarlo. Por ofra '
parte la capacidad de distinguir entre 8
unos y otros modelos es mayor para la
funcién o, que para la pareja B —. 6
Por estas razones parece conveniente con-
centrar el trabajo de determinacién de pa- 2
rdmetros ¢ sobre las medidas de difusién )
térmica. Mason?8, 84 Xaxena85, Smith?7 !
y otros autores sustentan esta opinién. 0
Saxena y Joshi®¢, en una reciente puesta
a punto del trabajo en la medida de cons- =2
{?ntes de d}{fusién térmica, seﬁalian fasta .01 05 3 5 { 5 1‘0
area Como . de urgente necesidad”. /1
: _Ya se indicaron en la introduccién las B ;
dificultades que presentaba la medida di- Fic. 34. — Representacién grafica de la fun-
recta de la constante de difusién térmica. cién o, para diversos potenciales moleculares
En las Figs. 35, 36, 37 y 38 se muestran
graficamente los resultados experimentales para o, registrados hasta la fecha por la
bibliograffa. Se aprecian grandes diferencias entre los resultados de los distintos auto-
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@ —— Fischer, ref. (62)
301 %
% —— Nier, ref. (60)
et o e
o _~%o 2 B a ®—— Man, ref. (73)
% 0 u. + +
29l /// ! ;* ®— Saxena, ref. (79)
5 '.ue'LG [[] — Grew, ref. (61)
5 9 . —— Watson, ref. (90)
14 1 1 ' =
100 300 e 500 700 + —— Moréan, ref. (55)
s----—— LT (12-6)
F1G. 35

res. Las lineas de trazo representan los valores teéricos calculados con un potencial
Lennard-Jones (12-6), usando el esquema de célculo de Chapman y Cowling, con los
resultados de Saxena y Mason, y utilizando como pardmetros de interaccién los que se
resefian en la Tabla XXXII.

Neon — Los resultados de Moran y Watson®5 y los de Saxena et al.”® han sido cri-
ticados posteriormente por Saxena y Joshi®s, Saxena y Fischerf2 como excesivamente
bajos. Los dos tltimos lo atribuyen a un defecto de construccién del “trenschaukel”.
Los datos de GrewS®! medidos con un aparato de dos bulbos son algo més bajos que
los obtenidos por Fischer empleando la técnica del “trennschaukel”. Los resultados de
Watson et al.?9 est4n medidos a bajas temperaturas y en la zona en que coinciden con
los de Moran y Watson son précticamente consistentes con ellos, como sefiala Saxena.
Todos estos datos se representan conjuntamente en la Fig. 35.

TABLA XXXII

PARAMETROS DE INTERACCIGN EMPLEADOS EN EL CALCULO TEGRICO

Gas ¢/E(°K) o(4)
Ne 35.7 2.786
Ar 125 3.405
Er 172 3.591
Xo 299 4.020

Es razonable suponer que cualquier error que pueda ser cometido, tanto en el diseiio
como en la operacién de un separador oscilante, debe influir disminuyendo la separa-
cién. Por otra parte la asignacién de temperaturas medias en un aparato de dos bulbos
presenta dificultades, debidos a que para obtener separaciones medibles los dos bulbos
deben mantenerse a temperaturas bastante diferentes. Los trabajos de Grew no contienen
el suficiente nimero de detalles referentes a este punto. En este sentido parece indica-
do dar més confianza a los valores de Fischer que al resto de las medidas, pues presen-
tan valores mds altos y el proceso de operacién ha sido muy elaborado.

La curva teérica se ha trazado con el potencial Lennard-Jones (12-6) y el pardmetro
e/l = 35.712. A la vista de los resultados de esta revisién puede deducirse que el mar-
gen de confianza que presentan unos pardmetros deducidos de las medidas de la figu-
ra 35 debe ser bajo.
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Siguiendo a Saxena hemos elegido para las comparaciones tefricas los pardmetros
de la Tabla XXXII, como los que interprelan mejor el mayor nimero de propiedades
de equilibrio y transporte para este gas. Ninguno de los pardmetros e/k que se utilicen
en las comparaciones que siguen para el potencial Lennard-Jones (12-6) serd deducido
de datos experimentales de difusi6n térmica.

Saxena compara también resultados de la bibliografia con valores calculados para el
modelo Buckingham Exp.-6. Dado que recientemente ha aparecido gran cantidad de ma-
terial experimental, los pardmetros de Mason®3 deben ser recalculados para dicho mo-
delo y por ello no se han incluido en nuestras comparaciones.

Arcon. — Los resultados experimentales para Argon representados en la Fig. 36
parecen presentar menor dispersién que los correspondientes al Neon. Las recientes me-

///0/ . .—Stier, ref. (105)
b
- —— Mann, ref. (73)
/ ‘o @
2. F // Q of O——Paul, ref. (104)
7540
/ @ .9. .—Saxena, ref. (79)
o /
=) ) 4+ —— Mor4n, ref. (55)
¥ /. a
T // o D —— Raman, ref. (100)
w/g* =2 e T (1016)
(*]
.“9
!
| 1 1
100 300 500 700
T(°K)
F1Gc. 36

didas de Paul et al.1°¢ empleando un “trennschaukel” parecen mejorar los bajos valo-
res de Moran y Watson®>. No obstante los pardmetros deducidos de sus medidas no re-
producen los datos del segundo coeficiente del virial.

Un reciente céleculo de Rossi y Danon!01 utilizando propiedades de viscosidad y virial
conduce a un valor de g/k = 124°K. Con este valor y el de ¢ que aparece en la Tabla
XXXII se interpretan también las propiedades de cristal del Argon. Rigbhy y Smith°2
han medido posteriormente la viscosidad de este gas y aunque sus datos no sean usados
para la determinacién del valor citado, confirman las medidas ya existenfes. Con este
valor se ha trazado la curva teérica correspondiente al potencial Lennard-Jones (12-6).
Parece deducirse que los valores previstos teéricamente para o, son mayores que los
medidos experimentalmente.

KripToN. — En su revigién Saxena no incluye comparaciones para este gas puesto
que las tnicas medidas disponibles entonces eran las de Corbett y Watson!®® afecta-
das de errores hasta del 200 9, y las de Moran y Watson!%® cuyos valores son dema-
siado bajos. Recientemente Panl et al.”! han dado valores de «,6 para Kripton, obtenidos
empleando un “trannschaukel”. Sus resultados son précticamente consistentes con los
de Moran y Watson y los pardmetros deducidos de ellos no interpretan satisfactoria-
mente el resto de lag propiedades, especialmente lag de virial.
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Las medidas se representan en la Fig. 37. Se muestra asimismo la curva teérica para
el modelo Lennard-Jones (12-6) correspondiente a g/k = 172°K, valor- resefiado por
Rossi y Danon!®! deducido de medidas recientes del segundo coeficiente del virial, y
aunque emplea los datos de viscosidad de Clifton®” reputados como 2 9, demasiado ba-
jos por Rigby y Smith, un nuevo célculo realizado por nosotros para el pardmetro g/k
empleando el procedimiento de Savirén et al.24, da un valor concordante dentro del error
experimental.

/
/
b / o
/
// 0©
30 / ®
4 o
| /’ (O — Paul, ref. (71)
/
/ ©0 — Mor4n, ref. (55
o i 7 5 @ oran, ref. (55)
@ 7 SR e i1y (1016)
SN
/ o
i
1.0~
/P
| | I L
200 400 800
T(°K)
Fic. 37
XENoN. — Para el trazado de la curva teérica correspondiente al modelo Lennard-

Jones (12-6) se ha empleado el valor ¢/k = 228.6°K de la referencia (12) deducido tam-
bién de medidas recientes de virial y viscosidad, que interpreta satisfactoriamente las
propiedades de cristal.

7
7/
30
/
B o
@ — Paul, ref. (104) &0
O-—-—Morén, ref. (55) N s /
o
...... LT (12-6) SR i
i R &
/
1'0 T /
e/
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/
| AR ] RO

100 200 700
T(°K)

Fic. 38
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Eu la Fig. 38 se representan los valores de Moran y Watson®5 y los de Paul, Ho-
ward y Watson1%4, Puede verse que coinciden razonablemente con los valores calculados.
El aparato empleado en las medidas es de diseiio distinto al empleado por dichos auto-
res para el Kripton y los pardmetros deducidos de estas medidas para el Xenon inter-
pretan bien el resto de las propiedades de transporte y virial.

En la comparacién anterior se pone de manifiesto el estado de confusién existente
enfre los resultados de difusién térmica que registra la bibliografifa. Salvo las medidas
de Fischer para Neon y las de Paul et al. para Xenon, el resto de los resultados para o,
son sistemdticamente més bajos que los teéricoz y no parece posible interpretar con un
tnico conjunfo de pardmetros de interaccién y el potencial Lennard-Jones (12-6) los da-
tos experimentales de equilibrio, no equilibrio -y difusién térmica simultineamente. Al-
gunos autores®s indican que tampoco la curva completa de «, frente a T puede ser in-
terpretada con un potencial Lennard-Jones (12-6), sino que es necesario un potencial de
tres pardmetros como el Buckingham Exp.-6, para poder hacerlo. A la vista de los re-
sultados anteriores no parece terminante dicha conclusién y este punto de vista es
mantenido por Saxenass y Masons®3, )

En la Fig. 39 se representa el valor de «, frente a T* para diversos valores del pa-
rdmetro o asi como la curva correspondiente al pofencial Lennard-Jones (12-6).

