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Reconstruccion 3D a partir de una imagen

Resumen

El objetivo de este Trabajo de Fin de Grado es la reconstruccion tridimensional de una
escena a partir de una Unica vista. Este es uno de los retos claves en visién por computador,
con potenciales aplicaciones en campos como robdtica, modelado 3D, entendimiento de
escenas e imagenes, etc.

Esta tarea se basa en el trabajo con “pistas” cuyos modelos matemadticos son
incompletos y no paramétricos, como puntos y lineas de fuga, reconocimiento de objetos y
escenas, etc. Es por ello que su resolucidn se basa en las técnicas de aprendizaje automatico.
En vez de plantear un modelo paramétrico, se suministran las imagenes de las escenas y sus
correspondientes imagenes de profundidad y se extraen patrones de forma automatica a
través de un algoritmo. Recientemente, el algoritmo de las redes neuronales artificiales (RNA)
de aprendizaje profundo esta superando al estado del arte en varios retos de aprendizaje
automatico, por lo que ha sido el escogido para este trabajo.

Para la realizacion del trabajo, en primer lugar se ha realizado una revision bibliografica
del estado del arte en este problema, en concreto en el uso de RNAs para su resolucion. En
segundo lugar, se han escogido imagenes de escenas con sus correspondientes profundidades,
necesarias para el funcionamiento de la RNA, tras un estudio y comparacion de las bases de
datos (datasets) mas empleadas por la comunidad cientifica. En tercer lugar, se ha hecho una
revisiéon del software disponible y del hardware necesario para la implementacion de una RNA,
asi como la instalacion y familiarizacion con éste. Tras este trabajo previo para disponer de las
herramientas con las que resolver el problema, se ha procedido al estudio de éste. Se han
disefado, implementado y analizado tres modelos de RNAs basados en una técnica en comun
aplicada de una forma innovadora, obteniendo resultados cercanos al estado del arte.
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1 INTRODUCCION

El objetivo de la vision por computador es conseguir que un ordenador pueda “ver”, es
decir, que sea capaz de entender el contenido de las imagenes de manera automatica. Algunos
ejemplos de los problemas que suele tratar la visidn por computador son los siguientes:
reconstruccidon tridimensional de una escena a partir de varias imagenes; deteccidn,
segmentacién y localizacidon de objetos, personas, caras; o reconocimiento de acciones en
video.

Uno de los aspectos mas relevantes del entendimiento de una escena es su estructura
3D. Los algoritmos mas usuales estan basados en la reconstruccién a partir de varias imagenes
(multivista). Dichos algoritmos se encuentran en una fase muy avanzada de desarrollo, siendo
utilizados incluso en aplicaciones comerciales. Este Trabajo de Fin de Grado se centra en un
problema mucho menos estudiado y mucho menos maduro desde un punto de vista
investigador: la reconstruccién de una escena tridimensional a partir de una Unica imagen. Su
relevancia radica en que hay situaciones en las cuales no se puede acceder a varias vistas de
una escena. Por ejemplo, en robética mévil, un robot que entra a una habitacién necesita una
reconstruccion inicial para navegar sin colisiones, y solo dispone de una imagen al entrar por la
puerta. Como otro ejemplo, si se quisiera estimar la profundidad de una imagen descargada de
internet, en muchas ocasiones no se dispone de otras imagenes de la misma escena.

La reconstruccion multivista se fundamenta en modelos matemadticos muy precisos,
basados en correspondencias de puntos entre distintas imagenes. Con estos se computa la
estructura tridimensional que mejor se ajusta a las imagenes, usando para ello relaciones
geomeétricas (basadas en la triangulacidon de los puntos), modelos paramétricos y técnicas de
optimizacion.

Sin embargo, en la reconstruccion a partir de una Unica imagen, estas técnicas no son
aplicables ya que no se puede resolver por geometria. Para tratar este problema hay que
trabajar con otras pistas cuyos modelos matematicos son mds ambiguos: lineas de fuga,
perspectivas, reconocimiento de objetos, y con un sinfin de factores que nosotros mismos,
aunqgue sea de forma inconsciente, tenemos en cuenta. Y es que las personas somos capaces
de resolver este problema, aunque no sea con demasiada exactitud: cualquiera de nosotros
puede intuir la profundidad de una
escena a partir de una sola imagen
o fotografia.

Debido a este tratamiento
de informacion de alto nivel vy
ademas de una manera intuitiva, la
obtencion de un modelo
paramétrico del problema se vuelve
extremadamente complicada. Es
por ello que se recurre al
aprendizaje automatico para

Figura 1.1: Reconstruccion 3D estéreo (multivista). [1]



Reconstruccion

Imagen RGB de la escena

Figura 1.2: Reconstruccién tridimensional a partir de una sola vista. [2]

resolver este problema, una herramienta fundamental en visién por computador. Problemas
como la deteccién de objetos o clasificacion de escenas son resueltos a través de esta. El
aprendizaje automatico tiene como objetivo que los ordenadores sean capaces de “aprender”
por si mismos, siempre a partir de unos datos de entrenamiento (denominados dataset) que
les sirven de ejemplo para establecer su propio modelo del problema, que puede llegar a ser
muy complejo. Los algoritmos de aprendizaje automatico trabajan con patrones aprendidos de
los datos suministrados, que pueden ser formas, gradientes de color, o cualquier estructura
que aparezca en las imagenes. Ante una nueva imagen, el algoritmo aplicara estos patrones
aprendidos para predecir la profundidad de la escena, sin ser necesaria la formulacidon de un
modelo para su resolucidn.

Los datos suministrados al algoritmo deben ser tales que se conozca la profundidad de
todas las vistas. Con el desarrollo de las camaras kinect, existe una gran cantidad de imagenes
RGBD disponibles que pueden ser empleadas en el proceso de aprendizaje. Estas se pueden
encontrar en los denominados datasets, que consisten en conjuntos de grandes cantidades de
datos empleados por la comunidad de aprendizaje automdtico. Es de gran importancia la
elecciéon del dataset, ya que el algoritmo solo puede capturar las relaciones que aparezcan en
los datos de los que dispone.

Existen diversos estudios en los que se ataca este reto aplicando distintos algoritmos
de aprendizaje automatico: Make3D [3], Karsch&al [4], Ladicky&al [5], etc. Recientemente, el
algoritmo de redes neuronales de aprendizaje profundo estd dando excelentes resultados,
superando al estado del arte. Ejemplo de ello son Eigen&al [6] o Liu&al [7], donde es
implementado de diferentes formas. Por ello, este es el algoritmo seleccionado para este
proyecto.

En concreto, el objetivo de este TFG es el de resolver el problema de reconstruccién 3D
a partir de una Unica vista aplicando una red neuronal artificial (RNA) de aprendizaje profundo.
Se disefiaran nuevos modelos de RNA en los que se intentard obtener la reconstruccién 3D de
una forma precisa, sirviendo a la vez como trabajo de investigacién de este algoritmo.



Para la ejecucion de este proyecto, el pipeline se puede desglosar en las siguientes

tareas:

1. Revisién bibliografica del estado del arte

2. Estudio, comparativa y eleccion del dataset RGBD

3. Revisién de herramientas para su implementacion: librerias, software, hardware, etc.
4. Desarrollo del modelo de la RNA

4.1. Disefo de la estructura de la RNA
4.2. Implementacion
4.3. Andlisis de resultados y redisefio del modelo

Tras la ejecucién de estos pasos, se han disefiado y analizado tres modelos distintos de
redes neuronales, llegando a conseguir resultados similares a los del estado del arte. Estos
modelos y sus respectivos resultados, asi como la metodologia seguida para obtenerlos, serdn
explicados a lo largo de la memoria.



2 REDES NEURONALES ARTIFICIALES (RNA)

Este es el algoritmo de aprendizaje automatico seleccionado para resolver el problema.
Posee una estructura capaz de representar relaciones complejas de los datos, siempre que
disponga de los pardmetros y datos suficientes. Si bien son conocidas desde hace décadas,
recientemente han experimentado una difusion debido a los Ultimos avances de la
computacion que han logrado que el entrenamiento de las redes se pueda realizar en tiempos
aceptables, a la vez que la adquisicion de las grandes cantidades de datos que requieren las
redes neuronales ha sido cada vez mas facil debido al progreso de las TIC.

De este modo se resolver el problema de la inferencia de la profundidad a partir de
una Unica imagen, asi como de forma paralela ahondar en el funcionamiento de las redes
neuronales, del que todavia queda mucho por entender e investigar.

2.1 Modelo de una RNA

La unidad basica de este las redes neuronales es la célula (‘cell’) o unidad, que trata de
simular una neurona bioldgica al tomar informacién de entrada de varias fuentes X =
(x1,%5, ..., x,)T y producir una salida que representa el procesamiento que ha hecho la
neurona a partir de la informacién de entrada.

Matematicamente, la activacion de una célula a partir de la informacién de entrada es
la siguiente:

hywp(X) = f(WTX) =f (Z wix; + b)
=1

Como se puede observar, se trata de un producto escalar (mas un término de sesgo o
bias b) del vector de entrada X = (x1,xy,...,x,)T y los pardmetros o pesos propios de la
célula W = (wy,w,, ...,w,)T, al que se le aplica la funcién de activacién f(). Los pardmetros
de la célula W seran obtenidos en el proceso de aprendizaje de forma automatica, mientras
que f() puede ser cualquier funcién f:R +— R . En este TFG, se ha trabajado con la funcién
sigmoidal logistica (Figura 2.1) al ser una de las mas usadas en las activaciones de las neuronas.

1-
1 0.5
f(z) = 1+ exp(—z)
| | ol | | J
-6 -4 -2 0 2 4 6

Figura 2.1: Expresion y representacion grafica de la funcién sigmoidal logistica.
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Figura 2.2: Respresentacidn de una neurona (izda.) y de una red neuronal con una capa oculta (dcha.). [8]

Con la estructura de una neurona definida, puede observarse que se trata en realidad
de una regresioén logistica, uno de los algoritmos basicos de aprendizaje automatico. Este
algoritmo es capaz de establecer modelos lineales sobre los datos de entrada, a los que les es
aplicada la activacion sigmoidal logistica. Por lo tanto se trata de un modelo que es capaz
Unicamente de representar relaciones relativamente simples. El poder de las redes neuronales
aparece al agrupar un conjunto de neuronas para que trabajen interaccionando unas con
otras, de un modo similar al que lo hacen nuestras propias neuronas. Esto se logra agrupando
las neuronas en capas. Las neuronas de una misma capa procesan de forma paralela la misma
informacién de entrada. Si después de una capa de neuronas se afiade otra nueva capa, lo que
se obtiene es un nuevo grupo de neuronas que trabajan sobre la informacidn elaborada por la
capa anterior de neuronas. Cuando una neurona emplea la salida de otra neurona como
informacién de entrada, se dice que estan conectadas. En la Figura 2.2 se representa un
modelo simple, donde entre la entrada y la salida se introduce una capa de neuronas. A todas
las capas distintas de la entrada y la salida se les suele llamar capas ocultas, ya que desde un
punto de vista de caja negra, dichas capas procesan pasos internos del algoritmo para la
obtencién de la predicciéon de la salida a partir de la informacién de entrada.

