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ANEXO A

Gradiente estocastico y 'politica de aprendizaje’

El proceso de aprendizaje de una red neuronal pasa por hacer un pase hacia delante
(‘forward-pass') de todos los datos del set de training, para después ejecutar un pase hacia
atrds de los gradientes ('backward-pass') donde se actualizan todos los parametros de la red
en la direccién del gradiente negativo. Este proceso debe repetirse un elevado numero de
veces hasta un nimero maximo de iteraciones o hasta que el error de la red disminuya en una
iteracion por debajo de un valor (‘threshold’) escogido a priori.

Este proceso puede llegar a ser excesivamente lento si se aplica a redes neuronales
con numerosas capas y a datos complejos con un nimero muy elevado de dimensiones. Esto
es justo lo que sucede en nuestro caso. Por ello, se debe recurrir a algoritmos que aceleren
este proceso, aunque posean ciertos inconvenientes. Es el caso del gradiente descendiente
estocastico: la diferencia con el gradiente descendiente original es que para cada iteracién no
pasa por todos los datos del dataset, sino que solo lo hace sobre un grupo de ellos cada vez.
Esto acelera la convergencia, aunque da algo de inestabilidad al gradiente especialmente
cuando se acerca al minimo. Ademas, el gradiente estocastico hace que la actualizacidn de los
parametros varie mucho entre iteraciones cuando se acerca a un minimo. Para moderar estos
efectos negativos, se emplea el impulso o 'momentum’, donde la actualizacién se calcula como
el gradiente actual mas una fraccién entre 0 y 1 de la actualizacién anterior.

La inestabilidad cerca del minimo provoca que el error del modelo empiece a oscilar
segln los datos escogidos para la iteracion actual. Por ello, ya no se puede detener el
entrenamiento del algoritmo cuando la variacion del error disminuya por debajo de un sesgo.
En el software Caffe [23] el entrenamiento se detiene cuando llega a un nimero maximo de
iteraciones. Por tanto, se debe observar la evolucién del error y decidir si continuar con el
entrenamiento a-posteriori.
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Valores empleados en el entrenamiento de las RNAs

Un ultimo afiadido mas es que se permite variar el factor de aprendizaje a lo largo de
las iteraciones. En este caso se ha utilizado una politica inversa, es decir, el factor de
aprendizaje disminuye conforme se realizan las iteraciones. De este modo, la actualizacién es
mayor al principio del proceso cuando se encuentra lejos de cualquier minimo local. Al final del
proceso, cuando la red neuronal se encuentra cerca del minimo, el factor de aprendizaje



disminuye para aumentar la estabilidad de la convergencia. Esto es muy util para suavizar las
fluctuaciones propias del gradiente descendiente estocdstico cuando se encuentra cerca de un
minimo.

El factor de aprendizaje evoluciona segun la siguiente formula:
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Donde f,.s €s el factor de aprendizaje inicial, iter es el nimero de la iteracién actual, y
B,y son dos parametros del método a escoger.



ANEXO B

Convoluciones y deconvoluciones

El operador convolucion aplica, dadas dos matrices (la imagen y el filtro), las cuales
pueden ser de tamafios distintos, el producto escalar de Frobenius (sumatorio del producto
elemento a elemento) entre la matriz de menor tamafio (el filtro) y una submatriz de la de
mayor tamafio (imagen), de forma que el orden de esta submatriz sea el mismo que el del
filtro. Tedricamente se ha de invertir el filtro para que se trate de una auténtica convolucion,
pero por claridad especialmente en la visualizacion, esto no se realiza en esta area en
particular. De este modo se obtiene un escalar para cada combinacién de filtro y ventana de la
imagen. Al igual que en el operador de convolucidn continuo, se produce un desplazamiento
relativo entre los dos elementos: el filtro se mueve a lo largo y ancho de la imagen (se esta
operando en 2D), produciendo para cada posicion un escalar distinto ya que la ventana de la
imagen cambia. Dichos escalares se almacenan en una nueva matriz donde conservan el orden
espacial en el que se han calculado, de modo similar a la convolucién unidimensional pero
trabajando en las dos dimensiones del problema.

En realidad, las imagenes RGB no son tensores de dos dimensiones, sino de tres
(altura, anchura, canal). Por ello, la cuenta explicada anteriormente es en realidad algo mas
complicada. Lo que se hace en realidad es el mismo proceso, pero aplicando un filtro de a su
vez tres dimensiones. De este modo, el calculo es exactamente el mismo sélo que con el triple
de elementos.
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Esquema del modo de funcionamiento de la capa convolucional en imagenes. [8]

Por tanto, dada una imagen y un filtro, al aplicar la conexién convolucional se obtiene
una matriz donde se almacena espacialmente los distintos escalares obtenidos por el ‘inner
product’ (Frobenius) del filtro por la ventana local de la imagen. Es decir, se obtiene una nueva
imagen bidimensional, solo que en vez de colores contiene caracteristicas obtenidas
espacialmente por el filtro. Sefalar que dichas caracteristicas son todas obtenidas por el
mismo filtro, pero moviéndolo a lo largo y ancho de la imagen, de modo similar a un escaner.



Para aumentar el poder de representacién de la capa, se pueden emplear tantos filtros
distintos como se quiera: se almacenan los resultados de cada filtro a lo largo de una tercera
dimensién, obteniendo de nuevo un tensor de tres dimensiones. Cada una de las matrices
pertenecientes al tensor se corresponde al 'escaneo’ obtenido a partir de la imagen y del filtro
correspondiente. Ademas, al tratarse de nuevo de un tensor de tres dimensiones, implica que
es posible volver a aplicar una capa convolucional, permitiendo construir redes
convolucionales profundas.

Como se ha indicado brevemente, para el entrenamiento de un autoencoder basado
en convoluciones se necesita de una operacién que deshaga el efecto de la convolucién. Esta
es la deconvolucidn, la cual es una capa con una difusion mucho menor que la primera. En la
convolucién, una ventana quedaba reducida a un escalar a través del producto de Frobenius;
entonces ahora se busca obtener la ventana (matriz) a partir de un escalar. Ello se obtiene
directamente con el producto de un escalar por una matriz o filtro, que es lo que aplica la
deconvolucidn: sustituye el producto de Frobenius por un producto escalar. El resto es idéntico
a las capas convolucionales, donde el filtro se mueve a lo largo de la matriz o imagen para
almacenar sus resultados en otra matriz de forma ordenada.



ANEXO C

RMSE (error de la raiz cuadrada de la media) lineal
Esta métrica es empleada comiUnmente por la comunidad cientifica para comparar
resultados en el problema de reconstruccién de profundidad a partir de una sola imagen.

RMSE (lineal) =

Donde N es el nimero de datos o imagenes; T es el nimero de pixeles por imagen; x1; es la

matriz de profundidad verdadera del ejemplo i; y x?; es la matriz de profundidad computada
por la red neuronal del ejemplo i.



