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Orbital entanglement and electron localization in quantum wires
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We study the signatures of disorder in the production of orbital electron entanglement in quantum wires.
Disordered entanglers suffer the effects of localization of the electron wave function and random fluctuations in

entanglement production. This manifests in the statistics of the concurrence, a measure of the produced two-qubit
entanglement. We calculate the concurrence distribution as a function of the disorder strength within a random-
matrix approach. We also identify significant constraints on the entanglement production as a consequence
of the breaking/preservation of time-reversal symmetry. Additionally, our theoretical results are independently

supported by simulations of disordered quantum wires based on a tight-binding model.
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I. INTRODUCTION

Quantum entanglement (nonclassical correlations between
separated partners) has been identified as a key resource
for emerging information technologies [1,2], especially in
modern quantum electronics. In addition, the concept has
been remarkably useful to shed new light on well-studied
fields such as mesoscopic transport. Electron entanglement
can be produced either by interacting mechanisms [3-8]
(e.g., exchange coupling and superconducting pairing) or
noninteracting ones [9-15] (based on exchange correlations
in scattering processes from external potentials). Electronic
devices such as quantum dots and quantum wires have
been proposed to produce entanglement of electrons without
interactions [16,17]. The efficiency of these noninteracting
entanglers depends on the scattering of electrons travel-
ing through the system. Thus, features of the scattering
matrix S associated with the entangler, such as symme-
tries and dimensionality, determine the degree of electron
entanglement.

Effects of quantum chaotic scattering on orbital entangle-
ment production in quantum dots have been studied in the
past [16,18-23]. In these ballistic microstructures, electrons
are elastically scattered, while the chaotic character of the
scattering produces stochastic fluctuations of the orbital entan-
glement. Therefore a statistical analysis of the entanglement
is required. In essence, those works addressed the effect of
the underlying classically chaotic dynamics of the dot on
entanglement production [24].

In contrast to the ballistic scattering in quantum dots, in
which electrons are scattered off the dot boundary, in disor-
dered quantum wires electrons suffer multiple scattering, e.g.,
from impurities. Thus, if a quantum wire is used as entangler,
a new ingredient is expected to play a relevant role in the
description of the properties of the electron entanglement: the
localization length of the electron wave functions, determined
by the disorder strength. Actually, very recent experiments [25]
have opened the possibility of producing entangled electron
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pairs in quantum conductors from single excitations, named
levitons, in the Fermi sea [26,27].

In general, disorder effects in quantum electronic devices
have been of interest from both fundamental and applied points
of view. For instance, the presence of disorder in a system leads
to the widely studied phenomenon of Anderson localization,
a spatial localization of the electron wave function. Lattice
defects and impurities are two examples of sources of disorder,
which may be unavoidable in electronic systems. Therefore,
disorder effects in phase-coherent quantum transport have been
of particular interest. In addition, the presence of disorder
gives a stochastic character to the electron scattering processes
and calls for a statistical analysis of scattering-dependent
phenomenon, such as the production of orbital entanglement.

Random-matrix theory has been successfully applied to
study different statistical properties of scattering in disordered
systems [28,29]. In particular, by using a scattering approach
to the problem of quantum transport (Landauer-Buttiker
approach) several electronic properties of disordered quantum
wires have been analyzed within a random-matrix approach.
In this theoretical framework, a Fokker-Planck equation for
the probability density of the transmission eigenvalues of a
quantum wire of length L and width W has been derived [29].
It turns out that this transmission probability depends on only
a single physical parameter: the localization length.

