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Resumen: 
Los modelos de peligro de ignición derivado de la acción humana se han centrado 
hasta la fecha fundamentalmente en la identificación de las variables explicativas, 
desde un punto de vista estático o estructural, sin tener en cuenta los ciclos 
temporales que rigen el comportamiento humano. Este trabajo analiza en detalle la 
influencia de la dimensión o variabilidad temporal del comportamiento humano en el 
peligro de incendio, dando un paso más en la precisión de las predicciones, 
desarrollando modelos predictivos más adecuados para la gestión y prevención. Los 
modelos se han creado mediante el algoritmo de Máxima Entropía (MaxEnt), 
utilizando distintos escenarios temporales (mensuales y estacionales) basados en la 
ocurrencia histórica de incendios en el periodo 2008-2011, que permiten analizar la 
variación temporal de los factores socio-económicos (interfases, vías de 
comunicación e infraestructuras y asentamientos) y ambientales (temperatura) 
asociados con la ocurrencia. Las variables explicativas han sido seleccionadas a partir 
de un análisis exploratorio previo mediante regresión logística, que determina su 
participación en cada escenario. Los modelos obtenidos han sido evaluados utilizando 
un método de validación cruzada con los datos de ocurrencia 2008-2011 y mediante 
la comparación de la predicción generada para el año 2012. Los resultados sugieren 
que la calidad de los modelos generados es suficiente con valores de AUC en torno a 
0,8, corroborando la validez de éste nuevo enfoque para el análisis del peligro de 
ignición antrópico, y confirmando la existencia de variabilidad temporal intraanual 
en los factores explicativos. 
 
Palabras clave: incendios forestales, peligro de ignición, causa humana, dimensión 
temporal, MaxEnt, España 
  
Abstract 
Up to know, human caused ignition risk models have essentially been focused on the 
identification of explanatory variables, from a static or structural point of view, 
regardless the time cycles that drive human behavior. This research comprehensively 
analyzes the influence of temporal dimension or variability of human behavior in 
wildfire risk, moving one step farther towards more accurate predictions by 
developing more suitable predictive models for management and prevention. Models 
have been elaborated through the Maximum Entropy algorithm (MaxEnt), using 
different temporal scenarios (montly and seasonly) based on fire occurrence in the 
2008-2011 period. This allows analysis of the temporal variation of socio-economic 
(interfaces, transportation networks, infrastructures and human settlements) and 
environmental (temperature) factors associated with occurrence. The explanatory 
variables were selected by a previous exploratory analysis consisting of logistic 
regression, which determines its participation in each scenarios. The obtained 
models have been assessed using a cross validation method with 2008-2011 
occurrence data and by the comparison with the generated prediction for 2012. 
Results suggest that the quality of the models is enough , with AUC values around 
0.8, supporting the validity of this new approach for the analysis of human caused 
ignition risk, and proving the existence of intra-annual temporal variability in 
explanatory factors. 
 
Key words: wildfires, ignition risk, human caused, temporal dimension, MaxEnt, 
Spain 
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1. Introducción y antecedentes 

Los incendios forestales se constituyen como uno de los riesgos naturales con 
mayor potencial devastador, provocando grandes pérdidas anualmente en todo el 
mundo.  

 
1.1. Interés del  tema de estudio. 

La intensa relación entre el medio mediterráneo, del cual la Península Ibérica 
forma parte, y el fuego es intrínseca (Le Houerou, 1973, 1977; Naveh, 1975). Las 
características climáticas de este espacio condicionan y favorecen la aparición 
ocasional de incendios forestales de origen natural (Hötzl, 2008), que en condiciones 
ideales mantendrían un equilibrio con el medio, contribuyendo a la propia "salud" de 
los ecosistemas. Sin embargo, la actividad del hombre ha modificado este equilibrio 
favoreciendo la aparición de incendios, siento responsable de más del 90% de los 
fuegos (FAO, 2007), más de un 95% en España de acuerdo a las estadísticas nacionales 
(Martinez et al. 2009).  

Las consecuencias de los incendios forestales han sido muy estudiadas, 
destacando la evidente afección sobre las especies florísticas y sobre la fauna que 
habita en el medio natural, con la posible reducción de biodiversidad en el 
ecosistema, la modificación de las características físico-químicas y biológicas del 
suelo, y con ello su respuesta erosiva (Wagenbrenner et al., 2006; Ben-Hur et al., 
2008)  o, a una mayor escala, la emisión de gases de efecto invernadero (van der 
Werf et al., 2010). La pérdida de propiedades e infraestructuras e incluso de vidas 
humanas es otro de los efectos adversos de este tipo de fenómenos. 

Diversos autores han demostrado que la frecuencia de incendios así como la 
superficie quemada, se ha incrementado en la región mediterránea desde 1960 
(Kliot, 1996; Pausas and Vallejo, 1999; Wittenberg and Malkinson, 2009, San-Miguel y 
Camia, 2009). Esto se puede achacar a la acumulación de combustible en áreas 
rurales abandonadas (Shakesby, 2011; Pausas and Fernández-Muñoz, 2012), a la 
silvicultura monoespecífica de especies inflamables (Shakesby, 2011) y al cambio 
climático (Pausas, 2004; Pausas and Fernández-Muñoz, 2012). En este contexto, 
España se erige como uno de los grandes afectados dentro del continente europeo, 
habiendo registrado en el periodo 1988-2011 cerca de 400.000 incendios. 
Especialmente dañina es la concentración de los incendios en tiempo y espacio, algo 
que resulta frecuente tanto en nuestro país como en nuestros vecinos europeos, 
dando lugar a temporadas de incendios especialmente cruentas.   

 
Figura 1. Número de incendios en la región Mediterránea. Extraído de San-Miguel y Camia, 

2009. 
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Esta yuxtaposición de pérdidas ecológicas, económicas y humanas junto con el 
aumento de la frecuencia e intensidad de estos fenómenos y ante las expectativas 
climáticas poco halagüeñas para las próximas décadas hacen que investigaciones 
sobre las causas y consecuencias de los incendios forestales sean todavía muy 
necesarias para tratar de minimizar los efectos negativos de estos eventos. Las 
autoridades competentes deben basar sus decisiones en estudios sólidos y detallados, 
lo que justifica la inversión en el mayor conocimiento del origen y la dinámica de los 
incendios forestales. 

El trabajo de numerosos equipos de investigación en todo el mundo, 
fundamentalmente a partir de la década de los 60, ha conseguido arrojar luz al 
conocimiento de sus causas, consecuencias, dinámicas y patrones y es en este 
contexto en el que se enmarca el presente Trabajo Fin de Máster. Se trata de 
continuar una línea de trabajo ya iniciada, incluyendo un enfoque poco desarrollado 
anteriormente, la variación espacio-temporal de la causalidad humana de incendios. 

 
1.2. Evaluación del riesgo de incendio y variable temporal 

La terminología en los riesgos naturales no es siempre clara y globalmente 
aceptada. En el caso del riesgo de incendios forestales lo es todavía menos, 
habiéndose empleado diferentes términos (riesgo, peligro de incendio, probabilidad 
de incendio etc.) para expresar el mismo concepto o variaciones muy ligeras del 
mismo.  

Con objeto de encuadrar este estudio dentro del amplio espectro que engloba el 
riesgo de incendio se va a emplear el esquema de riesgo integrado de incendio 
disponible en Chuvieco et al. (2012) y recogido en la figura 2. En Chuvieco et al. 
(2012) se entiende el riesgo de incendio como un producto de la probabilidad de 
ocurrencia de un fuego, de su propagación y de los daños potenciales que éste pueda 
ocasionar. Dentro de este marco conceptual , el presente trabajo se encuadra dentro 
de la evaluación del peligro de incendio,  concretamente en la probabilidad de 
ignición derivada de la acción humana, aunque utiliza una variable relacionada con la 
humedad del combustible por su elevada relación con las posibilidades de ignición y 
su potencial relación con la ocurrencia derivada de negligencias o accidentes. 

En este sentido, han sido numerosas las investigaciones que han tratado de 
identificar los factores humanos responsables del origen de los incendios además de 
sus distribución espacial (Kalabokidis et al., 2002; Martínez et. al., 2004 y 2009; 
Syphard et al. 2007; Rodrigues y de la Riva, 2014b; Rodrigues et al., 2014). Estos 
estudios han obtenido resultados positivos, logrando identificar las variables más 
influyentes  y así consiguiendo modelizar el peligro de ignición por causa humana. Sin 
embargo, hasta ahora, en la mayor parte de los casos, se ha analizado la causalidad 
humana de forma estática, invariable o estructural, sin discriminar que la actividad 
del ser humano está sujeta a ciclos temporales bien conocidos que pueden tener 
influencia en el peligro de ignición. Parametrizar el comportamiento humano en 
tiempo y espacio resulta complejo, fundamentalmente por la no disponibilidad o 
ausencia de datos (Martell et al., 1987) desagregados temporalmente. Por este 
motivo, el presente estudio se apoya en la dimensión temporal de los incendios para 
derivar el comportamiento humano que los origina, es decir, puede no disponerse de 
información espacializada de, por ejemplo, el número de personas que utilizan los 
caminos forestales cada día, pero si se conoce la localización espacio-temporal 
precisa del inicio de un incendio y la distancia del mismo a un camino forestal.  
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Figura 2. Marco de trabajo para la evaluación del riesgo de incendio integrado 

(Chuvieco et al., 2012) 
 

El comportamiento humano en relación a factores relacionados con el peligro de 
ignición puede ser, en ocasiones, fácilmente predecible, como son las actividades de 
recreo o vacacionales o los trabajos agrarios. Sin embargo, en otras, la complejidad 
es muy elevada, como es el caso de los incendios intencionados o cierta clase de 
accidentes. Este es un hecho que todo intento de modelización del peligro de 
ignición por causa humana debe asumir y que puede dificultar la investigación. 
Hasta el momento, son pocos los autores que han tratado de modelar el riesgo de 
ignición por causa humana desde una perspectiva dinámica, muy probablemente 
condicionados por los aspectos comentados anteriormente. En algunos casos si se ha 
tratado de ajustar un modelo que diera respuesta a la ocurrencia diaria de incendios 
por causa humana (Vega-Garcia et al, 1995), aunque sus objetivos en aquel momento 
fueron menos ambiciosos y se centraron en pronosticar la aparición o no de un 
incendio en una zona determinada mediante un modelo de regresión logística (logit) 
alimentado por cuatro variables independientes. De este modo consiguieron predecir 
el 79% de los días en los que se originó un incendio y un 81% de los que no se inicio un 
incendio por causa humana. En la actualidad, la disponibilidad de productos de alta 
resolución temporal (como MODIS) y la utilización masiva del posicionamiento por 
GPS facilita la investigación de patrones temporales. 
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Esta investigación destaca por tanto por la innovación que supone la introducción 
de modelos temporales de probabilidad de ignición por causa humana, siendo ésta su 
principal contribución y que puede además abrir una posible línea de investigación. 

 
2. Área de estudio 

El área de estudio seleccionada ha pretendido abarcar un área suficientemente 
extensa para tener una muestra de incendios relevante pero sin demorar en exceso 
los cálculos necesarios de los algoritmos empleados. La elección de las provincias de 
Huesca, Zaragoza, Lérida, Barcelona y Tarragona responde al intento de aunar 
distintas realidades dentro de la zona a estudiar, desde el carácter más rural que 
puede predominar en la provincia oscense hasta la gran actividad urbano-industrial 
del litoral barcelonés, desde las grandes cumbres pirenaicas hasta las costas 
mediterráneas. 