2.2 Estructura de las capas

2.2.1 Capa completamente conectada (‘fully-connected’)

En esta capa, todas las neuronas de la capa actual (capa amarilla en Figura 2.3) estdn
conectadas con todas las neuronas de la capa anterior (capa verde). Ello hace que sea una capa
genérica al no condicionar ni restringir ninguna posible relacidn entre las neuronas de ambas
capas.

Cuando se desconoce la estructura del problema, las capas totalmente conectadas
resultan idéneas ya que permiten capturar todas las relaciones posibles. Sin embargo, son
costosas computacionalmente al requerirse un elevado numero de parametros para
establecer las conexiones de todas las neuronas. Esta capa requiere K- (L+1) parametros,
donde K es el nimero de neuronas de la capa actual y L es el nimero de neuronas de la capa
anterior. Por este coste computacional no puede aplicarse a datos de elevado nimero de
dimensiones.
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Figura 2.3: Representacion esquematica de dos capas comunes de RNA. [9]

2.2.2 Capalocalmente conectada: capa convolucional

Cuando la capa completamente conectada resulta demasiado costosa
computacionalmente, se pueden quitar parte de las conexiones entre las capas para eliminar
parametros y disminuir el coste computacional del algoritmo. Este tipo de capas se les
denomina como capas localmente conectadas.

Una de las capas localmente conectadas mas difundidas es la capa convolucional (ver
Figura 2.3). En este caso, cada neurona de la capa actual solo se conecta con un grupo local de
neuronas de la capa anterior. Ademas, los parametros W son los mismos para todas las
neuronas de la misma capa. Es decir, en la Figura 2.3, las conexiones representadas por flechas
del mismo color tienen los mismos pesos Wij. Manteniendo el nimero de neuronas, el nimero
de parametros se ve considerablemente reducido con respecto a las capas totalmente
conectadas. Esta reduccion dependera del nimero de conexiones locales que se mantengan.

2.3 Entrenamiento

Una vez definida la estructura de la red neuronal (entrada y salida de la red, nimero de
capas, numero de neuronas en cada capa) se procede al entrenamiento de la red a partir de los
datos de entrenamiento. El objetivo del entrenamiento es minimizar una funcién de coste F()
que evalue la diferencia entre la salida de la red y la verdadera salida de los datos, denominada
etiqueta de los datos. Esto se realiza a través de un proceso iterativo:

¢ Se computan las activaciones de todas las neuronas, aplicando en cada una sus propios
parametros y sus correspondientes entradas, obteniendo como resultado la salida que
obtiene la red de los datos de entrenamiento. Esto se denomina pase hacia delante
(forward-pass’).

e Se aplica la funcién de coste F() entre la salida de la red neuronal y la etiqueta de los
datos de entrenamiento y se calcula el gradiente de dicha funcién de coste sobre la



salida de la red neuronal (Ultima capa).

e El gradiente se propaga a todos los parametros de la red neuronal empleando la regla
de la cadena (‘backward-pass’).

e Con el gradiente de la funcién de coste respecto a todos los pardmetros, éstos se
actualizan en la direccién del gradiente negativo, de modo que el error o funcion de
coste de la red descienda con cada iteracion:

9
wiy = wy® —a g FW, b)
ij

]
WO _
b,V = b, aabmF(W,b)

A

Donde w,-,-(') es el peso asociado a la neurona i de la capa / con respecto a la neurona j
de la capa anterior; b,-”) es el término bias asociado a la neurona i de la capa /; a es el factor de
aprendizaje; F la funcién de coste; y Wy b la totalidad de los parametros de la red neuronal.

2.4 Sobreajuste

Un problema general del aprendizaje automatico es el sobreajuste o ‘overfitting’.
Sucede cuando el algoritmo se aprende Unicamente los datos de entrenamiento, siendo
incapaz de generalizar conclusiones y dando malos resultados cuando trata de predecir un
ejemplo que no se haya visto en la fase de entrenamiento. Estos efectos aumentan en modelos
con muchos pardmetros y/o con cantidades de datos de entrenamiento demasiado pequenias.
A continuacidn, se explican brevemente algunas técnicas para remediar el sobreajuste.

2.4.1 Ampliacién de la cantidad de datos

Este problema puede solucionarse aumentando la cantidad de datos de
entrenamiento. Es la mejor forma de solucionar el sobreajuste, ya que es el propio algoritmo el
que corrige sus errores al disponer de mas informacién de la que aprender. Sin embargo no
siempre es aplicable ya que puede ser imposible acceder a mds datos o resultar demasiado
costoso en esfuerzo y/o recursos.

2.4.2 Regularizacién

Cuando aparece sobreajuste, la variable predicha suele poseer bruscos cambios para
adaptarse a los datos de entrenamiento (en la Figura 2.4, la linea de frontera se adapta
totalmente a los datos de entrenamiento). Ello implica que los pardmetros del modelo toman
valores de elevado valor absoluto para obtener dichas bruscas variaciones.

Por ello, la regularizacién afiade a la funcién de coste un término que penaliza elevados
valores de los parametros. En la norma L2, se emplea la suma cuadratica del valor de los
parametros. Dicho término va ponderado por un factor A frente a la funcién de coste del error
de prediccidén. Valores muy bajos A no solucionan el problema del sobreajuste al apenas
modificar la funcién de coste, mientras que valores demasiado elevados haran que la
optimizacion se centre en el término regularizador en vez de en la funcion de coste del error
del problema, obteniendo modelos excesivamente simplificados (problema de sesgo o
subajuste).



Figura 2.4: Representacion simplificada del sobreajuste/subajuste en un problema de clasificacion. [10]

Los parametros del modelo entrenado serdn aquellos que minimicen conjuntamente la
funcién de coste y el término regularizador:

W = argminy, Z[F(W, X, Y)] + AR(W),
i

SinormalL2: R(W) = ||W]|?

donde F es la funcién de coste del problema; R el término de regularizacion con su
ponderacién 4; X; son los datos de entrada disponibles e Y; sus predicciones deseadas; y W los
parametros del modelo o algoritmo. La ponderacién A no es aprendida por el algoritmo, sino
que segun el valor de A la soluciéon del algoritmo variara. Se trata de un hiper-parametro que
debe ser ajustado por el programador, al igual que el nimero de capas ocultas, nimero de
neuronas en cada capa oculta, etc.

Error

Error de

generalizacion
Error por

sobreajuste

Error en los datos
de entrenamiento

Complejidad

Punto ideal del modelo

Figura 2.5: Grafica cualitativa de la evolucién del error con la complejidad del modelo, y la aparicién del sobreajuste.
[11]



2.4.3 Dropout

Esta técnica consiste en que, en cada iteracidn de entrenamiento, para aquella capa en
la que se aplique el dropout, cada una de sus neuronas tendra una probabilidad 'p' (ratio de
dropout) de ser desactivada. Este ratio de dropout es otro hiper-parametro de la red. Por
desconectar o desactivar se refiere a que no se calcula el output de dicha neurona, ni es tenido
en cuenta para el cdmputo de la siguiente capa. Tampoco se calcula su gradiente respecto a la
funcién de coste. En la Figura 2.6 se representa este proceso.

La efectividad de este método esta basada en que empiricamente las neuronas pueden
llegar a trabajar dependiendo demasiado unas de otras, de modo que cada una por separado
no llega a dar una informacidn significativa. Al desprender aleatoriamente las neuronas en cada
iteracion, se fuerza a que cada una de ellas proporcione informacidn significativa por si misma
independientemente del resto, lo que ayuda a remediar el sobreajuste ya que las relaciones
deben generalizarse al contar cada vez con informacidn distinta (distintas neuronas activadas)
[12]. Indicar que el dropout no es exclusivo con la regularizacién, pudiendo aplicarse ambas

técnicas de forma simultanea.

Red neuronal estandar Red neuronal tras aplicar dropout
Figura 2.6: Representacion de una RNA antes y tras aplicar dropout. [12]

2.5 Aprendizaje no supervisado: autoencoder

En el aprendizaje supervisado, para realizar cualquier tarea se necesita de los
denominados datos etiquetados, como se ha supuesto en los apartados anteriores. Sin
embargo, también pueden extraerse informaciéon de datos sin etiquetar: es lo que se llama
aprendizaje no supervisado. Tiene la principal ventaja de que no necesita datos etiquetados
gue pueden ser escasos o costosos de conseguir. Es tipico disponer de una cantidad no muy
grande de datos etiquetados, mientras si se disponga de una mayor cantidad de datos sin
etiquetar.

Dentro de las redes neuronales artificiales, los autoencoders son unos modelos
representativos de aprendizaje no supervisado. En ellos, se pasa de la capa inicial de los datos



‘ Capa encoder o Capa decoder ‘

Datos comprimidos
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Figura 2.7: Esquema de un autoencoder. [8]

originales a una capa intermedia con menos neuronas o con alguna propiedad particular (p. ej.
dropout), para luego reconstruir los datos originales (ver Figura 2.7). De este modo, se consigue
una capa oculta de neuronas que contiene la informacion de los datos originales comprimida,
denominada encoder. La capa que reconstruye los datos a partir de la compresidén se denomina
decoder. Al codificar los datos de entrada con el encoder, se obtienen unos valores que se
denominan caracteristicas de dichos datos, ya que su extraccidon ha sido aprendida por la red
neuronal a partir de los datos para su propia reconstruccién. Al contener la informacién de los
datos de entrada en un menor nimero de dimensiones, tienen interesantes aplicaciones, como
p.ej. el pre-entrenamiento no supervisado (ver apartado 2.6.1).

2.6 Aprendizaje profundo (‘Deep learning’)

El aprendizaje profundo consiste en trabajar con sucesivas abstracciones del problema,
llegando hasta arquitecturas capaces de modelar relaciones de alto nivel. De este modo, se
puede resolver problemas muy complejos, donde otras técnicas de aprendizaje automatico
han dado resultados poco precisos.

En el caso de una red neuronal artificial, esto se consigue aumentando las capas
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Figura 2.8. Representacion de una red neuronal profunda o de aprendizaje profundo. [13]

F (WOIWI) -

Figura 2.9: Ejemplo de funcidon de coste no convexa, donde segun la semilla el gradiente descendiente finaliza
en distintos minimos. [10]

ocultas del modelo (ver Figura 2.8). Cada capa de neuronas trabaja sobre la salida de la capa
anterior, llegando a procesar cada vez de mayor nivel y complejidad. Este procesamiento
puede realizarse también con una Unica capa oculta, pero para poder modelar estas relaciones
de alto nivel (poder de representacién), el nimero de neuronas crece exponencialmente con la
disminucién del numero de capas [8].