~10

() L 1
81D 20 L0 10 20 40 GIO

FiG. 39. — Representaciéon de la funcién ,, para di-
versos valores del parametro , y para el modelo
Lennard-Jones (12-6)

Utilizaremos en lo que sigue los resultados experimentales y las conclusiones ya
obtenidas en los apartados anteriores, en un intento de clarificar esta situacién de des-
acuerdo entre los diversos conjuntos de valores del pardmetro e/k obtenidos de medi-
das del factor de difusién térmica.
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6. Comparacién de los potenciales Lennard-Jones (12-6) y Buckingham Exp-6.

6. a) Pardmetros deducidos de difusion térmica

En la Tabla XXXIII se muestran resumidos los valores de los pardmetros de inter-
accién ¢/k y «, 7, obtenidos de medidas del factor de difusién térmica, correspon-
dientes a algunos de los resultados que se muestran en las Figs. 35 a 38.

TABLA XXXIII

PARAMETROS DE INTERACCION DE LOS GASES NOBLES, PARA EL MODELO BUCKINGHAM
Exp.-6. EN LOS CASOS EN QUE LA BIBLIOGRAFIA DA VALORES PARA 7 SE INDICA LA
PROPIEDAD DE LA QUE SE HA OBTENIDO

Gas e/k( K) o . (4) Propiedad Referencia
Neon 66.6 14.0 2.96 Viscogidad (106)
46.0 13. (90)
38.0 15. (61)
40.0 13. (55)
51.94 173 Este trabajo
Argon 148 14. 3.68 Viscogidad (106)
125 12. (85)
176 117, 3.535 Viscosidad (107)
Kripton 180 12.5
244 16.1 3.88 Vigcosidad (71)
200 13.5 4.036 Viscosidad (83)
Xenon 220 13.
257 16. 441 Viscosidad (108)

Se indica asimismo en la Tabla XXXII el valor del pardmetro »_ en los casos en
que también los registra la bibliografia, mencionando la propiedad que ha sido utilizada
para su obtencién. Se han resefiado solamente resultados para el potencial Buckingham
Exp.-6. Algunas de las medidas Stier!°s, Mann?, etc. no son suficientemente seguras®s
o el rango de temperaturas es poco extenso, para suministrar pardmetros lo suficiente-
mente seguros y en estos casos no se han recalculado.

6. b) Relacion entre los factores de separacion mdximos, teéricos y experimentales
para cada gas.

Hemos obtenido en el apartado IV-1 la conclusién de que para un solo gas, la rela-
cién entre los logaritmos de los factores de separacién calculados y medidos, es lineal
y la linealidad se mantiene cuando para el cdleulo de los valores tedricos se emplean,
con un potencial Lennard-Jones (12-6), pardmetros de interaccién muy diferentes de los
corespondientes a la interaccién del gas. En este apartado comprobaremos que estos
resultados pueden ser ficilmente extendidos al modelo Buckingham Exp.-6. Con cada

una de las series de nuestras medidas experimentales se ha ajustado el valor de m de
(39) por minimos cuadrados para cada uno de los valores de los pardmetros que figuran
en la Tabla XXXTII.

Los resultados de los ajustes acompaiiados del error probable deducido de (45) y (46)
se muestran para cada gas en la Tabla XXXIV. De ella se deduce que todos los ajustes
tienen desviaciones del mismo orden, y que por tanto ningiin conjunto de pardmetros
puede en principio preferirse a otro.
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TABLA XXXIV

VALORES DE M, Am ¥ Am/m-10® PARA EL CONJUNTO DE PARAMETROS DE
INTERACCION, DEDUCIDOS DE LOS DATOS DE DIFUSION TERMICA

Gas &/ (°K) m AM-102  Am/mr-102 Ref.
Neon 66.6 .205 27 1.32 (106)
51.94 174 .22 1.30 (62)

46.0 .204 .26 1.28 (90)

38. .182 .23 1.31 (61)

40. 204 .26 1.28 (66)

Argon 148 .220 .56 2.55 (106)
125 227 .63 2.33 (65)

176 .206 .60 2.46 (107)

Kripton 180 .240 .05 2.31 (65)
244 .243 .59 2.41 (71)

200 .264 .62 2.52 (83)

Xenon 220 .204 .59 2.89 (55)
257 .167 .37 2.20 (108)

6. ¢) Relacion entre los factores de separacion mdrumos, tedricos y experimentales,
para el conjunto de los gases.

Como ya hemos dicho, para el modelo Lennard-Jones (12-6) los resultados experi-
mentales obtenidos para un solo gas en la columna a distintas temperaturas no son
suficientes para obtener el valor correcto de la interacci6én del mismo, ya que la linea-
lidad en (39) se mantiene para valores muy distintos del pardmetro ¢/k. En el apartado
anterior se ha comprobado que esto ocurre también para el modelo Buckingham Exp.-6.

Por otra parte en el apartado IV-4 Ilegamos a la conclusién de que la constante mu es
independiente del gas y de las condiciones de operacién s6lo cuando se emplean los va-
lores correclos de la inferaccién en el cdlculo de los factores de separacion méximos.
Analizaremos a continuacién, con esta conclusion como base, los resultados obtenidos
cuando se emplea para dicho célculo el conjunto de pardmetros deducidos de datos de
difusién térmica.

En la Fig. 40 se muestran graficamente los resultados de los ajustes para cada
gas, detallados en la Tabla XXXIV (curvas ¢ a m). Se ha dibujado asimismo el ajuste
de datos experimentales correspondiente al modelo Lennard-Jones (12-6) de la Fig. 28.
Deliberadamente se han omitido en la representacién los puntos experimentales.

Comencemos por analizar el conjunto de datos de Moran y Watsonss para todos los
gases. Estos resultados se obtienen de valores de o, sisteméticamente bajos, lo que equi-
vale a valores altos del pardmetro de interaccién g/k y en consecuencia a que los va-
lores de QT sean también bajos. Las rectas ¢, f, k y | muestran esta peculiaridad. Por
ofra parfe la linealidad no se mantiene y los datos no presentan la consistencia debida.
La mayor desviaci6n la presenta el Kripton. En tiempos fue interpreta por Masons?, 84
como un comportamiento especial de su campo de interaccién. Andlisis posteriores de
Fender®s, 39 y los ya citados de Saxena y Joshis® aclararon la cuestién, estando hoy
comprobado que los resultados experimentales son demasiado bajos.

Algo anélog ocurre con gran parte de las medidas reseiiadas, todas aquellas alejadas
de la recta L-J (12-6) de la Fig. 40 interpretan notablemente mal las propiedades de
equilibrio y transporte, y reciprocamente, aquellas medidas como las de Fischer para
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Neon y Paul et al. para Xenon que interpretan bien el conjunto de propiedades de di-
chos gases, se gitiian sobre nuestra recta o lo que es lo mismo, son capaces de interpre-
tar nuestros datos de separacién.

L-J(12-6)

Saxena, ref.(106)
£)- Watson, ref,(90)
¢)- Horan, ref.(5S)
d)- Grew, ref.(61)
e)- Fischer, ref.(62)
£)- Moran, ref.(55)
Saxena, ref.(106)
Paul, ref.(107)

2 1, ref.(83)
5)- Paul, ref.(71).
k)- Boran, ref.(55)

1)- Eoran, ref.(55)
®)- Paul, refi(108)

In T,

i ! ! 1 L

0 10 20 30 40 50

F1c. 40

En este sentido nos inclinamos a concluir de nuestro andlisis, que una gran parte
de los resultados obtenidos hasta el momento para o, son sistemdticamente bajos, y los
pardmetros de interacién deducidos de ellos no son capaces de interpretar con la debida
consistencia los datos de separacién, para columnas de difusién térmica, de los que
en 1ltima instancia es responsable el valor de o.

Refiriéndonos ahora al conjunto de pardmetros de interacci6n para el Lennard-Jones
(12-6) utilizados en este trabajo, Tabla XXXII, podria estudiarse la posibilidad de detfer-
minarlog utilizando la constancia del valor de m. Esto requeriria primeramente una
completa puesta a punto de la gran cantidad de material experimental que sobre propie-
dades termodindmicas, de transporte, de cristal, de dispersién de haces moleculares, etc.
ha aparecio en los udltimos tiempos, pero este no es el propé6sito de nuestro trabajo. Nos
limitaremos pues a sugerirlo como método para la interpretacién de conjuntos de paré-
metros de interaccién, en lo relativo a su consistencia interna y a su capacidad de in-
terpretar datos de separacién obtenidos en columnas de difusién térmica.

