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1 INTRODUCCIÓN 
 

A lo largo de la historia el desarrollo del ser humano ha estado ligado a la existencia del agua.  

Todas las grandes civilizaciones que se conocen comenzaron sus asentamientos a orillas de un 

río. Tierras fértiles para los cultivos, facilidad para el transporte de mercancías o la satisfacción 

de necesidades básicas eran sólo algunos de los factores que hacían del agua un elemento 

imprescindible para cualquier población.  

Es conocido que la mayor parte de la superficie terrestre está compuesta por agua. Sin embargo, 

tan solo el 2% de esta superficie es agua dulce y la mayor parte de ella se encuentra en los 

casquetes polares en forma de hielo.  De este modo, menos del 1%  puede ser utilizada por el 

hombre de forma económicamente viable y sin generar grandes impactos negativos en el 

ambiente [1]. En particular, la mayor parte de masa de agua dulce que puede ser aprovechada 

por el ser humano se encuentra en los ríos.  Su control y utilización constituyen un objetivo 

primordial en  su gestión.  

El estudio global de la hidrología es una práctica que lleva ejerciéndose durante muchos años. El 

interés en el control de la corriente de los ríos proviene de la necesidad de proteger la vida 

humana y las necesidades físicas pero, desde una visión menos básica, se puede decir que una 

de las razones principales para hacer es la obtención de beneficios [2]. 

Por todo ello se han ideado multitud de dispositivos encaminados a aumentar la rentabilidad de 

los ríos en aspectos ambientales y económicos. Uno de estos desarrollos son las presas. Se trata 

de barreras que impiden el paso del agua almacenándola para aumentar su altura. El objetivo es 

aprovecharla para fines como la distribución y el regadío, la producción de energía, o evitar la 

inundación de una zona aguas abajo [3]. Las presas pueden estar fabricadas de diferentes 

materiales. Las más comunes históricamente son las de hormigón, piedra o aquellas formadas 

por aglutinación de materiales sueltos. Cada una cuenta con sus propias ventajas e 

inconvenientes pero todas, en mayor o menor medida, tienen dos cualidades muy limitadas: la 

flexibilidad y la versatilidad. 

Alejándose de la vertiente tradicional, existen un tipo de presas que, con sus limitaciones, son 

capaces cubrir estas necesidades. Se trata de las presas hinchables. Una presa hinchable es, en 

esencia, una presa formada por un cuerpo de goma que se infla para evitar el paso del agua. 

Dicho cuerpo está recubierto  por materiales que lo protegen ante los fenómenos externos e 

internos de la propia presa. 

Históricamente la utilización de compuertas hidráulicas hinchables ha sido motivo de 

inseguridad debido a su propia naturaleza: la posibilidad de que un cuerpo llenado con agua o 

aire pueda detener un gran caudal de agua parece poco creíble por cuestiones de rigidez o 

resistencia. Sin embargo, el avance tecnológico en el campo de los materiales y la mejora de los 

diseños de los diques convierten a este tipo de presas en una herramienta muy interesante 

como alternativa real en la gestión de los recursos hídricos. Aspectos como su flexibilidad o su 

versatilidad las convierten en estructuras ideales para ciertas aplicaciones [4]. 
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La simulación numérica por ordenador es la mejor herramienta para llevar a cabo estudios y 

predicciones de fenómenos reales. Para llevarla a cabo debe existir un compromiso entre la 

precisión con la que se simula y el coste computacional que conlleva [5]. 

El nexo de unión entre los sucesos  naturales y la simulación numérica es la modelización de los 

sistemas involucrados. Se deben plasmar los aspectos más relevantes de todos estos fenómenos 

en un modelo matemático  que concuerde lo máximo posible con resultados conocidos. 

La necesidad de predecir y estimar la evolución de los procesos hídricos, combinada con el 

cálculo computacional, ha dado lugar a diversos grupos de investigación por todo el mundo. En 

Zaragoza se encuentra el Grupo de Hidráulica Computacional del área de Mecánica de Fluidos 

de la Universidad de Zaragoza. Este grupo desarrolló un software de simulación de flujos 1D 

transitorios y superficiales llamado PEKA [6]. 

El cálculo numérico del programa está basado en la resolución  de las ecuaciones de aguas poco 

profundas unidimensionales. A lo largo de estos años al software se le han añadido una serie de 

funcionalidades que lo han convertido en una herramienta más potente. 

La idea principal de este trabajo consiste en el desarrollo de un módulo de presas hinchables 

para hacer de PEKA una herramienta más completa.  
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2 OBJETIVO Y ALCANCE 
 

El objetivo principal de este proyecto es el desarrollo y evaluación de un módulo de estructuras 

internas (en concreto, presas hinchables) para la simulación de flujo 1D transitorio y superficial. 

Se plantea como objetivo específico la comparación con otro software del mismo tipo de cálculo 

numérico analizando un caso real.  

El alcance de este proyecto abarca: 

1) Programación de un módulo de un dique dentro del modelo computacional PEKA. 

A partir del programa ya existente, se inserta dentro de él una sección que permite la 

inclusión de diques inflables en las simulaciones. Se habilitan una serie de 

funcionalidades que permiten modificar varios parámetros de las presas. 

 

2) Análisis de sensibilidad del módulo insertado. 

Se llevan a cabo una serie de casos que sirven para poner a prueba la simulación hecha. 

Dichos casos, además de servir para corregir y pulir aspectos de la programación,  

permiten comprobar las distintas opciones que ofrece el programa. 

 

3) Desarrollo de un caso hipotético en el que se incluya el módulo desarrollado en la 

simulación.  

A partir de una geometría real se plantea una posible situación que incluya una presa 

convencional. Se plantea la influencia que puede tener una presa hinchable tras la 

rotura de una presa tradicional aguas arriba del río. 

 

4) Recreación de un proyecto de simulación realizado con otro software. 

Se toma como base un  proyecto realizado con otro tipo de programa de cálculo 

computacional [7]. En él se analiza la posibilidad de incluir una serie de embalses de 

regulación en un río a partir de un estudio teórico. Se simulan los mismos casos y se 

establece una comparación entre ambos resultados. 
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3 MODELIZACIÓN DE UNA PRESA HINCHABLE 
 

Una presa hinchable consiste en un dispositivo de control del flujo de agua basado en un cuerpo 

de goma y un tubo de inflado. Además, interiormente está dividido en cámaras hinchables e 

independientes entre sí. El cuerpo está envuelto en una serie de capas de goma que protegen 

las cámaras y les dotan de resistencia.  El caudal de agua que se permite circular por encima de 

la presa se puede controlar variando el volumen de fluido (normalmente aire) de cada cámara a 

partir de una máquina hidráulica o neumática. [4] [8] 

En la Figura 3.1 se puede observar una presa hinchable real en la que el agua fluye 

principalmente por encima de una de sus cámaras, la cual está parcialmente inflada. 

 

 

Figura 3.1 - Presa Real en Marysville, Ohio, EEUU 

 

Para realizar la modelización de una presa hinchable se han de tener en cuenta todos los 

parámetros que puedan ser influyentes para su programación. 

Cada presa, de longitud L,  contiene un número de cámaras independientes entre sí. Cada una 

de estas cámaras está definida por su longitud (���), su anchura (�), y su altura (ℎ��). La presa, 

con una sola cámara, queda dimensionada como se observa en la Figura 3.2 : 

 

 

Figura 3.2 - Dimensiones generales de una presa hinchable 
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La modelización de las cámaras independientes puede observarse en la Figura 3.3. En ella se 

representa un dique inflable con tres cámaras de la misma altura. Las dos primeras cámaras se 

encuentran infladas mientras que la tercera no lo está.  Por ello, siempre que el agua no rebase 

la altura de las cámaras, el agua sólo transcurrirá por el espacio creado por la tercera cámara. 

 

 

Figura 3.3 – Modelización de presa inflable con cámaras. a) Vista 3D   b) Vista de alzado 

 

De ahora en adelante todas las variables relativas a las presas hinchables estarán referidas a las 

cámaras. 

En cuanto a la modelización del entorno de la presa (ver Figura 3.4) se tienen en cuenta la altura 

del cauce del río (��) y la altura de cimentación (������).  

 

 

Figura 3.4 - Modelización del entorno de la presa 

 

La altura de cimentación de la presa es un parámetro relevante. Se utiliza para nivelar la zona 

del cauce en la cual está situada la presa [4]. 
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En el ANEXO 2 se especifican las variables más influyentes a la hora de llevar a cabo la 

modelización. Sin embargo, en este trabajo se han considerado las siguientes hipótesis y 

simplificaciones. 

- La longitud introducida por el usuario es la efectiva. Esta longitud viene determinada por 

la inclinación de los estribos de amarre (�) y se trata de un parámetro difícil de conocer. 

No obstante, la diferencia entre la longitud representativa (��) y la longitud (�) de la 

presa en condiciones reales es pequeña.  Por tanto:   � = 0 → � ≈ �� 

- El valor de la altura de las cámaras (ℎ�) introducido por el usuario es la altura real, no la 

nominal (ℎ��). 

- La anchura del dique (�) en comparación con la longitud del tramo del río es 

despreciable. 

 

 

3.1 Influencia del calado aguas arriba de la presa 
 

La altura de cada cámara 	varía en función de la fuerza de  presión (��) ejercida por el agua a 

ambos lados. Sin pérdida de generalidad se supone que el flujo discurre de izquierda a derecha. 

El caso inverso es análogo al mostrado. 

Analizando una de las cámaras de la presa, se definen las siguientes variables: 

- ℎ� → 		Altura de agua aguas arriba del dique. 

- ℎ�� → 		Altura total máxima que puede alcanzar el dique. 

- ℎ���� → 		Altura del dique en cada instante de tiempo que transcurre en el proceso de 

llenado. 

