A primality test for Kp^n+1 numbers
Resumen: In this paper we generalize the classical Proth's theorem and the Miller-Rabin test for integers of the form N = Kpn +1. For these families, we present variations on the classical Pocklington's results and, in particular, a primality test whose computational complexity is Õ(log2 N) and, what is more important, that requires only one modular exponentiation modulo N similar to that of Fermat's test.
Idioma: Inglés
DOI: 10.1090/S0025-5718-2014-02849-4
Año: 2015
Publicado en: MATHEMATICS OF COMPUTATION 84 (2015), 505-512
ISSN: 0025-5718

Factor impacto JCR: 1.464 (2015)
Categ. JCR: MATHEMATICS, APPLIED rank: 39 / 254 = 0.154 (2015) - Q1 - T1
Factor impacto SCIMAGO: 1.521 - Algebra and Number Theory (Q1) - Computational Mathematics (Q1) - Applied Mathematics (Q1)

Tipo y forma: Article (PostPrint)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2021-01-21-10:56:45)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2016-01-21, last modified 2021-01-21


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)