Las redes neuronales profundas conllevan también una serie de desventajas. Debido al
mayor poder de representacién de las redes profundas, si son entrenadas con insuficientes
datos presentaran con mas facilidad problemas de sobreajuste, por lo que necesitan grandes
cantidades de datos que no siempre se encuentran disponibles. La optimizacién de las redes
neuronales, profundas y no profundas, presenta una funcién de coste no convexa. Esto causa
qgue dependiendo de la inicializacion de la semilla para el proceso iterativo, el modelo pueda
converger a un minimo local y no al global del problema (ver Figura 2.9). Mientras que en
redes superficiales o poco profundas este minimo suele seguir dando resultados aceptables,
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Figura 2.10: Representacion de la construccidn de tres autoencoders apilados. [14]

esto ya no es asi en redes neuronales profundas, haciendo que los algoritmos basados
Unicamente en el gradiente local dejen de funcionar tan bien, llegando en ocasiones hasta la
no convergencia. Finalmente, aparece un fenémeno llamado ‘difusion de gradientes’. Al
ejecutar la propagacién hacia atras de los gradientes, estos disminuyen en magnitud,
provocando que Unicamente las Ultimas capas se vean modificadas en el proceso de
aprendizaje, mientras que en las primeras el gradiente es tan pequefio que apenas varian. De
este modo, entrenar una red profunda con una inicializacién aleatoria de sus pardmetros da un
resultado similar a entrenar una superficial (solo aprenden las ultimas capas) sobre una
entrada corrupta por las primeras capas de la red [8].

Para remediar estos, problemas se han desarrollado una serie de estrategias de
entrenamiento por capas, que experimentalmente han demostrado dar buenos resultados:

2.6.1 Pre-entrenamiento no supervisado: autoencoders apilados

El gradiente descendiente lleva a la red neuronal a la cuenca de atraccion en la cual ha
sido inicializada la semilla, que es el punto del espacio multidimensional donde se localizan los
parametros del modelo. Por tanto, con una inicializacién aleatoria no se estd asegurando en
absoluto que dicha semilla sea introducida en una cuenca de atraccién donde el error sea
pequefio, o la solucién obtenida no sufra de sobreajuste.

Una solucidn es el pre-entrenamiento no supervisado [15]. Consiste en la inicializacion
de los parametros de la red con unos valores predeterminados obtenidos a partir de los
propios datos de entrenamiento. Estos valores pueden obtenerse a partir de unos
autoencoders apilados. Estos autoencoders apilados consisten en varios autoencoders
construidos cada uno sobre las caracteristicas del anterior (ver Figura 2.10), obteniendo
sucesivas compresiones de los datos de entrada. Las caracteristicas son cada vez de mayor
abstraccion al haber pasado por una mayor cantidad de encoders.

Las primeras capas de la red neuronal se inicializan con las capas encoders de los
autoencoders apilados. De este modo, la semilla inicial estd situada en una zona donde las
primeras capas son capaces de capturar la estructura de los datos de entrada. Si la propia
estructura de los datos estd relacionada con la variable a predecir, la cuenca de atraccidn
donde ha sido inicializada poseerd un buen minimo local. En [15] muestran como en los
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experimentos llevados a cabo no es que se consiguiera un error menor realizando el pre-
entrenamiento, sino que dicha solucidn generaliza mejor y sufre un menor sobreajuste.

2.6.2. Ajuste fino (‘fine-tuning’)

El ajuste fino es el ultimo proceso para el entrenamiento de una red profunda, y
consiste en tratarla como un Unico bloque en el entrenamiento, actualizando todas las capas
de su red, igual que el entrenamiento estandar de una red no profunda. Al situar una semilla
inicial con el pre-entrenamiento no supervisado de los autoencoders apilados, se minimizan
los inconvenientes mencionados sobre el entrenamiento de las redes profundas. Las primeras
capas ya han sido entrenadas, disminuyendo la importancia de la difusion de gradientes, y la
semilla es inicializada en una zona de bajo error y buena generalizacién, corrigiendo la
tendencia al sobreajuste de las redes profundas [15].
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3 ESTRUCTURA DE LOS MODELOS

En la prediccidn de profundidad a partir de una imagen, la imagen RGB es el dato de
entrada y la imagen de profundidad es la salida del problema. La red neuronal tendra estas
mismas entradas y salidas y la implementacién de la red serd tal que reciba el valor de
intensidad RGB de los pixeles de la imagen como entrada, y su ultima capa predecira el valor
de profundidad de cada pixel (ver Figura 3.1). Las capas ocultas la red deberan tener una
estructura capaz de capturar las relaciones entre la entrada y la salida en el proceso de
entrenamiento.

Red neuronal

Imagen de

Imagen RGB profundidad

Valores de
profundidad de los
pixeles

Intensidad RGB
de los pixeles

Figura 3.1: Esquema de la implementacion de la RNA para la resolucién del problema.

Esta red neuronal podria entrenarse directamente, disefiando una estructura concreta
e inicializando sus pardmetros aleatoriamente. Sin embargo, los resultados experimentales de
[15] muestran que las mejoras del pre-entrenamiento no supervisado ya aparecen con una
Unica capa oculta. Estos resultados se obtienen sobre el MNIST database [16], que consiste en
clasificar imagenes de digitos escritos a mano segun el valor del digito (0-9). Para ello emplea
autoencoders apilados como pre-entrenamiento de los datos de entrada de la red.

En nuestro caso se realiza una regresidon sobre una variable compleja en comparacion
con el valor de un digito: la profundidad de una escena. Por tanto, puede que una inicializacidn
donde se capture la estructura de la entrada (RGB) no sea suficiente para predecir la salida
(imagen de profundidad). Podrian necesitarse varias capas tras los autoencoders apilados de la
imagen RGB para conectar estas caracteristicas RGB con la profundidad de la escena, por lo
que se tendria de nuevo una red profunda con los mismos problemas que se trataban de
resolver con el pre-entrenamiento no supervisado.

Para solucionar dicho problema, se propone aplicar la técnica de pre-entrenamiento
no supervisado tanto a la entrada como a la salida de la red. Esta es la principal contribucion
del proyecto, ya que hasta ahora en el pre-entrenamiento solo se analizaba la estructura de la
entrada. El motivo es el mismo que se explica en [15]: si con unos parametros que capturan la
estructura compleja de la entrada resulta mas facil para el algoritmo predecir la salida, cuando
esta ultima sea también compleja, unos pardmetros que atrapen también la estructura de la
salida facilitaran la resolucién del problema, ya que consistira en la conexién caracteristicas
aprendidas de la entrada con caracteristicas aprendidas de la salida, relaciéon que puede ser
mas simple de aprender que la conexién original entrada-salida.
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Es decir, lo que se busca es un mapeo entre caracteristicas de las imagenes RGB sobre
caracteristicas de las imagenes de profundidad. Las personas no asociamos un color a un valor
de profundidad directamente, sino caracteristicas suyas, como por ejemplo una linea a una
discontinuidad de profundidad. Por tanto, todos los modelos aqui presentados se basan en
esta idea: RGB = Caracteristicas RGB - Caracteristicas profundidad - Profundidad.

El proceso para el pre-entrenamiento de los autoencoders de la salida es similar al
explicado para pre-entrenar los autoencoders asociados a la entrada, salvo que en vez de
escoger las capas encoder de la salida, se tomaran las capas decoders. Asi se obtiene a partir
de unas caracteristicas codificadas la salida original.

El proceso completo de entrenamiento de la red neuronal serd el siguiente (ver Figura
3.2):

e Fase 1. Pre-entrenamiento no supervisado de los autoencoders de imagenes
RGB (entrada) e imagenes de profundidad (salida). El nimero de autoencoders
puede variar segin el modelo planteado. En este Fase 1 no se establece
ninguna conexidn entre imagen RGB e imagen de profundidad, siendo ambos
autoencoders completamente independientes.

e Fase 2. Entrenamiento de la capa de conexion. Se implementa una capa tal que
conecte las caracteristicas RGB y las caracteristicas de imagen de profundidad
obtenidas en el Fase 1. Esta nueva red tendra la siguiente estructura: encoder
RGB (entrenada en Fase 1) —>Capa de conexiéon - Decoder de profundidad
(entrenada en Fase 1). Durante esta fase del entrenamiento, las capas encoder
RGB y decoder de imagen de profundidad se dejan fijas o congeladas,
actualizando solo las que hacen de conexidn. Si esto no se hiciera, al decoder
de la imagen de profundidad le llegaria una informacién corrompida por la
capa de conexion inicializada aleatoriamente. Por tanto, debido tanto al
problema de difusién de gradientes como el de cuencas de atraccién, la
solucidn alcanzada se veria influenciada por dicha inicializacién aleatoria, ya
que las ultimas capas perderian rdpidamente su capacidad de decoder para
adaptarse a la informacién corrompida por la capa intermedia.

e Fase 3. Fine-tuning de la red final. Las capas se inicializan con las obtenidas en
el Fase 2, manteniendo la misma estructura. La diferencia con el Fase 2 es que
ahora todas las capas se actualizan en el entrenamiento de la red.

A estos procesos se les denominara a lo largo de la memoria como Fase 1, 2 6 3 (Figura
3.2).

Otro método de entrenamiento puede ser el entrenamiento directo de la red final,
inicializando sus capas aleatoriamente. De este modo se comienza directamente en el Fase 3,
salvando los dos primeros. Sin embargo, es predecible que aparezca un mayor sobreajuste o
incluso la no convergencia conforme aumente la profundidad de la red (apartado 2.6), aunque
incluso con una Unica capa oculta se aprecian los beneficios del pre-entrenamiento como ya se
ha indicado.
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@ Pre-entrenamiento no supervisado de los autoencoders
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Figura 3.2. Esquema de las tres Fases de entrenamiento de los Modelos.
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Se han disefado tres modelos basados en este proceso de entrenamiento,
distinguiendo entre si emplea como entrada una imagen RGB entera (“global”) o solo una
ventana de esta (“local”), y el uso o no del aprendizaje profundo:

. Modelo 1 (M1): Local y sin aprendizaje profundo
J Modelo 2 (M2): Global y sin aprendizaje profundo
J Modelo 3 (M3): Global y con aprendizaje profundo

El tratamiento de una imagen RGB entera con capas totalmente conectadas es
computacionalmente caro debido al elevado nimero de dimensiones de la entrada y al peso
computacional de este tipo de capas. Por tanto, esta limitacion tiene que ser abordada por los
tres modelos propuestos.