Además, se define el calado relativo (ℎ���) como el cociente entre la altura de agua aguas arriba 

del dique (ℎ�) y la altura total de la cámara correspondiente �ℎ��� : 

 

������	��������= ℎ��� = 	
ℎ�
ℎ��

 (3.1) 

	 

donde la altura instánea de la cámara  corresponde a la altura en cada instante de tiempo que 

transcurre en el proceso de llenado. 

Se distinguen dos situaciones: 

- ℎ��� < 	1 

 

Si el calado relativo es menor que 1, la altura del agua antes del dique es menor que la 

altura de la cámara. Esta situación se representa en la Figura 3.5. 
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Figura 3.5 - Influencia del calado relativo inferior a 1. 

 

La fuerza de presión resultante ejercida por el agua tiene un valor positivo en el eje z.  

Por tanto la cámara se eleva ligeramente. 

 

- ℎ��� > 	1	 

 

Si el calado relativo es mayor que 1, la altura del agua antes del dique es mayor que la 

altura de la cámara. Esta situación se representa en la Figura 3.6 

 

 

Figura 3.6 - Influencia del calado relativo superior a 1. 

 

En este caso, la fuerza de presión resultante (contribuciones a izquierda y derecha del 

dique, denominadas ���	�	���  respectivamente) ejercida por el agua tiene un valor 

negativo en el eje z.  Por tanto la cámara disminuye ligeramente su altura. 

Para cuantificar este efecto se ha recurrido a la Tabla 3.1-1, en la que se relaciona el calado 

relativo (ℎ���) con un coeficiente multiplicativo de corrección ���� de la altura instantánea 

(ℎ���). 
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ℎ��� �� ℎ��� �� 

0.55 1.082 1.05 0.982 

0.60 1.078 1.10 0.965 

0.65 1.072 1.15 0.956 

0.70 1.065 1.20 0.947 

0.75 1.057 1.25 0.938 

0.80 1.049 1.30 0.930 

0.85 1.040 1.35 0.922 

0.90 1.031 1.40 0.915 

0.95 1.014 1.45 0.909 

1.00 1.000 1.50 0.905 

Tabla 3.1-1 - Relación empírica del calado relativo (hrel) y el coeficiente corrector (Cf) 

 

Aunque, como puede deducirse de la Tabla 3.1-1, el coeficiente �� tiene una influencia menor 

del 10% sobre la altura instantánea, se ha incluido como parte de la modelación de la presa 

hinchable. Para más información sobre el efecto del calado relativo se puede consultar ANEXO B 

– MODELIZACIÓN DE UNA PRESA HINCHABLE  

 

 

3.2 Tipos de inflado 
Dentro de la modelización se han habilitado dos tipos de llenado del dique. 

- Tipo Automático. 

El usuario desconoce los procesos de hinchado y deshinchado de la cámara. Para este tipo de 

casos se debe realizar también una modelación de los procesos a partir de ecuaciones 

experimentales (ver ANEXO 2). 

Inflado 

Para llevar a cabo el inflado, se suministra un flujo de aire al dique hinchable con una 

presión superior a la presión de trabajo (��) de la presa, utilizándose para ello una 

máquina hidráulica con una capacidad de descarga (��) suficiente. 

Además, el proceso contará con unas pérdidas de inflado ����. 

 

Desinflado 

Como algunos ríos sufren repentinas variaciones de caudal es necesario que el proceso 

de desinflado sea rápido. Por otro lado, también hay que considerar que en ciertas 

regiones, un gran incremento del nivel de calado aguas abajo podría suponer una 

inundación de algunas zonas y por tanto hay que regular el desinflado del cuerpo de 

goma. 

Los parámetros influyentes en este proceso son el diámetro de la tubería de desinflado 

(�), el volumen del cuerpo de goma (�), y presión de trabajo. 
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Además, el proceso cuenta con unas pérdidas en el conducto de aire  ��
��

�
� y unas 

pérdidas asociadas al propio proceso (�). 

 

- Tipo Manual.  

El usuario conoce los procesos de hinchado y deshinchado de la cámara. En este caso, la 

altura de cada cámara en un instante de tiempo (ℎ���)  viene proporcionada por una tabla 

definida por el usuario, con lo que la presa se hinchará como él requiera. 

 

En el trabajo, además de incluirse ambos tipos de inflado (manual y automático) se pueden 

considerar los efectos del calado efectivo en ambos. Por tanto, realmente se han considerado 

cuatro tipos de modos de inflado: manual, automático, manual con influencia del calado relativo 

y automático con influencia calado relativo. 
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4 MODELO DEL FLUJO DE SUPERFICIE EN 1D 
 

4.1 Ecuaciones del flujo de superficie en 1D 
 

Las ecuaciones de St. Venant, del flujo no estacionario en canales abiertos, constituyen la 

aproximación 1D en el flujo de superficie libre.  Este modelo simplifica fenómenos de naturaleza 

compleja, centrándose únicamente en las influencias más importantes [9, 10] 

Las hipótesis de St. Venant que rigen el modelo son: 

- Flujo unidimensional. Se basa en la suposición de que la velocidad es uniforme en cada 

sección transversal. 

- Distribución de presiones hidrostáticas. 

- Curvatura de líneas de corriente pequeña y aceleraciones verticales despreciables. 

- Las fuerzas de fricción de las paredes son descritas mediante leyes similares a las de 

flujo estacionario. 

- La pendiente media del fondo, θ, es pequeña, de modo que tanto el seno como la 

tangente del ángulo pueden aproximarse al propio ángulo así como cos θ ≈ 1 

Teniendo en cuenta estas hipótesis, se pueden desarrollar las ecuaciones de conservación de la 

masa y de la cantidad de movimiento en 1D [9, 11]. 

Sea un volumen de control 1D, δx,  como el visualizado en la Figura 4.1: 

 

 

Figura 4.1 - Vista transversal de un volumen de control de un río 

 

La ecuación de continuidad nos dice que el flujo neto de masa (caudal) que entra en el volumen 

será la integral evaluada en el tiempo de la diferencia de los flujos que atraviesan las paredes en 

cada instante. Es decir, la suma de la variación temporal  del área de la sección transversal y la 

variación espacial del flujo volumétrico que atraviesa la sección deben ser cero.  

��

��
+
��

��
= 0			 

 
( 4.1) 
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La ecuación de conservación de la cantidad de movimiento establece que, en un periodo de 

tiempo dado, la variación de la cantidad de movimiento lineal contenida en un volumen de 

control, ha de ser igual al sumatorio de las fuerzas exteriores actuantes en esa dirección más el 

flujo neto que atraviesa el volumen de control. 

��

��
+

�

��
�
��

�
+ ���� = ��� + ����� − ��� 

 

( 4.2) 

 

Se puede observar una sección del río en la Figura 4.2. 

 

Figura 4.2 - Sección transversal del río 

 

Desglosando los términos de la ecuación (4.2), en la primera parte de la igualdad se tiene: 

- Variación temporal del caudal dentro del volumen. 

��

��
 

 
 

- Variación espacial del flujo de la cantidad de movimiento y de la fuerza neta de presión 

en la dirección longitudinal: 

�

��
�
��

�
+ ���� 

 
donde  
 

( 4.3) 
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��(�,�) = � (ℎ − �)�(�,�)	��
�(�,�)

�

 

En la segunda parte de la igualdad todos los términos son de fuerzas: 

- Fuerza de fricción de las paredes debidas a las variaciones de anchura de la sección, b: 

���(�,�) = � � (ℎ − �)
��(�,�)

��
��

�(�,�)

�

 

 

(4.4) 

 

- Fuerzas de fricción debidas a distintas causas las cuales se consideran en forma de 

pendientes. 

 Pendiente del fondo del cauce. 

�� = −
���
��

 

 
(4.5) 

 

  donde zb representa la cota del fondo del cauce 

 Pendiente de la línea de energía debida a las pérdidas de fricción del agua con el 

fondo del cauce. 

�� =
����

����
�/�

 

 

(4.6) 

 

donde �  es el caudal que circula por la sección, � es el coeficiente de Manning, 

� es el área y �� es el radio hidráulico definido como el cociente entre el área 

mojada y el perímetro mojado de la sección. 

Además, el sistema de ecuaciones formado por (4.1)  y (4.2) puede reescribirse en formulación 

conservativa: 

��(�,�)

��
+
��(�,� )

��
= � (�,� ) 

 
(4.7) 

 

con 

� = �	
�
�
	�			,			� = �	

�

��

�
+ ���

	� 			,			� = �		
0

��� + ��(�� − ��)
	� 

 

(4.8) 
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en el que U representa el vector de variables conservadas (área y caudal), F es el flujo de las 

variables conservadas a través de las paredes de un volumen de control y ℋ  los términos 

fuente. 

 

 

4.2 Condiciones iniciales y de contorno 
 

Estas ecuaciones han de completarse con las condiciones iniciales y de contorno del problema. 

Condiciones Iniciales. 

Por un lado, las condiciones iniciales son aquellas en las que se asigna un valor a las variables 

involucradas en el problema en el estado inicial (�= 0).  En este caso se tiene: 

�
�(�,0) = 	0
ℎ(�,0) = 	0

								0 ≤ x ≤ L 

siendo � la longitud del canal. 

Condiciones de Contorno. 

Por otro lado, las condiciones de contorno son aquellas condiciones en la frontera del problema 

que imponen valores específicos al sistema (4.8). En este caso se tienen condiciones de contorno 

a la entrada y a la salida del río. La imposición de las condiciones de contorno está muy 

relacionada con el número de Froude [9]. 

El número de Froude es un número adimensional que relaciona el efecto de las fuerzas de 

inercia y gravitacionales [12]. 