6. d) Relacion enire los valores tedricos y experimentales para la presion dptima

En la Tabla XXXIII se muestran los pardmetros deducidos de medidas de difusién
térmica y junto con ellos los valores del pardmetro de colisién r , ambos determinados
para el potencial Buckingham Expo.-6. En este apartado estudiaremos la consistencia de
este conjunto de pardmetros utilizando las conclusiones de los apartados IV-2 y IV-3.

En primer lugar se observa en la Tabla XXXIII que para la determinacién del valor
de » se ha utilizado la viscosidad, teniendo en cuenta la flexibilidad de los modelos
de interaci6n de ftres pardmetros, deberemos esperar que los datos de viscosidad sean
bien interpretados. Esto, en efecto, es lo que ocurre.

U s el
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Respecto al resto de las propiedades termodindmicas la bibliografia no registra mé4s
comparaciones que las realizadas con B(T), y para ellas el acuerdo teoria-experimento
deja de ser bueno, excepcién hecha de los datos del Xenon.

TABLA XXXV

VALORES DE P, Ap Y ApP/p + 10° PARA EL CONJUNTO DE PARAMETROS DE INTERAGGION
DEDUCIDOS DE DATOS DE DIFUSION TERMICA

Gas &/ k(°K) o (4) 7 Ap-102  Ap/p-102 Ref.
Neon 666. 2.637 153 45 2.91 (106)
Argon 148, 3.278 154 42 2.72 (106)

176. 3.149 157 43 2.73 (107)
Kripton 244, 3.457 163 AT 2.89 (71)
200. 3.457 163 AT 2.89 (83)
Xenon 257. 3.929 157, .29 1.82 (108)

Como la funcién ¥ de (42), que interviene en el cédlculo de la presién Gptima, con-
tiene ¢/k, ¢ ¥ o, el empleo de la relacién (47) puede servirnos como test de la capacidad
de los conjuntos de estos tres pardmetros, resefiados en la Tabla XXXIII, para interpre-
tar los datos experimentales.

Procederemos como sigue: cada uno de los conjuntos se emplea para el cdlculo de la
presién Gptima correspondiente a cada una de nuestras operaciones experimentales. Para
cada gas se ajusta la relacién (47) para obtener los valores 5 y del error probable Ap.
Estos valores se muestran en la Tabla XXXV. Del examen de los resultados se obtiene
como primera conclusién que, el orden de las dispersiones es el mismo y la relacién li-
neal (47) se mantiene para cada uno de los gases. En este sentido el potencial Lennard-
Jones (12-6) o el Buckingham Exp.-6 tienen la misma capacidad interpretativa en lo
que respecta a la relacién (47).

Se observa sin embargo que cuando se considera el conjunto de todos los gases dicha
relacién deja de cumplirse. Esto puede interpretarse como sigue.

La magnitud p%% contiene propiedades termodindmicas y de transporfe en las que la
difusién térmica no aparece. Por 'o tanto parece razonable suponer que conjuntos de
pardmetros como los anteriormente utilizados y que dan para P, cuando se considera
el conjunto de todos los gases, una dispersién pequeiia, deben ser capaces de interpre-
tar los resultados experimentales de presién Gptima mejor que otros cualesquiera.

Par otra parte hemos hablado ya de la flexibilidad del coeficiente de viscosidad res-
pecto a los pardmetrog del potencial. No hay por qué suponer que ocurra lo mismo
para la expresién de p’l’)‘;- . Un conjunto de pardmefros ¢, o y « puede ser interpolato-
riamente bueno para dar cuenta de una pareja de propiedades y no ser el adecuado a la
verdadera inferaccién, como sefialan Fender®s, 89 y Walley8?, 81,

Por ejemplo los pardmelros del Xenon que dan acuerdos razonablemente buenos para
varias propiedades, puede ocurrir que no sean capaces de hacerlo con la magnitud D)
y entonces la recta correspondiente no coincida tampoco con la de la interaccién correcta.

Sefialaremos por ultimo la tendencia de los diversos datos de difusién térmica estu-
diados en este apartado, a separarse del comportamiento sefialado como correcto. Esto

corrobora el hecho, sefialado en la bibliografia, de que dichos datos no son apropiados
para describir el conjunto de los gases.

Deliberadamente hemos omitido en este apartado obtener conclusiones cuantitativas.
Para ello es necesario utilizar una instalacién que junto a separaciones m4s altas, en
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especial para los gases pesados, de curvas de presién Gptima mds selectivas o lo que es
lo mismo menos planas. Esto aiadido a un mejor confrol en la medida de las tempera-
turas puede servir en nuestra opinién para comprobar, con mayor seguridad, la validez
de la expresi6n (47) como test a los pardmetros de interaccién de cada potencial, y mds
elaborado, a determinarlos.

APENDICE 1

Extension de la formulaciéon a mezclas multicomponentes

La fteoria expuesta para mezclas binarias ha sido generalizada por R. C. Jones??.
La expresién del transporte del componente % de la mezcla isotépica hacia la parte su-
perior del tubo es

ac
5 =—¢, 3 ¢ H,— (K +K,) —a:_ (I-1)
i

en que z es la coordenada de longitud de la columna, la ¢, representa la conceniracién
(en &tomog por ciento) de la especie i y el sumaforio se extiende a todos los compo-
nentes de la mezcla.

Para el estado estacionario todos los g, son cero. La integracion (I-1) para todo K
nos da:

H, L
lig () =i (I-2)
K +K,
en que el factor de separacién para dos is6topos se define como:
Qs = (6410 (/)

y L es la longitud de la columna,
Con el cambio

105 m, — m;
H W= ——— o H
118 My, + 1M,

0

la (I-2) puede escribirge como

100, — i e H0 L

In ij = o <
118 m, + m, K +K,
O
puesto que, o* = a, y H, son independientes de la pareja de is6topos’? la mag-
nitud
m, + m; DS
Ins e —in () (I-8)
771k — 17’1].

también debe serlo. Para medir errores experimentales, el primer miembro de (I-3) se
mide experimentalmente para todos los is6topos. El valor resultante, In (, se conoce con
el nombre de factor de separacién reducido medio.
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Conclusiones

1.2 Al igual que lo registrado en la bibliografia, por la mayoria de los autores, se
confirma que la dependencia cualitativa del factor de separaci6n con la presién es la pre-
dicha por la teorfa, aunque los valores experimentales son siempre mucho menores que
los tedricos habiendo obtenido en una instalacién de tubos concéntricos reproductibili-
dades mejores que un 0.2 %. .

2.* Para cada uno de los gases estudiados se encuentra que la relacién entre los lo-
garitmos neperianos de los factores de separacién méximos, teéricos y experimentales, al
variar las temperaturas de frabajo, es una recla que pasa por el origen. La pendiente de
la recta es funcién de los pardmetros de interaccién elegidos para evaluar el valor teérico
del factor méximo de separacién.

3.2 La conclusién antferior ha sido confirmada para datos experimentales obtenidos
en una columna de hilo caliente con gas Kripton. Como antes la linealidad enfre valores
medidos y calculados se mantienen aun cuando se emplean en el cdleculo tedrico valores del
parémetro ¢/l muy diferentes del que corresponde a la interaccién correcta, y que por
ello no interpretan ninguna propiedad del gas.

42 La relacién lineal encontrada permite predecir la opeéracién de una columna para
un gas, partiendo de los resultados para el mismo gas y en condiciones de temperatura
cualesquiera, sin que sea necesario el conocimienfo previo de las propiedades microsc6pi-
cas del gas.

5.2 Para el conjunto de medidas realizadas con los gases Neon, Argon, Kripton y Xe-

non, se encuentra que la relacién lineal In Q2. =Tm In QI se mantiene sf, y sélo si,
se emplean para el célculo de los valores te6ricos los pardmetros g/k que interpretan
correctamente el conjunto de propiedades termodindmicas y de transporte de cada gas.

6.2 La medida del factor de separacién mdximo para un gas a temperaturas cuales-

quiera, permife predecir la operacién experimental de la columna con otro gas. La cons-

tante m es caracteristica de la instalaci6n.

7.2 La relaci6n lineal encontrada se mantiene frente a pequeiias variaciones de la
relaci6én de radios y temperaturas de la instalacién. Es decir asignaciones incorrectas
de temperaturas y radios, coherentes para el conjunto de los gases, sitiian todos los pun-
tos experimentales sobre una nueva recta.

8.2 Conclusiones andlogas a las anteriores se han obtenido para la relacién entre
valores teéricos y experimentales de la presién éptima. De nuevo una constante, deter-
minable por tarado, caracteriza a este respecto a la columna.

9.2 Las dos constantes obtenidas m y p, permiten interpretar completamente lag cur-
vas de variacién del factor de separacién con la presién, para cualquier gas y a cualquier
temperatura. Los datos obtenidos con un gas de interaccién conocida permiten determi-
nar el valor del pardmetro ¢/k para cualquier otro gas.