3.1 M1: Local y sin aprendizaje profundo

Se trata del modelo mas simple de todos. Segun lo explicado, la aplicacion de una RNA
a una imagen entera queda descartada. Por ello, y para hacer una primera aproximacion al
problema, se aplica la idea anteriormente explicada (RGB —> Caracteristicas RGB -
Caracteristicas profundidad - Profundidad) de la forma mds directa posible. Esto es, se
implementa cada transformacidon con una capa totalmente conectada sobre pequenas
ventanas de 60x60 extraidas de forma aleatoria (ver Figura 3.3), obteniendo un total de dos
capas ocultas. Estas ventanas RGB contienen 60-60-3 = 10.800 dimensiones, reduciendo el
coste computacional del modelo.

Este modelo podra inferir la profundidad de pequefias ventanas de dimensién 60x60.
Una forma de implementar el modelo para el trabajo con imagenes enteras seria realizar un
escaneo de la imagen entera por ventanas 60x60, de los que la red neuronal inferiria su
correspondiente profundidad, montando la imagen de profundidad completa a partir de las
profundidades locales obtenidas en cada zona de la escena. El nimero de parametros de esta
red depende del nimero de neuronas en cada una de las capas ocultas: suponiendo una
compresion de 1/10 en cada uno de los autoencoders, el nimero de parametros del modelo
alcanza los 13 millones.

Encoder Capa de Decoder de
RGB conexion profundidad

’.

Ventanas de
profundidad

Imagen RGB Imagen de profundidad

Red neuronal

Figura 3.3. Esquema de la arquitectura del Modelo 1
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Esta RNA solo dispone de la apariencia local de una zona de la imagen, a partir de la
cual debe poder inferir su profundidad, sin disponer del resto de la imagen. Esto es
significativo, ya que se asume que no se trata de un problema de caracter global en cuanto a la
imagen, sino que se puede descomponer en pequefias ventanas en paralelo y ser resuelto
localmente.

3.2 M2: Global y sin aprendizaje profundo

Este modelo posee la misma estructura de red que M1, implementando cada
transformacion (RGB -> Caracteristicas RGB —» Caracteristicas profundidad - Profundidad)
con una capa totalmente conectada. Pero estas son aplicadas sobre imagenes enteras
subsampleadas a una resolucidn parecida a la de las ventanas analizadas con el M1: 48x64 (ver
Figura 3.4). De esto modo, se aligera el coste computacional pero aplicando la red sobre
ventanas enteras.

Encoder Capa de Decoder de
RGB conexion profundidad

Imagen RGB

Imagen de profundidad
subsampleada

subsampleada

Imagen RGB

Red neuronal Imagen de profundidad

Figura 3.4. Esquema de la arquitectura del Modelo 2

La Unica diferencia estructural de la red es que se las dimensiones de la entrada y
salida deben adaptarse a la nueva resolucion. De querer obtenerse una prediccidon de
profundidad cuya resolucion se corresponda con la original de las imagenes, esto se puede
realizar con métodos de ‘upsampling’, cuyos efectos no son analizados en este trabajo.

A pesar de no cambiar la estructura de la red neuronal con respecto a M1, el problema
es muy distinto, ya que la entrada contiene ahora una imagen entera subsampleada. Ello
implica que ya no se trata de resolver el problema con un caracter local a través de pequenas
ventanas, sino que la imagen entera es tratada como entrada, asumiendo un caracter global
en la resolucion del problema. Por tanto, informacién global de la imagen tales como lineas o
puntos de fuga, grandes estructuras geométricas, etc. podran ser capturadas y ser empleadas
por la red.

Como en M1, el nimero de pardmetros depende del numero de neuronas de cada
capa oculta. Suponiendo de nuevo una compresidn de las caracteristicas de 1/10 se obtiene
una cantidad aproximada de diez millones de parametros, algo inferior a la del Modelo 1 al ser
las dimensiones de entrada y salida algo menores con la nueva resolucién.

De forma mas intuitiva, mientras que a las personas nos resulta muy dificil obtener la
profundidad absoluta de una pequeiia ventana de una imagen, nos es relativamente sencillo
predecir la de una imagen entera, aunque se haya reducido su resolucién. Ello se debe, como
ya se ha indicado, a que el problema de la estimacion de la profundidad a partir de una sola
vista necesita, no solo de la estructura local de la zona, sino de la global de la escena.
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3.3 M3: Global y con aprendizaje profundo

En los dos modelos anteriores se ha utilizado uUnicamente las capas totalmente
conectadas, y el modelo final poseia dos capas ocultas. En este ultimo modelo se propone el
uso de las capas convolucionales como medio de conexidn entre las distintas capas. De este
modo se reduce el coste computacional del modelo, permitiendo incrementar la resolucién de
la entrada y salida, asi como el numero de capas de la red y aplicar el aprendizaje profundo.
Mantener la resolucion de las imagenes originales conlleva todavia un alto coste
computacional, por lo que sigue siendo necesario subsamplear las imagenes, pero no hasta tan
bajas resoluciones como en el caso de M1y M2.

Estas capas convolucionales, ademds de permitir trabajar con datos de mayor
dimensién, confieren una estructura espacial al modelo al aplicarse en imagenes debido a la
forma en que trabaja el operador convolucién (ver Anexo B). Las activaciones de la capa
posterior solo se relacionan con una cierta zona local de la capa previa, y no con la totalidad de
ella como hacian las capas totalmente conectadas. Ello provoca que no se pueda detectar con
una sola capa patrones globales, sino Unicamente locales.

En la primera capa convolucional de la RNA estos patrones locales, como los bordes,
formas simples, gradientes, etc. pueden ser detectados por las unidades ocultas. La
importancia de las convoluciones reside en que las activaciones se almacenan ordenadas
espacialmente en una matriz, montando de nuevo una imagen. Esta imagen contiene las
activaciones de las neuronas, que en el caso de tratarse de un autoencoder, son las
caracteristicas de los datos de entrada. De esta forma, la siguiente capa puede trabajar con
esta informacién ordenada espacialmente en una imagen y asignar distintos significados a un
mismo patrdon segln su localizacidon espacial en la imagen original. Esta estructura espacial es
algo caracteristico de este problema, ya que no significa lo mismo una linea por la zona inferior
(probablemente el borde inferior de un mueble) a una lateral (pared), central (mesa, cama,...)
o superior (techo, [ldmpara,...).

En la tarea de clasificacidon de imagenes, es comun aplicar varias capas convolucionales
a las imagenes, obteniendo en primer lugar caracteristicas locales, que en cada capa posterior
van adquiriendo un caracter mads global y de mas alto nivel. Con la ultima capa obtenida, es
comun aplicar una capa totalmente conectada para obtener la variable deseada. Aplicar dicha
estructura en este problema en particular, implicaria que la obtencién de la profundidad de la
escena se basa en la ponderacién de una coleccién profundidades predeterminadas asociadas
cada una a una célula de la ultima capa oculta, por la activacidon de dicha neurona: es decir,
interpolaria mapas de profundidades predeterminados.

Por ello es por lo que se aplica una simbiosis entre dicha estructura y el modelo propio
de este trabajo: la estructura de la red serd tal que aplique una conexidon entre caracteristicas
RGB y caracteristicas de profundidad, pero estas obtenidas a través de autoencoders
convolucionales y su operacion inversa, deconvolucionales (ver Anexo B), en vez de los
modelos anteriores donde se obtenian con capas de producto escalar. Las capas se basan en
convoluciones que tan buen resultado han dado en [6], pero en vez de conectar las
caracteristicas asi obtenidas directamente a un mapa de profundidad, se conectan las
caracteristicas RGB con las caracteristicas de imagen de profundidad.
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Figura 3.5: Representacion explicativa de las capas convolucionales y deconvolucionales aplicadas en imagenes.

De este modo ya se puede aplicar el esquema del pre-entrenamiento no supervisado
de los autoencoders apilados con capas convolucionales y deconvolucionales. Se emplearan
unas compresiones de orden similar a las de [6], puesto que han demostrado dar buen
resultado. Sin embargo, en este caso no pueden ser tan profundas, ya que mientras que en la
red neuronal de [6] solo se afiaden dos capas completamente conectadas tras las capas
convolucionales para obtener la profundidad, el encoder RGB de este modelo (M3) requiere al
menos una capa de conexion y después el decoder correspondiente de la imagen de
profundidad. Unido a limitaciones de velocidad del entrenamiento, se restringen los
autoencoders apilados a dos capas de compresion. La estructura de la red resulta la mostrada
en la Figura 3.6.

Por limitaciones temporales para la optimizacién de las dimensiones de los filtros y el
numero de caracteristicas por capa, estas se escogen de forma que se escalen
aproximadamente con las del modelo de [6]. Tanto las dimensiones escogidas como los
parametros de las capas convolucionales y deconvolucionales que permiten obtenerlas se
encuentran en la Figura 3.6. Las imagenes se subsamplean hasta 95x131. Estos valores eran
originalmente 96x128, pero encajar las dimensiones de salida de un autoencoder
convolucional no es posible para todas las resoluciones, solo lo permiten determinadas. Por
ello se cambia a 95x131, la mas cercana que cumple dicha condicion.

Las dimensiones de las capas se obtienen ajustando dos parametros de las capas
convolucionales y deconvolucionales: el tamanio del filtro (‘kernel size’) y la cantidad de pixeles
gue se desplaza entre cada operacion (‘stride’). Ademas en la primera capa convolucional de la
red final y de los encoders se aplica el ‘pooling’, que reduce la dimensidn de las capas ocultas.
Esto divide la imagen correspondiente a la capa convolucional en distintas submatrices,
transformando cada una de ellas en un escalar segin una norma definida: en este caso
devuelve el maximo de dicha submatriz (‘max-pooling’). Asi es aplicado en [6], por lo que este
método parece funcionar bien en este problema en particular.

Las caracteristicas comprimidas en los autoencoders no son completamente globales:
la salida de ambos encoders (RGB y profundidad) son 2000 caracteristicas de las que cada una
se posee una matriz 2x2, correspondiéndose con las cuatro esquinas de la imagen de entrada.
Esto es asi por dos motivos: en primer lugar, los filtros aplicados en las convoluciones y
deconvoluciones son de menor tamafo, acelerando el proceso de entrenamiento vy
solventando problemas de memoria de la implementaciéon del Modelo; en segundo lugar, la
relacién de compresidn se mantiene similar a la empleada en [6].
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Figura 3.6: Esquema de la arquitectura del Modelo 3.

La capa de conexidn que conecta las caracteristicas RGB con las de profundidad no
puede ser completamente conectada como en los anteriores modelos. La razén son
limitaciones de memoria: se requeriria una matriz cuadrada de orden 8.000%, por lo que se
decide crear unas unidades de conexidn intermedias entre las caracteristicas RGB y las
caracteristicas de profundidad. Por tanto, la capa de conexién se disefia en dos fases con una
capa intermedia de 2.000 unidades.