�� =
�������	��	�������

�������	���������������
=
�

�
=

�

��ℎ
 

 

(4.9) 

 

con � = � �⁄ . Se distinguen las siguientes situaciones: 

 

- Si �� > 1 → 		Las fuerzas inerciales gobiernan el flujo y se dice que se trata de  un 

régimen supercrítico. 

- Si �� = 1 → 		Existe un equilibrio entre las fuerzas de inercia y las gravitacionales.  Se 

dice que es un flujo crítico. 

- Si �� < 1 → 		Las fuerzas gravitacionales gobiernan el flujo y se dice que se trata de un 

régimen subcrítico. 

Las condiciones de contorno más típicas para resolver este tipo de problemas son: 

- C.C. Entrada.   
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 Hidrograma �(�). Consiste en una representación de la evolución temporal del 

caudal en la sección inicial. 

 Nivel superficial en función del tiempo ℎ + ��	(�).  

 

- C.C. Salida 

 Salida libre. No se impone ninguna condición. Suele emplearse en ausencia de 

información o cuando el régimen es supercrítico. 

 Nivel superficial en función del tiempo ℎ + ��	(�).  

 Curva de aforo. Es una representación del caudal que atraviesa una sección a 

partir del calado. Puede darse en cualquier sección que permita llevar a cabo 

esta medición, pero uno de los requisitos básicos es que no debe existir erosión 

del suelo ni de las paredes. El procedimiento de cálculo se detalla en el ANEXO D 

– OBTENCIÓN DE LA CURVA DE AFORO. 

 Número de Froude constante (��). 

 

 

4.3 Resolución numérica de las ecuaciones 
 

El sistema de ecuaciones se resuelve utilizando un método numérico en volúmenes finitos. Éste 

consiste en discretizar nuestro dominio de longitud L en un número N de celdas de cálculo de 

tamaño �� [6] (Ver Figura 4.3). 

 

 

Figura 4.3- Discretización en volúmenes finitos 

 

Es posible expresar el sistema (4.8) mediante la formulación no conservativa. 

��(�,�)

��
+ �(�,� )

�� (�,�)

��
= � ′(�,� ) 

 
(4.10) 
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donde �(�,� ) es el Jacobiano y � ′(�,� ) es la matriz de términos fuente escrita en forma no 

conservativa [10] [6]. La existencia de este Jacobiano diagonalizable (3.1.2) le confiere 

propiedades hiperbólicas al sistema de ecuaciones.  

 

�(�,� ) =
��(�,� )

��
 ( 4.11) 

 

 

Sus dos valores propios	��	�	��, reales y distintos, juegan un papel determinante en la evolución 

de las perturbaciones de los flujos 1D de lámina libre. Se suelen denominar velocidades 

características y son la base sobre la que se formulan una familia de métodos numéricos 

denominados upwind. En este trabajo se ha escogido el método upwind de primer orden 

formulado usando los promedios de Roe [6, 9]. 

La linealización de Roe permite obtener en cada pared de cálculo �+ 1 2⁄ 	:  

(��)���/� = ����/�(�� )���/� 

 
(4.12) 

 

Es posible expresar la diferencia del vector de variables conservadas y de términos fuente en la 

base de vectores propios  ���
� : 

�����/� = � ��� − � � = � (���	���)���/�

�

���

	

 

(4.13) 

(� ′��)���/� = � ��������
���/�

�

���

	

 

(4.14) 

donde 

	��� =
���	�� − ��

2�̃
			,			��� =

− ���	�� − ��

2�̃
 

��� = −
1

2��
��������� − ������ − �ℎ +

1

��
����			,			��� = −��� 

 

para los cuáles se tiene: 

�� = ���� − ��			,			�� = ���� − ��				

��� = ��− �	̃		,			��� = ��+ �	̃			

con: 
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���+1/2 =
�����+ ���+1��+1

� ��+ ���+1/2
			,			��̃+1/2 = ��

��+ ��+1

��+ ��+1

 

 

 

 

En las expresiones	(4.13) y (4.14),  las variables “tilde” representan los estados promedio en 

cada pared de cálculo.  

Asumiendo una representación de las variables constantes a trozos e integrando desde el 

tiempo ��  al tiempo  ���� = �� + ��	es posible expresar la resolución numérica mediante: 

��
��� = � �

� −
��

��
��� �������

�

�

��
�
�

�

+ �� �������

�

�

��
�
�

�

�

�

	

 

(4.16) 

 

con 

			�����/�
±� =

1

2
���± �����

���/�

�
			,			�����/�

� = ���−
��

��
�
���/�

�

	

 

El significado de la expresión (4.1.6)  es que cada celda de cálculo � será actualizada según las 

contribuciones de flujos y términos fuente de las paredes de cálculo izquierda y derecha (ver 

Figura 4.4) [6]. 

 

Figura 4.4 - Ilustración de la resolución del esquema numérico 1D  

 

Debido a que se trata de un esquema explícito, el paso de tiempo está restringido por la 

condición de Courant-Friedrich-Lewy (CFL): 

 

��= ���	�í��,� �
��

�����
�

�� 			,			��� ≤ 1 (4.17) 
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4.4 Condiciones de contorno del método numérico. 
 

La discretización de las condiciones de contorno es una cuestión muy importante cuando se 

diseña un esquema de volúmenes finitos. El método de las características proporciona una 

información concisa acerca de las condiciones de contorno externas que se han de imponer a la 

entrada y a la salida del dominio.  Estas condiciones pueden resumirse a partir del tipo de 

régimen que tenga el flujo  [6, 9] y se encuentran esquematizadas en la Figura 4.5: 

a) Régimen subcrítico a la entrada. Una de las variables se impone mientras que la otra se 

calcula numéricamente. 

b) Régimen subcrítico a la salida. Tal como en el anterior, se necesita una variable para 

obtener toda la información del sistema. 

c) Régimen supercrítico a la entrada.  Ambas variables son impuestas. 

d) Régimen supercrítico a la salida. No se necesita información de ningún tipo más que la 

que se calcula numéricamente. 

 

 

 

Figura 4.5 - Representación esquemática de la aplicación del método de las características. a) Flujo 
subcrítico aguas arriba. b) Flujo subcrítico aguas abajo. c) Flujo supercrítico aguas arriba. d) Flujo 
supercrítico aguas abajo. En trazo discontinuo se representan las condiciones de contorno y en trazo 
continuo las ondas interiores resultantes del cálculo. 

 

4.4.1 Condiciones de contorno internas 
 

La presencia de estructuras hidráulicas como los diques hinchables tiene que ser considerada en 
el esquema numérico. Para ello, se suponen situados entre dos celdas de cálculo � e �+ 1 y se 
asocian, por tanto, a la pared �+ 1/2. 
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Se supone que el caudal por unidad de anchura � que atraviesa el dique está gobernado por la 
cota del nivel de agua y se denota la celda	i= L y a la celda	i+ 1 = R. 
 
 
 

 
Figura 4.6 - Esquema de celda de cálculo con dique 

 
Considerando las celdas de cálculo situadas a izquierda y derecha de la pared en la que se 
encuentra el dique: 
 

�� = �� + 	ℎ�		;				�� = �� + 	ℎ�
������ = ������ + ℎ����

 (4.18) 

 
 
con 

- ��	y	�� , como las cotas de altura del terreno en las celdas de cálculo izquierda y derecha 
del dique respectivamente  

- ℎ�	y	ℎ�,	como las cotas de altura del agua en las celdas izquierda y derecha del dique 
respectivamente 

- ������, como la altura de la cimentación del dique. 

- ℎ����, como la altura instantánea de inflado del dique. 

 
Se distinguen cuatro situaciones:  
 

1) La altura del dique es mayor que los dos niveles de agua (aguas arriba y aguas abajo).  

Es decir,  ������ > ��� (��,��). En esta situación el caudal que atraviesa la celda será 

nulo y el dique se comporta como una pared vertical infinitamente alta. Por tanto, 

�� = 0. 

 

 

Figura 4.7 - Esquema de cálculo si  ddique  > MÁX (dR, dL) 

 

 

2) La altura del dique es menor que una de las cotas del nivel de agua. Es decir: 
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�

�� > ������ > ��
ó

�� > ������ > ��

 

 

 

 

Figura 4.8 - Esquema de cálculo si dL > ddique > dR 

 

Figura 4.9 - Esquema de cálculo si dR > ddique > dL 

 

 

 

 

En esta situación se redefine la altura del agua que atraviesa la celda tal que: 

�
�� = �� − 	������

�� = ��� 	(0	,	�� − ������)
 

si			

�� > ������ > ��	

�
	�� = ��� 	(0	,	�� − ������)

�� = �� − 	������
 �� > ������ > ��	

 

(4.18.1) 

(4.18.2) 

 

 

Y por tanto el caudal de descarga queda definido como: 
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siendo  � → 		�����������	��	��������;				� → 		��������	��	��	����� 

 

3) La altura del dique es menor que el calado a ambos lados (). El desarrollo a seguir es 

análogo a la situación anterior 

 

 

Figura 4.10 - Esquema de cálculo si ddique < MIN (dL, dR) 

 

4) La altura del dique, en este caso, es menor que una tolerancia predeterminada (10��). 

En ese caso se recupera el esquema numérico utilizado de forma general (véase (4.8)). 

 
Una vez calculado �� , este valor se impondrá en las celdas � e �+ 1, asegurando la conservación 
de (4.1) y (4.2). 
 
 

�� = �� = 	��  
 

( 4.20) 

 

  

��  = 

⎩
⎪
⎨

⎪
⎧
����

�
�� �1 − �

��

��
�

�
��

�

�.���

����

�
�� �1 − �

��

��
�

�
��

�

�.��� si			

�� > ������ > ��	 (4.19.1) 

�� > ������ > ��	 (4.19.2) 
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5 RESULTADOS 
Los casos que componen este trabajo pueden dividirse en tres tipos. 

