Resumen: In this paper we generalize the classical Proth's theorem and the Miller-Rabin test for integers of the form N = Kpn +1. For these families, we present variations on the classical Pocklington's results and, in particular, a primality test whose computational complexity is Õ(log2 N) and, what is more important, that requires only one modular exponentiation modulo N similar to that of Fermat's test. Idioma: Inglés DOI: 10.1090/S0025-5718-2014-02849-4 Año: 2015 Publicado en: MATHEMATICS OF COMPUTATION 84 (2015), 505-512 ISSN: 0025-5718 Factor impacto JCR: 1.464 (2015) Categ. JCR: MATHEMATICS, APPLIED rank: 39 / 254 = 0.154 (2015) - Q1 - T1 Factor impacto SCIMAGO: 1.521 - Algebra and Number Theory (Q1) - Computational Mathematics (Q1) - Applied Mathematics (Q1)