 

 
Figura 3. Localización del área de estudio 

 
Esta variabilidad de ecosistemas que se puede encontrar dentro del área de 

estudio se cree que puede ser una sub-muestra representativa para conocer el 
comportamiento de la causalidad humana en los incendios forestales. Este espacio 
responde por tanto a la gran diversidad biofísica de la Península Ibérica, albergando 
climas con patrones semi-oceánicos, de alta montaña, esteparios/semi desérticos y 
propiamente mediterráneos. Además, como ya se ha comentado, es buen 
representante de la diversidad de condiciones socioeconómicas y de los diferentes 
sistemas de producción y estructuras de población y del territorio. El área de estudio 
tiene un total de 59081 km2, lo que representa un 11,7% del total del territorio 
nacional. Una particularidad del área de estudio es que comparte dos husos (30 y 31) 
en la proyección UTM, lo que implica forzar las coordenadas a un único huso para 
poder representar de forma continua el territorio en una aplicación informática. En 
este caso se ha forzado las coordenadas del huso 31 (Cataluña y la parte más oriental 
de Aragón) al huso 30.  
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3. Objetivos 

El principal objetivo de este trabajo es evaluar la influencia de la dimensión o 
variabilidad temporal del comportamiento humano en el riesgo de ignición. Con ello 
se pretende poder dar un paso más en las predicciones de peligro de incendio, 
superando el estatismo de los modelos de peligro humanos disponibles y 
adaptándose, en la medida de lo posible, a la compleja realidad de la actividad 
humana, facilitando así la prevención y gestión del riesgo a las administraciones 
competentes. Este gran objetivo se ha dividido en un conjunto de subobjetivos de a 
cara a la consecución del mismo: 

o Describir los patrones temporales de la ocurrencia de incendios 
causados por el ser humano. 

o Analizar qué factores humanos tienen mayor peso explicativo dentro 
de la zona y periodo de estudio.    

o Estimar la variabilidad temporal de los factores explicativos 
identificados, generando modelos predictivos para los distintos escenarios 
temporales. 

o Prever el peligro por factor humano para cualquier día del año en base 
a unos modelos característicos predefinidos.    

 
La hipótesis de partida es que la dimensión temporal de las actividades 

antrópicas tiene gran importancia en el peligro de incendio por causas humanas, por 
lo que se espera obtener diferencias significativas en los modelos generados para 
distintos escenarios temporales. Con ello se pretende no sólo precisar el "tiempo" 
sino también el "lugar", ya que se espera que las distintas variables explicativas 
actúen de forma heterogénea a lo largo del año, produciendo diferencias espaciales 
en el nivel de probabilidad de ignición. 

 
4. Metodología y materiales 

Este apartado describe detalladamente la metodología empleada en este estudio, 
describiendo el proceso de obtención tanto de las variables dependientes como 
independientes, así como la determinación de los escenarios temporales. La figura 4 
ilustra el proceso seguido hasta la obtención de los distintos modelos temporales. 
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Figura 4. Esquema metodológico. 
 

1. Definición de escenarios temporales 
2. Obtención de información 
3. Espacialización de variables dependientes e independientes 
4. Análisis de colinealidad de las variables independientes 
5. Análisis exploratorio y selección de las variables independientes 

mediante regresión logística 
6. Ajuste y validación de modelos predictivos por medio del modelo de 

máxima entropía (MaxEnt). 
 

4.1. Definición de escenarios temporales 

En un estadio previo al análisis exploratorio que posteriormente se detallará se 
seleccionan cuatro meses representativos de cada estación (enero, abril, agosto y 
noviembre) además de las cuatro estaciones (invierno, primavera, verano y otoño) 
con el fin de poder apreciar el grado de desagregación temporal que puede 
abstraerse de la serie de datos de ocurrencia y por tanto ser empleado para la 
modelización.  

En base a la hipótesis de partida -el peligro de incendio por origen humano varía 
en función de ciclos temporales a los que está sujeta la actividad humana- se decide 
separar para cada una de las submuestras anteriores aquellos incendios ocurridos en 
días festivos, fines de semana y días "puente" entre un festivo y un sábado o 
domingo. De este modo se obtienen dieciséis escenarios temporales (tabla 1). La 
definición de estos escenarios temporales se ha llevado a cavo ante la imposibilidad 
de obtener información sobre las actividades humanas desagregada temporalmente 
(intranualmente). Por ello, en lugar de incluir variables socioeconómicas dinámicas 
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se ha optado por compartimentar temporalmente la ocurrencia de incendios y 
analizar diferencias en la participación y capacidad explicativa de dichas variables. 

 
Tabla 1. Escenarios temporales. Aclaración: _FF (Fin de semana y/o Festivo) 

Escenarios temporales 

Enero (Ene) Enero_FF (Ene_FF) 

Abril (Abr) Abril_FF (Abr_FF) 

Agosto (Ago) Agosto_FF (Ago_FF) 

Noviembre (Nov) Noviembre_FF (Nov_FF) 

Invierno (Inv) Invierno_FF (Inv_FF) 

Primavera (Pri) Primavera_FF (Pri_FF) 

Verano (Ver) Verano_FF (Ver_FF) 

Otoño (Oto) Otoño_FF (Oto_FF) 
 
 
En azul se muestra la agregación temporal mensual y en verde la estacional. El 

análisis exploratorio mediante regresión logística (4.4) servirá también para evaluar 
la idoneidad de los escenarios temporales. 

 
4.2. Obtención de información 

En este apartado se detalla el proceso de obtención de la información necesaria 
en la generación de la variable dependiente y de aquellas que actuarán como 
predictores -variables independientes-. 

 
4.2.1.  Variable dependiente. Presencia de incendio. 

En este trabajo se ha utilizado la base de datos de Estadística General de 
Incendios Forestales (EGIF) copilada por el Ministerio de Alimentación, Agricultura y 
Medio Ambiente del Gobierno de España como resultado de la compilación de los 
reportes realizados por las Comunidades Autónomas (Moreno et al., 2011). Esta serie 
comienza en 1968, siendo una de las más antiguas recopiladas a nivel europeo 
(Vélez, 2001), aunque los datos no se consideran totalmente fiables hasta 1988 
(Martinez et al. 2009). En el presente estudio se requieren las localizaciones exactas 
(pares de coordenadas) de cada incendio registrado, por lo que se escoge el periodo 
2008-2011 -ambos inclusive- para el desarrollo de los modelos y el 2012 como 
validación operativa. Esta selección de años recientes dentro de la serie histórica 
garantiza la precisión espacial en la localización de los incendios. 

Para el estudio, de los múltiples campos que contiene está base de datos, se ha 
seleccionado como información relevante la que se describe a continuación:  

- Huso. Es necesaria dado que la zona occidental del área de estudio se 
sitúa en el huso 30 mientras que la oriental se encuentra en el huso 31 del 
sistema de coordenadas European Terrestrial Reference System 1989. 

- Coordenadas. Los incendios utilizados (serie 2008-2011) se encuentran 
geolocalizados mediante un par de coordenadas recogidas mediante GPS. 
Este par de coordenadas se hace indispensable para la creación de las nubes 
de puntos y poder extraer los datos de las variables independientes. 

- Grupo de causa. Bajo esta denominación se recoge la causa originaria 
del fuego. La Unión Europea recomienda cuatro categorías (1-Desconocido, 2-
Causas naturales, 3. Causa accidental o negligencia y 4-Deliberado). Para 
este trabajo se ha empleado todo aquel incendio que no haya tenido un 
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origen natural, ya que de aquellos de origen desconocido se asume que la 
mayor parte es consecuencia de la actividad humana.  

- Fecha de detección. A partir de la fecha de inicio de fuego se podrá 
determinar la influencia que esta tiene sobre el peligro total de incendio. 

 
Los datos extraídos de la base de datos compondrán pues la variable dependiente 

como presencia de incendio, siendo sometidos previamente a un proceso de 
depuración que descarte errores espaciales significativos. 

 

 
Figura 5. Proceso de depuración de la base de datos. 

 
Éste es un proceso esencial para asegurar la calidad de los resultados obtenidos, 

por lo que resulta importarte prestar atención a este procedimiento. 
 

4.2.2.  Variable dependiente. Ausencia de incendio 

Como resulta lógico, la base de datos general de incendios únicamente recoge 
aquellas localizaciones en las que efectivamente se ha producido un fuego. Sin 
embargo, en los modelos del peligro de incendio por regresión logística se requiere 
información sobre la ausencia del fenómeno analizado, en este caso, una muestra de 
localizaciones en las que no se ha producido un incendio (Chuvieco et al., 2010; 
Padilla et al., 2011), por lo que la generación de estos se hace indispensable para 
llevar a cabo el análisis exploratorio de las variables explicativas mediante regresión 
logística, si bien esta muestra no será necesaria para el desarrollo de los modelos 
predictivos con MaxEnt.  

Se asume, por tanto, que una muestra aleatoria para el área de estudio y el 
periodo de tiempo analizado puede actuar como información de ausencia del 
fenómeno. Esta ausencia es únicamente válida para el periodo estudiado, no excluye 
la posibilidad de que en esa localización se haya producido un incendio en el pasado 
o lo pueda hacer en un futuro.  

Estas muestras de ausencia de fuego deben generarse para cada uno de los 
escenarios temporales propuestos anteriormente, y deben estar ceñidas a 
localizaciones en las que exista la posibilidad de originarse un incendio forestal 
(excluyendo zonas antrópicas, láminas de agua, suelos desnudos etc.). 

 
4.2.3.  Variables independientes 

 En este apartado se describen las decisiones y procesos empleados para la 
evaluación y selección de las variables independientes que formarán parte de los 
modelos finales. 

 Para la selección de las variables explicativas se ha acudido a estudios previos 
que han trabajado en la modelización del peligro y la ocurrencia con origen antrópico 
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en los últimos años en España, como es el caso de Chuvieco et al. (2010), Martínez et 
al. (2009) o Rodrigues et al. (2014). Dada la precisión espacial que permite la 
localización de los incendios mediante GPS se ha decidido excluir variables de origen 
estadístico que mermarían esta resolución espacial y que sí han sido empleadas en 
los estudios citados. 

 La resolución espacial se ha establecido en 250x250m por un criterio de 
velocidad y volumen de cálculo en el proceso de creación de los modelos, pudiendo 
haberse trabajado con una resolución inferior en otras condiciones tecnológicas y 
temporales.  

 
4.2.3.1. Interfases 

 Las interfases o áreas de vecindad entre vegetación natural y actividades 
humanas, pueden ser buenos factores explicativos del peligro de incendio (Martinez 
et al., 2009 y Chuevieco et al. 2012). Por este motivo se han seleccionado siete 
posibles interfases, cinco de ellas de forma desagregada, aislando diferentes 
actividades humanas o infraestructuras, y dos de forma conjunta, agregando 
actividades   

En un primer momento se evaluaron las distintas fuentes cartográficas ya 
existentes que permitieran conocer los distintos usos de suelo. El mapa forestal de 
España permitía trabajar con algunas de estas variables, pero los distintos criterios 
en la elaboración de la cartografía entre las distintas autonomías impedían la 
obtención de todas las interfases (en concreto de la que incluía los prados y 
pastizales, categoría no existente en Cataluña). Debido a ello se decide emplear las 
delimitaciones de usos de suelo del Corine Land Cover de 2006. 

Se trabaja con distancia a la interfase con objeto de aprovechar al máximo la 
precisión espacial de la localización de la ocurrencia, descartando por este hecho la 
utilización de buffers (y la decisión arbitraria de su radio) si empleados en otros 
estudios (Chuvieco et al., 2010 y Rodrigues et al. 2014). 

 
- Interfase entre vegetación natural y cultivos (VCI). Las actividades 

agrarias son responsables del origen de numerosos incendios forestales a lo 
largo del año, generalmente por negligencia/imprudencia en el desarrollo de 
esta labor. Por tanto, se espera una relación positiva entre esta variable y el 
peligro de ignición. 

- Interfase entre vegetación natural y pastizales (VPI). Las zonas de 
pastizal también pueden tener un uso que los hace espacios sensibles a la 
aparición de un incendio. 

- Interfase entre vegetación natural y actividades industriales (VHI). 
La manipulación de sustancias inflamables, maquinaria, vehículos etc. es un 
factor de riesgo en aquellas zonas en las que existe contacto con vegetación 
natural. Es por ello esperable una relación positiva con el peligro de incendio. 

- Interfase entre vegetación natural e infraestructuras de riesgo 
(VRI). Dentro de este grupo de infraestructuras de riesgo se incluyen los 
vertederos y escombreras, las canteras y minas y espacios en construcción. 
Sus actividades también pueden suponer un riesgo en la aparición de un 
incendio forestal. 

- Interfase entre vegetación natural y espacios urbanos (VUI). La 
concentración de un foco de población en general supone un foco de origen 
de incendios, ya que un 90% de los fuegos tienen origen humano. 

- Interfase entre vegetación natural-pastizales y espacios urbanos-
actividades industriales-infraestructuras de riesgo (WUI). En esta interfase 
se agrupa toda vegetación natural además de los pastizales con algún uso 
humano 
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- Interfase entre vegetación natural + pastizales y cultivos (WAI). En 
este caso se añaden los pastizales a las zonas potencialmente inflamables. 

 
4.2.3.2. Infraestructuras y vías de comunicación 

Es conocida la importante influencia que tienen distintas construcciones humanas 
en el origen de incendios. Concretamente se han considerado diferentes 
infraestructuras (ferrocarril y líneas eléctricas) y vías de comunicación (carreteras, 
pistas forestales, itinerarios, sendas y vías pecuarias). Éstas variables han sido 
extraídas de la Base Cartográfica Numérica 1:25.000, disponible en el Centro 
Nacional de Información Geográfica. 