- Análisis de Sensibilidad. Se trata de una serie de casos generados en un canal con la 

finalidad de probar el módulo de la presa implementado. En la ANEXO 1 se exponen 

cuatro casos en los que se intenta representar todas las funcionalidades desarrolladas. 

- Rotura de presa natural. A partir de una geometría de un río dada se analiza cómo 

afectaría la existencia de un dique hinchable en un río en el cual se produce una rotura 

de una presa natural. 

- Proyecto de contraembalse. Se parte de un trabajo previo [7] en el que se estudiaba la 

posibilidad de incluir varias presas hinchables a lo largo de una sección del río 

Tinguiririca (Chile) para atenuar las avenidas de una central hidroeléctrica. El objetivo es 

llevar a cabo el mismo estudio pero utilizando el software PEKA. 

 

 

5.1 Rotura de presa. 
 

El objetivo de esta simulación es evaluar los efectos que podrían tener la existencia de una  

presa hinchable (��)  ubicada aguas abajo de una presa convencional (��)  en caso de que ésta 

se rompiera. 

Para ello se escoge un tramo de 17.5 Km. de un río real. En la posición 3095 (3.1 Km.) hay 

instalada una presa convencional de 120 metros de altura.  

 

 

Figura 5.1 - Geometría del rio (Simulación: Rotura de presa convencional) 

 

Las condiciones de la simulación son las expuestas a continuación: 

- El río se encuentra seco al principio de la simulación. 

- La condición de contorno aguas arriba es un hidrograma  (Tabla 5.1-1). 

- La condición de contorno en la salida es régimen libre. 
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Tiempo [s] Caudal [m3/s] 

3600.0 8.0 

7200.0 6.5 

9000.0 12.5 

15000.0 20.0 

20000.0 15.0 

25000.0 12.0 

60000.0 16.5 
Tabla 5.1-1 - Hidrograma a la entrada (Simulación: Rotura de una presa) 

 

Para simular la rotura de la presa (��) se diseña como si fuera una presa que se deshincha en un 

periodo de tiempo muy corto. Como el objetivo es analizar los efectos que produciría una presa 

hinchable (��) colocada aguas abajo, se busca almacenar la suficiente agua antes de que se 

produzca la rotura. La Tabla 5.1-2 muestra el proceso de rotura. 

 

Tiempo  [s] Altura [m] 

0.0 120.0 

25000.0 120.0 

25600.0 0.0 

60000.0 0.0 
Tabla 5.1-2 - Proceso de rotura de la presa (Simulación: Rotura de una presa convencional) 

 

En el instante anterior a la rotura de la presa se puede ver la cantidad de agua almacenada en la 

Figura 5.2. 

 

Figura 5.2 - Presa instantes antes de romperse (Simulación: Rotura de una presa convencional) 

 

Se vuelve a realizar la simulación incluyendo un dique en la posición 9000 (9 Km). Sus 

características están resumidas en la Tabla 5.1-3. Se supone que 1 h. antes de la rotura, las 

personas encargadas de regular este dique se han dado cuenta de la situación y han empezado a 
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elevarlo. La duración del inflado es de 40 minutos, por lo que el dique estará completamente 

inflado cuando llegue la onda de crecida. 

 

Caso Rotura de una presa convencional 

Tipo Manual 

Tiempo [s] Altura [m] 

0.0 0.0 

21400.0 0.0 

23800.0 5.0 

60000.0 5.0 
Tabla 5.1-3 - Evolución del inflado de la presa hinchable (Simulación: Rotura de una presa convencional) 

 

Se puede ver una evolución del calado a lo largo del río en el instante 26000.0 segundos (Figura 

5.3): 

 

Figura 5.3 - Evolución del calado a lo largo del río (Simulación: Rotura de una presa) 

 

Como se muestra, la presa colocada en la posición 9000 retiene parte del agua de la avenida. 

Como consecuencia,  se observa que aguas abajo, en la simulación hecha con P2, el calado es 

menor. 

Para analizar este resultado se recurre a ver la evolución del calado en un mismo punto a lo 

largo de toda la simulación. Puede verse una diferencia de calado máximo aguas abajo del dique 

(posición 14800) de  1.26 metros. 
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Figura 5.4 - Evolución temporal del calado aguas arriba del dique (Simulación: Rotura de un dique) 

 

Los resultados obtenidos hacen preguntarse qué pasaría si se modificase el tamaño de �2.Se 

realizan dos nuevas simulaciones en las mismas condiciones salvo la altura a la que se infla el 

dique hinchable. Los resultados en la posición 14800 son los mostrados en  la Tabla 5.1-4. 

 

 Calado máximo tras rotura [m] Porcentaje de disminución [%] 

Sin Dique P2 6.09 0 

Dique P2 inflado 2m. 5.98 1.8 

Dique P2 inflado 5 m. 5.20 14.6 

Dique P2 inflado 8 m. 4.84 20.5 
Tabla 5.1-4 - Calados máximos para distintos casos (Simulación: Rotura de una presa) 

 

Es decir, estos resultados muestran que la incorporación de una presa hinchable aguas abajo, 

�2, cuya altura sea 15 veces menor que la presa aguas arriba, �1, implica una disminución del 

calado en una zona situada a 11 Km. de �1 de un 20%.  

 

 

5.2 Proyecto de Contraembalse 
 

Uno de los objetivos principales de este trabajo es establecer una comparación entre PEKA 1D y 

otro software existente en el mercado. 

El software de simulación utilizado en [7] (HECRAS) no admite la inclusión de una presa de 

ningún tipo. Por ello, se tuvo que idear una manera de modelizar el dique inflable pero sin poder 

observar la evolución del flujo. 

La zona en la que se lleva a cabo la simulación es un tramo del río Tinguiririca, VI Región, Chile. 

La cartografía utilizada como base se ha tomado del modelo STRM (Shuttle Radar Topography 
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Mission) de la NASA. Para adaptar los archivos simulados en HECRAS a PEKA se ha hecho un 

programa de conversión de ficheros de geometría entre ambos simuladores (ANEXO 4). 

Para la modelización hidráulica se utilizarán dos tipos de caudales. Por un lado, el caudal 

asociado a la probabilidad del 85% (� = 62.56	m� �⁄ ), y por otro lado, el caudal ecológico 

(� = 7.64	m� �⁄ ) 

En relación a la central hidroeléctrica, cuya avenida se pretende comprobar si es posible 

controlarla, se estima un caudal de salida igual al del diseño de las turbinas,	(� = 50	m� �⁄ ) con 

un  tiempo de puesta en marcha y parada de 10 minutos. Se considera un tiempo de trabajo de 

7 horas. 

 

 

Figura 5.5 - Hidrograma de la Central La Higuera 

 

En cuanto a las condiciones de contorno de la simulación, se han considerado las siguientes: 

- CC. Aguas Abajo: Curva de aforo. Se ha desarrollado otro programa en el cuál, a partir de 

una sección geométrica dada se obtiene la curva de aforo (ver ANEXO D – OBTENCIÓN 

DE LA CURVA DE AFORO) 

- CC. Aguas Arriba: En este caso se distingue entre regímenes permanente y variable: 

o Simulaciones en estado estacionario: hidrograma constante en el tiempo 

correspondiente al caudal de la simulación. (Figura 5.6). 

 

 

 Figura 5.6 - Hidrograma de casos estacionarios. 
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o Simulaciones en estado transitorio: hidrograma resultante de la suma de los 

hidrogramas del estado estacionario y de la central (Figura 5.7). 

 

 

 

Figura 5.7 - Hidrograma de casos transitorios 

 

Por último, por las condiciones del río se establecen tres presas con cuatro cámaras inflables 

independientes cada una. En la Tabla 5.2-1 se sintetizan sus características. 

 

 Dique 1 Dique 2 Dique 3 

Posición [m] 6295.0 8545.0 11845.0 

Altura de   
Cimentación1 [m] 

657.92 624.01 583.31 

 Longitud [m] Altura [m] Longitud [m] Altura [m] Longitud [m] Altura [m] 

Cámara 1  [m] 46 3.68 48 5.00 35 3.59 

Cámara 2  [m] 6 1.28 6 2.60 6 1.19 

Cámara 3  [m] 6 0.68 6 2.00 6 0.59 

Cámara 4  [m] 42 2.68 58 4.20 101 2.69 

Tabla 5.2-1 - Condiciones de los diques (Caso Real) 

 

En las figuras (Figura 5.8, Figura 5.9, y Figura 5.10) pueden verse las alturas relativas de cada 

dique. 

                                                           
1
 La altura de cimentación elegida es el punto más bajo de la sección. La altura de los cámaras es relativa 

ésta. 
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Figura 5.8 - Dique 1 con sus respectivas cámaras (Simulación: Proyecto de contraembalse) 

 

 

Figura 5.9 - Dique 2 con sus respectivas cámaras (Simulación: Proyecto de contraembalse) 

 

Figura 5.10 - Dique 3 con sus respectivas cámaras (Simulación: Proyecto de contraembalse) 

 

Las simulaciones a realizar se detallan en la Tabla 5.2-2: 

 

Simulación Escenario Caudal Barrera Régimen 

01 

Verano Q85%(11.51 m3/s) 

- 
Permanente 

02 Variable 

03 
Inflada 

Permanente 

04 Variable 
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05 
Qeco(7.64 m/s) Inflada 

Permanente 

06 Variable 

072 Q85%(11.51 m3/s) Inflada Variable 

Tabla 5.2-2 - Simulaciones a realizar (Caso Real) 

 

 

 

 

Se pude visualizar la geometría del río en la Figura 5.11 - Vista de perfil del río Tinguiririca 

. 

 

Figura 5.11 - Vista de perfil del río Tinguiririca 

 

A continuación se lleva a cabo una comparación de los resultados obtenidos por ambos 

softwares. 