10.2 Las correcciones de no idealidad de la instalacién, tan dificiles de incluir en ls
formulacién, pueden ser englobadas en las dos constantes caracteristicas antes men-
cionadas. Esta conclusién es importante en el disefio y operacién de instalaciones, para
los que hasta ahora la teorfa no era suficiente.

11.2 Para el establecimiento de las conclusiones anteriores se ha empleado el mo-
delo de Lexnarp-JoneEs (12-6). Todas ellas son igualmente vélidas si se utiliza el mo-
delo de tres parédmetros de BuckincHam-Exp-6, al menos denfro del rango de tempera-
turas medias y altas utilizadas.

12.2 La conclusién 5.> proporciona un nuevo procedimiento para probar la con-
sistencia de un conjunto de parédmetro de interaccién de los gases nobles. La sensibi-
lidad del método en lo referente a la determinacién del pardmetro ¢/k es del mismo
orden que si se ufilizase el factor de difusién térmica, que es la magnitud de transpor-
te mds sensible al modelo de interacci6n.
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13.2 Para probar la consistencia del conjunto de pardmefros correspondiente al
modelo Lensarp-Jones (12-6) empleado por SaxeExa en una reciente revision de la situa-
cion experimental en propiedades de transporte y equilibrio, hemos empleado el pro-
cedimiente anteriormente propuesio. Se ha encontrado que dicho conjunto es el que
interprela con menor dispersion nuestros datos de separacién. Cualquier olro conjun-
lo de pardmetros, cuando deja de interpretar una o varias de las propiedades termodi-
némicas o de transporte que sze utilizan en la préclica, deja a la vez .de interpretar con-
sistentemente nuestros datos de separacion, en cuanto a la relacién lineal antes en-
contrada se refiere.

14.# Se han estudiado los conjuntos de pardmelros de interaccién registrados en
la bibliogralia como deducidos de medidas directas del factor de difusion térmica, Con
los citados conjuntos no es posible interpretar nuestros datos de separacién. Muchos
de los resullados para «, han sido sefialados como bajos por varios aufores y como
en definiliva es o, el responsable de la separacién en nuestra instalacién, concluimos
de nuestro trabajo que s6lo los resultados de FISuer para neon, Paur para, Xenon y
Many para neon, pueden ser aceptados enlre todos los existentes., En todos los casos
se observa que cuando los pardmetros deducidos de difusion (érmica dejan de inter-
pretar propiedades como la viscosidad, conductividad térmica, difusién ordinaria o vi-
rial, simultdneamente deja de cumplirse la relacién lineal propuesta en este trabajo,
obteniéndose valores teéricos del factor de separacién méxima excesivamente bajos.

15.> Los buenos acuerdos obtenidos para meon y xenon y la opinién aceptada de
que no parece probable esperar comportamientos anormales en la interaccién de algu-
no de los gases nobles, conducen a la conclusién de que los valores registrados en la
bibliografia para el factor de difusién térmica son efectivamente bajos.

16.* Dentro del rango de temperaturas de 300° K a 600° K de nuesfras medidas
puede concluirse que tanto el pofencial Lenvzarp-Jones (12-6) como el BuckInGEaM
Exp.-6 son capaces de interpretar en conjunto las propiedades de los gases nobles, in-
cluida la difusién térmica. Esta conclusién estaba en tfela de juicio si se aceptaban
como buenos los resultados experimentales para o . Posiblemente y a la vista de las
comparaciones realizadas en una columna de hilo caliente (hasta 1020° K) el rango de
temperaturas pueda ser extendido.

17.2 La posibilidad de determinar el pardmetro de colisién g, ha sido analizada.
Las mismas consideraciones de las conclusiones anteriores son validas. EI procedi-
miento requiere un més amplio estudio experimental con instalaciones de disefio apro-
piado.
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Resumen

En un intento de interpretar la influencia que en algunas propiedades fisico-qui-
micas de isémeros quimicos tiene la posicién relativa de los grupos funcionales, ge han
estudiado por difraccién con rayos X los tres 4cidos bencenolricarboxilicos. Se han de-
terminado las dimensiones de sug celdillas elemenfales y sus grupos espaciales. Se
hace un intento de intepretar ciertos comportamientos quimicos conocidos de estos
CUErpos.

Introduccion

La realizacién de los diagramas de Debye-Scherrer de los doce &cidos bencenocar-
boxilicos existentes, diagramas cuyo fin tltimo era su utilizacién como patrones en la
identificacién de los compuestos quimicos obtenidos por oxidacién del carb6n!, nos puso
en confacto con estos cuerpos en los que se pueden encontrar tres grupos de is6émeros
de posicién: los dcidos 1,2; 1,3 y 1,4 bencenodicarboxflicos, log 1,2,3; 1,24 y 1,2,56
bencenotricarboxilicos y, los 1,2,3,4; 1,2,3,5 y 1,2,45 bhencenotetracarboxilicos. Cada
grupo posee la misma férmula quimica bruta: G, H, (COOH), para los di, G, H, (GOOH),
para los fri y G, H, (COOH), para los tefracarboxilicos respectivamente.

Loz trabajos de GonzALez SAncEHEZ?, GOmMEzZ Aranpas, GOMeEz BiELTRAN y Us6n LaAcArd,
y. Gowez BeEntrin y Fornifs Mamrquinal ponen de manifiesto que la diferente posiecién
alrededor del anillo bencénico de los grupos carbéxiles influye notablemente en las
propiedades que presentan dichos cuerpos y, -sin duda de ninguna clase, uno de los
agpectos donde se podrd apreciar la influencia de la geometrfa molecular serd en la con-

COOH COOH COOH
COOH
COOH
COOH
Ftdlico Isoftdlico Tereftalico

* Este trabajo es parte de la Tesis Doctoral de J. M. ForNikES Marquing, leida el 7-7-69 en la
Facultad de Ciencias de Zaragoza.
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figuracién cristalina, pues la forma de empaquetamiento més adecuada al fipo de fuer-
zas de uni6n la determinard en gran medida la posicién de log grupos —COOH en el
espacio.

----- g
b0’ Yoop o Nl

Para los 4cidos bencenodicarboxilicos la evidencia acerca de esta influencia es no-
toria, pues en el tereftdlico, la estructura corresponde sin duda a la formacién de fuer-
tes puentes de hidrégeno entre sus moléculas dando lugar a largas cadenas. Este tipo
de estructura produce un compuesto mucho mds insoluble en agua que el 4cido ftélico,
como puede observarse en la Tabla I.

Tasra I

Solubilidades de los dcidos bencenodicarboxilicos

Ftdlico Isoftdlico Tereftdlico

Solubilidad 0,54 (20°C) 0,0128 (25°C) 0,001
(gr/100 g. H,0)

El 4cido Ftélico, debido a los impedimentos estéricos entre sus dos grupos carbo-
xilos vecinos, puede que no adopte una estructura tan polimerizada como el tereftélico,
lo que se revelaria en su solubilidad en agua.

Pensando que un estudio cristalogrdfico de los tres 4cidos bencenotricarboxilicos se-

COOH 0OH OOH
COOH COOH
COOH COOH 29 COOH
/ COOH
Trimésico Trimelitico Hemimelitico

ria interesante como medio de evidenciar la influencia de la posicion de los grupos
COOH en el tipo de empaquetamiento y simetria adoptado en cada caso, y, disponiendo
de muestras puras de estos compuestos, lo hemos abordado.

Durante la realizacién de-este trabajo tuvimos conocimiento del estudio de D. J. Du-
caamp sobre el 4cido trimésicot, que permiti6 comprobar algunos de nuestros resulta-
dos y verificar la buena puesta en préctica de nuestros métodos de trabajo.

Parte experimental
Preparacién de los cristales de los dcidos hemimelitico, trimelitico y trimésico

Partimos de muestras puras de estos cuerpos, obtenidas en el Departamento de Za-
ragoza del Instituto Nacional del Carbén. De ellas, la del 4cido hemimelitico procedia
de un compuesto obtenido por oxidacién del 1,2,3 trimetilbenceno con permanganato
potésico acuosgo, y, las otras dosg de productos Fluka, calidad purum. En los tres casos,
los productos finales eran el resultado de varias cristalizaciones en agua y sus andli-
sis elementales correspondfan a los compuestos G, H, O, C, H O, y, G, H, O, 2H,0

9 8 T6°
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respectivamente para el trimésico, trimelitico y hemimelitico, presentando este tltimo
agua de cristalizaci6n. Las propiedades de estos 4cidos se resumen en la Tabla II y,
de ellas se observa:

a) El punto de fusién del trimésico es unos 150°C mds alto que el del hemimelitico
y unos 110°C mayor que el del trimelitico. Ello indica un enlace més robusto entre las
moléculas de este 4cido, cuyo origen puede que sea la existencia de wuna -estructura
muy unida por puentes de hidrégeno.

b) La formaci6n de largas cadenas debidas a puentes de hidrégeno es la causa de
la muy baja solubilidad en agua del tereftdlico (1,4 bencenodicarboxilico) frente al fté-
lico (1,2 bencenodicarboxilico) ya resefiada en la Tabla I. Sin embargo, tal cosa no
aparece de forma paralela en el hemimelitico y trimésico. La mayor acumulacién de
grupos 4cido en la molécula produce, sin duda, una mayor analogia entre sus solubi-
lidades en agua.

