Orthorhombic distortion and orbital order in the vanadium spinel FeV2 O4
Resumen: Using synchrotron and neutron diffraction measurements, we find a low-temperature orthorhombic phase in vanadium spinel FeV2O4. The orbital order of V3+ ions with tetragonal normal modes occurs at 68 K, and this leads to an appearance of the pseudotetragonal phase at a noncollinear ferrimagnetic transition temperature. Below the magnetic transition temperature, unconventional behavior of the orbital state of Fe2+ ions accompanied by the emergence of the orthorhombic phase was observed by using the normal mode analysis. We have also studied the structural properties of orbitally diluted materials. The orthorhombic phase, which is significantly affected by the other ions, is intrinsic in FeV2O4. We suggest the orthorhombic phase is strongly related with the double orbital states of Fe2+ and V3+ ions.
Idioma: Inglés
DOI: 10.1103/PhysRevB.93.024108
Año: 2016
Publicado en: Physical Review B. Condensed Matter and Materials Physics 93, 2 (2016), 024108 [9 pp]
ISSN: 1098-0121

Factor impacto JCR: 3.836 (2016)
Categ. JCR: PHYSICS, CONDENSED MATTER rank: 18 / 67 = 0.269 (2016) - Q2 - T1
Factor impacto SCIMAGO: 2.339 - Electronic, Optical and Magnetic Materials (Q1) - Condensed Matter Physics (Q1)

Tipo y forma: Article (Published version)
Área (Departamento): Área Física Materia Condensada (Dpto. Física Materia Condensa.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2020-02-21-13:03:36)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2016-02-04, last modified 2020-02-21


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)