 

5.2.1 Simulación 1 (Sim 01). 
 

En este caso se simula el río Tinguiririca sin ningún dique en su cauce. Se observan cambios de 

régimen subcrítico/supercrítico en diversos puntos del cauce (Figura 5.12).  

                                                           
2
 La simulación 07 (Sim 07) presenta en la tabla las mismas características que la simulación 4 (Sim 04). Se 

detallan más adelante las diferencias. 
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Figura 5.12 – Número de Froude a lo largo del rio 

 

Se puede llevar a cabo una comparativa de resultados aguas abajo, en la sección 14550. 

En ella, los resultados mostrados por HECRAS indican un calado de 3.12 metros. Por su parte,  en 

PEKA dicho calado alcanza los 3.01 metros. Estas diferencias pueden explicarse a partir de los 

coeficientes de expansión incluidos en HECRAS o debido a su imposibilidad para insertar una 

presa de este estilo. No obstante, la diferencia entre un software y otro (3.5%) puede 

considerarse asumible. 

 

5.2.2 Simulación 2 (Sim 02) 
 

En esta modelización se repiten las condiciones de la simulación 1 pero teniendo en cuenta las 

contribuciones de la central hidroeléctrica. 

Se puede ver la evolución del caudal en la sección 8515 del río (Figura 5.13) 

 

Figura 5.13 - Hidrograma en la sección 8515 

Este aumento de caudal también supone un aumento en el calado durante la avenida. Puede 

verse en la Figura 5.14. 
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Figura 5.14 - Evolución del calado frente al tiempo en la sección 8515 

 

Analizando la sección 14550, el calado es de 3.40 metros, mientras que en el caso estudiado con 

HECRAS, el calado del agua en la misma sección es de 3.51 metros. 

 

 HECRAS PEKA Δ Calado [m] Δ Calado [%] 

Calado Sim 01 3.12 3.01 0.11 3.5 

Calado Sim 02 3.51 3.40 0.11 3.2 

Δ Calado [m] 0.39 0.39 

Δ Calado [%] 12.5 12.96 

Tabla 5.2-3 - Comparativa de calado entre las simulaciones 01 y 02 con respecto a cada software 

La Tabla 5.2-3 indica que, en ambos softwares las diferencias de calado entre la simulación 1 y la 

simulación 2 son las mismas (0.39 metros). Sin embargo, en valor porcentual se tiene que la 

avenida de la central implica un aumento de calado de un 12.5 % en el caso de HECRAS, por un 

12.96% en el caso de PEKA.  

La crecida proveniente por la central comienza tras 1 hora de simulación (3 600 s) y se prolonga 

hasta las 8 horas (28 800 s). Por su parte, la onda provocada por ella se empieza a observar 

aguas abajo alrededor de las 3 horas (10 500 s) y perdura hasta las  9 horas (35 000 s), valor 

ligeramente superior al obtenido por [7]. 
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Figura 5.15 - Hidrograma sección 14550 con avenida de la central 

 

 

5.2.3 Simulación 3 (Sim 03). 
 

Se repiten las condiciones de la simulación 1 (Sim 01) pero añadiendo los tres diques 

mencionados anteriormente. Se pueden observar las tres presas en Figura 5.16, Figura 5.17 y 

Figura 5.18. 

 

Figura 5.16 - Dique 1 (Sim 03) 

 

 

Figura 5.17 - Dique 2 (Sim 03) 
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Figura 5.18 - Dique 3 (Sim 03) 

 

 

Las tres barreras producen un régimen subcrítico aguas arriba de las mismas, y un cambio a 

supercrítico cuando el flujo las sobrepasa (ver Figura 5.19). 

 

Figura 5.19 - Numero de Froude a lo largo del río (Sim 03 y Sim 04) 

 

Además, el agua cruza mayormente los cámaras de menor altura siendo muy poca la que rebosa 

por encima de otros cámaras. Dichos resultados se corresponden con los obtenidos por HECRAS. 

 

5.2.4 Simulación 4 (Sim 04). 

Se repiten las condiciones de la simulación 2 (Sim 02) pero añadiendo los tres diques 

mencionados anteriormente, junto al caudal de la central hidroeléctrica. 

En las Figura 5.20, Figura 5.21 y Figura 5.22  se muestran  las diferencias de calado producidas en  

las secciones donde están ubicadas las presas. 
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Figura 5.20 - Dique 1 (Comparativa Sim 02 - Sim 04) 

 

Figura 5.21 - Dique 2 (Comparativa Sim 02 - Sim 04) 

 

 

Figura 5.22 - Dique 3 (Comparativa Sim 02 - Sim 04) 

 

También pueden verse los hidrogramas a ambos lados de las presas. Se elige el dique 2 para la 

representación (ver Figura 5.23). 
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Figura 5.23 - Hidrograma sin / con dique (Sim 02 y Sim 04) 

 

Mientras que en la simulación 2 (Sim 02) el caudal sigue la distribución del hidrograma a la 

entrada (desplazado en el tiempo al encontrarse la celda 8 Km aguas abajo), en la simulación 4 

(Sim 04) se tiene un pico de caudal y un pequeño descenso. Es debido al estancamiento del agua 

en el dique. Posteriormente, el caudal supera una de las cámaras de menor altura y el caudal se 

restablece paulatinamente. Para visualizar este estancamiento de agua se puede recurrir al 

calado en la misma celda mostrado en la Figura 5.24 

 

Figura 5.24 - Evolución temporal del calado en la posición 8688 (Sim 02 y Sim 04) 

 

Y, en la celda posterior del dique, mientras el calado se mantiene muy similar para la simulación 

2, se ve cómo el agua se retiene en el dique, si bien el calado es superior al caso anterior (ver 

Figura 5.25). 
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Figura 5.25  Evolución temporal del calado en la posición 8693 (Sim 02 y Sim 04) 

 

 

5.2.5 Simulación 5 (Sim 05) – Simulación 6 (Sim 06) 
 

En estas dos simulaciones se utiliza el caudal ecológico correspondiente al río Tinguiririca. Dicho 

caudal es aquél que permite preservar el ecosistema de la zona y, como se ha descrito 

anteriormente, es: � = 7.64	�� �⁄ . Por un lado, la simulación (Sim 05) se realiza con el caudal 

ecológico en estado estacionario; por otro lado, en la simulación 06 (Sim 06) se añade el caudal 

proveniente de la central como en la simulación 4 (Sim 04). Es interesante hacer una 

comparativa entre las simulaciones realizadas con diques. Puede verse en la Figura 5.26 

 

Figura 5.26 – Calado de las distintas simulaciones con diques. 

Cabe destacar que, a pesar de tratarse de un caudal bajo, la existencia de dos cámaras con poca 

altura (y poca anchura) permite el paso del agua por todo el cauce del río. 
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5.2.6 Simulación 7 (Sim 07) 
 

Esta simulación se aleja [7]  ya que al utilizar HECRAS como software  para resolver el método 

numérico, no puede variar el inflado de la presa con el tiempo. 

En este caso se intenta atenuar la avenida de la central con la elevación adecuada de los diques 

como se puede observar en la Tabla 5.24. 

 

 Dique 1 Dique 2 Dique 3 

Posición [m] 6295.0 8545.0 11845.0 

Altura de  Cimentación [m] 657.92 624.01 583.31 

Tiempo de Inflado3 [s] 6800 – 7800 8000 – 9000 10000 – 110000 

Tabla 5.24 - Periodo de hinchado de los diques en la simulación 7 (Sim 07) 

 

La Figura 5.27 representa el segundo 7000 de simulación.  

 

Figura 5.27 - Comparativa de calado en la sección 1 (Sim 04 y Sim 07) 

 

En ese instante, el dique 1 está en medio de su inflado y por tanto la altura del agua (y del 

propio dique) no es la misma que en la simulación 4 (Sim 04). Sin embargo, como puede verse 

aguas abajo de la presa se encuentra todo el caudal que no ha sido retenido por la presa. Dicho 

caudal debería ser embalsado en su mayoría por el dique 2 como se ve en la  Figura 5.28. 

                                                           
3
 Se define el tiempo de inflado como el periodo que transcurre desde que los cámaras de cada dique  

empiezan a hincharse partiendo de un estado de total desinflado hasta que alcanzan la altura de la 
simulación 4 (Sim 04) 
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Figura 5.28 - Comparativa de calado en la sección 2 (Sim 04 y Sim 07) 

 

Ahora el agua quedará retenida en el dique 2. En ese periodo de tiempo habrá dado tiempo a 

llevar a cabo el llenado del dique 3 y por eso, cuando el agua rebose el dique 2, debería 

encontrarse inflado el último dique para atenuar la avenida de la central (ver Figura 5.28 - 

Comparativa de calado en la sección 2 (Sim 04 y Sim 07)).  

 

Figura 5.29 - Comparativa de calado en la sección 3 (Sim 04 y Sim 07) 

 

Puede parecer extraño que el calado de la simulación 7 (Sim 07) sea mayor aquí que el de la 

simulación 4 (Sim 04). Se debe a que en la anterior simulación ya se había retenido el agua en 

los otros dos diques, mientras que en esta simulación es precisamente el dique 3 el que la 

retiene (ver Figura 5.29). 

Los resultados obtenidos en las simulaciones del caso real ponen de manifiesto las siguientes 

conclusiones: 

1) A pesar de ser una buena modelización, la posibilidad de recrear una presa en HECRAS 

conlleva un error asociado al propio programa dado que no está habilitado 

específicamente para ello. Esta posibilidad sí que se ha incorporado en PEKA. 