¢) Un examen de las constantes de disociacién revela :

1.0 Que el 4cido trimésico es el mds débil de los tres respecto a K . (La mitad
que el hemomelitico y la cuarta parte que el trimelitico).

2.° Que las constantes K,, K, y K, mds parecidas entre si corresponden al tri-
mésico.

Lo primero revela sin duda en el dcido trimésico que la disociacién de H* se produce
a partir de dtomos de hidrégeno que forman puentes de hidrégeno (posiblemente en
este caso intramoleculares) y, lo segundo, que la influencia de un grupo —COOH en la
disociacién del siguiente es menor en el trimésico a causa de su distancia.

d) Finalmente, las densidades revelan que la celda del 4cido trimésico es mds hueca,
de acuerdo con la existencia de muchos puentes de hirégeno, en concordancia con los
resultados de D. J. Ducnamp,.

Como se deducird de los resultados de nuestro trabajo, todos los pardmetros crista-
linos del hemimelitico y trimelitico responden a estas interpretaciones.

La obtencién de monocristales para su utilizacién en el exfmen por rayos X, no
present6é problemas dignos de mencién en el caso de los &cidos hemimelitico y trimeli-
tico, aunque para el dcido trimésico se presta a la formacién de maclas, no favorece
precisamente la obtencién de buenos cristales para el andlisis roentgenogréfico.

TaBra II
Propiedades de los dcidos bencenotricarbozilicos
Trimésico Trimelitico Hemimelitico
COOH 00H . 00H
COOH COOH
Férmula 2
COOH ICOOH CoOH
COOH
2,69 (22,5°Q) Fécil soluble 3,15 (19°C)
Solubilidad en agua* 0,38 (16°C)
Soluble éter soluble Fécil soluble Féeil soluble
P. fusién 345-380°C 215-238°C 190°C  descomp.
K 6,06 - 104 2,85 . 10-3 1,44 . 10-3
gpnstan'tée J ; 1,05 - 104 1,37 - 104 6,61 . 10-5
isociacién IK‘{ 1.95 . 10-5 7,43 . 10-¢ 1,51 . 10-86
Densidad** . 1,4550 1,5574 1,5435
gr./cm.3

* Las solubilidades vienen determinadas en todos los casos en gr. soluto/100 gr. disolvente.
** Las densidades fueron determinadas en este trabajo.
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La determinacién de las densidades se realiz6 por el método picnométricos: Se de-
terminé la densidad del 4cido trimésico a 16°C con agua, y, las correspondientes a los
dcidos, trimelitico y hemimelitico en cichoexano a 24,5°C. Se emple6 un termostato y
una cédmara de vacfo.

Los resultados obtenidos para las densidades son los siguientes:

Acido ftrimésico 1,4450 gr./cm.?
Acido trimelitico 1,5574 gr./cm.?
Acido hemimelitico 1,5435 gr./cm.?

Diagramas de rayos X

Método de trabajo

Para la ejecucion de los diagramas de rayos X se emple6 el método de VWeissenberg
y se utilizaron dos cdmaras: una horizontal Nonius, y, una vertical disefiada por
J. L. Awmorés®. Los valores efectivos del radio de ambas se midieron utilizando como
patrén cloruro sédico preparado en ftubos Lindemann?, Los datos del diagrama de polvo
de Cl Na se tomaron de A. S. T. M.8. De esta forma se corrigieron los valores erréneos de
los radios y “shrinkage” no-eliminados segiin la extrapolacién de BRADLEY y Jay®.

La radiacién empleada ha sido K¢ Cu = 1,5418 A, con filtro de niquel, y la insta-
laci6n empleada fue un difractémetro Philips PW 1010 y un generador Lebel trabajan-
do a 35 KV. 20 mA.

Los valores de las constantfes instrumentales obtenidas, de las medidas realizadas en
los diagramas efectuados, arrojan los siguientes resultados:

Cémara Weissenberg vertical”: r = 30,3 mm.

G, =1,8909 °/min. C,=2

q =64° 41, 26 = (0,85465) - 2x;
Cdmara Weissenberg Nonius: r = 28,8 mm.

G, = 1,9894 °/min. C,=2

q = 63° 55 26 = (0,89062) . 2x

Estudio cristalografico el dcido trimésico
Obtencioén y forma de los cristales

Para la obtencién de monocristales de &cido trimégico se emplearon disoluciones sa-
turadas de dicha sustancia en alcohol y acetona, asi como en mezelag de ambos disol-
ventes, resultando de la cristalizacién ejemplares con hdabifos cristalinos muy diferen-
tes. Desde prismas rectangulares a prismas inclinados de seccién rémbica, pasando por
exagonales ligeramente achatados.

Tanto en un caso como en otro se advierte la gran tendencia que posee dicha sus-
tancia a la formacién de maclas, como bien se pudo apreciar en el examen Gplico.

Se estudiaron dos cristales orientados segiin las zonas [100] y [010] mediante dia-
gramas giratorios y de Weissenberg (equiinclinacién), y del conjunto de las medidas
realizadas se obtuvieron los siguientes valores de parémetros a, b, y d . (Tabla III)

Tasra III

Constantes a, b, d___ del dcido trimésico.

00T

a = 26,52 + 0,04 A°
b = 16,48 + 0,02 A°
d,,, = 26,57 £ 0,04 A°
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Asimismo, en los diagramas Weissenberg se midieron los dngulos interaxiales con
los que quedé finalmente para constantes de la celda.

a = 26,62 + 0,04 A°
b = 16,48 + 0,02 A° B = 91° 58
c = 26,58 + 0,04 A°

donde el pardmetro correspondiente al eje ¢ se calcul6 a partir del espaciado d 001,

Extinclones

Con los diagramas Weissenberg realizados alrededor de [100] se presentaron las
redes reciprocas de sus correspondientes niveles, no pudiéndose encontrar una regla
sistemédtica de extinciones debido a la existencia de una macla polisintética. Sin embar-
go en el cristal girando alrededor de [010] se encontraron las reflexiones:

hoo : h = 2n
001 : =0
hO1 : h =21 1= 2n

Nos proponfamos analizar la macla, que segdin parece, origin6 una pseudosimelria
exagonal, cuando fuvimos noticia de la publicacién de D. J. Ducumamp4. Este autor pro-
pone una celda monoclinica de grupo espacial C o C,/ y dimensiones:

@ = 26,52 A°
b = 16,42 A° B = 91° 5%
¢ = 26,55 A°

Ante esta situacién, suspendimos nuestro programa de trabajo para esta sustancia.

Diagrama de Debye-Scherrer

Utilizando los resultados deducidos mediante los diagramas de cristal inico, asigna-
mos a cada reflexi6n del diagrama de polvo sus indices de Miller correspondientes. Para
ello, se emple6 un programa de cdleulo del ordenador IBM 7070 (ver dcido trimelitico),
y, se encontré una lista de fndices y espaciados suficientemente aproximados para la
asignacién de todas las reflexiones que aparecieron en el diagrama de polvo. La agig-
nacién completa se da en la Tabla IV.

Numero de moléculas por celda unidad y densidad roentgenograifica

A partir de las dimensiones de la celda unidad, el volumen y la masa confenida en
ellas son:

Ve=11.638,17 x 10-24 cm:S M = 16.817,15 x 10-24 gr.

resultando un miimero de moléculas de N = 48,21 ~ 48,
La densidad roentgenogréfica tiene por valor g, = 1,4386 gr./cm.s.
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TABLA

v

Interpretacion Debye*. Acido trimésico

DE LA ACADEMIA DE CIENCIAS EXACTAS, FISICO-QUIMICAS Y NATURALES

Rkl 11 dAo Rl /1 dde
200 83 18,250 800 14 3,319
111 : 12,345 045 50 3,247
119 23 9,554 820 11 3,083
020 86 8,208 821 24 3,014
311 23 7,538 246 12 2,892
022 53 7,006 354 5 2,827
400 13 6,638 550 10 92,791
204 26 6,231 498 10 2,702
023 5 5,985 10,0,0 4 92,632
130 8 5,362 9,3,0 4 2,580
420 29 5,169 10,0,2 5 9,554
491 20 4,998 10,2,0 6 2,517
511 19 4,863 248 7 2,495
331 6 4,599 462 6 2,470
025 6 4,493 10,0,4 5 2,380
116 14 4,946 11,1,0 4 2,367
620 11 3,902 464 6 2,334
249 9 3,788 662 5 2,304
710 100 3,673 662 4 2,975
440 6 3,499 430 8 2,195
441 6 3,460 12.0,2 6 2,151
136 6 3,379 12.2.0 4 2,124

* Las intensidades estdn medidas con un difractémetro.