  
- Carreteras (ROADS). La cercanía a éstas puede ser origen de incendios 

por accidentes o negligencias tales como objetos arrojados desde los 
vehículos.  

- Líneas ferroviarias (TRAIN). Se sabe que ha sido origen de algunos 
incendios, por lo que se espera tenga una relación positiva con el 
peligro de ignición. 

- Itinerarios (ITI). Es tráfico de personas en estos caminos es mayor que 
en otras zonas naturales, con lo que el peligro de incendio se espera que sea 
mayor. 

- Líneas eléctricas (PWL). Distancia a líneas eléctricas. Según la 
bibliografía constituyen un riesgo de incendio de primer orden por chispas que 
se pueden desprender, caída de tendidos eléctricos con fuertes vientos o 
accidentes de aves. 

- Pistas (PIS). La densidad de población en estos caminos es mayor que 
en otras zonas naturales, con lo que el peligro de incendio se espera que sea 
mayor. 

- Sendas (SEN). La densidad de población en estos caminos es mayor que 
en otras zonas naturales, con lo que el peligro de incendio se espera que sea 
mayor. 

- Vías pecuarias (VPE). La densidad de población en estos caminos es 
mayor que en otras zonas naturales, con lo que el peligro de incendio se 
espera que sea mayor. 

- Caminos (TRACKS). En esta variable se agregan todas aquellas vías que 
potencialmente pueden ser usadas por viandantes o excursionistas. Tienen 
cabida: itinerarios, pistas, sendas y vías pecuarias. 

 
4.2.3.3. Factores socioeconómicos 

Aquí se agrupan diferentes variables relacionadas con el medio socioeconómico 
que algunos autores han destacado como relevantes a la hora de explicar los orígenes 
de los fuegos de carácter antrópico. 

 
- Zonas protegidas (PROT_A). En este caso se trata de una variable 

binaria (categórica) que alberga la existencia o no de un área protegida. Es 
esperable que la precaución de las personas que visitan estos espacios y la 
prohibición de algunas actividades de riesgo se relacionen con un menor 
peligro de incendio, es decir, de forma negativa.  

 
Otra variable socioeconómica que según la bibliografía podría tener importancia 

son los potenciales demográficos, en tanto que a mayor presencia humana (presión 
antrópica) se presupone o espera un mayor peligro de incendio. 
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- Potencial demográfico por vía de comunicación (POT_POB). Esta 
variable, basada en el método de Calvo y Pueyo (2008) y empleada en otros 
trabajos (Rodrigues y de la Riva, 2014), recoge los potenciales poblacionales 
por kilómetro cuadrado, siendo un buen reflejo de la presión humana en cada 
punto del espacio del área de estudio.  

 
4.2.3.4. Factores ambientales 

Estas variables pueden ayudar a indicar si existe un comportamiento diferencial 
en función de las características del terreno, las condiciones de la vegetación etc. En 
este trabajo se pretende analizar el peligro de incendio humano, pero estas variables 
juegan un papel como condicionantes que no se puede desdeñar.  

  
- Altitud (ALT). Metros sobre el nivel del mar. La altitud resulta un 

factor de primer orden para entender la distribución de las diferentes 
comunidades vegetales así como de su estado hídrico, por lo que puede tener 
un papel importante dentro de las variables independientes. Además, en 
algunas casos, la actividad humana está también condicionada por ella. 

- Orientación (ASP). Otro factor que influye de gran manera sobre la 
humedad edáfica y con ello sobre la vegetación es la orientación. Es por ello 
por lo que debe estar presente como variable independiente aunque su 
interpretación puede ser bastante compleja. 

- Pendiente (SLO). De nuevo un factor con clara influencia en las 
condiciones edáficas y con ello en la vegetación. También tiene una gran 
relevancia en las actividades humanas. 

   
 Por otra parte, se ha decidido incluir dos productos MODIS que sirven como 

aproximación al hídrico de la vegetación o combustible, además de añadir 
variabilidad temporal más allá de los escenarios temporales seleccionados. En este 
sentido, se entiende que un estado hídrico favorable a la ignición complementa la 
influencia de las actividades humanas en la medida en que favorece o determina si 
una posible negligencia o accidente desemboque en ignición o no. 

 
- MOD16 global evapotranspiration (MOD_ET). Tiene una resolución 

espacial de 1km2 y una resolución temporal mensual, que permitirá incorporar 
los datos medios de evapotranspiración para cada mes y cada estación 
seleccionados como escenarios temporales. 

- MOD11A2. MODIS/Terra Land Surface Temperature and Emissivity 
(MOD_LST). Este producto proporciona valores de temperatura y emisividad 
para cada pixel de 1km2 en una secuencia temporal de 8 días. Para este 
trabajo se ha optado por agregar la información a nivel mensual y adjudicar a 
cada incendio los valores de su mes y año correspondiente, con objeto de 
obtener una estimación de su estado hídrico y con ello de la susceptibilidad a 
un posible incendio. 

 
Para la descarga masiva de los productos MODIS en el periodo 2008-2011 se ha 

desarrollado un script en R a partir del algoritmo ModisDownload (disponible en 
http://r-gis.net/?q=ModisDownload a 01/09/2015). Dicho algoritmo permite la 
descarga (de todas o parte de las bandas del producto), mosaicado y reproyección de 
imágenes MODIS distribuidas por el Land Processes Distributed Active Archive Center 
(LP DAAC). Esta función permite acelerar significativamente el proceso de obtención 
de la información, posibilitando trabajar con grandes conjuntos de datos, como es el 
caso. 
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4.3. Espacialización de las variables dependientes e 
independientes 

A continuación se detallan los procedimientos realizados en la espacialización de 
la variable dependiente y de las variables predictoras. 

  
4.3.1.  Variable dependientes 

 
La presencia u ocurrencia de incendio se ha obtenido de la base de datos EGIF, 

por lo que su espacialización pasa por la representación espacial en su 
correspondiente huso a partir de pares de coordenadas para cada escenario temporal 
seleccionado. Para ello se utiliza el software propietario ArcGIS mediante su función 
Add X/Y data, teniendo en cuenta que la zona de estudio queda dividida en dos husos 
distintos en el sistema de coordenadas que se va a utilizar, el ETRS 1989. 

La creación de las dieciséis nubes de puntos de ausencia de incendio (ver 
apartados 4.1 y 4.2.2) se realiza mediante la herramienta Create Random Points de 
ArcGIS. Esta herramienta permite la generación de nubes de puntos aleatorios de 
tamaño definido por el usuario (en este caso el mismo número de incendios que cada 
uno de los escenarios temporales anteriormente citados) y con la opción de utilizar 
una "máscara" con objeto de que los puntos creados estén inscritos dentro de la 
misma. 

Está máscara es la que nos permite "dirigir" los puntos aleatorios hacia espacios 
donde potencialmente podría originarse un incendio, evitando así incluir 
localizaciones inoportunas (láminas de agua) o que se encuentren fuera del 
perímetro del área de estudio. En la elaboración de la máscara se han estudiado tres 
opciones de máscara como muestra la figura 6. 

 
Figura 6. Máscaras de zona susceptible de incendio. Arriba-izq: mapa forestal, arriba-

dcha.: CLC, abajo: VCF 
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La primera de estas máscaras (arriba-izquierda) se corresponde con una fusión de 
categorías del mapa forestal de España 1:50.000 disponible en la web del Ministerio 
de Alimentación, Agricultura y Medio Ambiente. Aquí se han excluido los campos de 
cultivos que no poseen ningún retazo de vegetación natural, además de los espacios 
en que no resulta posible la aparición de un incendio. Para la segunda se realizó el 
mismo procedimiento con los datos del Corine Land Cover de 2006. Ante la baja 
asociación entre el conjunto de incendios y las máscaras creadas (muchos de los 
mismos se localizaban fuera de la misma) se decidió acudir a un producto MODIS, el 
Vegetation Continuous Fields, que contiene una estimación de la cubierta vegetal en 
valores de 0-100 derivada de las siete bandas del sensor MODIS-Terra. A partir de 
este producto de 250m de resolución y estableciendo un umbral a partir del cual se 
considera que existe vegetación suficiente susceptible de ser incendiada (1% en base 
al análisis el histograma del producto y la distribución espacial de incendios) se 
consigue un polígono que, si bien no cuenta con la precisión de las máscaras 
obtenidas mediante Corine o el mapa forestal, si recoge la práctica totalidad de los 
incendios originados en el periodo estudiado. 

De este modo se dispone ya de dieciséis nubes de puntos proyectadas a partir de 
sus coordenadas (presencia) y dieciséis nubes de puntos aleatorios (ausencia). 

 
4.3.2. Variables independientes 

 
El proceso de espacialización de las variables independientes resulta algo más 

complejo que la variable dependiente. La tabla 2 resume las variables seleccionadas, 
los métodos empleados para su espacialización así como otra información 
complementaria.
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Tabla 2.Variables independientes seleccionadas. 

 

Num. Nombre de variable Descripción Unidades Fuente de datos Relación esperada con riesgo ignición

1 VCI Interfase entre vegetación natural y cultivos Distancia en metros a contacto Corine Land Cover 2006 Positiva

2 VPI Interfase entre vegetación natural y pastizales Distancia en metros a contacto Corine Land Cover 2006 Positiva

3 VHI Interfase entre vegetación natural y actividades industrales Distancia en metros a contacto Corine Land Cover 2006 Positiva

4 VRI Interfase entre vegetación natural e infraestruras de riesgo Distancia en metros a contacto Corine Land Cover 2006 Positiva

5 VUI Interfase entre vegetación natural y espacios urbanos Distancia en metros a contacto Corine Land Cover 2006 Positiva

6 WUI
Interfase entre vegetación natural-pastizales y actividades 

industriales-infraestructuras de riesgo-espacios urbanos
Distancia en metros a contacto Corine Land Cover 2006 Positiva

7 WAI Interfase entre vegetación natural-pastizales y cultivos Distancia en metros a contacto Corine Land Cover 2006 Positiva

8 ROAD Red de carreteras Distancia en metros BCN 1:25.000 Positiva

9 TRAIN Red ferroviaria Distancia en metros BCN 1:25.000 Positiva

10 ITI Itinerarios Distancia en metros BCN 1:25.000 Positiva

11 PWL Líneas y tendidos eléctricos Distancia en metros BCN 1:25.000 Positiva

12 PIS Pistas forestales Distancia en metros BCN 1:25.000 Positiva

13 SEN Senderos Distancia en metros BCN 1:25.000 Positiva

14 VPE Vías pecuarias Distancia en metros BCN 1:25.000 Positiva

15 PROT_A Áreas protegidas Categórica (1-SI, 0-NO) BCN 1:25.000 Negativa

16 TRACKS Caminos: ITI-PIS-SEN-VPE Distancia en metros BCN 1:25.000 Positiva

17 POT_POB Potencial de población de 2011 Habitantes por km2 Atlas Nacional de España Positiva

18 ALT Altitud Metros sobre el nivel del mar MDE ?

19 ASP Orientación Grados (º) MDE ?

20 SLO Pendiente Porcentaje (%) MDE ?

21 MOD16 Producto MODIS de evapotraspitación  mm/día MODIS Positiva

22 LST Producto MODIS de Temperatura de superficie y emisividad Tª (K) MODIS Positiva
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4.3.2.1. Interfases 

 
El procedimiento de espacialización de estas variables es idéntico, por lo que se 

han utilizado funciones batch en el software ArcGIS siempre que ha sido posible, 
acelerando de este modo la creación de las variables. El proceso seguido se recoge 
en la siguiente figura: 

 

 
 

Figura 7. Flujo de trabajo de obtención de interfases. 
 

En un primer paso se seleccionan los dos componentes de la interfase (en el 
ejemplo los espacios urbanos y la vegetación natural), creando capas temporales que 
servirán para realizar el intersect que producirá como resultado las líneas de 
contacto (de nuevo según el ejemplo entre los espacios urbanos y la vegetación 
natural). A partir de ésta y mediante la función de ArcGIS Euclidean Distance se halla 
la distancia de cada pixel a la línea de contacto más cercana, quedando así 
espacializadas las interfases seleccionadas. 

 
4.3.2.2. Infraestructuras y vías de comunicación y factores 
socioeconómicos 

El proceso de obtención pasa por la descarga de todas las hojas de la Base 
Cartográfica Numérica 1:25.000 (BCN25) que componen el área de estudio (625 hojas 
en total) y la unión de cada elemento que posteriormente será empleado como una 
variable. La depuración de los errores detectados es también parte de este proceso.  