Por tanto, de 2.000 caracteristicas RGB de 2x2 se obtienen 2.000 unidades intermedias
y globales (dimensién 1x1). A partir de estas unidades intermedias, se computan las
caracteristicas de la imagen de profundidad. De este modo, se relacionan todas las
caracteristicas RGB con todas las caracteristicas de profundidad a través de una capa
intermedia que condensa la informaciéon y que por su menor tamafio (aunque ahora se aplique
dos capas) alivia el coste computacional del entrenamiento.

Esta estructura asi definida requiere de mads de sesenta millones de parametros, unas
seis veces mas que los Modelos 1 y 2. Las capas mas pesadas son las completamente
conectadas de la capa de conexién, donde cada una requiere 16 millones de parametros.

Con esta estructura se trabaja, al igual que en el Modelo 2, capturando la estructura
global del problema. Pero ésta no es obtenida a través de capas completamente conectadas,
sino que se aplican las restricciones espaciales de las capas convolucionales que parecen ser
coherentes con el problema aqui analizado. Ademas, se llega a una red de cinco capas ocultas,
presentando una red con aprendizaje profundo. De forma adicional, dichas capas
convolucionales permiten trabajar con mayores resoluciones de imagenes al requerir un
menor numero de pardmetros. No resulta necesario un subsampleo tan brusco como en M2,
por lo que la imagen de entrada al Modelo 3 sufrird una menor pérdida de informacién con
respecto a la imagen original de entrada.

! La libreria Caffe (apartado 4.2) instalada en la GPU del ordenador no soporta la implementacidn de una capa de
este tamafio.
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4 METODOLOGIA

4.1 Dataset

4.1.1 Eleccidén del dataset

Existe un amplio abanico de datasets RGB-D disponibles donde entrenar los modelos.
Entre los mas difundidos se pueden mencionar los siguientes: RGBD Object dataset [17], NYU
Depth Dataset [18], SUN3D [19], TUM Benchmark dataset [20], etc. Esta decisidén es de gran
importancia, puesto que la RNA aprende a partir de los datos de entrada. Cuanta mayor sea la
variedad y cantidad de los datos, mas informacion podrd aprender potencialmente la RNA.

El dataset escogido en este proyecto es el NYU Depth Dataset V2 [18]. La razdn de la
eleccién de este dataset en particular frente a otros datasets de RGB-D es porque muchos de
los articulos publicados relacionados con esta drea lo emplean como punto de referencia
donde comparar resultados. La importancia de NYU Depth Dataset se basa en la gran variedad
que este posee. Muchos datasets RGB-D se encuentran orientados al SLAM (Localizacion Y
Mapeado Simultaneos), centrandose mdas en el movimiento de la cdmara que en la variedad de
escenas a lo largo del dataset; otros. NYU Depth Dataset V2 estd orientado a la segmentacion
de interiores a partir de imagenes RGB-D, por lo que dispone de una gran heterogeneidad de
escenas (464 en total). Esto hace que comprenda una mayor diversidad de riqueza e
informacidn visual frente a otros datasets.

NYU Depth Dataset V2 consta de 407.024 imagenes de video RGB-D, en el formato de
salida de la cdmara. Es decir, no han recibido procesamiento de ningun tipo, aunque en la
propia pagina web se dispone de cédigo M para ello. Ademas, se dispone del denominado
‘labeled dataset’, una seleccidn de 1.449 imagenes contenidas en un archivo binario de matlab
que han sido etiquetadas de forma densa, y los huecos que aparecen en las imagenes de
profundidad han sido rellenados aplicando el método de colorizacién de Levin et al’s [21].

Sin embargo, 1.449 imagenes pueden resultar escasas para entrenar una red neuronal
profunda. Por ello, se ha creado una nueva seleccidon de imagenes extrayendo una de cada 85
imagenes del dataset completo, y procesandolas de modo similar a las pertenecientes al
‘labeled dataset’. Ademas, se les aplicd un efecto espejo a todas ellas para duplicar el nUmero
de datos, obteniendo aproximadamente unas 11.000 imagenes. Este nuevo dataset serd
denominado en el documento como ‘extension dataset’.

]

Figura 4.1: Imagenes del NYU Dataset. De izda. a dcha., imagen RGB, imagen de profundidad y segmentacion densa
de la imagen.
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4.1.2 Particion del dataset

Al comparar los resultados del algoritmo implementado para escoger el de mejor
rendimiento o el valor de sus hiper-parametros, no puede hacerse mediante sus resultados en
los datos de entrenamiento, ya que un modelo con sobreajuste da muy buenos resultados,
cuando en realidad no generaliza ante nuevos ejemplos (ver apartado 2.4). Por tanto, se deben
evaluar los resultados en un conjunto de datos distinto al de entrenamiento. Este nuevo
conjunto de datos es el de validacidn, y consta de ejemplos nuevos que el algoritmo no ha
visto en su fase de entrenamiento. De este modo se pueden comparar los resultados de las
distintas redes y ajustar sus hiper-parametros sin posibilidad de que presenten sobreajuste
sobre estos datos.

El problema del sobreajuste va todavia mas lejos, y es que al basar la eleccidn de la
estructura de la red y de sus hiper-parametros en la minimizacion de la funcion de coste en el
conjunto de validacidn, estos valores se estan aprendiendo en dicho conjunto. Por tanto, estos
valores pueden padecer sobreajuste, tal y como lo pueden cometer los parametros del modelo
en el conjunto de entrenamiento. Ello implica que los resultados obtenidos en el conjunto de
validacién seran mejores de lo que mostrarian en datos completamente nuevos, al haberse
aprendido los hiper-parametros a partir de ellos. Este efecto crecera conforme mayor sea el
numero de hiper-pardmetros seleccionados y las estructuras analizadas.

Para evitar estos efectos debe definirse un nuevo conjunto con nuevos ejemplos que
no aparezcan en los dos anteriores. Es el denominado conjunto de test. El objetivo de este
conjunto de datos es dar una métrica fiable de los resultados del modelo, no ayudar a la
eleccién de ninguno de sus parametros. Una particion tipica del total de los datos puede ser
70% aprendizaje, 20% validacién, 10% test.

La metodologia aplicada es la siguiente: se entrenan todos los modelos en el conjunto
de entrenamiento y se optimizan sobre el de validacion. Finalmente, para el modelo escogido,
que serd aquel que mejores resultados de sobre el conjunto de validacidn, se dara su métrica
de rendimiento sobre el conjunto de test.

Estas particiones se deben de hacer sobre los datasets empleados. Existe una particion
oficial de entrenamiento/test para el ‘labeled dataset’, donde 795 se destinan al
entrenamiento y 654 al test. Este Ultimo set se ha partido en 436 de validacion y 218 de test.
Para el ‘extension dataset’, se ha hecho una particion de 70% de escenas para el
entrenamiento (~8.000), 20% destinadas a validacidn (~2.100) y 10% a test (~1.100). Todos los
modelos han sido entrenados y testeados en ambos datasets, aunque por meras cuestiones de
limitaciones de tiempo, sus hiper-parametros han sido ajustados Unicamente en uno de ellos.

e Modelo 1: optimizado en el ‘labeled dataset’. Se han extraido 10.000 ventanas
de 60x60 de forma aleatoria del conjunto de entrenamiento, 3.000 del de
validacién y 1.500 del de test.

* Modelo 2: hiper-parametros optimizados en las imagenes del ‘labeled dataset’.
A pesar de que solo dispone de 1.449 imagenes o ejemplos, aproximadamente
diez veces menos que en el Modelo 1, el proceso de obtencién del ‘extension
dataset’ estaba comenzando en el momento en el que se planted este modelo.
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Por no desaprovechar un lapso de tres semanas de tiempo se procedié con el
‘labeled dataset’.

e Modelo 3: debido al mayor nimero de parametros del que dispone, y al
tratarse de una red neuronal profunda de 5 capas ocultas, los hiper-
pardmetros han sido optimizados en el ‘extension dataset’ por la mayor
cantidad de datos que ofrece. En este caso ya se encontraba disponible
cuando se comenzé con el entrenamiento del Modelo.

4.2 Software y hardware

Al igual que en el caso de la eleccién del dataset, existe un amplio catdlogo de librerias
para trabajar con redes neuronales. Por citar algunas: Fast Artificial Neural Network (FANN)
[22], Caffe Berkeley Vision [23], Open NN [24], Theano [25] [26], Pybrain [27], etc.

La eleccién ha sido trabajar con Caffe Berkeley Vision [23]. Las razones fundamentales
han sido la velocidad de procesamiento al poderse implementar en la GPU, la implementacion
a través de manejables archivos de configuracion prototxt, y la disponibilidad de un ‘wrapper’
en Python con el que analizar los resultados.

Esta libreria ha sido instalada en un PC con Ubuntu 12.04 LTS (Precise) como OS. Este
PC disponia de una GPU NVIDIA GeForce 8400 GS. Esta tarjeta posee una ‘compute capability’
de 1.1, lo que la hace incompatible con la libreria Caffe. Por ello, se procedié a la adquisicidn e
instalacidon de la tarjeta GeForce GTX 750, GPU que si es compatible con la libreria.

El trabajo de programacion de este proyecto se puede diferenciar en tres clases:

e (Cddigo en Matlab para un primer procesamiento del dataset.

e Archivos prototxt para la implementacién de las redes neuronales en Caffe, y
codigo Bash de Linux para organizar secuencialmente el entrenamiento de
estas.

e (Cdodigo en Python para un segundo pre-procesamiento mas fino de las
imagenes (ver 4.3), y para el andlisis de los resultados.

4.3 Pre-procesamiento de los datos
Las imdgenes en formato binario de Matlab requieren de cierto procesamiento para
poder ser empleadas como entrada en los Modelos 1, 2 y 3 implementados en Caffe [23]:

e En primer lugar deben de ser ajustadas a las resoluciones especificadas en
cada Modelo. El método de ‘downsampling’ empleado ha sido el bicubico, al
ofrecer mejores resultados que otros métodos mas simples como el ‘Nearest
Neighbour’ o la interpolacién lineal.

e lLas imagenes han de ser barajadas aleatoriamente al entrenar la red con el
gradiente descendiente estocastico.

e Por ultimo, el formato de entrada mas eficiente en el software Caffe es a
través de ficheros Imdb, por lo que tanto las imagenes RGB como las de
profundidad han sido transformadas a este tipo de datos.
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4.4 Entrenamiento de los modelos

Los modelos deben ser entrenados variando todos sus hiper-parametros, hasta
encontrar los valores éptimos en el conjunto de validacién. Cuantos mas hiper-parametros se
ajusten y mas valores por hiper-pardmetro sean implementados, estos habran sido mas
optimizados y el error en el conjunto de test serd menor.