Estudio cristalografico del dcido trimelitico

Obtencién y forma de los cristales

Con el fin de obtener monocristales de esta sustancia, se prepararon varias disolu-
ciones en aleohol y agua a distintas proporciones, dando lugar a la formacién de cris-

tales prisméticos, transparentes e incoloros muy desarrollados en una direccién que

posteriormente resulté ser la zona [100].

Célculo de parametros

Se orientaron los cristales para su estudio roentgenogréfico segiin las direcciones
zonales 100 y 001 resultdndonos como resumen de las medidas realizadas los valores

de a, ¢, d,,, ¥y d,,, que aparecen en la tabla V.
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Tasra V

Constantes a, ¢, d

oo Y o, del decido trimelitico.

010

a = 16,11 £ 0,02 A°

¢c= 9,10 + 0,02 A°
d,,, = 15,85 + 0,02 A°
d . =12,39 + 0,02 A°

010

Con estog datos se calculé teéricamente el dngulo B, y se encontré B = 100° 41
por lo que nos resultan los siguientes valores de la celda:

a = 16,13 + 0,02 A°
= 12,39 + 0,02 A° B = 100° 41’
¢c= 9,10 + 0,02 A°

valores que comprobaremos con los deducidos mediante el diagrama de polvo.

Extinciones

Las reflexiones aparecidas en los distinfos niveles dan la siguiente pauta:

hkl : h+k+1=2n
hol : h = 2n i =0
oko : k=2n

caracteristicas propias del grupo espacial I/a del sistema monoclinico.

Diagrama de Debye-Scherrer y asignacién de indices

Se realizaron varios difractogramas en un difractémetro Philips PW 1010 con las
siguientes condiciones de trabajo: Ko Cu = 1,5418 A°, 40 KV. 20m. A y 1.650 V en
el contador Geiger, ratemeter 16 x 1 y constante de tiempo 4. Velocidad de la cabeza
geométrica 1/2° por mitnuto, intervalo de exploracién 4° — 65°.

Asi se obtuvieron los espaciados del cristal asi como sus intensidades relativas, datos
que se utilizan para la identificacién segin las normas de A.S.T.M.

A partir de las constantes de la celda deducidas de los diagramas de Weissenberg,
es posible asignar a cada reflexién del diagrama de polvo sus indices correspondientes
(hkl). Asi para el sistema monoclinicol?, los cuadrados de sen § correspondientes a
cada terna (kK1) responden a la férmula analitica:

sen? .. 6 = h?4 + k2B + 12C + 2h1 ¥/A.C cos §

giendo :

2 n 2 2
& 4a2 gen2 § = a0y ~ 4c? gen? B

A

Se hizo el célculo con un programa de célculo para el ordenador IBM 7070. Este
programa estd escrito en lenguaje Fortran-Autocoder y es propio para la interpretacién
de diagramas Debye correspondientes al sistema monoclinico con b como eje binario.
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Asi se obtuvo una lista de indices y espaciados suficientemente aproximada para
poder asignar todas las reflexiones que aparecian en el diagrama de polvo.

La asignacién completa de fndices a las reflexiones obtenidas, intensidades relati-
vas y los espaciados se expresan en la Tabla VI

Interpretacion Debye. Acido trimelitico

Calcula los senos de los éngulos de Bragg y el espaciado correspondiente a cada refle-
xién segun:

i1 ddo hl1 1/1 dde
200 7,914 132 6 2,566
011 7,253 332 5 2,513
020 6,141 602 3 2,462
220 4,857 620 4 2,431
002 4,481 342 8 9,379
012 4,164 532 4 2,321
320 3,768 204 10 2,247
202 3,608 349 2 2,194
222 3,479 152 2 2.166
420 4 3,324 719 3 2,144
500 6 3,132 720 5 2,122
040 9 3,076 612 3 92,085
132 vé 2,903 060 3 2,058
240 6 2.870 800 2 1,981
520 5 2,837 802 2 1,939
512 7 2,763 820 2 1,895
402 3 2,720 604 2 1,877
600 3 2,652

522 5 92,578 044 2 1,803

Teniendo en cuenta los datos del diagrama de polvo se calcul6 el espaciado d

un valor medio d
partir de los diagramas de Weissenberg.

1R |

B = 100° 41/

Numero de moléculas por celda unidad y densidad roentgenogréfica

A partir de las dimensiones de la celda unidad

16,13 + 0,02 A°
12,39 £ 0,02 A°
9,10 £ 0,02 A°

partir de los valores a sen [ para las reflexiones (200), (400), (600), (800), resultando
= asen 3 = 15,85 A° totalmente de acuerdo con el reducido a

pee

T S R e



Lo e

=)

A

i

> -‘f;j,‘fjlfl\'j

ESTUDIO CRISTALOGRAFICO POR DIFRACCION DE RAYOS X

ge calcularon el volumen y la masa:
V = 1.787,05 x 10-2¢ cm.3 M = 2.783,16 x 10-2¢ gr.

resultando un nimero de moléculas por celda de N = 7,97 ~ 8.
La densidad roentgenogréfica calculada es:

op = 1,5615 gr./cm.3

Estudio cristalografico del dacido hemimelitico 2H,0
Obtencién y forma de los cristales

El dcido hemimelitico contiene agua de cristalizacién por lo que utilizamos agua como
digsolvente para la obtencién de monocristales. Los cristeles de este compuesto son 14-

minag prisméticas, incoloras y transparentes que presentan diferentes hébitos y que
ge desarrollan sobre la direccién [010].

Estudio morfolégico

Con este estudio se pretendia comparar las formas que presentaban las dos especies
dominantes de la cristalizacién, y condujo a loz siguientes valores:

Tasra VII

Datos de proyeccion estereogrifica

@ )
001 28° 67 17° 117
110 24° 567 0°
110 147° 16 0°
110 205° 0/ 0°
110 398° 5’ 0°

Tal como se puede observar en la fig. 1 los cristales del dcido hemimelitico presen-
tan una gran sencillez morfolGgica con la aparicién de un centro de inversién’!,
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Cdlculo de parameiros

El estudio roentgenogréfico previo de este compuesto se efectué mediante el an4lisis
de diagramas oscilantes con ejes de giro paralelos a [100] y [010], y de diagramas
Weissenberg con iguales ejes de giro.

A partir de los diagramas indicados se han obtenido los valores estructurales que
se expresan en la tabla VIII

Tasra VIII

Constantes a, b, d,,, y d,,, para el deido hemimelitico.

a =TI + 0,02 A° 2

b =872 + 0,02 A° (cristal 1)

b =8,77 + 0,02 A° (cristal 2)
d,,, =6,99 + 0,01 A°
d,,, =8,39 + 0,01 A° ’
d,,, =864 + 0,10 A°

Extinciones

Analizando los diagramas Weissenberg en ecuador, primer nivel y segundo nivel,
gegun los ejes de giro [100] y [010], las reflexiones sistemdticas no estaban sujetas a
ninguna condicién. Este hecho conduce al grupo espacial P 1 del sistema triclinico de
acuerdo con el estudio morfol6gico realizado anteriormente.

Diagrama de Debye-Scherrer

Las condiciones de trabajo utilizadas para la realizacién de los difractogramas fue
ron semejantes a las empleadas para el dcido trimelitico. La asignacién de fndices 8e
efectué segun el significado del vector g,,, en el espacio reciproco:

= h? a*2 + k2 b*2 + 12 ¢*2 + 2hka* b* cos y* + 2kl b* ¢* cos o* +
+ 21hc* a* cos B*

2
O 1

con lo que existe la siguiente relacion :

1 4 gen? ¢

= d2hlk1 A2 I_

Qi

Conocidos a partir de las dimensiones de la celda a*, b*, ¢*, «*, B% v*, ¥y Q,,, bas- [
ta-dar valores h k 1 a la expresién anterior, para obtener los indices correspondientes a 3
cada reflexi6n del diagrama de polvo. -

De esta manera se obtuvo una lista de valores (,,, que resultaron suficientemente
aproximados para poder asignar todas las reflexiones que aparecieron en el diagrama
de polvo. La asignacién completa se da en la tabla IX.
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Tasra IX

Interpretacién Debye. Acido demimelitico 2H,0

hk1 I/1 dAe hlk1 I/1 dAe
001 12 8,600 211 3 9,844
010 5 8,403 030 3 2,788
011 14 7,077 221 5 2,754
100 7 6,983 221 14 2,704
101 5 5,986 022 7 2,655
110 6 5,403 221 8 2,650
111 4 4,653 130 8 9,611
111 10 4,500 013 4 2,577
012 7 4,354 103 7 2,504
021 6 4,272 192 4 2,381
110 7 3,973 033 3 2,360
102 47 3,622 300 4 2,332
120 100 3,534 299 4 2,321
200 91 3,453 310 4 2,275
220 10 3,340 311 21 9,260
192 7 3,304 024 3 2,186
211 4 3,038 301 2 2,151
202 11 92,998 040 2 2,080
311 3 2,910 303 2 1,985
003 3 2,866 204 9 1,810
050 2 1,689

Calculo de las constantes de la celda

Como resultado de las medidas realizadas se encuentran los siguientex valores:

a =712 A° d,,, = 6,99 A°
b =872 A° d,,, = 8,39 A°
b =877 A° G D

con los éngulos «* y B* medidos sobre diagramas de Weissenberg
ot 105358 Y B* = 101° 8&

Mediante las propiedades del espacio reciproco y con los datos hallados se calculd
teéricamente el pardmetro ¢ y los &ngulos «* teéricos. Ademds, por existir dos valores
de b medidos en cristales distintos, se utilizaron cada uno de ellos.