Una vez obtenidas en formato vectorial cada una de las variables (carreteras, red 
ferroviaria, pistas, sendas, itinerarios, vías pecuarias, caminos, líneas eléctricas y 
áreas protegidas) se procede al cálculo de la distancia a cada una de ellas siguiendo  
el mismo procedimiento de las interfases, es decir, mediante la herramienta 
Euclidean Distance. Al ser un proceso similar para todas las variables excepto para 
las zonas protegidas se utiliza una función batch que ayuda a reducir el tiempo 
empleado. 

Las áreas protegidas se presentan como una variable categórica, por lo 
únicamente se debe realizar un proceso de rasterización (Polygon to Raster) de la 
capa vectorial y una reclasificación (Reclass) de los valores, asignando el 0 a los 
píxeles de zonas no protegidas y el 1 a espacios protegidos. 
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4.3.2.3. Factores ambientales 
Entre estas variables, la altitud, la orientación y la pendiente se extraen 

fácilmente del Modelo Digital de Elevaciones. La primera de ellas es el producto en 
bruto (altitud en metros sobre el nivel del mar), mientras que para la orientación y la 
pendiente es necesario realizar sendos procesos. Respectivamente se aplican las 
herramientas de ArcGIS Aspect y Slope. 

Para el análisis exploratorio de las variables independientes se ha asignado a 
cada incendio los valores de su imagen MODIS (descargadas y procesadas por el script 
descrito con anterioridad) correspondiente, mientras que las muestras aleatorias, al 
carecer de fecha, han tenido que recoger sus valores del promedio mensual o 
estacional de dichas imágenes. En la aplicación MaxEnt también se hace necesario 
facilitar estos promedios, puesto que no es posible asignar manualmente cada 
imagen a las fechas de los incendios. 

La agregación de imágenes MODIS para el cálculo de su media es un proceso local 
(celda a celda) que se puede llevar a cabo en el software ArcGIS con la herramienta 
Cell Statistics. Una vez obtenido el promedio y transformado a formato .asc (como 
requiere MaxEnt) se adapta su extent en QGIS al del resto de variables predictoras. 

 
4.3.3.  Análisis de colinealidad de las variables 

independientes 
 

 Se ha realizado un análisis de correlación entre las variables independientes que 
asegure la consistencia de los resultados de la regresión. El sentido de este análisis 
es evitar que en el caso que las variables independientes tengan mucha relación 
entre sí, el modelo de regresión logística no pueda discernir que parte de la variable 
dependiente se explica con cada variable independiente. Los modelos calibrados con 
MaxEnt no se ven afetados por colinealidad o autocorrelación espacial de las 
variables explicativas. 

 Para ello se ha empleado el coeficiente no paremétrico de Spearman (la mayor 
parte de las variables no se ajustan a una distribución normal), que devuelve un valor 
p (rho) que es una medida de la asociación entre dos variables aleatorias continuas. 
Es un estadístico no paramétrico, es decir es independiente de la distribución 
probabilística. 

Como se muestra en la tabla 3 los valores están próximos a 0, lo que implica la 
baja asociación entre las variables independientes. Las variables MODIS si presentan 
altos valores de colinealidad, lo que no resulta un problema dado que en el modelo 
no actuarán nunca al mismo tiempo, ya que cada una lo hará en su mes o estación 
correspondiente.
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Tabla 3.Resultados del análisis de colinearidad. Índice de correlación de la Rho de Spearman. 

 
POWLINES_DIST FOR-AGR_DIST FOR-URB_DIST TRACK_DIST ROAD_DIST PROT_A MOD_LST_oto MOD_LST_ver MOD_LST_pri MOD_LST_inv 

POWLINES_DIST 1.000 -0.003 0.315 0.005 0.122 0.028 -0.118 0.118 -0.064 -0.262 

FOR-AGR_DIST -0.003 1.000 0.224 -0.002 0.025 0.040 0.186 0.132 0.148 0.086 

FOR-URB_DIST 0.315 0.224 1.000 0.140 0.227 -0.002 -0.026 0.292 0.038 -0.266 

TRACK_DIST 0.005 -0.002 0.140 1.000 0.045 -0.035 0.022 0.091 0.036 -0.049 

ROAD_DIST 0.122 0.025 0.227 0.045 1.000 0.062 -0.055 -0.019 -0.077 -0.041 

PROT_A 0.028 0.040 -0.002 -0.035 0.062 1.000 -0.084 -0.155 -0.103 -0.027 

MOD_LST_oto -0.118 0.186 -0.026 0.022 -0.055 -0.084 1.000 0.705 0.766 0.673 

MOD_LST_ver 0.118 0.132 0.292 0.091 -0.019 -0.155 0.705 1.000 0.724 0.131 

MOD_LST_pri -0.064 0.148 0.038 0.036 -0.077 -0.103 0.766 0.724 1.000 0.598 

MOD_LST_inv -0.262 0.086 -0.266 -0.049 -0.041 -0.027 0.673 0.131 0.598 1.000 
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4.4. Análisis exploratorio de variables independientes. Técnicas de 

regresión logística 
 
 La regresión logística ha sido profusamente empleada para determinar qué 

variables tienen mayor importancia en el peligro de ignición a distintas escalas 
(Martínez et al., 2004; Vasconcelos et al., 2001; Vega-García et al., 1995; Chuvieco 
et al., 2010). En el presente estudio se utiliza esta técnica para llevar a cabo el 
análisis exploratorio  de la capacidad explicativa de las variables independientes 
consideradas, así como la selección de los escenarios temporales (mensual o 
estacional) más adecuados. En comparación con los modelos MaxEnt, la regresión 
logística resulta más eficiente desde el punto de vista del análisis de la carga 
explicativa de las variables independientes, además de ser una alternativa más viable 
en términos de computación. 

 El modelo de regresión logística se define: 
 

𝑃𝑃𝑖𝑖 =
1

1 + e−2 

 
 

z = β0 + β1X1 + βpXp + … + βpXp 
 
 Donde Pi es la probabilidad de ocurrencia de incendio, z la combinación de 

variables independientes con sus coeficientes de regresión (β), X el valor de cada 
variable independiente y e la base del logaritmo natural (Pew y Larsen, 2001 citando 
a Afifi y Clark, 1990; McGrew y Monroe, 1993). 

 En concreto, de entre las posibilidades de modelos de regresión logística binaria, 
se aplica el modelo logit: 

 

log(
p

1 − p
) = 𝑥𝑥𝑇𝑇𝛽𝛽 

 
Siendo xT el vector de las variables explicativas y β el vector de los parámetros. 

 
 Este análisis ha sido realizado en R, obteniendo una serie de resultados que 

permiten evaluar la representatividad de las variables predictoras. Para entender la 
relación con la variable dependiente es especialmente importante atender a su 
sentido explicatorio (Estimate) y a la probabilidad Z de que la variable pueda 
explicar la variable dependiente, habiendo establecido como umbral el 95% 
(Pr|z|<0,05). 

 
4.5. Modelado predictivo del peligro de incendio. Modelo de 

Máxima Entropía (MaxEnt) 
MaxEnt is un algoritmo o método de aprendizaje artificial de propósito general 

que trabaja únicamente con datos de presencia por lo que no es necesario 
suministrarle las nubes de puntos aleatorias utilizadas en la regresión logística como 
datos de ausencia. Los modelos MaxEnt se fundamentan en la comparación iterativa 
de los valores de las variables predictoras -independientes- en las localizaciones de 
ocurrencia con una gran submuestra que extrae del área de estudio y que actúa como 
valores de no ocurrencia (Phillips et al. 2006; Elith et al. 2011). Ha sido empleado en 
estudios de modelización del peligro de ignición en Estados Unidos (Parisien and 
Moritz, 2009), en la India (Renard et al. 2012) o en China (Chen et al., 2015) entre 
otras regiones.  
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MaxEnt estima la probabilidad de distribución de un evento  ajustando la 
distribución de probabilidad a la máxima entropía, es decir, a aquella que es más 
uniforme a las variables explicativas en cada punto de observación (Phillips, 2006). 
Una de las características esenciales de MaxEnt es la capacidad de ajustar funciones 
de respuesta muy complejas combinando varios tipos de funciones (linear, 
cuadrática, producto, umbral y bisagra), lo que permite modelizar respuestas 
discontinuas que no pueden ser ajustadas los modelos de regresión más flexibles. El 
algoritmo MaxEnt se caracteriza fundamentalmente por ser un método que trabaja 
únicamente con datos de ocurrencia, lo que es particularmente interesante en el 
caso que nos ocupa, dada la controversia existente en cuanto a los datos de ausencia 
de incendio, habiendo sido utilizado y validado como método en otros estudios como 
Bar Massada et al. (2012). Dentro de las diferentes opciones de modelado disponibles 
que trabajan únicamente con datos de presencia, MaxEnt ha demostrado una mayor 
precisión en la predicción, especialmente con tamaños muestrales pequeños (Elith et 
al. 2006; Pearson et al. 2007) 

Para el cálculo de los distintos modelos de los escenarios temporales se ha 
utilizado el modelo de máxima entropía (MaxEntversion 3.3.3k; Phillips et al., 2006; 
http://www.cs.princeton.edu/wschapire/Maxent/) 

Para la validación de los modelos, la aplicación ofrece diferentes posibilidades 
(validación cruzada, bootstraping y subsampling). En este estudio se ha optado por el 
método de validación cruzada mediante k-fold. Se han utilizado cuatro grupos (folds)  
para los que MaxEnt compara iterativamente los resultados (validación cruzada), 
dejando en cada iteración uno de los grupos como background o muestra de 
validación, de forma que todos y cada uno de los puntos intervienen tanto en 
observación como en validación. De este modo, MaxEnt produce cuatro modelos con 
sus correspondientes salidas gráficas (AUC y jackknife) y cartográficas en formato 
.asc (una por cada grupo establecido) asociadas a cada iteración. También facilita 
una cuantificación de la importancia de las variables empleadas en el modelo basada 
en el incremento de la ganancia de entrenamiento regularizada a través del 
desarrollo del modelo, donde la ganancia significa el incremento de la probabilidad 
de ignición en las localizaciones empleadas como training. Dicha ganancia se evalúa 
utilizando un proceso denominado jackknife en el que la importancia de cada 
variable se estima a partir de modelos con una única variable y modelos con el resto 
de variables. 

Para más información sobre las características y cualidades de MaxEnt se 
recomienda la lectura de Phillips et al. (2004, 2006) y Elith et al. (2011). 

 
4.6. Selección del modelo y obtención del peligro para un 

determinado día. 
 

 Una vez los modelos han sido ajustados con MaxEnt, es posible hallar el peligro 
diario de incendio en función del producto MODIS con resolución temporal de 8 días y 
seleccionando el modelo adecuado dependiendo la estación del año (invierno, 
primavera, verano u otoño) y día determinado (día laboral o fin de semana- festivo). 

 
5. Resultados y valoración. 

En este apartado se presentan los resultados del estudio y la valoración general 
de los mismos, respondiendo a los objetivos planteados en el segundo apartado de 
este trabajo. 

 
5.1. Patrones temporales de la ocurrencia de incendios causados 

por el ser humano 
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Este apartado resulta de utilidad como contexto para entender tanto la evolución 
del número de incendios en España como su distribución temporal a lo largo del año. 

 
5.1.1. Evolución histórica de los incendios en el área de 
estudio, 1988-2011. 

Algunos autores han demostrado la existencia de una tendencia al alza en el 
número total de incendios y en la superficie calcinada desde 1960 (Kliot, 1996; 
Pausas and Vallejo, 1999; Wittenberg and Malkinson, 2009). En nuestro caso en 
concreto, se aprecia un ligero incremento en el número total de incendios (Moreno et 
al., 2014 y Rodrigues et al., 2013), aunque se echa en falta una serie temporal más 
amplia para poder extraer conclusiones más sólidas.  

 
Figura 8. Número total de incendios (causa humana) por año. En granate el periodo 

de estudio. 
 