In this work, the statistical properties of the production of
orbital entanglement in disordered quantum wires are studied.
We adopt a random-matrix approach to study the distribution
of an entanglement indicator: the two-qubit concurrence, C.
We show the evolution of the concurrence distribution as
a function of the disorder strength for different symmetry
classes: broken and preserved time-reversal symmetry (TRS).
As we show below, the presence of TRS is crucial for
the production of highly entangled states. In general, as
the strength of disorder decreases, the possibility of having
highly entangled states increases. However, for entanglers
with broken TRS the probability distribution of concurrence
vanishes at maximum entanglement (C = 1), for any value
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FIG. 1. Setup of a quantum wire entangler of length L. The left
(1 and 2) and right (3 and 4) ideal leads are attached to a disordered
region [shaded (gray)]. An electron leaving the quantum wire to the
left (right) side can escape through the perfect lead 1 or 2 (3 or 4),
defining a two-level quantum system.

of the strength of the disorder. All our analytical results are
supported by independent numerical simulations based on a
standard tight-binding Hamiltonian model.

This paper is organized as follows: In Sec. II we introduce
the setup, followed by a brief discussion of noninteracting
entanglement production and a precise definition of the
concurrence. In Sec. III, we elaborate on the statistics of
transmission eigenvalues in disordered systems to calculate
the concurrence distribution. After a brief introduction of our
numerical model, in Sec. IV we present the results of our
simulations and compare them with the theoretical predictions
obtained in the previous section. Finally, a closing summary
and discussion are given in Sec. V.

II. ENTANGLER SETUP

Our setup is sketched in Fig. 1. Two single-channel leads
are attached at the ends of the wire. Left and right leads are
connected to electron reservoirs (;, and wg, respectively. This
resembles the orbital entanglers proposed in Refs. [18-20],
provided the chaotic quantum dot is replaced by a disordered
quantum wire. A low bias voltage between reservoirs leads to
a coherent current along the wire from left to right. Exchange
correlations due to electron scattering within the wire create
the conditions for the production of entanglement between
transmitted (to the right) and reflected (to the left) electrons,
as we show in the following.

We start by considering an uncorrelated two-particle state
incoming from the left reservoir in Fig. 1:

|Win) = alal|0). (1)

The af creates an incoming electron excitation in lead i = 1,2
above the Fermi sea |0) at zero temperature. For simplicity, we
disregard spin degeneracy (equivalently, one can consider spin-
polarized incoming electrons). Let S be the wire’s scattering
matrix relating incoming and outgoing states. In general, the
S matrix can be written as

<r t/)
S = ). @
t r

where r, r', t, and ¢’ are 2 x 2 reflection and transmission
matrices, respectively. In the presence of TRS, S is unitary
and symmetric. Instead, for broken TRS (due to, e.g., the
application of a magnetic flux) the S matrix is only unitary.
The outgoing state |Wq,) is a coherent superposition of
orbital channels determined by the single-particle scattering
matrix S. |W,y) can be split into three components [30]
representing sectors of the Fock space with different local
particle numbers at the left (ny) and right (nr) ends of the
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wire such that the total particle number remains constant
(nL+nr =2):

[Wour) = Z InL.nr) =12,0) +10,2) +|1,1). (3

nL,nr

The only sector contributing to the orbital entanglement is the
one with equal occupancy at both ends of the wire. This is

given by [1,1) = Y, (rpity2 — t7,2)bhby|0), with p = 1,2

and g = 3,4, where b! creates an outgoing electron excitation
inlead j = 1, ...,4. The |2,0) and |0,2), instead, are separable
in terms of the bipartition left-right [16,18-20]. An electron
leaving the quantum wire to the left side can choose between
lead 1 and lead 2 for escaping (see Fig. 1). This defines a
two-level quantum system or qubit. The same happens with
an electron escaping to the right side through leads 3 and
4. As a consequence, we conclude that component |1,1) in
Eq. (3) corresponds (up to a normalization factor) to a two-
qubit entangled state.