Si b = 8,77 A° xe encuentra:

o* = 106° 55° a = T3° 2%
B* = 86° 46 B-=-792519”
c—9;14 A° v = 90°

V = 536,51 - 10-24 cm.8
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Sib=8,72 A° se ftiene: b

ot = 105° 49’ o = T4° 28’
B* = 86° 57 B =179° 16’
c =914 A° y = 90°

V = 536,37 : 102+ cm.3

Puesto que el valor teérico de o* més de acuerdo con el experimental se deduce pama
el pardmetro b = 8,72 A°, las dimensiones de la celda unidad del dcido hemimelftico.
2H,0 serdn :

a =712 + 0,02 A° o = 74° 28’
b =872 £ 0,02 A° B =179° 16
c= 914 + 0,02 A° vi= B0
que nos da un volumen y masa para la celda de:
V = 536,38 :+ 10-24 c¢m.3 M = 827,90 - 10-24 gr.

con un numero de moléculas N = 2,02 ~~ 2, siendo el valor de la dengidad roentgeno-
gréafica o, = 1,5248 gr./cm.3,

Discusién de los resultados

Con el trabajo realizado hasta aqui, se ha llegado a la determinacién de los grupos
espaciales correspondientes a los tres dcidos bencenotricarboxilicos estudiados y a la
asignacién completa de indices en los diagramas de Debye-Scherrer. Los resultados ob-
tenidos se pueden resumir en la siguiente tabla:

Tasra X
Trimésico Trimelitico Hemimelitico
a = 26,52 £ 0,04 A° a = 16,13 £ 0.02 A° a="712 + 0,02 A°
b =16,48 + 0,02 A° = 12,39 + 0,02 A° b =872 + 0,02 A°
c = 26,58 £ 0,04 A° ¢c= 9,10 £ 0,02 A° ¢c=9,14 £ 0,02 A°
o = T4° 28’
B = 91° 58 B = 100° 41 B =179° 16’
v = 90°
Ce 6 C2/c I12/a Pl
1,4450 gr./cm.3 1,5574 gr./cm.3 1,5435 gr./cm.8
N = 48 moléculas N = 8 moléculas N = 2 moléculas

Como se vio en la introducci6n, todas las propiedades fisicoquimicas del 4cido tri-
mésico conducen a la existencia de una estructura abierta, con gran mimero de puen-
tes de hidrégeno, tal como el andlisis estructural de Ducmamp confirma plenamente, ya
que “una estructura satisfactoria se obtuvo con una unidad asimétrica (C,,0,.H,,)
formada por seis moléculas que se distribuyen en dos grupos de tres moléculas préc-
ticamente paralelas. Todas las moléculas estdn conectadas por pares de enlaces de hi-
drégeno, carboxilo a carboxilo, formando una distribucién continua de anillos de seis
moléculas semejantes a los de un “rete de alambre”. Estas distribuciones se doblan
para adoptar dos direcciones formando una especie de hojas superpuestas. Las distri-
buciones en diferentes orientaciones se interpenetran, tres moléculas en una orientacién
pasando a través de agujeros de tres distribuciones paralelas en la orientacién alterna

— 194 —




ESTUDIO CRISTALOGRAFICO POR DIFRACCION DE RAYOS X

para producir una red mezclada. Un tercio de los dtomos de hidrégeno carboxilico se
hall6 que se encontraban desordenados™™.

Por ofra parte, los puentes de hidrégeno en los é4cidos bencenocarboxilicos!?, estdn
de tal forma que todos los 4tomos que los forman son coplanares, adoptando la distri-
bucién que se muestra en la fig. 2.

2616

0--- =—HO 1058 : 2645
5 O sinie <—HO-]
Cﬂgc/ml 2310 s
],517\1306 ;;6\1313
OH—vz“'ogé',_z — -+ (0-0379
i ok 9,'-7!’ S
0288 HO 1o0c g o
c _]_2_’-6//1.217 o 2% 2
147\ 1316 T
OH,—-zsaaO 0360 OH—: = : 0-0331
1099 1085°

Fig, 2

Asf, pues, no hay duda de que las propiedades del &cido trimésico dependen funda-
mentalmente de los puentes de hidrégeno que contienen dicha sustancia en estado cris-
talino.

En cuanto al dcido hemimelitico, que cristaliza con dos moléculas de agua, y, cuya
celda elemental contiene dos grupos C,0.H - 2H, 0 y posee ceniro de simetria, segu-
ramente enlazard las dos moléculas de agua a sus grupos carboxilos mediante puentes
de hidr6geno. Ahora bien, del diagrama de Debye-Scherrer de este compuesto se deduce
que los planos (022) son los de mayor contribucién a la intensidad, sin embargo tal
plano posee en su dimensién mejor una longitud de 7,12 A°, valor que no es capaz de
acomodar en cadena

cuya longitud es 12,3 A°.

Dado que los planos de méaxima densidad estin situados a una distancia de 3,563 A°,
es lo mas probable que dentro de la celda unidad, las dos moléculas de 1, 2, 3 benceno-
tricarboxilico estén cada una en un plano de los enteriormente citados, y, que el enlace
entre los dos se produzca a través de una molécula de agua.

Existe una confirmacién indirecta de la interpretacién dada de que las dos moléculas
de C,0 H, no estdn unidas enfre si por puentes de hidrégeno.

F. Gonzirez SinceEZ? en su frabajo sobre los espectros infrarrojos de los 4cidos ben-
cenotricarboxilicos dice : “Los espectros infrarrojos de los dcidos bencenocarboxilicos
anhidros muestran una banda de intensidad variable entre 935-900 cm.—!. De lo an-
terior se deduce que los &cidos carboxilicos examinados en estado g6lido, es decir, en
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estado de asociados como dimeros o polimeros, dan una banda caracteristica del COOH
en las proximidades de 900 cm~-'”. Esta banda que aparece también en otros 4cidos
carboxilicos, le lleva a afirmar que: “Los 4cidos bencenccarboxilicos hidratados no dan
ninguna banda cerca de 900 em.=!, lo que nos permite opinar decididamente sobre su
origen”.

‘La banda cerca de 935-850 em.—! de los dcidos carboxilicos examinados en estado
s6lido, la atribuimoes a las vibraciones de deformacién no planares del OH en el anillo
dimérico”. (Como ya senalamos, esta banda desaparece en los hidratos. La causa de esta
desaparicién debe de encontrarse en que la asociacién de los édcidos hidratados no se
produce directamente por los OH de los grupos carboxilos sino por intermedio de las
moléculas de agua, lo que altera el fipo y la intensidad de los puentes de hidrégeno.
Al cambiarse el tipo de asociacién y desaparecer el anillo dimérico, desaparece también
esta banda, lo que confirma el origen propuesto”.

Efectivamente, en el espectro de infrarrojo del hemimelftico hidratado en estado
s6lido, no aparece la banda en aproximadamente 900 cm~!, lo que revela que no hay
puentes 4cido-écido.

Dada la posicién contigua de los —COOH sobre el anillo de benceno que existe en
el hemimelitico, es probable que la causa que impide a sus carboxilos unirse por puen-
tes de hidrégeno, sea el “apifiamiento” que se traduce en que ninguno de ellos pueda
ser coplanar con el otro. En estas condiciones no serfa posible que se produjese una
estructura regular compacta si existiesen puentes de hidrégeno carboxilo-carboxilo. Por
esta razén, la saturacién de las fuerzas residuales de enlace de los COOH tiene que
realizarse con moléculas de H 0. En este sentido hay que considerar que el —COOH en
posicién 2, posiblemente estd libre, lo que apoyaria el hecho de la aparicién en el es-
pectro infrarrojo del C H, (COOH), - 2H,0 de dos handas en 3.436-3.497 cm.—! agigna-
das por GonzArez SincmeEz a § OH del —COOH libre, tales bandas no aparecen ni en el
trimelitico ni en el trimésico. Aparecen de nuevo en el melofdnico, piromelitico hidrata-
do y pentacarboxilico en los que el “apifiamiento” existe también.