Una característica destacable que muestra la gráfica anterior es la amplia 

variabilidad interanual en el número de incendios antropogénicos, pudiendo 
originarse menos de 400 en un año como 1994 y casi cuatro veces más en 2005. Este 
patrón es observable también a una escala estacional, tal y como demuestra la serie 
histórica del número de incendios por estaciones entre 1988 y 2011 (figura 8). En esta 
figura es fácilmente observable este comportamiento heterogéneo, llegándose a 
registrar en el mismo año grandes desviaciones positivas en alguna estación y 
desviaciones negativas en las siguientes (ver año 2005). Otro aspecto que se puede 
destacar observando este gráfico es la mayor irregularidad de los incendios de 
invierno y otoño, siendo el verano la estación que más estable se muestra en el 
número total de incendios (dentro de una cierta variabilidad intrínseca). 
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Figura 9. Desviación porcentual del total de incendios (causa humana) respecto a la 

media por estaciones para el área de estudio (1988-2011). 
 

5.1.2.  Patrones temporales mensuales y diarios 

La hipótesis de partida de este trabajo destacaba el diferente comportamiento 
en el origen del fuego por causa humana a escala mensual y diaria, es decir, se 
entiende, a priori, que en función del momento del año en el que nos encontremos, 
varían los factores responsables (variables independientes) y por tanto, los patrones 
espaciales de probabilidad. 

Las actividades humanas responden a criterios espacio-temporales relacionados 
con ciclos diarios (commuting), semanales (fin de semana), mensuales y/o 
estacionales (invierno-verano, temporada de incendios), por lo que resulta lógico 
relacionar esto con el origen de los incendios. Sirva como ejemplo la gráfica 
mostrada a continuación, que refleja un comportamiento excéntrico en el patrón 
mensual de los incendios. 
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Figura 10. Distribución mensual de incendios (causa antrópica) para el área de 

estudio en el periodo 1988-2011 y 2008-2011. 
 
La gráfica muestra una distribución bimodal con máximos en finales del invierno-

principio de la primavera y en verano. La lógica llevaría a suponer que la distribución 
debería ser unimodal y concentrada exclusivamente en el verano, cuando la 
vegetación es más propensa a incendiarse debido a su estrés hídrico y las condiciones 
meteorológicas son más proclives al inicio del fuego. La temporada de incendios en 
España se extiende desde finales de primavera hasta principios de otoño, donde se 
concentran los mayores esfuerzos de vigilancia y prevención. Sin embargo, si bien es 
cierto que la gran mayoría de los fuegos se originan en el trimestre más seco y cálido 
(junio-julio-agosto), la aparición de un segundo máximo en el mes de marzo nos 
habla de un comportamiento humano que podría ser el origen de estos incendios 
(probablemente la utilización del fuego en superficies agrícolas o forestales para la 
eliminación de matorrales, pastizales, rastrojos o restos forestales). La hipótesis de 
que las prácticas agrícolas como origen de este submáximo parece plausible a tenor 
de los datos que arrojan los meses posteriores (abril o mayo), en principio más 
propensos a los incendios forestales que el mes de marzo pero en los que las 
limitaciones de ciertas actuaciones en el medio natural están en vigor. Por otra 
parte, el elevado número de incendios del trimestre estival puede responder, además 
de a criterios climáticos (mayor estrés hídrico de la vegetación), al carácter 
vacacional de estos meses, en los excursionistas se multiplican en los espacios 
naturales y se produce un mayor número de desplazamientos por carretera. 

Del mismo modo que podemos observar un patrón mensual en los incendios 
forestales antrópicos, la distribución semanal de los incendios vuelve a mostrar un 
claro sesgo hacia los días en los que se espera que exista mayor contacto entre el ser 
humano y el medio natural (los días no laborables -sábados y domingos-).  
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Figura 11. Izquierda: distribución semanal de incendios (causa antrópica) para los 

periodos 1988-2011 y 2008-2011. Derecha: porcentaje respecto a una distribución 
homogénea ideal. 

 
Como muestra la figura 11, existe una mayor concentración de incendios durante 

los fines de semana, siendo un 6% superior (periodo 1988-2011) a lo esperado si la 
distribución del total de incendios fuera homogénea entre los días de la semana.  

El fin de semana es el periodo de la semana en el que se producen un mayor 
número de desplazamientos hacia espacios no-urbanos, además de ser días en los que 
agricultores a tiempo parcial, es decir, aquellas personas que tienen su puesto 
laboral en otros sectores económicos, aprovechan para realizar algunos trabajos 
agrarios que pudieran ser origen de incendios (Cruz, J. et al., 1985). Por tanto, se 
puede asumir que la actividad en áreas de riesgo se intensifica en sábados y 
domingos, lo que puede estar detrás del mayor número de fuegos en estos días. En 
principio, los días festivos tendrían un comportamiento similar a los sábados y 
domingos debido a los mismos factores ya destacados. 

 
5.2. Evaluación cuantitativa de las variables independientes en 
diferentes rangos temporales. Proceso de selección de variables 
explicativas. 

Aquí se muestran los resultados conducentes a la selección de las variables 
predictoras finales. La tabla 4 corresponde a una de las pruebas iniciales de regresión 
logística. En ella se puede apreciar la probabilidad Z de que la variable 
independiente pueda explicar la variable dependiente. Aquellas casillas sombreadas 
con color representan las que superan el umbral establecido del 95% (p<0,05), 
reservando el color rojo para aquellas con una relación positiva y el azul para las que 
tienen una relación negativa. 
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Tabla 4. Análisis exploratorio de regresión logística 1. En rojo relación positiva, en azul relación negativa. 

Pr(>|z|) Abr Abr_FF Ago Ago_FF Nov Nov_FF Inv Inv_FF Pri Pri_FF Ver Ver_FF Oto Oto_FF 
ASP 0.379 0.567 0.106 0.362 0.591 0.975 0.877 0.899 0.725 0.519 0.363 0.531 0.354 0.097 
VCI 0.076 0.043 0.762 0.454 0.883 0.975 0.560 0.847 0.125 0.070 0.008 0.123 0.928 0.020 
VHI 0.403 0.566 0.007 0.507 0.362 0.976 0.231 0.411 0.909 0.002 0.051 0.326 0.404 0.627 
VRI 0.281 0.512 0.692 0.704 0.104 0.976 0.486 0.238 0.066 0.168 0.721 0.132 0.912 0.915 
VPI 0.024 0.000 0.162 0.439 0.247 0.975 0.000 0.000 0.000 0.000 0.447 0.249 0.000 0.596 
VUI 0.258 0.564 0.210 0.689 0.771 0.975 0.008 0.292 0.014 0.580 0.038 0.318 0.239 0.640 

ROADS 0.097 0.841 0.001 0.004 0.543 0.976 0.000 0.001 0.000 0.000 0.000 0.002 0.000 0.002 
TRAIN 0.152 0.046 0.231 0.041 0.139 0.976 0.522 0.934 0.017 0.095 0.025 0.101 0.974 0.485 

ITI 0.076 0.339 0.949 0.890 0.772 0.976 0.987 0.617 0.522 0.397 0.429 0.621 0.301 0.467 
PWL 0.007 0.962 0.272 0.480 0.795 0.975 0.183 0.019 0.001 0.481 0.662 0.084 0.468 0.427 
ALT 0.010 0.064 0.110 0.108 0.021 0.975 0.861 0.804 0.000 0.339 0.081 0.024 0.477 0.078 
PIS 0.083 0.436 0.525 0.682 0.351 0.976 0.140 0.735 0.024 0.063 0.313 0.540 0.226 0.215 

POT_POB 0.459 0.984 0.199 0.868 0.779 0.981 0.778 0.290 0.244 0.316 0.084 0.332 0.180 0.801 
SEN 0.152 0.853 0.923 0.643 0.650 0.975 0.255 0.419 0.576 0.966 0.544 0.488 0.934 0.830 
SLO 0.918 0.024 0.241 0.009 0.043 0.975 0.383 0.846 0.309 0.054 0.176 0.822 0.629 0.040 
VPE 0.062 0.033 0.897 0.787 0.446 0.976 0.008 0.004 0.026 0.358 0.000 0.928 0.001 0.062 

PROT_A 0.984 0.994 0.680 0.499 0.994 0.991 0.254 0.673 0.072 0.897 0.950 0.111 0.027 0.594 
MOD_ET 0.634 0.554 0.366 0.252 0.759 0.975 0.504 0.972 0.473 0.400 0.000 0.060 0.231 0.014 
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Como se refleja en la tabla, los resultados obtenidos tienen una interpretación 
compleja y en ocasiones contradictoria, lo que habla de la baja representatividad de 
las variables. Por ejemplo, resulta llamativa la relación positiva de la interfase VPI 
(vegetación natural y prados) así como de las vías pecuarias (VPE), es decir, que a 
mayor distancia mayor peligro de incendio, lo que a priori no debiera ser así. 

Por otra parte, los resultados arrojados en los escenarios temporales mensuales 
hacen pensar que una desagregación temporal de este detalle no es la mejor opción, 
por lo menos con los datos de que se disponen. Destaca, por ejemplo, el reducido 
número de incendios registrados en noviembre o enero en comparación con otros 
meses.  

Por tanto, esta primera aproximación conduce a descartar los escenarios 
temporales mensuales dado el problema que el tamaño muestral de algunos meses y 
aconseja una reorientación de las variables. De este modo, se conservan sin 
modificaciones las variables PWL, ROADS y PROT_A y se procede agregar variables 
como TRACKS, WUI y WAI, además de descartar la variable MOD_ET de 
evapotranspiración a favor de la de temperatura de superficie y emisividad 
(MOD_LST). Este conjunto de variables puede observarse espacializado en la figura 
12. El resto de variables quedan fuera.  
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Figura 12. Variables independientes finales. 
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Tabla 5. Análisis exploratorio de regresión lineal 2. En azul: variables con sentido 
explicativo negativo, en rojo: sentido explicativo positivo. 

Pr(>|z|) Inv Pri Ver Oto Inv_FF Pri_FF Ver_FF Oto_FF 
PWL 0.297 0.000 0.000 0.789 0.004 0.723 0.012 0.306 

ROADS 0.050 0.000 0.000 0.003 0.010 0.000 0.000 0.000 
TRACKS 0.310 0.487 0.041 0.096 0.150 0.207 0.009 0.825 

WUI 0.975 0.025 0.004 0.702 0.048 0.149 0.003 0.716 
WAI 0.243 0.005 0.051 0.044 0.440 0.004 0.430 0.159 

MOD_LST 0.000 0.000 0.000 0.000 0.000 0.109 0.000 0.000 
PROT_A 0.595 0.575 0.829 0.238 0.891 0.065 0.226 0.872 
 

La tabla 5 presenta los resultados del análisis de regresión utilizando escenarios 
estacionales en lugar de mensuales, conservando la desagregación en días festivos y 
fines de semana. En este caso los resultados parecen más coherentes. Los distintos 
tonos de azul muestran la distinta capacidad de las variables para explicar la variable 
dependiente (más intenso, más importancia). Como se puede apreciar, tanto las 
carreteras como la nueva variable MODIS se configuran en estos escenarios como las 
más representativas o con mayor carga explicativa en los modelos. Esto quiere decir 
que en líneas generales la ocurrencia de incendios por causa humana se relaciona con 
la proximidad a las principales vías de comunicación, acentuado además por el 
incremento en la temperatura de superficie. Por otra parte, variables como TRACKS, 
resultado de la agregación de pistas, itinerarios, sendas y vías pecuarias, muestran 
un comportamiento diferencial a lo largo del año, contribuyendo únicamente en los 
meses de verano, algo razonable dada la mayor afluencia de turistas hacia zonas 
forestales en esta época del año, siendo más importante durante los festivos. La 
interfase vegetación natural - espacio urbano/industrial/riesgo (WUI) muestra sus 
valores representativos más altos durante el estío, cuando estas zonas de contacto se 
erigen como puntos calientes en el inicio de fuegos. Por su parte, la variable WAI 
muestra sus picos de representatividad durante la primavera, cuando los trabajos 
agrarios suelen ser más intensos. PWL es la variable con un comportamiento más 
complejo y sin explicación lógica aparente, mientras que las áreas protegidas no 
presentan representatividad en ninguno de los escenarios temporales analizados, 
aunque se aproxima al umbral en los fines de semana y festivos de primavera.  
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Figura 13. Representación gráfica de los resultados de regresión logística. Azul: 

invierno, verde: primavera, amarillo: verano, marrón: otoño. El hexágono rojo marca el 
P|z|<0,05. 

 
 
La gráfica superior facilita la comprensión de los resultados presentados en la 

tabla 5. De este modo es más sencillo interpretar el juego de los tamaños 
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muestrales, ya que como se ve en la parte derecha de la figura, la significación de 
las variables es menor en los fines de semana y festivos. 