An efficient measure for quantification of two-qubit entan-
glement is the concurrence C. This is defined as [31]

C(p) = max{O,Xl — )\.2 — )\.3 — )\.4} (4)

The A;’s are the eigenvalues (in decreasing order) of the
matrix pp, where p is a 4 x 4 two-qubit density matrix (p =
[1,1)(1,1]/¢1,1]1,1) in our case) and p = (o, ® 0y)p*(0y ®
o0y), with o, the second Pauli matrix. The concurrence runs
from O to 1, corresponding to separable and maximally entan-
gled (Bell) states, respectively. Those states with 0 < C < 1
are partly entangled states. It turns out that the concurrence is
determined by the scattering amplitudes and can be written in
terms of the transmission eigenvalues 7; and 1, of the product
1t as [16,18]

_2ynd —n)nd —n)
n4n-2un

C

&)

Note that the entanglement maximizes (C = 1) for 7y = 1, and
minimizes (C = 0)forty =0and1t, = lort; = land 1, = 0.

As we have mentioned, the presence of disorder in the
entangler gives a stochastic character to the scattering pro-
cesses and therefore to the transmission. Thus, from Eq. (5),
the statistics of the concurrence is determined by the statistical
properties of the transmission eigenvalues.

III. STATISTICS OF TRANSMISSION EIGENVALUES
AND CONCURRENCE

Several statistical properties of the transmission eigen-
values of the transfer matrix 77! have been investigated
in disordered quantum wires within a scaling theory of
localization. By considering a disorder wire of length L and
width W with perfect leads attached at the ends (each one
supporting N transverse modes or channels), it has been
found that the distribution probability of the transmission
eigenvalues P(t,7p,...,Ty) is determined by a Fokker-
Planck equation. This diffusion equation, also known as
the Dorokhov-Mello-Pereyra-Kumar (DMPK) equation, is an
evolution equation for P(7y,7;,...,Ty) as a function of the
length of the system [29,32]. Exact solutions of this equation
are known for Hamiltonian systems with broken TRS [33,34]
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(B = 2). When the invariance is preserved (8 = 1), instead,
only approximated solutions are known for the insulating and
metallic regimes.

To calculate the concurrence distribution we use an expres-
sion for Pg(t1,72, ..., Tx) which has been shown to be a good
approximation from the metallic to the insulating regimes for
both § = 1 and B = 2 symmetries [35-37]. Actually, to study
the concurrence, Eq. (5), we need the joint distribution of the
transmission eigenvalues t; and t,, only. For convenience, we
introduce a change of variables, 7; = 1/ cosh® x;. Thus, the
joint distribution Pg(x1,x;) reads

Pg(x1,x2) = N(s)|(sinh® x; — sinh® x5)(x] — x3) |ﬂ/2

2
X 1_[ [exp (— (B +2)x7 /2s)(x; sinh 2x;)'/?],

i=l1
(6)

where s = L/ is the length of the system in units of the mean
free path [ and A/(s) is a normalization constant. We note
that the complete statistics of the transmission eigenvalues is
determined by the sole parameter s.

We are now ready to calculate the concurrence distribution
Pg(C). By implementing the change of variables 7; — x; in
Eq. (5), the concurrence distribution is determined by

Pﬂ(C) = //dxldszﬁ(xl,xz)

2 sinh x; sinh x, ] o

x 8 |:C - —
sinh” x; 4 sinh” x,
One of the integrals in Eq. (7) can be performed analytically,
finding

Pg(C) = N(s) /0 [8(r+(x2)) + g(r—(x2))ldx2,  (8)

where we have defined r, and r_ as

r4(x2) = sinh /(K sinh x,), )
with
1+/1-C2
K = — (10)

Also, the function g(r) in Eq. (8) is defined as
g(re) = VE(K? + 12|(K% — 1)| 6212

2
xJrixa|x3 — 2| exp [ - '3;; (r: +x§)]

( cosh? x,
XN\ ——————
1 + K?sinh” x,

Thus, the concurrence distribution can be obtained by numer-
ical integration of Eq. (8) for any given value of s. In the
ballistic limit (s < 1), however, we can analytically perform
the integrals in Eq. (7), finding simple expressions for both
symmetry classes, 8 = 1 and 8 = 2:

Pi(C)=2C (12)

for entanglers with preserved TRS, and

Py(C) =3Cy/1 = C? (13)

1/4
) sinh?*# x,. (11)
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for entanglers with broken TRS. From the above distributions,
Egs. (12) and (13), we readily obtain the first moments (mean
values and variances) of the concurrence in the ballistic limit:

2/3 for =1,
C) = (14)
37/16 for B =2,
while for the variances we have
1/18 for =1,
var(C) = / ) p (15)
2/5 —97~/256 for B =2.