2) Para este caso en concreto, ambos métodos numéricos dan como resultado que, la 

incorporación de dos cámaras de baja altura permiten el mantenimiento del caudal a lo 

largo del rio sin la aparición de zonas secas, tanto para el caudal con probabilidad del 

85%, como para el caudal ecológico.  
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3) También para este caso en concreto, ambos softwares determinan que no queda 

definida la factibilidad de usar contraembalses como herramienta de atenuación de la 

onda procedente de la central. Tampoco se puede valorar la opción de utilizar 

contraembalses mayores puesto que no se respetarían ciertas condiciones básicas como 

la aseguración del caudal ecológico. 

4) La conclusión más interesante de esta simulación es que PEKA permite modelizar de una 

manera más realista los cambios en la geometría de los diques, lo cual es 

extremadamente útil cuando las simulaciones van acompañadas de cambios en el flujo. 
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6 CONCLUSIONES  
 

En este Trabajo Fin de Grado se ha desarrollado una utilidad adicional para incrementar las 

disponibles en un modelo de simulación de flujo 1D transitorio en lámina libre: la inclusión de un 

módulo que permite la simulación de presas hinchables con opciones diversas. 

Para ello ha sido necesario familiarizarse con la formulación matemática y la metodología en 

volúmenes finitos.  El modelo computacional está basado en un esquema upwind que se usa 

para resolver unidimensionalmente las ecuaciones de aguas poco profundas. Por otro lado se ha 

llevado a cabo un modelizado matemático de las presas hinchables centrándose en las variables 

más influyentes.  

Se ha programado en C un nuevo módulo y una nueva condición de contorno interna.  Además 

se ha aportado un algoritmo de transferencia de los datos geométricos formateados  desde un 

paquete comercial y otro algoritmo para la obtención de una curva de aforo a partir de una 

sección dada. 

En cuanto a los objetivos marcados al principio del Trabajo Fin de Grado se ha podido completar 

con éxito tanto el desarrollo y la evaluación del módulo como la comparación con otro programa 

de cálculo numérico.  Los resultados obtenidos han permitido determinar: 

- El correcto funcionamiento del módulo para los casos probados. Se han llevado a cabo 

simulaciones con las distintas opciones implantadas en el módulo. Se posibilita la 

utilización de las cámaras independientes y de dos tipos de inflado distintos. En todos 

los casos realizados los resultados han sido satisfactorios. 

- Las diferencias entre un inflado manual y un inflado automático. El desconocimiento del 

llenado de la presa no es un impedimento para poder utilizar el módulo. Se han 

desarrollado casos con diferencias entre modos de inflado de hasta 22 centímetros de 

calado en una sección. 

- El efecto del calado relativo sobre los diques hinchables. Si bien no supone una variación 

considerable de los resultados (entre 4%-7%) es un efecto que hay que considerar en 

situaciones reales. No obstante, se deja a elección del usuario. 

- Una modelización de un proceso de rotura de una presa convencional y la influencia de 

la inclusión aguas abajo de una presa hinchable. Se ha visto que este dique permite 

mitigar hasta un 20% el efecto del calado en alguna sección. 

- En cuanto a la comparación entre modelos de simulación, los resultados no son los 

mismos. Aunque las diferencias entre los valores de las simulaciones dentro de un 

mismo programa se mantienen (≈ 12.5%), al comparar los resultados de cada software 

no se obtienen los mismos resultados. Se cree que puede deberse a la dificultad que 

supone insertar una presa en HECRAS. Esta es precisamente una de las grandes ventajas 

que aporta el módulo desarrollado en este trabajo. 

Con todo lo expuesto se puede decir que se han cumplido los objetivos que se planteaban.  
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8 ANEXOS 
 

ANEXO A – ANÁLISIS DE SENSIBILIDAD  
 

Para poner a prueba el nuevo módulo se han llevado a cabo una serie de pruebas en un canal 

creado específicamente para ello. Se trata de un canal de 5 Km de longitud definido por dos 

secciones rectangulares y un coeficiente de Manning constante de 0.03 (ver Tabla A-1 – 

Características de las secciones del canal 

). 

 

Sección Posición [m] 
Punto 1 [m] Punto 2 [m] Punto 3 [m] Punto 4 [m] 

Altura Anchura Altura Anchura Altura Anchura Altura Anchura 

1 0.0 10.0 0.0 5.0 0.0 5.0 2.5 10.0 2.5 

2 5000.0 5.0 0.0 0.0 0.0 0.0 2.5 5.0 2.5 
Tabla A-1 – Características de las secciones del canal 

 

Las condiciones iniciales del canal son de caudal nulo (el canal está seco). 

En cuanto a las condiciones de contorno se tiene: 

- C. C. Entrada: Caudal estacionario (distinto según el caso). 

- C. C. Salida: Régimen libre. 

Las condiciones generales de las simulaciones son las que se muestran en la Tabla A-2. 

 

Tipo Nombre 
Caudal 
(m3/s) 

Diques / 
Cámaras 

Tipo de Inflado Secuencia C.C Salida 

Modificación 
del Dique 

TDD - 1.1 

2.0 

0/0 - - 

Libre TDD - 1.2 
1/1 Manual 

Cte 

TDD - 1.3 Inf 

Influencia de 
las C.C. Salida 

ICCS – 2.1 

2.0 1/1 Manual Inf 

Libre 

ICCS – 2.2 Calado / Tiempo 

ICCS – 2.3 C. de Aforo 

Tipo de Inflado 
TDI – 3.1 

2.0 1/1 
Manual 

Inf Libre 
TDI – 3.2 Automático 

Influencia del 
Calado Relativo 

IDO – 4.1 

5.0 1/1 

Manual 
Cte 

Libre 
IDO – 4.2 Manual + ICR 

IDO – 4.3 Automático 
Inf Desinf 

IDO – 4.4 Automático + ICR 



   

48 
 

Tabla A-2 – Simulaciones Casos Test
4
  

 

 

Modificaciones del dique 

 

En este primer caso se van a realizar modificaciones de las características de inflado del dique. 

En la simulación 1 (TDD -  1.1) se estudia el canal de la Figura A-1 con un caudal de 2.0 m3/s.  En 

las simulaciones posteriores (TDD – 1.2 y TDD – 1.3) se incorpora un dique inflable situado en la 

posición 2000 (Figura A-1). 

 

Figura A-1 – Vista de perfil del canal con el dique (Simulación Casos Test) 

 

En cada simulación se sigue un proceso de hinchado distinto, el cual se detalla en la Tabla A-3.  

 

 TDD – 1.1 TDD - 1.2 TDD - 1.3 

Tiempo [s] Altura [m] 

0.0 0.0 1.0 0.0 

20000.0 0.0 1.0 1.0 

40000.0 0.0 1.0 1.5 

60000.0 0.0 1.0 2.0 
Tabla A-3 – Evolución temporal del dique (Simulaciones: Modificación del Dique) 

  

Los resultados obtenidos aguas abajo del dique son muy parecidos debido a la condición de 

contorno impuesta de salida libre. Sin embargo, los resultados obtenidos aguas arriba varían 

según la altura de la presa. Para el instante de tiempo 30000 segundos, puede compararse el 

                                                           
4
 Los términos abreviados son los siguientes: 

“ICR”: “Influencia del Calado Relativo”; “Cte”: Constante; “Inf”: Inflado; “Desinf”: Desinflado 
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calado en un mismo punto obteniéndose los resultados mostrados en la Tabla A-4. Cabe resaltar 

las posiciones inmediatamente anteriores y posteriores a la presa (1975 – 2025). 

 

 

 

 TDD - 1.1 TDD - 1.2 TDD - 1.3 

Posición [m] Calado [m] 

1000 1.08 1.17 1.25 

1975 1.08 1.57 1.80 

2025 1.08 1.08 1.06 

3000 1.08 1.08 1.06 

5000 1.08 0.98 0.97 
Tabla A-4 - Calado a lo largo del río (Simulación: Modificaciones del Dique) 

 

Gráficamente puede verse la evolución temporal del calado como se muestra en la Figura A-2. 

 

Figura A-2 - Calado a lo largo del tiempo (Simulación: Modificaciones del Dique) 

 

Los casos TDD – 1.1 y TDD – 1.2 presentan una evolución del calado muy similar dado que la 

única diferencia entre ellos es la incorporación de una presa de altura constante. El efecto de la 

presa es aumentar el calado un 35%.  

En cuanto al caso TDD – 1.3, al incorporar un dique que se llena durante toda la simulación, el 

calado aumenta progresivamente hasta alcanzar su pico cuando el dique está totalmente 

inflado. 

 

Influencia de las condiciones de contorno aguas abajo 
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Para mostrar la influencia de las condiciones de contorno a la salida del río se han llevado a cabo 

tres simulaciones con distintas condiciones: salida libre (caso ICCS – 2.1), salida determinada por 

el calado en diversos instantes de tiempo (caso ICCS – 2.2) y salida regida por una curva de aforo 

(caso ICCS – 2.3). 

Las condiciones de estas simulaciones son las mismas que las del caso TDD – 1.2. Los parámetros 

utilizados para realizarlas son los que se muestran en la Tabla A-5. 

 

Caso ICCS – 2.2 Caso ICCS – 2.3 

Tiempo [s] Calado [m] Calado [m] Caudal [m3/s] 

0.0 0.0 0.0 0.0 

10000.0 1.0 0.2 0.2 

20000.0 1.0 0.4 0.4 

30000.0 1.0 0.6 0.8 

40000.0 1.0 0.8 1.6 

50000.0 1.0 1.0 3.2 

60000.0 1.0 2.0 4.0 
Tabla A-5 - Condiciones de contorno aguas abajo (ICCS - 2.2, ICCS - 2.3) 

 

Para el ICCS – 1.3 se puede visualizar el flujo de agua a lo largo del canal en la Figura A-3. 

 

 

Figura A-3 - Calado a lo largo del río  (Simulación: Influencia Condiciones de Contorno a la Salida) 

 

En la Figura A-4 se pueden ver las diferencias de calado entre los casos. 
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Figura A-4 - Calado a lo largo del río (Simulación: Influencia Condiciones de Contorno a la Salida) 

 

Puede observarse que, independientemente de lo que haya aguas arriba de la presa (mismas 

condiciones para todas las simulaciones), la condición de contorno en la salida del río es la que 

impone la evolución aguas abajo. 