Sin embargo, entrenar una sola RNA pasando por todas las Fases del entrenamiento
representados en la Figura 3.2, requiere de unas veinte horas para M1y M2, y en torno a unos
cuatro dias para M3. Por ello, el nimero de pruebas que se pueden realizar es limitado. En vez
de realizar todos los ajustes de hiper-pardametros sobre la red final, se sigue la siguiente
estrategia de ajuste:

e Entrenamiento no supervisado de los autoencoders de RGB y de profundidad
(Fase 1). La optimizacion de sus hiper-parametros no ha de ser exhaustiva pero
si lo suficientemente extensa para que los autoencoders ofrezcan unos buenos
resultados, ya que estos hiper-pardmetros optimizados en la reconstruccion de
los datos no tienen por qué coincidir con los de la red final.

e Entrenamiento de la capa de conexidn (Fase 2), y optimizacién de sus hiper-
pardmetros en M3, ya que en M1 y M2 no dispone de ellos al unir
directamente las caracteristicas RGB con las caracteristicas de profundidad.

e Fine-tuning de la red final (Fase 3), y ajuste de los hiper-parametros de toda la
red probando un limitado conjunto de valores debido al mayor coste
computacional. Se parte de los valores de hiper-parametros suministrados por
los pasos anteriores, menos costosos de optimizar, obteniendo asi una semilla
de hiper-pardametros que han funcionado bien en las anteriores Fases del
entrenamiento.

Esta metodologia puede verse variada segun los andlisis de resultados de cada Modelo,
con el fin de aprovechar los recursos disponibles en aquellas pruebas y modelos con mayor
interés.

4.5 Funcion de coste

Para todos los Modelos, se ha seleccionado la funcién de coste F() euclidea, es decir,
la suma cuadrdatica de los errores de las predicciones. El motivo es que esta es la Unica funcion
de coste implementada en el software Caffe [23] destinada a tareas de regresion. Es por ello
que la mayoria de las métricas mostradas en el trabajo se muestran en errores cuadraticos
medios, ya sean en forma de metros cuadrados o de intensidades RGB [1-255] al cuadrado.

1 N
FW) =5,
i=1

Donde F es la funcion de coste; N es el nimero de datoso imagenes; T es el nimero de pixeles

”xli _xzi”z

il

por imagen; x1; es la matriz de profundidad verdadera del ejemplo i; x?; es la matriz de
profundidad computada por la red neuronal del ejemplo i; y W son los parametros del modelo.
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4.6 Factor de escala

Al estar empleando en todas las capas activaciones sigmoidales logisticas (Figura 2.1),
los datos se deben escalar de 0 a 1 ya que este es el rango de la funcidn sigmoidal. En el caso
de las imagenes RGB, esto se logra multiplicando los canales RGB por el factor 1/255.

El escalado de las imagenes de profundidad no posee solucion tan directa ya que no
existe un limite superior. Un factor demasiado bajo provoca que la profundidad de demasiados
pixeles quede fuera de rango, y por tanto con imposibilidad de predecir su verdadero valor de
profundidad. Por el contrario, un factor demasiado elevado hace que los datos de entrada de
la red tomen valores reducidos, favoreciendo una prediccidon constante que de valores bajos
de profundidad. El error seria pequefio al computarse en el entrenamiento, pero al trasladarlo
a la unidad de longitud original (metros), dicho error tomara altos valores debido al elevado
factor de escala. Al tratarse de un problema del intervalo de valores de profundidad que puede
reconstruir el autoencoder, y no a una cuestion de patrones locales o globales de la
profundidad, este factor es ajustado solo en M1 (ver apartado 5.1.1), el primero de los
modelos en ser entrenado.
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5 RESULTADOS

5.1 Entrenamiento y optimizacion de hiper-parametros

5.1.1 M1: Local y sin aprendizaje profundo

Se procede con la Fase 1 del entrenamiento. Las ventanas RGB de entrada a este
Modelo contienen 60-60-3 = 10.800 variables. En este caso una compresion a 1.000 unidades o
neuronas (~10 a 1) con una ponderacién del término de regularizacién A = 0,0005 consigue dar
buenos resultados en el autoencoder (ver Figura 5.2). Estos valores fueron tomados del
ejemplo “MNIST autoencoder” del software Caffe, donde se utiliza el mismo valor de A, y una

compresion aproximada de 26/1 en cuatro capas (en este modelo se realiza en una Unica
capa).

Autoencoder de profundidad
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Factor de escala (m) Numero de unidades ocultas
A=0,0005 A=0,0005
300 unidades ocultas Factor de escala = 1/6,9

Figura 5.1: Graficas del error cuadratico medio del autoencoder de profundidad segun el factor de escala (izda.) o el
numero de unidades de la capa oculta (dcha.)

Como se indica en el apartado 4.6, el factor de escala las imagenes de profundidad se
debe ajustar al no poseer una solucién directa como el factor asociado a las imagenes RGB. Se
testearon tres valores para el factor de escala de la profundidad:

¢ 5 metros debido a que a partir de ellos las medidas de la kinect suelen perder
fiabilidad.

* 6,9 metros, al corresponderse con la media de profundidad del dataset mas
tres veces la desviacién tipica.

¢ 9 metros, aproximadamente la mdxima profundidad encontrada en el dataset.

Como se observa en la Figura 5.1, el escalado de 6,9 metros es el que mejor resultados
ofrece en el conjunto de validacidn, siendo el escogido para los tres modelos.

La compresion de las imagenes de profundidad se realiza desde 60-60-1 = 3.600
variables a 450 neuronas (ratio 8 a 1). La compresidon es menor con respecto a las imagenes
RGB, ya que el ratio 10 a 1 da aqui peores resultados, especialmente en la reconstruccién de
discontinuidades en la profundidad. Como se puede observar en la Figura 5.1, el ‘codo’ de la
curva del error comienza en las 450 unidades, lo que justifica dicha eleccién. Aun asi, sigue
presentando ciertos problemas a la hora de reconstruir los saltos bruscos de profundidad. Ello
se debe posiblemente a la mayor cantidad en los datos de pixeles donde la profundidad es
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Imagen de Autoencoder Reconstruccién
profundidad de profundidad de profundidad

.

Imagen RGB Autoencoder RGB

Figura 5.2. Resultados de M1 en el ‘labeled dataset’, seleccionados aleatoriamente. De izda. a dcha., imagen RGB
original, reconstruccion del autoencoder RGB, imagen de profundidad original, reconstruccién del autoencoder de
profundidad, y prediccién de la red de la profundidad a partir del RGB.

continua o posee pequeios saltos sobre aquellos en los que existe una gran discontinuidad de
profundidad, que puede provocar una tendencia a la continuidad en las reconstrucciones.

Se procede con las Fases 2 y 3 del entrenamiento, empleando los mismos hiper-
parametros de los autoencoders de la Fase 1. Para comprobar la efectividad de la Fase 2, se
procede también saltando este paso, iniciando el fine-tuning (Fase 3) con la capa de conexion
inicializada de forma aleatoria.

Los resultados de esta red (Tabla 5.1) no son satisfactorios, ya que la prediccion de la
misma profundidad siempre (profundidad media del conjunto de entrenamiento, que se
corresponde a la ultima fila de la Tabla 5.1) da similares resultados, o incluso mejores cuando
no se aplica la Fase 2 del entrenamiento. En el conjunto de entrenamiento si que consigue
batir dicha prediccion media, pero aquello que aprende no es generalizable en el conjunto de
validacion.

En un andlisis cualitativo, la red intenta casi exclusivamente ajustar la profundidad
media de la ventana, sin tratar de obtener su forma (Figura 5.2). Esto es debido al error
cuadratico al que estd sometido el coste de la red: si se acierta aproximadamente la
profundidad media de la ventana aunque no su forma, el error es aceptable; pero si se predice
mal su profundidad media aunque se infiera su forma correcta, el error resulta muy elevado.
Sin embargo, aquello aprendido en el conjunto de entrenamiento no es generalizable. Al no
existir un elevado sobreajuste (el error en conjunto de validacién no llega al triple que en el
conjunto de entrenamiento) que justifique los malos resultados, se concluye que no merece la
pena seguir con este Modelo.
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Error cuadratico medio [mz]
Conjunto de Conjunto de
entrenamiento validacion
Capa de conexiodn inicializada aleatoriamente (sin Fase 2) 0,937 2,527
Capa de conexidn pre-entrenada (con Fase 2) 0,911 2,466
Error profundidad media 2,494

Tabla 5.1: Resultados del Modelo 1 en el ‘labeled dataset’ de NYU

Por tanto, la conclusién de este Modelo es que no se puede predecir la profundidad de
una imagen a partir de pequefias ventanas por separado, o al menos el Modelo 1 es incapaz de
hacerlo. Algo que quizd era de esperar, ya que ni siquiera nosotros podemos predecir la
profundidad de una ventana de una imagen (a no ser que por fortuna aparezca un objeto que
reconozcamos y podamos estimar su escala: monitor, silla, etc.). Ambos autoencoders son
capaces de realizar su tarea de compresidon-descompresién, pero no resulta posible unir la
informacién que ambos proporcionan.

5.1.2 M2: Global y sin aprendizaje profundo

Los autoencoders de este modelo obtienen resultados satisfactorios (Figura 5.3) al ser
entrenados con los mismos hiper-parametros que los del Modelo 1 en la Fase 1, por lo que se
procede directamente a las siguientes Fases del entrenamiento sin intentar una mayor
optimizacion.

Tras ejecutar las Fases 2 y 3 del entrenamiento, se puede observar en la Tabla 5.2 el
error cuadratico se ve reducido en torno a un 30% con respecto al Modelo 1 para A = 0,0005;
es decir, empleando los mismos hiper-parametros que el Modelo 1. Pero el error de la
prediccién constante de la profundidad media del conjunto de entrenamiento se ve todavia
mas reducido, obteniendo este modelo un error cuadratico superior al de la profundidad
media. Ello implica que aunque se haya mejorado la precisién con respecto al Modelo 1,
también ha disminuido la dificultad de la relacion entrada-salida al pasar de las ventanas del
Modelo 1 a las imdagenes subsampleadas. Esto resulta intuitivo si pensamos en patrones de
profundidad globales de la imagen como suelos, paredes, techos, etc. que en este caso se
repiten continuamente, mientras que dichos patrones globales no aparecen en el caso del
Modelo 1.

Error cuadratico medio [mz] L.
- - Término de Dropout
Conjunto de Conjunto de o, .
i o regularizacién ratio
entrenamiento validacion
Sin Fase 3 0,1637 1,8257
0,0005 -
Tras Fase 3 0,1240 1,8836
Si
in Fase 3 0,6351 1,3598 0,005 i
Tras Fase 3 0,3267 1,3718
Distint
Tras Fase 3 0,3459 1,4798 IsHntos en -
cada capa
Sin Fase 3 0,5933 1,3437 0,0005 05
Tras Fase 3 0,4721 1,3911
Error profundidad media 1,7670

Tabla 5.2: Resultados de las variantes del Modelo 2 en el ‘labeled dataset’ de NYU.
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Input original M2 sin dropout M2 con dropout M3

Figura 5.3. Resultados seleccionados aleatoriamente de los autoencoders en el ‘labeled dataset’ de distintos
modelos. Los asociados a M2 se corresponden con los marcados en verde en la Tabla 5.2, y el asociado a M3 se
corresponde con el seleccionado en el apartado 5.1.3.

