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ANEXO A 

 

Gradiente estocástico y 'política de aprendizaje' 

 El proceso de aprendizaje de una red neuronal pasa por hacer un pase hacia delante 

('forward-pass') de todos los datos del set de training, para después ejecutar un pase hacia 

atrás de los gradientes ('backward-pass') donde se actualizan todos los parámetros de la red 

en la dirección del gradiente negativo. Este proceso debe repetirse un elevado número de 

veces hasta un número máximo de iteraciones o hasta que el error de la red disminuya en una 

iteración por debajo de un valor (‘threshold’) escogido a priori. 

 Este proceso puede llegar a ser excesivamente lento si se aplica a redes neuronales 

con numerosas capas y a datos complejos con un número muy elevado de dimensiones. Esto 

es justo lo que sucede en nuestro caso. Por ello, se debe recurrir a algoritmos que aceleren 

este proceso, aunque posean ciertos inconvenientes. Es el caso del gradiente descendiente 

estocástico: la diferencia con el gradiente descendiente original es que para cada iteración no 

pasa por todos los datos del dataset, sino que solo lo hace sobre un grupo de ellos cada vez. 

Esto acelera la convergencia, aunque da algo de inestabilidad al gradiente especialmente 

cuando se acerca al mínimo. Además, el gradiente estocástico hace que la actualización de los 

parámetros varíe mucho entre iteraciones cuando se acerca a un mínimo. Para moderar estos 

efectos negativos, se emplea el impulso o 'momentum’, donde la actualización se calcula como 

el gradiente actual más una fracción entre 0 y 1 de la actualización anterior. 

 La inestabilidad cerca del mínimo provoca que el error del modelo empiece a oscilar 

según los datos escogidos para la iteración actual. Por ello, ya no se puede detener el 

entrenamiento del algoritmo cuando la variación del error disminuya por debajo de un sesgo. 

En el software Caffe [23] el entrenamiento se detiene cuando llega a un número máximo de 

iteraciones. Por tanto, se debe observar la evolución del error y decidir si continuar con el 

entrenamiento a-posteriori. 

 

 Valores empleados en el entrenamiento de las RNAs 

 

Un último añadido más es que se permite variar el factor de aprendizaje a lo largo de 

las iteraciones. En este caso se ha utilizado una política inversa, es decir, el factor de 

aprendizaje disminuye conforme se realizan las iteraciones. De este modo, la actualización es 

mayor al principio del proceso cuando se encuentra lejos de cualquier mínimo local. Al final del 

proceso, cuando la red neuronal se encuentra cerca del mínimo, el factor de aprendizaje 

Modelo 1 Modelo 2 Modelo 3

Batchsize 200 200 32

f base momentum γ β

0,01 0,9 0,0001 0,75
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disminuye para aumentar la estabilidad de la convergencia. Esto es muy útil para suavizar las 

fluctuaciones propias del gradiente descendiente estocástico cuando se encuentra cerca de un 

mínimo. 

El factor de aprendizaje evoluciona según la siguiente fórmula: 

�. �. = ����� · 1�1 + 
 · ������ 

Donde fbase es el factor de aprendizaje inicial, iter es el número de la iteración actual, y �, 
  son dos parámetros del método a escoger. 
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ANEXO B 
 

Convoluciones y deconvoluciones 

El operador convolución aplica, dadas dos matrices (la imagen y el filtro), las cuales 

pueden ser de tamaños distintos, el producto escalar de Frobenius (sumatorio del producto 

elemento a elemento) entre la matriz de menor tamaño (el filtro) y una submatriz de la de 

mayor tamaño (imagen), de forma que el orden de esta submatriz sea el mismo que el del 

filtro. Teóricamente se ha de invertir el filtro para que se trate de una auténtica convolución, 

pero por claridad especialmente en la visualización, esto no se realiza en esta área en 

particular. De este modo se obtiene un escalar para cada combinación de filtro y ventana de la 

imagen. Al igual que en el operador de convolución continuo, se produce un desplazamiento 

relativo entre los dos elementos: el filtro se mueve a lo largo y ancho de la imagen (se está 

operando en 2D), produciendo para cada posición un escalar distinto ya que la ventana de la 

imagen cambia. Dichos escalares se almacenan en una nueva matriz donde conservan el orden 

espacial en el que se han calculado, de modo similar a la convolución unidimensional pero 

trabajando en las dos dimensiones del problema. 

En realidad, las imágenes RGB no son tensores de dos dimensiones, sino de tres 

(altura, anchura, canal). Por ello, la cuenta explicada anteriormente es en realidad algo más 

complicada. Lo que se hace en realidad es el mismo proceso, pero aplicando un filtro de a su 

vez tres dimensiones. De este modo, el cálculo es exactamente el mismo sólo que con el triple 

de elementos. 

 

Esquema del modo de funcionamiento de la capa convolucional en imágenes. [8] 

 

Por tanto, dada una imagen y un filtro, al aplicar la conexión convolucional se obtiene 

una matriz donde se almacena espacialmente los distintos escalares obtenidos por el ‘inner 

product’ (Frobenius) del filtro por la ventana local de la imagen. Es decir, se obtiene una nueva 

imagen bidimensional, solo que en vez de colores contiene características obtenidas 

espacialmente por el filtro. Señalar que dichas características son todas obtenidas por el 

mismo filtro, pero moviéndolo a lo largo y ancho de la imagen, de modo similar a un escáner. 
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Para aumentar el poder de representación de la capa, se pueden emplear tantos filtros 

distintos como se quiera: se almacenan los resultados de cada filtro a lo largo de una tercera 

dimensión, obteniendo de nuevo un tensor de tres dimensiones. Cada una de las matrices 

pertenecientes al tensor se corresponde al 'escaneo' obtenido a partir de la imagen y del filtro 

correspondiente. Además, al tratarse de nuevo de un tensor de tres dimensiones, implica que 

es posible volver a aplicar una capa convolucional, permitiendo construir redes 

convolucionales profundas. 

Como se ha indicado brevemente, para el entrenamiento de un autoencoder basado 

en convoluciones se necesita de una operación que deshaga el efecto de la convolución. Esta 

es la deconvolución, la cual es una capa con una difusión mucho menor que la primera. En la 

convolución, una ventana quedaba reducida a un escalar a través del producto de Frobenius; 

entonces ahora se busca obtener la ventana (matriz) a partir de un escalar. Ello se obtiene 

directamente con el producto de un escalar por una matriz o filtro, que es lo que aplica la 

deconvolución: sustituye el producto de Frobenius por un producto escalar. El resto es idéntico 

a las capas convolucionales, donde el filtro se mueve a lo largo de la matriz o imagen para 

almacenar sus resultados en otra matriz de forma ordenada. 
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ANEXO C 
 

RMSE (error de la raíz cuadrada de la media) lineal 

  Esta métrica es empleada comúnmente por la comunidad científica para comparar 

resultados en el problema de reconstrucción de profundidad a partir de una sola imagen. 

����	�������� = 	 1|�|��1 ‖"#$ − "&$‖&
'
$(#

	 
Donde � es el número de datos o imágenes;   es el número de píxeles por imagen; "#$ es la 

matriz de profundidad verdadera del ejemplo �; y "&$ es la matriz de profundidad computada 

por la red neuronal del ejemplo �. 
 

 