 

 

Modificaciones del tipo de inflado 

 

Se han implementado dos modos de inflado del dique.  

Se realizan dos simulaciones  para el canal descrito con un caudal de 5.0 m3/s. Las condiciones 

de la simulación se muestran en Tabla A-6 y en la Tabla A-7. 

 

Caso TDI – 3.1 

Tipo Manual 

Tiempo [s] Altura [m] 

0.0 0.0 

4000.0 2.0 

8000.0 3.5 

12000.0 0.0 
Tabla A-6 - Evolución temporal del dique en modo manual (TDI - 3.1) 

 

Caso TDI – 3.2 

Tipo Automático 

Altura Máxima [m] 10.0 

Capacidad de Descarga (l/s) [13] 3.4 

Coeficiente de Descarga 0.6 

Pérdidas de Inflado 1.2	�	10�� 
Presión de Trabajo [atm] 3.5 
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Diámetro de Deshinchado [cm] 7.5 

Tiempo [s] Altura [m] 

0.0 0.0 

4000.0 2.0 

8000.0 3.5 

12000.0 0.0 
Tabla A-7 - Evolución temporal y parámetros  del dique en modo automático (TDI - 3.2) 

 

Se puede observar la evolución en el llenado del dique en ambas simulaciones en la Figura A-5. 

 

Figura A-5 - Comparativa de procesos de hinchado 

  

Se puede ver que en el caso manual el hinchado sigue una evolución lineal entre los puntos 

dados. Este tipo de inflado es especialmente útil cuando se conoce una relación empírica entre 

la altura de hinchado del dique y el tiempo empleado para ello. 

Por otro lado, el tipo automático permite, a partir del sistema neumático empleado, conocer el 

hinchado instantáneo del dique. Se puede utilizar para modelos teóricos de inflado o para 

simulaciones con sistemas neumáticos distintos a los habituales.  

En ambos tipos de inflado puede verse  cómo varía el calado tanto antes (Figura A-6) como 

después del dique (Figura A-7)  

 

Figura A-6 - Evolución temporal del calado aguas arriba del dique (Simulación: Modificaciones del Tipo de 
Inflado) 
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Figura A-7 - Evolución temporal del calado aguas arriba del dique (Simulación: Modificaciones del Tipo de 
Inflado) 

 

Como puede observarse en ambos casos el dique retiene el agua. Mientras que en la celda 

anterior al dique el calado máximo es 3.88 metros, tras el dique el calado solo llega hasta un 

nivel de 2.19 metros. Posteriormente se produce un descenso del calado puesto que el dique se 

desinfla. Las diferencias al final de este tramo son de 22 centímetros. 

En cuanto a lo observado aguas abajo, se puede comentar que el instante en el que el agua 

atraviesa el dique es distinto para ambos (se alcanza antes en el manual). Además, conforme el 

dique se desinfla el calado crece en ambos modos de inflado, siendo el automático el que 

alcanza cotas mayores. 

Con estas simulaciones se comprueba que las diferencias entre ambos tipos de inflado son 

notables. Se puede concluir que el inflado manual será útil cuando se conozca bien la presa que 

se simula. En caso contrario, se recomienda un inflado automático para una mayor precisión. 

 

 

Influencia del calado relativo 

 

En estas simulaciones se considera el efecto que pueda tener la presión del agua en la altura de 

inflado del dique. Se estudia el efecto tanto para inflado manual como para automático. Las 

simulaciones se llevan a cabo con un caudal estacionario de 5.0 m3/s.  El resto de parámetros se 

mantienen como se ha descrito al inicio. 

La evolución temporal del dique en todos los casos es la que se muestra en la Tabla A-8. 

 IDO – 3.1 IDO – 3.2 IDO – 3.3 IDO – 3.4 

Tipo Manual Manual + ICCR Automático Automático + ICR 

Tiempo [s] Altura [m] Altura [m] 

0.0 1.0 0.0 

20000.0 1.0 1.0 
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40000.0 1.0 1.5 

60000.0 1.0 2.0 

Tabla A-8 - Evolución temporal del dique (Caso: Influencia del calado relativo) 

 

En el caso del inflado automático (IDO – 3.3 e IDO – 3.4) se mantienen los parámetros de inflado 

automático  (Tabla A-6). 

Se puede observar cómo evoluciona temporalmente el dique en Figura A-8. 

 

Figura A-8 - Evolución temporal de los diques con los cuatro inflados distintos 

 

Se diferencian dos casos. 

-  En el caso en el que no se considera el calado relativo, la altura se mantiene constante e 

igual a la deseada por el usuario (1m) 

- Si se incluye el efecto del calado relativo en la simulación, la altura del dique oscila 

dependiendo de dicho parámetro. 

Ambas situaciones pueden verse en la Figura A-9. 

 

 

Figura A-9 - Evolución temporal de un dique hinchado manualmente con / sin calado relativo. 
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Para una simulación automática, según se observa en la Figura A-10 el efecto es el mismo y se 

mantiene a pesar de variar la altura del dique. 

 

Figura A-10 - Evolución temporal de un dique hinchado automáticamente con / sin calado relativo 

 

 

Las variaciones sufridas por el dique a causa de la presión del agua externa no son muy grandes. 

El error cometido al realizar las simulaciones es asumible en estos casos (4% - 7%). Se concluye, 

que aún a falta de probar más casos, el calado relativo tiene el efecto esperado sobre los diques. 
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ANEXO B – MODELIZACIÓN DE UNA PRESA HINCHABLE  
 

Para llevar a cabo la modelación la presa se han de identificar las variables físicas que la definen. 

Hay que considerar tanto las de la propia presa como las de su entorno. 

Cabe recordar que todas las variables relativas a las presas hinchables están referidas a las 

cámaras. 

Aspectos Geométricos de la Presa 

Se definen parámetros relativos a la forma física de la presa. 

- La  longitud del cuerpo de goma de la cámara en el eje transversal del río:  ��� 

Además, se define a su vez la longitud representativa de la presa (�) como: 

�� = ��� + 	�ℎ� (B.1) 

  

���	�

��� → ��������	��	��	�����
			ℎ� → ������	��	��	�����
� → ���������ó�	���	�������

 

Esta corrección convierte la longitud de la presa en una longitud efectiva útil a la hora de 

realizar los cálculos. 

 

- La anchura de la presa (b) es la dimensión del cuerpo de goma en el eje longitudinal del 

río. Además, todas las cámaras tiene la misma anchura. 

 

- La altura nominal de la cámara (ℎ��) es la  dimensión del cuerpo de goma en el eje 

vertical  del río.  

 

- La altura real de la cámara (ℎ��) es la altura efectiva. Por tanto: ℎ�� = ℎ� 

 

Para proteger el cuerpo de goma y su sistema de anclaje se suele realizar un receso 

hidráulico en la losa que modifica la altura de la cámara. Se hace, por tanto, necesaria la 

definición de la altura real como: 

 

ℎ� = ℎ�� + 10	[��] (B.2) 

 

- El volumen de la cámara (�)  se puede aproximar al volumen de un paralelepípedo de 

dimensiones ℎ�	�	ℎ�	�	�� al que se le aplica un factor de corrección determinado 

empíricamente. 

 

� = 	0.97	ℎ�
�	�� (B.3) 
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- El número de cámaras independientes. Es un parámetro relativo a la construcción de la 

presa. Cuantas más cámaras posee la presa, mayores son las posibilidades de control del 

paso de agua pero mayor complejidad a la hora de construirla así como mayores 

pérdidas de conducción.  

 

Aspectos Geométricos Generales del Entorno 

Se definen: 

- La altura del cauce del río o cota teórica del lecho sobre el nivel del mar:  �� 

- La altura del punto más alto de la cimentación con respecto a la cota teórica del lecho 

del río : ������ 

 

Se trata de un parámetro relevante en la programación ya que las secciones 

transversales irregulares de la geometría (como las de los ríos) hay que modificarlas 

para poder instalar la presa. 

 

- Línea que marca la posición topográfica de la compuerta y a partir de la cual se 

determinan las cotas del resto de componentes:  �� 

- Línea que define la posición de la segunda línea de anclajes:  �� 

- Distancia entre líneas de anclaje:  � 

 

� = ����	(��,��) 

 

Su valor oscila entre el 90-110% del valor de la altura real de la presa. 

 

Aspectos Hidráulicos y Mecánicos 

- Presión interior (pint): Presión estática en el interior de la presa 

- Caudal de descarga teórico (QD): Se trata del caudal que sobrepasa a la presa. 

Se encuentra detallado en la memoria. 

 

Aspectos de Inflado / Desinflado 

Inflado 

Para llevar a cabo el inflado, se suministra un flujo de aire al dique hinchable con una presión 

superior a la presión de trabajo (��) de la presa, utilizándose para ello una máquina hidráulica 

con una capacidad de descarga (��) suficiente. 

Se definen los siguientes parámetros: 
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- Tiempo de Inflado (tinf): Tiempo que transcurre en inflarse completamente la cámara 

partiendo de un estado de desinflado total. Depende de la capacidad de descarga de la 

máquina y de la presión de trabajo. 

 

���� = �	
1.033+ ��
1.033

	
��

��
 

donde: 
(B.4) 

 

o Presión de trabajo: Presión de trabajo adecuada de la cámara. Parámetro 

suministrado por el fabricante. 

o Volumen de trabajo. 

o Capacidad de descarga de la máquina: Capacidad de trabajo de la máquina en el 

inflado de la presa a ��. 

o Pérdidas de carga en la conducción ����: Todas aquellas pérdidas debidas a la 

conducción del aire hacia el interior de la presa. 