Con el fin de comparar y analizar la consistencia de los resultados del proceso de 
análisis exploratorio de regresión logística con aquellos que se obtendrían 
directamente en MaxEnt (utilizando todas las variables para el cálculo de cada 
escenario, no sólo las significativas), se ha realizado el mismo procedimiento en este 
último, exponiendo sus resultados a continuación. 

 
Tabla 6. Porcentaje de contribución y de permutación de variables independientes 

producido por MaxEnt 
Percent contribution Inv Pri Ver Oto Inv_FF Pri_FF Ver_FF Oto_FF 

ROAD 35,2 36,7 40,8 29,6 32,2 34,5 37,7 44,9 
WAI 31,4 19,7 30 24,7 28,9 32,7 19,7 23 

LST_MOD 13,6 24,7 9,9 17,7 15,7 23,2 13,3 10,6 
WUI 10,8 3,6 10,8 19,7 9,6 5,4 13,6 16,7 
PWL 6,3 14,3 6 5,1 13,4 3,3 13,5 4,3 

TRACK 1,5 0,9 1,5 3,2 0,1 0,7 1,1 0,4 
PROT_A 1,1 0 1 0 0 0,2 1,1 0 

         Permutation importance Inv Pri Ver Oto Inv_FF Pri_FF Ver_FF Oto_FF 

ROAD 51 25,8 47,8 26,5 32,9 30,2 40 43,1 
WAI 10,1 6,4 11,2 7,8 19,6 21,9 17 19,5 

LST_MOD 17,5 34,2 11,8 32 17,7 30,1 18,9 16,3 
WUI 8,6 7,8 7 12,3 8,6 9,3 6,1 11,9 
PWL 12,1 16,4 19,4 11,9 19,1 7,7 15,1 9,1 

TRACK 0,3 9,3 1,2 9,5 2,1 0,6 0,9 0,1 
PROT_A 0,5 0,1 1,6 0 0 0,3 2 0 
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Figura 14. Gráficos jackknife de MaxEnt. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
Estos resultados de MaxEnt coinciden a grandes rasgos con los obtenidos 

previamente por la regresión logística, confirmando su validez como método 
exploratorio de variables predictoras. En general, destacan las carreteras el factor 
decisivo en todos escenarios temporales, teniendo también un peso destacado el 
producto MODIS y la interfase WAI.  

De acuerdo con estos resultados, se utilizan las variables representativas para 
cada escenario temporal en el cálculo del algoritmo de MaxEnt para desarrollar los 
modelos temporales, es decir, para cada escenario temporal las variables empleadas 
serán las siguientes: 

 
Tabla 7. Selección final de variables representativas. 

  Inv Pri Ver Oto Inv_FF Pri_FF Ver_FF Oto_FF 
ROAD X X X X X X X X 
WAI   X X X   X     

MOD_LST X X X X X   X X 
WUI   X X   X   X   
PWL   X X   X   X   

TRACK     X       X   
PROT_A                 

 
En el caso de WAI en verano se ha decidido su inclusión por estar prácticamente 

en el umbral (0,05086), pudiendo ser un factor explicativo importante. 
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5.3. Modelos predictivos generados con MaxEnt 

Se presentan a continuación los modelos predictivos hallados con MaxEnt junto 
con la validación de los mismos y la implicación de las variables independientes en 
cada modelo creado. 

 
5.3.1.  Predicción e incertidumbre de los escenarios 
temporales 

La figura 15 presenta las salidas cartográficas derivadas de la aplicación MaxEnt 
tras un tratamiento en ArcGIS que mejora la calidad de la cartografía presentada por 
la aplicación. Mediante una leyenda común se puede comparar las diferencias entre 
los distintos escenarios, todos muy marcados por el predominio de las carreteras 
como factor explicativo. A grandes rasgos, se puede destacar el litoral catalán y la 
zona oriental de la provincia de Huesca como las áreas con un mayor nivel de peligro, 
mientras zonas con una baja presión demográfica menor, como el Pirineo, muestran 
niveles de peligro sensiblemente menores.  

La figura 16, por su parte, muestra la incertidumbre de cada modelo utilizando el 
coeficiente de variación (desviación estándar del conjunto de los modelos 
individuales obtenidos en la validación cruzada dividida por la media de los mismos). 
El resultado es el grado de incertidumbre expresado en tantos por 1 de variación de 
la probabilidad por encima o por debajo del valor promedio obtenido (figura 16). Esto 
ayuda a comprender las zonas en las que los modelos se comportan de una forma más 
estable y por ende fiable o dónde, por el contrario, encuentran mayor dificultad a la 
hora de prever el peligro, variando las predicciones en función de la muestra de 
datos de ocurrencia utilizada. Visualmente se puede apreciar que la mayor 
incertidumbre se concentra en zonas de peligro bajo, coincidiendo en los distintos 
modelos temporales las mismas áreas con alta incertidumbre. 
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Figura 15. Promedio de probabilidad de ignición de los modelos individuales de los 

escenarios temporales. 
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Figura 16. Incertidumbre en la predicción de los modelos de escenarios temporales 

 

5.3.2. Validación de los modelos 
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La figura 17 recoge las medias de las tasas de omisión y el área predicha como 
función del umbral acumulado para cada escenario de los cuatro modelos (k-fold) 
individuales generados (modo de validación escogido entre las opciones de MaxEnt). 
La tasa de omisión, representada por la línea azul turquesa y el sombreado amarillo 
que recoge la varianza cubierta por una desviación estándar, debiera estar, 
idealmente, próxima a la tasa de omisión predicha (línea diagonal desde el origen de 
coordenadas). En las gráficas se identifica como la tasa de omisión se adapta 
armónicamente a la omisión predicha, teniendo una desviación mayor en la estación 
otoñal. Esto significa que no existe sesgo en ningún intervalo , es decir, que no se 
aprecia una gran desviación en valores bajos, medios o altos, según la distribución 
esperada.  

 
Tabla 8. Valores de AUC de los modelos predictivos. 

 AUC (min) AUC (max) AUC (mean) StdDev (mean) 
Inv 0,764 0,817 0,799 0,021 

Inv_FF 0,811 0,854 0,835 0,016 
Pri 0,829 0,851 0,843 0,009 

Pri_FF 0,829 0,851 0,843 0,008 
Ver 0,822 0,857 0,842 0,014 

Ver_FF 0,827 0,870 0,855 0,017 
Oto 0,810 0,846 0,823 0,014 

Oto_FF 0,815 0,847 0,834 0,012 
 
Por otra parte, la tabla 8 y los gráficos recogidos en la figura 18, reflejan la 

calidad de los modelos obtenidos. En las gráficas se puede observar la gran distancia 
que existe desde la línea que representa la media del AUC (Area Under the ROC 
Curve) de los modelos individuales y la línea recta que representa como actuaría un 
modelo aleatorio, lo que implica que los modelos generados están prediciendo 
razonablemente bien la ocurrencia de incendio. 
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Figura 17. Medias de omisión y predicción para los distintos escenarios. Rojo: área 

media, azul: área media +/- una desviación estándar, turquesa: media de omisión en los 
datos test, naranja: media de omisión +/- una desviación estándar, negro: omisión 

predicha.  
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Figura 18. Gráficos de área bajo la curva ROC (Receiver Operating Curve o curva de 

funcionamiento del receptor). En rojo: media, en azul: media +/- una desviación 
estándar, negro: predicción aleatoria. 

 
5.3.3.  Curvas de respuesta y contribución de variables en los 
modelos predictores 
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En este apartado se van a mostrar los resultados con detalle de las variables 
explicativas para cada escenario temporal. 

 
5.3.3.1. Invierno 

En el caso de los días laborables de la estación invernal, únicamente las variables 
MOD_LST y carreteras forman parte del modelo, lo que facilita la interpretación de la 
siguiente figura. En ella se puede apreciar la contribución de cada variable en el 
modelo, con un peso muy superior de las carreteras, cuyo porcentaje de contribución 
llega hasta el 79%.  

 

 
Figura 19.Graficos jackknife de Inv. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 

Tabla 9. Porcentajes de contribución y permutación de variables predictoras de Inv. 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 78,8 77,4 

LST_inv 21,2 22,6 

 
Por otra parte, en la figura 18 se observa como las variables explicativas afectan 

la predicción de MaxEnt. Estas curvas muestran cómo cambia la predicción conforme 
a la variación de la variable independiente.  

La variable MODIS se relaciona positivamente con el peligro, de forma que a 
mayor temperatura de superficie mayor peligro. Por su parte, la interacción con las 
carreteras es inversa y mucho más sesgada hacia valores 0, es decir, la acción de las 
carreteras como factor explicativo decae drásticamente conforme nos alejamos de 
ellas o lo que es lo mismo, a menos distancia mayor riesgo. 
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Figura 20. Curvas de respuesta de variables predictoras de Inv.  

 
En el modelo que recoge los días festivos y fin de semana en invierno intervienen 

cuatro variables: MOD_LST, ROAD, PWL y WUI. Entre estas, vuelve a ser las 
carreteras el factor más importante, aunque no con tanta preponderancia como en el 
caso anterior. Las carreteras son responsables de un 45% del modelo, con un 
importante descenso en el porcentaje de permutación, lo que indica que al asignar 
valores aleatorios a esta variable el modelo se resiente. Este hecho es también 
observable en el jackknife AUC donde se muestra que con la ausencia de las 
carreteras el modelo pierde capacidad explicativa, aunque de forma muy inferior a lo 
que sucedía en los valores de invierno-días laborables. Un aspecto común al conjunto 
de curvas de respuesta de carreteras presentadas en los siguientes gráficos es que el 
radio de acción de estas es constante, en torno a los 5000 metros. Este patrón ha 
sido ya analizado en otros estudios que han concluido la presencia de este umbral 
(Vega Garcia et al.1993, Vasconcelos et al., 2001, Mollicone et al., 2006).  

  La variable MODIS no se erige como una variable clave a la hora de explicar el 
modelo, ya que como se muestra en la figura su capacidad explicativa en ausencia de 
otras variables es muy baja, sin embargo si sirve como matiz necesario en el 
conjunto de las variables, pues en su ausencia merma la capacidad predictiva de la 
distribución de ocurrencia. Las líneas eléctricas y la interfase WUI, si bien son 
capaces de explicar una buena parte del modelo por sí mismas, si se omiten el 
porcentaje total AUC (que mide la capacidad predictiva) disminuye muy ligeramente. 
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Figura 21. Gráficos jackknife de Inv_FF. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 

Tabla 10. Porcentajes de contribución y permutación de variables predictoras de 
Inv_FF. 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 45 34,6 

LST_inv 20,3 28,9 

PWL 20,2 18,7 

WUI 14,6 17,8 

 
El comportamiento de las variables predictoras es el esperado tal y como 

presentan sus curvas de respuesta (figura 23). Sin embargo, es especialmente 
reseñable en la variable MODIS y en la distancia a las líneas eléctricas las 
discontinuidades en la curva que las recoge, resultado especialmente de la 
distribución propia de la variable dentro de la zona de estudio (predominan los 
valores medios) y a la resolución espacial empleada (250m), lo que limita una mayor 
precisión del modelo. Esto último es más fácilmente entendible consultando la figura 
siguiente, que recoge una serie de histogramas del modelo de verano que pueden 
ayudar a entender estas discontinuidades en las curvas. Globalmente el 
comportamiento es lógico, con una progresión positiva en la variable MODIS (mayor 
temperatura, mayor peligro) e inversa en las variables de carreteras, líneas 
eléctricas y la interfase WUI (menor distancia, mayor peligro).  
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Figura 22. Histogramas de frecuencias de variables predictoras del modelo de verano. 

 

 
Figura 23. Curvas de respuesta de variables predictoras de Inv_FF.  
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5.3.3.2. Primavera 

En primavera se amplía el número de variables implicadas, pero vuelven a ser la 
distancia a las carreteras el factor con un mayor peso explicativo en el modelo, 
aunque en este caso la variable LST, en caso de ser excluida,  es la que produce  un 
menor AUC total del modelo. En este caso intervienen ambas interfases, siendo la de 
mayor importancia la agraria, responsable de casi un 20% de la capacidad predictiva 
y con una importante reducción del porcentaje en la permutación, lo que implica que 
el modelo depende de forma importante en esta variable. Este hecho es significativo 
de la mayor actividad en las parcelas agrarias en los meses de primavera respecto al 
invierno. Las líneas eléctricas parecen tener mayor peso en este modelo respecto a 
otras estaciones, pero encontrar una causalidad resulta complejo. 

 

 
Figura 24. Gráficos jackknife de Pri. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 

Tabla 11. Porcentajes de contribución y permutación de variables predictoras de Pri. 
 