Interestingly, we point out that the average concurrence,
Eq. (14), in the ballistic limit is much higher than in quantum
dot entanglers [38], in which electrons undergo ballistic
chaotic scattering.

In the next section, we discuss and verify our results
[Egs. (8), (12), and (13)] with the support of independent
numerical simulations based on a tight-binding model.

IV. NUMERICAL SIMULATIONS

We now introduce a numerical model to verify the theo-
retical predictions in the previous section. We consider the
standard tight-binding Hamiltonian given by

H =Y eclci— Y (tcle; +he), (16)
i (ij)
where ¢; is the on-site energy, #; ; represents the hopping
element between nearest-neighbor sites, and ciT (c;) is the
creation (annihilation) operator for electron excitations at site
i. In this model, the disorder is implemented by random on-site
energies, sampled from a constant distribution in the interval
[—w/2,w/2]. In this paper, the statistics of the concurrence
are collected from 20 000 different disorder realizations.
Disordered quantum wires can be characterized by the
average dimensionless conductance (G), a standard quantity
in quantum transport. We recall that, within the scattering
approach to electronic transport, the dimensionless conduc-
tance G is given in terms of the transmission matrix ¢ by
G = trace(rt1). In our numerical simulations, we can produce
an ensemble of quantum wires with a desired value of (G)
by controlling the degree of disorder w ((G) is a decreasing
function of the disorder strength). Thus, we compare the
concurrence distributions from the numerical simulations with
the corresponding theoretical predictions, both distributions
having the same value for the average conductance.

A. Wire entangler with TRS

First, we consider the case of quantum wires with preserved
TRS, symmetry class § = 1. In Fig. 2, we show the concur-
rence distribution for different values of the disorder strength
w. The histograms correspond to the distribution obtained
from the numerical simulations and the solid lines are the
theoretical predictions. In Figs. 2(a) to 2(d), the degree of
disorder is such that (G) = 0.2, 0.5, 1.0, and 1.9, respectively.
We see in Fig. 2 that large values of the concurrence (C ~ 1)
are statistically favored as the disorder decreases [i.e., from
Figs. 2(a) to 2(d)]. In particular, in Fig. 2(d), we have plotted
our analytical expression, Eq. (12), valid in the ballistic regime
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FIG. 2. (Color online) Concurrence distributions for quantum
wires with TRS (8 = 1). The strength of the disorder decreases from
(a) to (d): w = 2.01, 1.36, 0.86, and 0.20, respectively. From (a) to
(d), the values of the average conductance are (G) = 0.2, 0.5, 1.0,
and 1.9. Solid lines in (a), (b), and (c) were obtained from Eq. (8)
with s = 5.4,2.4, and 0.9, respectively, while the solid line in (d) was
computed from Eq. (12). Histograms were obtained from numerical
simulations. A good agreement between theory and numerics is seen
in all cases.

limit. In all cases, the agreement between numerics and theory
is very good. We, further, note the possibility that maximally
entangled states are produced in all cases [note that P(C) is
finite at C = 1].

B. Wire entangler with broken TRS

We implement the symmetry class 8 = 2 (broken TRS) by
introducing in our tight-binding calculations a magnetic field
perpendicular to the wire. In Fig. 3 we show the concurrence
distributions for different degrees of disorder, organized as in
Fig. 2, from strong to weak strengths of disorder. In order to
see the effects of breaking the TRS, the values of the strength
disorder in Fig. 3 are such that the values of the average
conductance are the same as in the previous case (8 = 1),
ie., (G) =0.2,0.5, 1.0, and 1.9. As we can see, once again,
a very good agreement is found between numerical results
(histograms) and theoretical predictions (solid lines) in all
cases.