Sin embargo, si que aparece un elevado sobreajuste: el error en el conjunto de
validacion llega a ser hasta 15,19 veces mayor que el error en el conjunto de aprendizaje. Al
incrementar el término regularizador un orden de magnitud hasta A = 0,005 en todas las capas
de la red y en todo el proceso de entrenamiento no supervisado, el error cuadratico disminuye
un 25,5% mas. Se obtiene finalmente el primer modelo capaz de superar a la prediccion
constante de la media de profundidad.

Mientras que ambos autoencoders funcionan correctamente en sus respectivas tareas,
al construir la red neuronal final aparece el sobreajuste, especialmente tras el fine-tuning (Fase
3). Al incrementar el valor de A tan solo en la capa de conexidn en esta ultima Fase, quiza se
logre remediar el sobreajuste sin suavizar en exceso la solucién. En la Tabla 5.2 aparece
indicado como con un término de regularizacidon “Distintos en cada capa”, donde se obtienen
unas métricas peores, quedando este método descartado.

Otra medida estudiada es la de combinar la regularizacién el dropout para combatir el
sobreajuste. Al aplicar un ratio de dropout igual a 0,5 en todas las capas de la red, se puede
disminuir el pardmetro regularizador a 0,0005 y mejorar ligeramente las métricas respecto al
caso anterior, confirmando la efectividad del dropout para combatir el sobreajuste. Aun asi,
cualitativamente las reconstrucciones siguen teniendo un suavizado similar, aunque con una
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Error cuadratico medio [m?] métrica ligeramente mejor.
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Figura 5.4: Evolucién del error cuadratico medio en el proceso de fine- (Figura 5.5). Sin embargo, solo
tuning (Fase 3) de la version del Modelo 2 con dropout en los conjuntos o

. o lo hace cuando las lineas de
sets de entrenamiento y validacién.

fuga son claras y numerosas.
Ademas, apenas reconoce grandes objetos como mesas o camas, ya que no se reflejan en el
mapa de profundidad predicho. A pesar de obtener resultados satisfactorios y mejorar a
algoritmos no basados en redes neuronales, dicho modelo esta todavia lejos de las métricas
obtenidas en [6], el cual emplea el aprendizaje profundo de las redes neuronales, aunque
dispone del orden de millones de imdgenes extraidas del dataset NYU Depth Dataset [23].

Resulta contraintuitivo que al ejecutar el fine-tuning de la red completa, el error en el
conjunto de validacidon aumente. Ello implica que la semilla otorgada por la inicializacién de los
autoencoders (y la capa de conexién) da realmente buenos resultados y la intuicién de que las
caracteristicas RGB vy las caracteristicas de profundidad estan relacionadas queda demostrada
para este modelo. Confirma también la hipdtesis de [15]. En este caso, al intentar mejorar al
modelo optimizando segun el gradiente descendiente dejando cambiar todas las capas,
aquello que se aprende no generaliza y acaba poseyendo un mayor error en el conjunto de
validacién. En la Figura 5.4 se muestra la evolucion del error del Modelo 2 con dropout en el
conjunto de entrenamiento y en el de validacion a lo largo del proceso de fine-tuning.

Modelos Unicamente con regularizacion
Imagen RGB Groundtruth A = 0,0005 A = 0,005 Modelo con dropout

Figura 5.5. Imagenes de las predicciones de distintas variantes del Modelo 2 sobre dos ejemplos del ‘labeled
dataset’ de NYU. Han sido seleccionadas de modo que posean objetos voluminosos y un punto de fuga, para
observar el acierto de su reconstruccion.
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5.1.3 M3: Global y con aprendizaje profundo

Se repite de nuevo el entrenamiento no supervisado de los autoencoders. El nimero
de caracteristicas por capa y los ‘strides’ de cada capa han sido elegidos por similitud con [6]
(Figura 3.6). Solo resta ajustar el término regularizador A.

Tan solo se testean dos valores para este hiper-pardmetro, debido de nuevo a la
lentitud del entrenamiento y a causas explicadas en el apartado 4.4. Los resultados de los
autoencoders, tanto el de una capa de compresion como el de dos (el segundo se construye a
partir del primero), se muestran en la Tabla 5.3. Se observa que en ambos resulta mejor el
menor valor de A cuando se entrena la primera capa, mientras que sucede al contrario cuando
se entrenan completos con las dos capas. Esto se justifica con el aumento de parametros al
incluir las dos capas. Al no incrementarse el tamafio del conjunto de datos empleado, el
aumento del nimero de parametros tiende a acrecentar el fendmeno de sobreajuste, por lo
que resulta mas eficaz el modelo con mayor término de regularizacion.

Ambos autoencoders de dos capas asi construidos ofrecen mejores resultados que los
asociados a los modelos anteriores (Figura 5.3, entrenados en ‘labeled dataset’, pero los
resultados son idénticos a los entrenados en el ‘extension dataset’). Sin embargo, ello no
implica que estas nuevas caracteristicas de los autoencoders sean Utiles para la inferencia de la
profundidad.

Error cuadratico medio

Capas del autoencoder
A 1 2
RGE 0,005 256 — 518 |intensidad®
0,00005 251 —> 524 RGB
Profundidad 0,005 0,04660 — 0,06289 2
0,00005 0,04542 — 0,08406

Tabla 5.3: Métricas de los autoencoders de una y dos capas de M3 en el conjunto de validacion del ‘extension

dataset’.
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Figura 5.6: A la izda., errores cuadraticos en el conjunto o set de entrenamiento y validacién y error mediano en el
conjunto o set de validacién para el entrenamiento de la capa de conexién de M3 segun se varia el ratio de dropout.
A la dcha., evolucién del error cuadratico al entrenar M3 sin ningun tipo de pre-entrenamiento, con inicializacion
aleatoria. Resultados asociados al ‘extension dataset’.
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En la Fase 2, la capa de conexién ha sido entrenada con y sin dropout, debido a que en
el Modelo 2 aparece sobreajuste en el entrenamiento de esta capa y esta técnica mejora
ligeramente su funcionamiento. En la Figura 5.6 se observan los resultados sin dropout, y con
un dropout ratio igual a 0,4 y 0,6. Se escoge finalmente un ratio igual a 0,6 debido a que
presenta una disminucion de un 4% en el error cuadrdtico, frente a un aumento del 2% en el
error mediano con respecto al ratio igual a 0,4.

Resta ejecutar el fine-tuning a la red final (Fase 3). En este caso se dispone de cinco
capas ocultas, por lo que es previsible que el efecto de difusién de gradientes a lo largo de la
red tenga un efecto notorio en el entrenamiento. Para remediar este potencial problema se
propone el siguiente método: dado que los gradientes reducen su valor absoluto a lo largo de
la propagacién de gradientes, el factor de aprendizaje de cada capa serd ajustado de modo que
las actualizaciones tomen valores similares en todas las capas de la red. Ello implica a su vez
decrementar la ponderacién del término de regularizacion A, ya que en caso contrario su
efecto crecera conforme descendemos en la red ya que el factor de aprendizaje aumenta. Otra
opcion en cuanto al término de regularizacidon, empleada en [8], es aplicarlo tan solo en la
ultima capa, evitando que las primeras capas atiendan principalmente a este factor debido a la
disminucién del gradiente de la funcién de coste.

Sin embargo, se desconoce cual es el valor éptimo por el que aumentar el factor de
aprendizaje. Por ello se realiza una prueba en la que se ejecuta el fine-tuning hasta diez mil
iteraciones de la red en distintos escenarios:

¢ Se mantiene el factor de aprendizaje constante en toda la red. Valor multiplicador
unidad.

e En cada capa el factor de aprendizaje se multiplica por 2 hacia atrds. Valor
multiplicador de valor 2.

e En cada capa el factor de aprendizaje se multiplica por 5 hacia atras. Valor
multiplicador de valor 5.

Ademas, cada uno de estos tres casos se desglosa en otros dos: se ajusta el término
regularizador conforme la variacidn del factor de aprendizaje (sefialado como ‘Ajustado’ en la
Tabla 5.4), o tan solo se aplica el término regularizador en la Ultima capa. Los resultados se
reflejan en la Tabla 5.4. En este caso el fine-tuning si que es efectivo, no como en el Modelo 2,
al menos para los dos primeros valores multiplicadores. Se obtienen mejores resultados
cuando solo se aplica el término regularizador a la ultima capa, aunque sea por una diferencia
que no llega al 1%. Los resultados asociados a los valores multiplicadores 1 y 2 son muy
similares. Mientras que el primero presenta una ventaja inferior al 1% en el error cuadratico, el
segundo posee un error mediano menor en un 11%. Al tratarse de la decision final, se puede
costear continuar con el entrenamiento de ambos métodos hasta las noventa mil iteraciones
con el fin de asegurar la decision mas adecuada.
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10k iteraciones 90k iteraciones
Valor Término | Error cuadratico medio [mz] Error mediano|Error cuadratico medio [m2]| Error mediano
multiplicador|regularizador| Conjunto de validacién [m] Conjunto de validacién [m]

1 Ajustado 1,681 0,6966

Ultima capa 1,679 0,6903 1,750 0,6188
) Ajustado 1,711 0,6208

Ultima capa 1,687 0,6205 1,567 0,6046
5 Ajustado 2,076 0,7629
Ultima capa 2,072 0,7650

30k iteraciones sin fine-tuning (Paso 3)
Modelo M3.1 1,938 0,6892

Tabla 5.4: Resultados de M3 aplicando distintos métodos para su entrenamiento, y de M3.1. Resultados asociados
al ‘extension dataset’

Imagen RGB Groundtruth M2 sin dropout M2 con dropout

Figura 5.7. Predicciones de los modelos asociados a M2 marcados en verde en la Tabla 5.2, a M3.1 y M3 entrenado
segun el apartado 5.1.3, todos ellos entrenados en el ‘extension dataset’. Imagenes seleccionadas de modo que
posean objetos voluminosos y un punto de fuga, para observar el acierto de las reconstrucciones.

Las métricas en el Modelo entrenado hasta las noventa mil iteraciones muestran que
el modelo con un valor multiplicador de dos supera al que tiene la unidad. Ello demuestra la
eficacia de este método para combatir la difusién de gradientes, de modo que no solo sean las
ultimas capas las que se beneficien del proceso del fine-tuning, sino que lo haga la red al
completo. En este caso, el error de validacidn asociado al valor multiplicador unidad es mayor
a las 90k iteraciones que a las 10k, de modo similar a lo que sucede en el fine-tuning del
Modelo 2. Sin embargo el error mediano si que disminuye. Ello implica que aquellos errores
que eran pequefios-medianos a las 10k iteraciones, siguen disminuyendo y provoca una fuerte
bajada en el error mediano de validacion. Sin embargo, aquellos que eran grandes, contintdan
aumentando, provocando que el error cuadratico se eleve.