La colocacién del 4cido trimelitico en su celda es un problema més diffcil, pues el
niimero de moléculag no permite, en principio, imaginar su disposicién definitiva. Aho-
ra bien, un hecho inferesante mercce mencién. Si se comparan los espaciados de ma-
yor contribucién a la intensidad, se encuenfran:

Tasra XI
| d(A°) hkl
Trimésico f 3,67 710
Trimelitico 3,60 202
Hemimelitico 3,563 022

espaciados del mismo orden de magnifud y valor semejante al encontrado entre anillos
bencénicos en el grafito. Este hecho revela sin duda que sobre estos planos se agrupan
laz moléculag para cada uno de los dcidos en estudio.

A la vista de las superficies ocupadas por dichos planos reticulares se pueden dedu-
cir las siguientes consecuencias:

1.°) En el caso del 4cido frimésico, la superficie del plano (710) contenida en la
celda elemental es suficiente para acomodar el exdgono formado por seis moléculag de
dcido. De esta forma ocupan la celda 42 moléculas sobre los siete planos que contiene,
y las restanfes seis moléculas se acoplardn sobre dichos planos. Esta estructura tan
compleja, con tanto puente de hidrégeno favorece la fuerte tendencia de este compues-
to a la formacién de maclas, originando una pseudosimetria exagonal.

El espectro infrarrojo del trimésico s6lido abona también por esta estructura pues
en él hay una banda en 922 cm.~! (5 OH (COOH dimero)) y no hay banda en 3.400 cm.~!
(5 OH (COOH libre)).
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2.°) Para el 4cido ftrimelitico se podrfa pensar en una unidad asimétrica formada
por cuatro moléculas dispuestas en el plano (202) segin la distribucién de la fig. 3,
sin embargo tal distribucién no es posible, teniendo en cuenta sus correspondientes
superficies.

Ahora bien, feniendo en cuenta que en el diagrama de Debye-Scherrer, de este com-
puesto, no aparecen ofras reflexiones fuertes podemos pensar que la unidad asiméfrica
formada por estas cuatro moléculas podria estar en el plano (102), cuya reflexién se
extingue dadas las condiciones del grupo espacial a que perfenece este dcido.

Una distribucién de moléculas de trimelitico segin el modelo anterior se comprueba
con los espectros infrarrojos de este dcido en estado sélido, pues aparece una banda
en 922 em.=! (§ OH (COOH dimero)) y no aparece banda alguna en 3.400 cm.=! (§ OH
(COOH libre)). El que no requiera moléculas de agua para saturar la valencia residual
de los carboxilos parece que abona también la formacién muy extensa de puentes de
hidr6geno entre grupos —COOH a lo largo de toda la red.

3.9 En el écido hemimelilico, el plano reticular con mayor densidad es el (022)
cuya mitad de superficie es capaz de acomodar una molécula con su correspondiente
agua de cristalizacién.

) LU /

O— O —_

/ - -

(_,——’ Q__I

A L
e
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Estas conzideraciones, sobre la posicion de las moléculas en la celda de los écidos
estudiados se pueden ampliar a los restantes dcidos bencenocarboxilicos, baséndonos en
sus diagramas de Debye-Scherrer. Las reflexiones mdg intensas para estos compuestos
corresponden a los espaciados de planos reticulares que se resumen en la tabla XII.

Tasra XII

Acido /I dA°
Ftélico 100 3,30
Tsoftédlico 100 3,18
Tereftalico 100 3,20
Hemimelitico 2H,0 100 3,53
Trimelitico 100 3,60
Trimésico 100 3,67
Piromelitico 2H,0 100 3,44
Melofdnico 2H,0O 100 3,42
Prenitico = 100 3,76
Pentacarboxilico 2H,0 100 3,86
Melitico 5 100 4,09
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En esta tabla podemos apreciar que los espaciados entre planos reticulares corres-
pondientes a reflexiones mds intensas, oscilan alrededor de 3,53 A°. Para los 4cidos
bencenotricarboxilicos en estudio, la orientacién planar de sus moléculas satisface cua-
litativa y cuantitativamente esta estructuracién interna ; en los restantes 4cidos parece
que se conserva la misma tendencia.

Esta disposicién de las moléculas sobre planos reticulares bien determinados, hace
pensar en la idea de enfocar el estudio completo de sus estructuras cristalinas por me-
dio de la utilizacién de anélogos 6pticos, método iniciado por Bracg!® y desarrollado
fundamentalmente por Lipson'4, quien demostré su utilidad en la determinacién de
estructurasis. Asi, con el aparato de convoluciones se podria obtener lo que ROBERSTON
denominé “proyecciones de Patterson teéricas”, e incluso sintesis de Fourier mediante
el fotosumador armoénico de Ellerte.

En el caso que se nos presenta, bastaria evidenciar los fenémenos de difraccién de
rayos X por los cristales y la difraccién de la luz por redes bidimensionales semejantes
a las supuestas dentro del cristal’”. Este método de trabajo permitirfa llevar a escala
macroscpica un cierto nimero de fenémenos que se verifican a escala atémica, vy,
usando esta analogfa, dar un cardcter mds intuitivo al problema de la deduccién de
la estructura cristalina.

Conclusiones

1.2 Se han estudiado mediante difraccién por rayos X los tres 4cidos benceno tri-
carboxilicos utilizando los métodos de “cristal tinico”, diagramas giratorios y diagra-
mas de Weissenberg. En todos los casos se han introducido las correcciones adecuadas
para obtener de los datos experimentales los valores més refinados posibles de las cons-
tantes reticulares. En el caso del 4dcido hemimelitico cristalizado con dos moléculas de
agua, se complementé el estudio por rayos X con la determinacién goniométrica de las
caracteristicas morfol6gicas de sus cristales.

9.2 Hemos determinado las densidades de cada uno de los &cidos bencenotricarbo-

xilicos, obteniendo :

Acido Densidad
Trimésico 1,4450 gr./cm.? (16°C)
Trimelitico 1,5770 gr./em.? (24,5°C)
Hemimelitico - 2H,0 1,56435 gr./cm.3 (24,5°C)

3.2 Para el 4cido trimésico las constantes cristalogrdficas determinadas son:

a=2652A° b = 16,560 A° c = 26,61 A°
@ =y = 90° B = 91° 58
Sistema monoclinico: Grupo espacial C, 6 C2/c
Nuimero de moléculas en la celda unidad = 48

Estos valores concuerdan muy bien con los determinados por D. J. Ducmamp cosa
que, en cierto modo, nos asegura la precision de nuestros métodos de medida.

42 El 4cido trimelitico tiene por constantes cristalograficas:

a = 16,13 A° b=12,39 A° c=910A°
@ =y =90° B = 100° 41’

Sistema monoclinico: Grupo espacial 12/a
Nimero de moléculas en la celda unidad = 8
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5.* Las constantes cristalogrédficas para el 4dcido hemimelftico cristalizado con dos
moléculas de agua son:

a=7,12 A° b =872 A° c =914 A°
o= T4° 28 B =19° 16 y = 90°

Sistema friclinico: Grupo espacial P 1
Numero de moléculas en la celda unidad = 2.

6.2 Con los valores deducidos de las constantes ecristalograficas se han interpretado
los diagramas de Debye-Scherrer de estos deidos, asignando los indices a las reflexiones
obtenidas. En la tabla XIII se dan los correspondientes a las cuatro reflexiones de mé-
xima intensidad (norma HRF de A.S.T.M.)

Tasra XIII

Acido trimésico

d A° 3,673 8,20 13,25 7,01
11, 100 86 83 53
(hk1) (710) (020) (200) (022)

Acido trimelitico

d A° 3,608 6,141 3,132 3,768
11, 100 33 16 12
(hk1) (202) (020) (500) (320)

Acido hemimelitico 2H,0

d A° 3,534 3,622 3,453 2,260
I/I, 100 47 21 21
(hkl) (120) (102) (200) (311)

A la vista de los valores anteriores, es evidente la conclusién que de los planos de mé-
xima densidad electrénica corresponden a espaciados muy semejantes en los ftres &ci-
dos estudiados. Dada la forma presumiblemente plana de sus moléculas, no es dema-
giado arriesgado deducir que los citados planos de méxima densidad contendrdn a los
anillog bencénicos de los compuestos.

7.2 Con todos los datos obtenidos, se intenta interpretar la distribucién y posicién
de las moléculas en las correspondientes celdas elementales, viendo que existe un acuer-
do cualitativo entre tales distribuciones, y, los datos fisico-quimicos y espectrales (in-
frarrojo) de estos cuerpos existentes en la literatura.

8.* Encontrando que en los restantes &cidos bencenocarboxilicos existe un espacia-
do entre planos de méxima densidad electr6nica semejante en valor al hallado en los
bencenotricarboxilicos, suponemos que la distribucién de las moléculas en sus corres-
pondientes celdas elementales serd anédloga en todos los casos, a la supuesta para los
dcidos aqui estudiados (los anillos bencénicos estardn situados en planos paralelos o
casi paralelos). Este hecho sugiere un método de ataque a la determinacién de la es-
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{ructura cristalina en la serie de los bencenocarboxilicos, basado en lo que se llama
método de anélogos Opticos. Sin duda, tal método facilitaria la préctica de las sintesis
de PartErsox y FOURIER en estos casos.
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