 
 
 
 
 
 
 
 
Las curvas de respuesta nos ayudan a comprender el comportamiento del peligro 

en función de las distintas variables. Las discontinuidades, en este caso, destacan en 
la variable WUI, mientras que PWL y especialmente ROAD y WAI muestran un perfil 
descendente muy definido, desde un peligro muy elevado en los primeros metros de 
proximidad hasta valores prácticamente nulos cuando nos alejamos de estas 
localizaciones. El peligro en función de la variable MODIS, por su parte, crece de 
forma exponencial con los valores de esta, desde un peligro nulo con los valores más 
bajos (situados en las áreas más frías y umbrías) hasta alcanzar un máximo entre los 

Variable Porcentaje de contribución Porcentaje de permutación 
ROAD 37,6 34,4 

LST_pri 25,3 31,5 

WAI 19,9 10,4 

PWL 12,3 16,6 

WUI 4,9 7,1 
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14.800 y los 15.000 -cabe recordar que para obtener los valores en grados celsius hay 
que multiplicar estas cifras por 0,02 y restar 273-. A partir de este umbral, el peligro 
decae como consecuencia del descenso en la frecuencia, no por la disminución real 
de la ocurrencia de fuegos en estas zonas. 

 

 
Figura 25. Curvas de respuesta de variables predictoras de Pri. 

 
El caso de los fines de semana y festivos de primavera es distinto a cualquier otro 

modelo generado por la ausencia de la variable MODIS en la predicción. En este caso 
es la variable carreteras la que tiene un mayor peso explicativo, aunque se reparte 
prácticamente al 50% la influencia en la predicción final con la interfase WAI. Este 
hecho, recalca de nuevo la mayor actividad agraria en este periodo del año, y 
destaca como los fines de semana y festivo la importancia de estos trabajos 
aumenta, consecuencia probable del alza de la agricultura a tiempo parcial, que 
encuentra en estos días no laborables el momento de trabajo en el campo. 
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Figura 26. Gráficos jackknife de Pri_FF. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 
 

Tabla 12. Porcentajes de contribución y permutación de variables predictoras de 
Pri_FF. 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 53,2 61,9 

WAI 46,8 38,1 

 
Las curvas de respuesta de ambas variables son muy similares, marcadas por el 

descenso brusco y sin discontinuidades desde los valores 0 que se relacionan con el 
mayor peligro en la predicción generada. 

 

 
Figura 27. Curvas de respuesta de variables predictoras de Pri_FF 

 
5.3.3.3. Verano 

El verano tiene una particularidad importante respecto al resto de escenarios, la 
entrada de los caminos como variable explicativa, y es que es en este periodo en el 
que la presión humana es mayor sobre las zonas forestales, con miles de 
excursionistas cada día en estos espacios. Pese a ello, la importancia de esta variable 
como factor explicativo es baja, siendo de nuevo las carreteras la variable con mayor 
capacidad predictiva. De nuevo, como lo era en los meses de primavera, la 
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importancia de la interfase WAI se relaciona con una actividad elevada en los 
espacios agrícolas, rozando el 29% de la capacidad explicativa del modelo final y con 
una fuerte incidencia si sus valores son sustituidos aleatoriamente (bajo porcentaje 
de permutación). Por último, la facilidad de ignición en estos meses estivales puede 
ser la causa del aumento de los fuegos consecuencia de las líneas y tendidos 
eléctricos y de su correspondiente peso en el modelo de verano. 

 

 
Figura 28. Gráficos jackknife de Ver. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 
Tabla 13. Porcentajes de contribución y permutación de variables predictoras de Ver. 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 37,4 22,1 

WAI 28,9 17,1 

LST_ver 18,1 30,3 

PWL 13,3 16,3 

TRACK 2,3 14,3 

 
Las curvas de respuesta no tienen comportamiento distinto al esperado y al ya 

mostrado en los modelos presentados anteriormente. La probabilidad de origen de un 
incendio por causa humana decae rápidamente conforme nos alejamos de las causas 
principales de incendios: los trabajos agrícolas (variable WAI), las carreteras, las 
líneas eléctricas y los caminos. Aumenta con la temperatura exponencialmente con 
la temperatura de superficie, hasta que la frecuencia de los valores de la misma es 
responsable del descenso de la curva. 
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Figura 29. Curvas de respuesta de variables predictoras de Ver. 

 
El modelo que recoge los festivos y fines de semana del verano presenta un 

comportamiento de difícil interpretación. La aparición de la interfase WUI como 
factor explicativo importante (17,1%) puede tener explicación en el mayor 
movimiento en el entorno de zonas pobladas y segundas residencias durante el fin de 
semana. Por otra parte, el peso de la variable PWL asciende notablemente respecto 
a los días laborables, lo que no tiene una posible causa aparente. Pese a estos 
cambios, la variable independiente fundamental continúa siendo las carreteras, en 
este caso de forma muy destacada al resto de variables, y es que los fines de semana 
y festivos en verano son de las fechas con mayor volumen de desplazamientos, lo que 
maximiza las probabilidades de accidente o negligencia. De nuevo los caminos 
aparecen como factor explicativo aunque de nuevo con un porcentaje marginal. Si 
bien confirma que en este periodo los excursionistas son una fuente de incendios 
importante. 
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Figura 30. Gráficos jackknife de Ver_FF. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 

Tabla 14. Porcentajes de contribución y permutación de variables predictoras de 
Ver_FF. 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 46,7 43,3 

PWL 17,3 15,9 

WUI 17,1 7,9 

LST_ver 16,9 27,4 

TRACK 2 5,6 

 
Las curvas tienen de nuevo un comportamiento normal, aunque con alguna 

discontinuidad observable en las líneas eléctricas y la interfase WUI. Cabe destacar 
como la variable WUI es la que mayor capacidad explicativa tiene en las 
probabilidades altas (ver los valores del eje de ordenadas). Así, el peligro se 
relaciona negativamente con todas las variables a excepción de la temperatura de 
superficie, donde a mayor valor de esta el peligro aumenta.  
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Figura 31. Curvas de respuesta de variables predictoras de Ver_FF. 

 

5.3.3.4. Otoño 

En el modelo de otoño, el número de variables explicativas vuelve a reducirse 
considerablemente, entrando como predictoras únicamente el componente de 
MODIS, las carreteras y la interfase agrícola. Es en este periodo, y especialmente 
durante fines de semana y festivos, cuando el tamaño muestral puede jugar un 
efecto más decisivo, puesto que el último trimestre del año es el que menor cantidad 
de incendios forestales presenta (ver figura 10). Las carreteras, tal y como se puede 
en el último de los jackknife, es la variable clave, pudiendo llegar a superar un 0,78 
en el valor de AUC por si misma (sin la colaboración de otras variables). En este 
sentido, la interfase agrícola es la primera que se podría prescindir en caso de ser 
necesario, ya que de acuerdo a lo observado en la figura 32 presenta el menor 
decrecimiento del valor total de AUC en su ausencia.  
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Figura 32. Gráficos jackknife de Oto. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
 
Tabla 15. Porcentajes de contribución y permutación de variables predictoras de Oto. 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 46 54,9 

WAI 31,5 23,9 

LST_oto 22,5 21,2 

 
La curva de respuesta de la variable MODIS, en esta ocasión, no presenta el 

descenso tras alcanzar un valor máximo que si se presentaba anteriormente (ver 
figuras 29 y 31), creciendo de forma continuada hasta estabilizarse en un valor de 
15000. Además, de las variables que forman parte del modelo, es la que explica los 
valores más altos de probabilidad, atendiendo a los valores del eje de ordenadas. Las 
carreteras tienen un la curva marcada por el descenso brusco, del mismo modo que 
en todos los escenarios ya analizados. Por último, la interfase WAI, aunque 
presentando un perfil algo quebrado, responde a la lógica de disminuir el peligro 
conforme se gana distancia con el contacto entre los espacios agrícolas y la 
vegetación natural. 
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Figura 33. Curvas de respuesta de variables predictoras de Oto. 

 
El último de los modelos, el de los fines de semana y festivos de otoño, 

únicamente se explica por la acción de dos variables, con una predominancia 
absoluta de las carreteras como factor explicativo (86%) sobre el producto MODIS. Las 
curvas de comportamiento responden al mismo esquema que el modelo de otoño, sin 
observar cambios significativos que merezcan un comentario diferente. 

 

 
Figura 34. Gráficos jackknife de Oto_FF. Turquesa: Sin la variable, azul: sólo con la 

variable, rojo: con todas las variables. 
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Tabla 16. Porcentajes de contribución y permutación de variables predictoras de 
Oto_FF. 

 
 
 
 
 
 
 

 
Figura 35. Curvas de respuesta de variables predictoras de Oto_FF. 

 
5.4. Validación operativa. Predicción del peligro de incendio para 2012. 

En este apartado se procede a validar operativamente los modelos creados en 
MaxEnt, es decir, a analizar los resultados obtenidos en base a los incendios 
acontecidos en 2012, tratando de dilucidar si los modelos logran predecir con 
precisión el peligro de incendio. Para ello, primeramente, se realiza una 
caracterización del comportamiento climático y de la distribución de incendios 
forestales de 2012. 

Esta validación se ha desarrollado a partir de rutinas programadas en R, a partir 
del mismo algoritmo de predicción (MaxEnt), utilizando datos del producto MODIS 
MOD11A2 descargados y post-procesados (mosaicado, reproyección y recorte) para el 
año 2012. Concretamente se han ajustado modelos diarios utilizando los modelos 
estacionales, sustituyendo la variable LST por el producto MODIS correspondiente a la 
fecha analizada. 

 
5.4.1. Caracterización del año 2012. 

Para poder comprender y contextualizar adecuadamente los resultados de la 
validación operativa realizada para el año 2012 es indispensable conocer en contexto 
climático de dicho año, así como caracterizar el comportamiento y distribución 
espacio-temporal de los incendios registrados. 

Comenzando por el aspecto climático, el año 2012 presentó un comportamiento 
térmico anómalo muy importante en gran parte del área de estudio (figura 36). En 
concreto, todas las provincias objeto de estudio registraron una temperatura media, 
como mínimo, muy cálida, clasificándose dentro del 20% de años más cálidos en la 
serie histórica de referencia 1971-2000. Destaca el centro de las provincias de 
Huesca y Zaragoza, para los que 2012 constituyó el año más cálido tomando como 
referencia el periodo antes citado. Las grandes anomalías se concentraron en los 
meses más cálidos, especialmente en mayo, junio y agosto, donde las temperaturas 
llegaron a superar por más de 2ºC los valores medios habituales. Julio y septiembre, 
sin tener un comportamiento extraordinario, estuvieron por encima de los valores 

Variable Porcentaje de contribución Porcentaje de permutación 

ROAD 86 81,6 

LST_oto 14 18,4 
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medios, del mismo modo enero, marzo, abril, octubre, noviembre y diciembre. 
Únicamente febrero tuvo una media por debajo de lo normal para este mes. 

 

Figura 36. Carácter de la temperatura en 2012. Fuente: AEMET (2013) 
  

Por otra parte, la pluviometría de 2012 estuvo por debajo de lo normal en gran 
parte del área de estudio, a excepción de la provincia de Huesca, donde la 
precipitación registrada se mantuvo dentro de los valores normales. En buena parte 
de la provincia de Tarragona, 2012 puede calificarse como muy seco, situándose 
entre el 20% de años más secos en el periodo de referencia 1971-2000. En la 
distribución mensual de la precipitación vuelve a destacar que los valores más bajos 
respecto a la media se concentraron en el semestre más cálido, con especial 
incidencia en agosto, que registro valores históricos de baja precipitación en 
numerosos observatorios. También enero y febrero estuvieron por debajo de la media 
de precipitaciones. Sólo abril y los meses otoñales registraron precipitaciones 
superiores a la media. 
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En cuanto al comportamiento de los incendios de 2012 se puede destacar que fue 
un año muy por encima de la media en cuanto a número de incendios (644 incendios 
de media en el periodo 1988-2011 y 645 en 2008-2011). Se registraron 970 fuegos de 
origen humano a lo largo del año, constituyéndose como el tercer año con más 
incendios de este tipo en la serie 1988-2011 (ver figura 8).  

 

Figura 37. Número total de incendios por causa humana en 2012 por mes. 
 