Las reconstrucciones del Modelo 3 asi entrenado (valor multiplicador dos, y término
regularizador solo en la Ultima capa) se muestran en la Figura 5.7. Estas reconstrucciones
superan a las del Modelo 2. Son capaces de colocar los puntos de fuga de forma mas precisa.
Ademas, los objetos voluminosos como las mesas se reflejan de forma mas clara en el mapa de
profundidad.
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Figura 5.8. Esquema de la arquitectura del Modelo 3.1

A pesar de que el Modelo 3 se encuentra optimizado y entrenado, se realizan dos
experimentos adicionales con el fin de obtener un conocimiento mas minucioso del
funcionamiento de las redes neuronales.

En el primero de ellos, se repite el entrenamiento de exactamente la misma red, con
mismos hiper-pardmetros y valor multiplicador a través de las capas. Sin embargo, esta vez no
se le aplica ningln pre-entrenamiento, inicializando todas las capas de forma aleatoria y
saltando directamente a la Fase 3 del entrenamiento. La evolucidn del error se muestra en la
Figura 5.6 tanto para el conjunto de entrenamiento como para el de validacion. El error a las
60k iteraciones en el conjunto de entrenamiento es mayor que a las 20k. Como reflejan los
resultados de [15], a partir de cinco capas ocultas las redes comienzan a fallar en la
convergencia, ya que ni siquiera el error de aprendizaje disminuye. Esto vuelve a confirmar la
necesidad de aplicar pre-entrenamiento a las redes neuronales profundas.

En otro experimento se construyd una red con una estructura similar a la del Modelo
3. Como se explica en el apartado 3, en tareas de clasificacion es comun aplicar varias capas
convolucionales y finalmente una capa totalmente conectada para obtener la inferencia de la
red, de modo similar a [6] en su modelo ‘coarse’. Aqui se implementa una estructura similar,
donde se aplica el mismo autoencoder RGB pre-entrenado que en el Modelo 3 y la misma capa
de conexion (también con un ratio de dropout = 0,6). La diferencia reside en obtener la imagen
de profundidad a partir de una Unica capa totalmente conectada, en vez de las capas
deconvolucionales del decoder de profundidad. Se aplicaron los mismos hiper-parametros que
en el Modelo 3. Los mejores resultados se obtuvieron sin realizar la Fase 3. Al realizar el fine-
tuning las métricas empeoraban considerablemente. Los resultados aparecen en la Tabla 5.4,
indicados como “Modelo M3.1”. La métrica obtenida resulta en torno a un 25% superior a la
del Modelo 3, mostrando la eficacia del pre-entrenamiento no supervisado de las ultimas
capas. Sin embargo, hay que tener en cuenta que esta nueva red dispone de tres capas ocultas
en vez de las cinco del M3, por lo que parte de este peor resultado podria achacarse a esta
pérdida de niumero de capas.
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5.2 Comparacion con el estado del arte

Labeled dataset Extension dataset
Error cuadratico ) Error cuadratico )
] 5 RMSE lineal [m] ] 5 RMSE lineal [m]
medio [m~7] medio [m?]
M1 2,471 1,317 - -
M2 1,364 1,048 1,854 1,193
M3 1,322 1,045 1,662 1,101
Profundidad media 1,767 1,244
Make3D - 1,214
Karsch&al - 1,2
Eigen&al - 0,871
Sin CRF - 0,985
Liu&al !
A Tcon CRF ; 0,824

Tabla 5.5: Comparacidn en los conjuntos de test de los tres Modelos con el estado del arte.

En la Tabla 5.5, se muestran las métricas en el conjunto de test de los tres Modelos
propuestos’, tanto en el ‘labeled dataset’ como en el ‘extension dataset’. Aparece ademas del
error cuadratico medio, el error de la raiz cuadrada de la media (‘Root-Mean-Squared
Deviation’, RMSE, ver Anexo C), ya que es una métrica comunmente empleada por la
comunidad cientifica para comparar resultados.

Hay dos aspectos interesantes en los resultados. En primer lugar, M3 ofrece los
mejores resultados en ambos datasets. Mientras que en el ‘extension dataset’ mejora en torno
a un 9% a M2, esta mejora apenas llega en el ‘labeled dataset’ a un 3% en el error cuadratico
medio y practicamente no mejora el RMSE. Esto se explica con la menor cantidad de datos del
‘labeled dataset’ y la facilidad que tienen las redes neuronales profundas a sufrir de
sobreajuste, especialmente cuando la cantidad de datos es pequefia. Los resultados de M3 en
el ‘labeled dataset’ se obtienen tras finalizar la Fase 2, ya que al realizar la Fase 3 (fine-tuning)
el sobreajuste aumenta todavia mas llegando hasta 1,531 m? de error cuadratico medio,
demostrando de nuevo el buen funcionamiento del pre-entrenamiento [15], donde incluso la
semilla dada por este da mejores resultados que la red final entrenada a partir de esta. El error
en el conjunto de entrenamiento llega a ser hasta diez veces menor que el de test.

En segundo lugar, las métricas de los modelos empeoran en el ‘extension dataset’ con
respecto al ‘labeled dataset’, especialmente en el caso de M2. Esto resulta llamativo, ya que
una mayor cantidad de informacidon deberia resultar en un mejor funcionamiento del
algoritmo. Sin embargo, hay que percatarse de algo: el denominado ‘labeled dataset’ se
encuentra destinado principalmente a tareas de segmentacion de interiores. Ello hace que del
dataset completo NYU v2 se escojan imagenes en las que es comun que aparezca toda la
habitacion en perspectiva, tomadas usualmente desde una esquina de la misma. Ello provoca

2EI M1 no se llegd a entrenar en el ‘extension dataset’ debido a limitaciones de memoria de Python. Sin embargo,
debido a que ya se extrajeron 14.500 ventanas del ‘labeled dataset’, la ganancia de datos no habria sido
significativa. Tampoco lo habria sido la mayor dificultad del ‘extension dataset’, al entrenarse sobre ventanas locales
donde la localizacion de la cdmara no es tan importante. Esto, junto al mal funcionamiento en el ‘labeled dataset’,
desestimé la busqueda de alternativas para conseguir entrenar M1 en el ‘extension dataset’.
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que la tarea de predecir la profundidad sea algo mas simple ya que en muchas de ellas la
localizacién de la cdmara con respecto a la habitacidn es similar, disminuyendo la variedad de
patrones de profundidad de la escena con respecto a si estas son tomadas de forma continua a
partir de los videos disponibles de NYU v2 como hace el ‘extension dataset’.

En comparacion con el estado del arte, los modelos no consiguen los resultados de [6]
o [7], aunque si consiguen batir a modelos no basados en aprendizaje profundo, como [3] o
[4], un buen resultado especialmente para M2 ya que no es una RNA de aprendizaje profundo.
Hay que mencionar que en [6] se emplea la totalidad del NYU Dataset, al que se le aplican
transformaciones para aumentar artificialmente los datos, llegando hasta las 2M de imagenes
en el conjunto de entrenamiento. En cuanto a [7], M2 y M3 se sitian muy cerca de su RNA de
ocho capas ocultas sin CRF, un buen resultado considerando que M2 solo dispone de dos capas
ocultas y que M3 dispone de cinco y sus hiper-pardmetros no han sido ajustados en el ‘labeled
dataset’. Al aplicar el CRF en la RNA de [7], la métrica mejora considerablemente. Sin embargo,
el CRF es algo adicional a la estructura de la RNA y también podria ser aplicado tanto a M2
como M3, pudiendo obtener una mejoria similar.
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6 CONCLUSIONES

En el presente proyecto se ha realizado un estudio de investigaciéon con el fin de
resolver el problema de reconstruccion tridimensional a partir de una imagen, empleando
como herramienta las redes neuronales artificiales con y sin aprendizaje profundo.

La prediccion de la profundidad a partir de una sola imagen es un problema relevante,
y con una gran variedad de aplicaciones asociadas a campos como modelado 3D, roboética,
entendimiento de escenas e imagenes, etc.

A lo largo de este TFG se ha realizado un extenso trabajo. Comenzando por la revisién
bibliografica inicial; el estudio, comparativa y seleccién del dataset; la revisién de software y
hardware disponible; y finalizando con el propio trabajo de investigacién consistente en el
desarrollo de los modelos de RNA para resolver el problema propuesto y su posterior analisis.
Con los resultados obtenidos cercanos al estado del arte, los objetivos propuestos al comienzo
del proyecto se pueden considerar cumplidos.

La mayor contribucién de este proyecto es el pre-entrenamiento no supervisado
aplicado a la salida del problema, ya que hasta ahora solo se aplicaba a la entrada del mismo.
En los modelos disefiados, este ayuda al algoritmo a encontrar una solucién con buena
generalizacidn, especialmente cuando la cantidad de datos empleada es pequenia y la cantidad
de parametros del modelo es elevada. En varias ocasiones, incluso la semilla obtenida por este
pre-entrenamiento no supervisado, seguida de la Fase 2, da mejores resultados que el fine-
tuning final de la red neuronal a partir de esta (Fase 3). El uso del pre-entrenamiento no
supervisado sobre la salida es extensible a cualquier otra aplicacidon cuya salida tenga cierta
complejidad, difundiendo el interés de este trabajo mds alld del problema particular aqui
analizado.

Para el disefio, implementacion y andlisis de los modelos, se han escrito del orden de
decenas de ‘scripts’ en Python para trabajar con imagenes en el software Caffe Berkeley Vision
[23]. Estos codigos son totalmente reutilizables, facilitando y agilizando futuros trabajos dentro
del mismo ambito.

Se ha tenido que realizar una extensa bateria de pruebas para realizar los analisis
incluidos en el proyecto, limitadas en varias ocasiones por los recursos disponibles, y por una
serie de percances que retrasaron el proyecto: una intervencién quirurgica en el mes de marzo
congeld el avance del proyecto durante un plazo aproximado de treinta dias; y varios apagones
durante el mes de Julio paralizaron los servicios informdaticos cuando se procesaba el NYU
Depth Dataset [18] por completo, con el fin de entrenar los Modelos propuestos en la
totalidad del dataset de modo analogo a [6], obligando a reiniciar el proceso en repetidas
ocasiones. Actualmente, el dataset se encuentra descargado y en mitad de un proceso de
aumentacion artificial de datos. Estos resultados estaban planeados para su inclusion en esta
memoria, pero los retrasos sufridos han impedido que se hayan podido realizar a tiempo.
Como consecuencia, durante los préximos meses se realizaran estas pruebas restantes para
completar esta investigacion.
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