 

Desinflado. 

En el aspecto del desinflado hay que tener en cuenta que algunos ríos sufren repentinas 

variaciones de caudal y por tanto es necesario que el desinflado sea rápido. Por otro lado, 

también hay que considerar que en ciertas regiones, un gran incremento del nivel de calado 

aguas abajo podría suponer una inundación de algunas zonas y por tanto hay que regular el 

desinflado del cuerpo de goma. 

Se definen los siguientes parámetros: 

- Tiempo de desinflado (tdes): Tiempo que transcurre en desinflarse completamente la 

compuerta partiendo de un estado de inflado máximo. Depende de la presión de aire en 

el interior de la compuerta de goma y la presión ejercida por el agua exterior. 

 

���� =
�

����	����	60
= 	

�
�
4	�

�	����	60
 (B.5) 

 

donde 

o V es el volumen: de la cámara.  

o d es el diámetro de la tubería de desinflado  

o Vdes es la velocidad de desinflado del aire interior por la tubería de desinflado. 

 

���� = �
2���

� �1 + �
��
�
+ ∑��

 

 

(B.6) 
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 Presión media durante el desinflado (Pav): Valor de la presión media 

durante el proceso de desinflado. Se calcula como un promedio a partir 

de la velocidad inicial en el proceso (Pd). 

 

																				��� = 0.2	�	�� (B.7) 

 

Dependiendo de la altura instantánea de la presa, el valor de la presión 

en su interior, y por tanto el valor de la presión inicial en el 

deshinchado, será distinto. No obstante, ante la imposibilidad para 

conocerlo, se asume que la presa se empieza a deshinchar siempre 

desde su presión de trabajo. 

 

 Peso específico del aire (ρ). Se puede considerar constante e 

independiente de la temperatura por no haber variaciones muy 

grandes. 

 Coeficiente de fricción del tubo (λ): Depende de la rugosidad del tubo 

de desinflado. Se asume constante. 

 Longitud de los tubos de desinflado (L2): Afecta a las pérdidas por 

conducción.  

En este caso se calculan las pérdidas de conducción 

independientemente para cada cámara con su respectiva longitud. 

 

 Diámtro de los tubos de desinflado (d): También afecta a las pérdidas 

por conducción. 

Al igual que la longitud de los tubos, se calcula independientemente por 

cada cámara. 

 

 Pérdidas de Carga (ξ): Todas aquellas pérdidas producidas en elementos 

de la instalación hidráulica distintos a las tuberías. Se asumen 

constantes. 

 

Aspectos del Material 

Para definir el material se ha de diferenciar entre los dos tipos de láminas que se utilizan: 

- Caucho: Trabaja bien a compresión pero mal a tracción. 

- Tejido Resistente: Soporta bien los esfuerzos a compresión. 
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Figura B-1- Capas de material de un dique inflable 

 

Las variables que influyen en mayor medida cada una de las capas son: 

Caucho: Peso específico, dureza, carga de rotura, resistencia a tracción, compresión y 

temperatura de trabajo. 

Tejido Resistente: Flexibilidad, elasticidad, resistencia a tracción y absorción de agua. 

Para el proceso de cálculo se supone que el material del que está hecha la presa es 

infinitamente rígido y no sufre esfuerzos de tracción o fatiga, principales causas de rotura. 

 

 

  



   

61 
 

ANEXO C – CONVERSOR HECRAS - PEKA 
 

Para llevar a cabo un conversor de archivos HECRAS – PEKA es necesario seguir una serie de 

pasos debido a la disposición de ambos ficheros. De todas maneras, los pasos que hay que 

seguir son bastante genéricos y están orientados a la conversión de ficheros de geometría de 

muchos de los programas de cálculo numérico existentes. 

Se va a realizar una diferenciación entre los dos procesos que hay que realizar. Dependiendo de 

cómo se tengan que disponer los datos en el nuevo software  los procesos serán independientes 

entre sí o se podrán realizar conjuntamente. El  proceso de lectura está asociado al fichero 

genérico del cual se extraen datos y el proceso de escritura dará lugar al fichero deseado para el 

nuevo programa de cálculo. 

Los pasos a seguir son: 

Proceso de Lectura 

- Definición del número de secciones que componen el  archivo. Además es un 

parámetro recurrente a lo largo de la programación por lo que es útil obtenerlo desde el 

principio. 

- Obtención de la coordenada longitudinal del río en la cual está ubicada cada sección. 

- Obtención del número de puntos que definen cada sección. 

- Obtención de las coordenadas de los puntos que definen la sección. Una vez que se 

sabe el número de puntos de una determinada sección, se puede pasar a leer esos 

puntos.  

- Obtención de otros parámetros relevantes: Manning, coeficientes de expansión / 

contracción de la sección,… 

Proceso de Escritura 

- Escritura de una cabecera para el nuevo archivo, si fuera necesaria. No todos los 

ficheros de geometría requieren de una cabecera. 

- Escribir ordenadamente las secciones. Se tratará de un proceso iterativo en el que, 

normalmente, imperará la posición longitudinal de la sección y los puntos que la define, 

siendo el resto de parámetros bastante variables de un programa a otro. 

- Escribir parámetros no dependientes de las secciones y que no se incluyan en la 

cabecera. 

- Aplicar procedimientos para dejar el archivo tal y como se requiere: procedimientos de 

eliminar líneas auxiliares, de reordenamiento de algunos parámetros,…  
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ANEXO D – OBTENCIÓN DE LA CURVA DE AFORO 
 

El problema que se plantea es, a partir de una geometría de sección dada, la obtención de la 

curva de aforo correspondiente. 

Una curva de aforo es una relación entre el caudal que circula por una sección transversal de río 

y el calado que se puede medir en dicha sección.  Por extensión, una sección de aforo, es aquel 

tramo de un río, artificial o natural, habilitado para tal uso.  

 

Figura D-11 – Sección transversal de un río 

 

 

Uno de los factores clave para considerar una sección transversal de un río como sección de 

aforo es que su geometría no es variable con el tiempo, ya sea por sedimentación o por otros 

factores.  

Por tanto,  se ha de suponer que la geometría dada es constante a lo largo del tiempo. 

Así pues, matemáticamente se igualan las pendientes geométricas y la energética. 

�� =
����

����
�/�

= �� 

 

(D.1) 

 

Despejando el caudal: 

� = ���	�
���

�/�

��
=
�

�
���	��

�/�
=
�

�
��
�/�

��
�/�

 (D.2) 
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donde el radio hidráulico se puede expresar como: 

��(ℎ) =
�������(ℎ)

�������(ℎ)
 (D.3) 

 

El algoritmo utilizado para obtener la curva de aforo es el siguiente. 

1) Pedida de datos geométricos de los puntos que conforman la sección. Han de ser 

dados en coordenadas cartesianas (�,�). 

2) Proceso de ordenamiento. Se han de ordenar los puntos siguiendo la condición de 

MENOR ALTURA. De esta manera, el punto más bajo será sobre el que se base todo 

el procedimiento. 

3) Elección de puntos. A partir del punto base se han de posicionar siempre los puntos 

alternados a ambos lados. Es decir, si se hiciera un cambio de coordenadas y se 

estableciera el punto base en las coordenadas (0,�′), los puntos ordenados deberán 

ser de anchura positiva, anchura negativa, anchura positiva,… y así 

consecutivamente. En caso de que esto no suceda, hay tres opciones: 

a. Definición de una nueva geometría. 

b. Suposición de que la sección es simétrica. En ese caso, bastará con 

asignarle al punto correspondiente la anchura opuesta. Sin embargo esto 

sólo es recomendable si la geometría presenta un alto grado de simetría. 

c. Creación de un nuevo punto. Se crea un nuevo punto en el lado en el cuál 

no existía. Para ello es conveniente utilizar la recta que une los punto con 

alturas inmediatamente superior e inferior a la altura del punto buscado, y a 

partir de ahí hallar la anchura que le corresponde. 

 

 

Figura D-12 – Paso 3. Elección de puntos. 



   

64 
 

 

4) Determinación de los puntos auxiliares. Son aquellos puntos que nos permitirán 

establecer un área regular sobre la que calcular. 

Dichos puntos auxiliares son los reflejos de los puntos en el lado opuesto. La altura 

es la misma, pero la coordenada y ha de ser determinada a partir de la recta que 

une a los puntos de altura inmediatamente inferior y superior en el lado opuesto. 

Todos los puntos tendrán un “punto reflejo” excepto el punto base y el punto con 

mayor cota, a no ser que se suponga un “punto reflejo” de misma altura y misma 

anchura (en las cotas superiores, esta aproximación es aceptable). 

 

 

Figura D-13 – Paso 4. Determinación de los puntos auxiliares. 

 

5) Cálculo de las áreas. Se denominan áreas a las secciones encerradas bajo la altura 

de un punto (y su reflejo) y la altura del punto inmediatamente inferior (y su 

reflejo).  

Por tanto, el área de cada sección en la que se ha dividido la geometría es la de un 

paralelepípedo, excepto para la del punto base, en cuyo caso será un triángulo.  
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Figura D-14 – Paso 5. Cálculo de las áreas. 

 

 

6) Determinación del Perímetro Mojado.  Este procedimiento se puede realizar a la 

par que la determinación de las áreas. Para obtener cada perímetro mojado hay que 

tener en cuenta que los lados que lo conforman siempre son iguales que los lados 

de las áreas halladas a excepción del lado que une al punto de mayor cota con su 

reflejo. 

7) Determinación del Radio Hidráulico.  Según la ecuación (D.3 ), el radio hidráulico 

queda definido como el ratio entre el área mojada y el perímetro mojado. 

8) Determinación del caudal. A partir de la ecuación (D.2 ), ya se puede determinar el 

caudal en función de la altura. 

 