La figura 37 muestra un comportamiento atípico en la distribución de incendios 
en 2012. Febrero (curiosamente el único mes con un comportamiento térmico por 
debajo de la media, lo que evidencia la importancia del factor humano) copó el 30% 
de los incendios de todo el año, provocando que 2012 tuviera en conjunto una 
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cantidad de incendios extraordinaria para la serie de referencia. La distribución de 
incendios en el resto de los meses se ajusta algo más a lo esperado, aunque destaca 
el número de incendios de mayo y junio, que supera a los registrados en los dos 
meses a priori más conflictivos (julio y agosto). La contribución del otoño al total de 
los incendios fue muy baja, quedándose en 0 en el mes de noviembre. La distribución 
semanal si presenta unos valores en consonancia con los recogidos en el apartado 
5.1.1. Se identifica una concentración en el fin de semana superior en un 8% a una 
distribución homogénea ideal. 
 

 
Figura 38. Izquierda: distribución semanal de incendios (causa antrópica) en 2012. 

Derecha: porcentaje respecto a una distribución homogénea ideal de 2012. 
 

Por último, y con el fin de excluir cualquier posibilidad de que la validación 
pudiera estar condicionada por la distribución espacial de los incendios (si existiera 
una clara concentración en una zona determinada) se presenta el mapa de 
distribución de los incendios de 2012 y de los años 2008-2011. Como se puede 
observar, el patrón espacial de los incendios de 2012 es similar al registrado en el 
periodo 2008-2011. 

 

Figura 39. Distribución espacial de los incendios de 2012 y 2008-2011. 
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5.4.2. Predicción del peligro para 2012 y evaluación estadística de 
los resultados. 

La figura 41 presenta la cartografía de peligro de incendio para determinados 
días de cada mes junto con la localización de los incendios ocurridos en esas fechas. 
Los días de marzo, junio y noviembre se corresponden con modelos de fin de semana 
y/o festivo. Se puede observar como la distribución espacial del riesgo varía en cada 
fecha, fruto de la temporalidad que introduce el producto MODIS y del modelo (de 
los ocho generados) que determina el peligro en función de la fecha. 
En la siguiente url se puede ver una animación la previsión del peligro para cada día 
del año 2012: 
 

http://155.210.62.105/Riesgo_2012/ 
 

Destaca una posible incoherencia presente en los primeros días de octubre 
debido a una anómala interacción entre el producto MODIS y la interfase cultivo-
forestal (WAI) del modelo de octubre, originada por un periodo de temperaturas 
inusualmente cálidas durante agosto y parte de septiembre de 2012 (figura 40).  

 

 

Figura 40.Comportamiento térmico de agosto y septiembre de 2012. Fuente: AEMET 
(2012a, 2012b) 
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Figura 41. Mapas de peligro e incendios para días concretos de 2012. Los círculos amarillos representan la ocurrencia de un incendio.  
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Visualmente se puede apreciar que, salvo alguna excepción ya comentada, la 

predicción se comporta de forma normal y consistente. Se presenta a continuación la 
validación de la predicción del peligro para el año 2012, que se ha llevado a cabo 
mediante la extracción de la predicción diaria para cada uno de los incendios 
registrados en dicho año. Para facilitar la interpretación, los resultados obtenidos se 
muestran en forma de diagramas de cahas en los que se puede observar el rango y 
distribución de los valores de probabilidad de ocurrencia (peligro) agregados a 
distintas escalas temporales y por causalidad.  

En la figura 42, se presenta un boxplot mensual que demuestra que la mayor 
parte de los incendios (cajas verdes) se sitúa en probabilidades de peligro entre el 
0,4 y el 0,6, siendo algo superiores si consideramos el máximo de la vecindad de 250 
m que podría ser un valor más acorde en algunos casos por la resolución de los 
modelos. Los valores presentan una cierta homogeneidad apreciable por los valores 
de mediana, con la única excepción de mayo, lo que habla de que podría ser el mes 
que peor quedara caracterizado por los modelos estacionales. Noviembre no ha 
podido ser evaluado puesto que no se registro ningún incendio en el área de estudio 
en ese año. 

En cuanto a los valores estacionales, recogidos en la figura 43, muestran también 
valores de mediana próximos al nivel de peligro de 0,5, siendo la primavera, 
condicionada por los bajos valores de mayo, de nuevo la que presenta unos 
resultados más bajos. 
 

 

Figura 42. Boxplot de peligro de incendio en cada localización de incendio forestal en 
2012 por meses. La caja verde representa la distribución entre el segundo y el tercer 

cuartil. La línea horizontal se corresponde con la mediana mientras que la caja 
discontinua representa los valores máximos de riesgo en una vecindad de 250m respecto 

al punto de incendio. Los "bigotes" de las cajas muestran el máximo y el mínimo de la 
serie. 
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Figura 43. Boxplot de peligro de incendio en cada localización de incendio forestal en 
2012 por estación. La caja azul representa la distribución entre el segundo y el tercer 

cuartil. La línea horizontal se corresponde con la mediana mientras que la caja 
discontinua representa los valores máximos de riesgo en una vecindad de 250m respecto 

al punto de incendio. Los "bigotes" de las cajas muestran el máximo y el mínimo de la 
serie. 

 
A partir de las figuras 42 y 43, se puede concluir que, a pesar del atípico 

comportamiento climático del año 2012 y de su inusual distribución intraanual de la 
ocurrencia de incendios, los modelos consiguen predecir relativamente bien dicha 
ocurrencia, alcanzando un umbral de peligro entorno a un valor de probabilidad de 
0,4 o superior. 
 

Por último, se ha querido mostrar la relación entre la probabilidad de incendio 
predicha y los grupos de causalidad de los incendios. La figura 44 recoge esta 
distribución, en la que podemos observar que los incendios intencionados son 
aquellos que mejor predicen los modelos, acercándose su mediana al valor 0,5. Por 
el contrario, los incendios por causa accidental son los que muestran valores de 
probabilidad más bajos, aunque no resultan distantes a los valores de los tres grupos 
restantes, que varían mayoritariamente entre valores de 0,3 y 0,6, con medianas 
próximas a 0,5. 

65 
 



 

 

Figura 44. Boxplot de peligro de incendio en cada localización de incendio forestal en 
2012 por causas. La caja color salmón representa la distribución entre el segundo y el 
tercer cuartil. La línea horizontal se corresponde con la mediana mientras que la caja 

discontinua representa los valores máximos de riesgo en una vecindad de 250m respecto 
al punto de incendio. Los "bigotes" de las cajas muestran el máximo y el mínimo de la 

serie. 
 

6. Conclusiones y líneas de trabajo futuras 

En este apartado final se recogen las principales conclusiones de este Trabajo Fin 
de Máster así como posibles vías de continuación de este estudio que pueden 
desarrollarse en un futuro próximo. 

 
6.1. Conclusiones  

La consideración de la variable temporal en los modelos de predicción del riesgo 
de ignición humano supone un paso adelante en el intento por optimizar la calidad y 
precisión de los mismos, integrando los ciclos temporales que rigen la actividad 
humana dentro del análisis del riesgo de incendio, superando así la modelización que 
únicamente trabaja con la temporalidad de los factores ambientales. 

La metodología desarrollada en este trabajo ha permitido evaluar la conveniencia 
de diferentes escenarios temporales y la creación de modelos de peligro basados en 
éstos, logrando predecir el peligro de incendio humano para 2012 con notable 
consistencia. La utilización de scripts ha permitido el trabajo con grandes volúmenes 
de datos que requiere un estudio de estas características. 

Se exponen a continuación de forma sintética las conclusiones extraídas de esta 
investigación y que dan respuesta a los objetivos planteados en su inicio: 
 

- La distribución interanual de los incendios derivados de la acción humana, así 
como la intraanual, está sujeta a una acusada variabilidad temporal. Dentro 
de esta heterogeneidad se puede identificar una distribución mensual bimodal 
con máximos en marzo y julio-agosto y mínimos durante el otoño. La 
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distribución de los incendios a escala diaria demuestra los distintos ciclos de 
actividad humana, con una concentración de los fuegos muy superior en días 
festivos y de fin de semana con respecto a los días laborables. 

- La desagregación temporal escogida -estacional- ha sido el máximo grado de 
detalle posible en función de lo permitido por el conjunto de datos empleado 
en el estudio. Este hecho se comprobó en los primeros análisis exploratorios 
mediante regresión logística, descartando así la agregación mensual. No 
obstante, se h an obtenido diferencias en los factores explicativos. También 
se ha logrado una diferenciación entre días "laborables" y días "festivos 
"(sábados, domingos y festividades). 

- Las variables independientes que han resultado ser significativas según el 
análisis exploratorio y, por tanto,  se han incluido en los modelos predictivos 
han sido la interfase cultivo-forestal (WAI), la interfase urbano-forestal (WUI), 
las líneas y tendidos eléctricos (PWL), la red de caminos (TRACKS), las 
carreteras (ROADS) y el producto MODIS de temperatura de superficie y 
emisividad (MOD_LST). 

- El algoritmo de Máxima Entropía (MaxEnt) ha permitido generar los ocho 
modelos que responden a los escenarios temporales seleccionados con una 
calidad notable, tal y como se extrae de los valores AUC derivados de la 
validación cruzada (k-fold), cercanos o superiores en todos los casos a 0,8. 

- La distancia a carreteras (ROADS) es la variable con mayor peso explicativo en 
los modelos generados, siendo fundamental en la predicción del peligro de 
ignición en todos los escenarios. 

-  La variable MODIS condiciona la posibilidad de ignición, teniendo un peso 
importante en los modelos, lo que es especialmente patente al prescindir de 
ella en la modelización, lo que ocasiona un descenso importante en la calidad 
de los modelos. 

- Las dos interfases presentan comportamientos lógicos y colaboran en la 
generación de los modelos en distintos escenarios temporales.  

- La variable independiente TRACKS presenta influencia durante el verano, 
cuando estos caminos son más utilizados por excursionistas. Por último, la 
variable PWL, aunque significativa, tiene un comportamiento de difícil 
interpretación. 

- La predicción del peligro para 2012 ha revelado la buena precisión de los 
modelos a pesar de las anomalías térmicas, pluviométricas y de distribución 
intraanual de los incendios de dicho año. La mediana del valor de 
probabilidad del conjunto de los incendios se acerca a los 0,45, superándose 
en algunos meses. Mayo es el único mes que presenta unos valores de 
probabilidad bajos, lo que puede indicar que los modelos no describen bien el 
comportamiento de este mes, o al menos no lo hacen para los incendios de 
2012. 
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6.2. Potenciales líneas de desarrollo del trabajo 

Este trabajo abre el camino hacia otra serie de investigaciones que pueden 
mejorar sus resultados y profundizar en el método aquí propuesto. El tamaño 
muestral empleado, tanto en extensión temporal como geográfica, puede ser 
ampliado, lo que contribuiría a la consistencia a los resultados obtenidos y al mismo 
tiempo abriría la posibilidad de nuevos escenarios temporales más desagregados 
(escala mensual).  

Otro aspecto que puede ser interesante mejorar es la resolución espacial de los 
modelos, aprovechando precisión que permite la localización mediante GPS de los 
incendios y la precisión espacial de las variables predictoras derivadas de cartografía 
a escala 1:25.000. Los problemas a salvar en este caso particular son la baja 
resolución espacial de imágenes satelitales cuando su resolución temporal es alta (el 
caso de MODIS) y el gran volumen de cálculo de los algoritmos empleados en este 
trabajo, que implicariía quizás utilizar métodos de paralelización del cálculo. 

Atendiendo a las variables predictivas empleadas, esta investigación ha 
espacializado las mismas mediante la distancia a cada elemento (vías de 
comunicación, líneas eléctricas etc.), mientras que en otros trabajos (Vilar et al., 
2011; Rodrigues et al. 2014) se ha optado por emplear un buffer que recogiera la 
distancia a la que se espera que una variable pueda tener influencia, quedando de 
este modo de forma categórica la relación entre cada incendio y las variables (dentro 
o fuera del buffer). Se cree que esta espacialización favorece los resultados de los 
modelos al conseguir aprovechar de un mejor modo la resolución espacial de la 
variable dependiente. Sin embargo, en futuras investigaciones podría resultar de 
interés combinar ambas formas de espacialización, de forma que sea un buffer el 
que limite el radio de acción de cada variable predictora, pero conservando la 
distancia específica de cada pixel al elemento en cuestión. 

Otro aspecto que puede mejorar la predicción es la inclusión de un índice que 
mejore a la única variable que introduce factores ambientales (la variable MOD_LST). 
En los inicios de esta investigación se trató de utilizar el Fire Weather Index como 
variable ambiental, llegando incluso a contactar con la institución encargada de 
facilitar dicha información. La información disponible no concordaba en tiempo y 
espacio con la base de datos que se pretendía utilizar, por lo que no se pudo 
incorporar a la modelización. 
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