Similarly to the case 8 =1, in Fig. 3 we find that
the statistical distribution favors largely entangled states for
weakly disorder wires. In spite of this, the production of
maximally entangled states appears now to be forbidden due
to the broken TRS [P,(C) vanishes at C = 1 in all panels in
Fig. 3], in contrast to the symmetry class § = 1, in which
P;(C) is finite at C = 1. This difference between 8 = 1 and
B =2 symmetries resembles those observed in chaotic dot
entanglers [20].
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FIG. 3. (Color online) Concurrence distributions for quantum
wires with broken TRS (B8 =2). The strength of the disorder
decreases from (a) to (d): w = 2.05, 1.31, 0.76, and 0.15, respectively.
From (a) to (d), the values of the average conductance are (G) = 0.2,
0.5, 1.0, and 1.9. Solid lines in (a), (b), and (c) were obtained from
Eq. (8) with s = 6.5, 2.7, and 1.0, respectively, while the solid line in
(d) was computed from Eq. (13). Histograms were obtained from the
tight-binding numerical simulations with a perpendicular magnetic
field: (a), (b), (c) eBa?/h =1 (a being the lattice spacing) and
(d) eBa®/h = 0.5. For all cases we see a good agreement between
theoretical and numerical results.

V. SUMMARY AND CONCLUSIONS

Effects of disorder in quantum electronic devices play
a central role. For instance, the presence of disorder in a
quantum wire produces the spatial localization of the electron
wave function—Anderson localization—and gives a random
character to the electron scattering. As a consequence, a
statistical analysis of physical quantities that depend on
scattering processes is required.

Here, we have addressed the production of two-qubit orbital
entanglement in disordered quantum wires. The concurrence
is a measure of the degree of entanglement, which depends
on the scattering matrix through the transmission eigenvalues.
Since the disorder strength determines the degree of local-
ization of the electron wave functions, it is expected that
the entanglement production is affected too. We have used
a random-matrix approach to study the statistical properties of
the concurrence. This theoretical framework has been used
to investigate some statistical properties of phase-coherent
transport, such as the conductance through quantum wires.
The concurrence is, however, a more complex quantity than the
conductance, in the sense that it involves correlations between
the transmission eigenvalues 7 and 7, which are not present
in the conductance. We thus have further studied the validity
of the random matrix approach to quantum phenomena.

We have analytically calculated the complete concurrence
distribution of a quantum-wire entangler, for both symmetries:
broken and preserved TRS. Effects of different degrees of
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electron localization are revealed by showing the evolution
of the concurrence distribution with the strength of the
disorder. We have found that disorder statistically hinders the
production of highly entangled states. However, the possibility
of producing maximally entangled states is fully determined by
TRS, independently of disorder. This coincides with previous
results on orbital entanglement production in chaotic quantum
dots [20], although the concurrence distributions of chaotic
and disordered entanglers are completely different. Thus, TRS
appears as a fundamental ingredient to produce maximal
orbital entanglement. Also, by comparing the concurrence
averages of quantum wires and quantum dots, it is interesting
to note that quantum wires in the ballistic regime [system
length much shorter than the mean free path; Figs. 2(d)
and 3(d)] can produce, on average, larger orbitally entangled
states than in quantum dots with (ballistic) chaotic scattering.

PHYSICAL REVIEW B 89, 075429 (2014)

Additionally, our theoretical results have been supported by
numerical simulations implemented in a tight-binding model,
showing an excellent agreement.

Finally, we note that our predictions could be evaluated by
implementing multiple sources of single-particle excitations
(levitons) [26,27]. Using quantum wires, Dubois et al. [25]
have opened the possibility of producing entangled pairs
by applying voltage pulses. The degree of entanglement
could thus be determined by introducing some kind of state
tomography [39,40].
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