++ Universidad
Zaragoza

E}: :

Trabajo Fin de Grado

Desarrollo de un videojuego en red con
control compartido en tiempo real

Autor/es

Sergio Larrodera Arcega

Director/es

Francisco José Seron Arbeloa
Eduardo Mena Nieto

Escuela de Ingenieria y Arquitectura
2015

Repositorio de la Universidad de Zaragoza - Zaguan http://zaguan.unizar.es

Desarrollo de un videojuego en red con
control compartido en tiempo real

RESUMEN

Actualmente, los videojuegos estan experimentando un gran auge tanto a nivel industrial como de
volumen de jugadores. Uno de los formatos més populares es, sin duda, el de los videojuegos
multijugador online. En este tipo de juegos, el modelo de interaccion entre jugadores consiste en
que cada jugador controla una entidad dentro del juego, normalmente independiente del resto de
jugadores, por ejemplo, un personaje, un vehiculo o un ejército.

Este trabajo explora la idea de que varios jugadores controlen de forma simultanea a la misma
entidad mediante un sistema que ejecute en tiempo real la voluntad de la mayoria. Con este sistema
de "control compartido”, se persigue que los jugadores tengan que adaptarse al curso de accidon
decidido por la mayoria en cada momento y tengan que reevaluar constantemente su estrategia en
funcion de lo que estd sucediendo y no de los planes que tuvieran previamente.

Para lograr esto, se ha desarrollado un sencillo videojuego de plataformas en dos dimensiones, en el
cual los jugadores controlan a un robot que recolecta mineral en un planeta desconocido. El mundo
por el que se mueve el robot se genera de forma distinta en cada partida, para evitar que los
jugadores puedan memorizar los caminos, de forma que no se pierda el componente de
incertidumbre, que es esencial en este modelo de interaccion.

Una vez se terminaron el videojuego y el sistema de control compartido, se realizaron pruebas con
usuarios para comprobar si el sistema funciona de forma adecuada y si este tipo de interaccion es
atractiva para los jugadores.

Escuela de
Ingenieria v Arquitectura

Universidad Zaragoza

(Este documento debe acompafiar al Trabajo Fin de Grado {TFG)/Trabajo Fin de
Méster {TFM) cuando sea depositado para su evaluacidn).

D./Da. Sergio Larrodera Arcega

con n2 de DNI 73007219K en aplicacién de lo dispuesto en el art.

14 (Derechos de autor) del Acuerdo de 11 de septiembre de 2014, deil Consejo

de Gobierno, por el que se aprueba el Reglamento de los TFG vy TFM de la

Universidad de Zaragoza,

Declaro que el presente Trabajo de Fin de (Grado/Master)

Grado , (Titulo del Trabajo)

Desarrollo de un videojuego en red con control compartido en tiempo real

es de mi autoria y es original, no habiéndose utilizado fuente sin ser citada

dehidamente,

Zaragoza, 23 de junio de 2015

Fdo: Sergio Larrodera Arcega

INDICE

Lo INEFOAUCCION ..ottt et e b e et e s bttt esbe e eabeenbbeeesabbeeenaee 1
0] 1) 1 4L USSP 2
B ESPECIHICACION ..ottt e et e e et e e s e e e raeesreeeennnes 3
3.1. Historia y ambientaCIONcc.eeeriieeriieeriiieeiieeeiteeeireesiteesieeesiteeeseseeesnbeeennseesnnseeaessnssaeeeens 3

R TR 1 T 031 G o AU UR PP 4
3.3. Controles € TNEETTAZcouiiiiiiiiiiiiee et et s 4
R € - 1o 1SS 5
3.5. MUSICA Y SONIAO ...uviieiiiieiiieeciieette et ee et ee ettt e et e e s aeeessteeeeaseeessseeeesseeessseeennseesnsseaaeensnsseeeens 7
BuDESATTONNO ...ttt ettt st e bttt e e e et aeeee s 8
4.1, REQUISTEOS .veeeurieeiiieeitiieeitieeeitteeetteesteeesteeesaeeessteeessseeeasseeessaaasssaeanssaeasssaeansseesnsseesssseesssseennes 8
4.2, CaSOS AE USO ..uveeeirieeiiieeitieeeitieeeitteeeteeesiteeesaeeessseeessseeeasseeassseaesssaeassaeassaeasseessseessseeassseennes 9
4.3. Arquitectura del SISEEIMAceeiiiiiiiieeiie ettt et e e e et e e e tae e e raeeenaeeeanaee s 10
4.3.1. VisSta de MOAUIOScc.coooueeiiiiiiiiiieieee ettt 10

4.3.2. Vista de Componentes y Conectores y Vista de Desplieguecccccueeeeuennn. 15

4.3. Algoritmo de generacion de MUNAOc.ceeuieriieriiieiiienie ettt e e 17
4.4. Algoritmo de control cOmMPArtidOcocueeruiiiiiieiiiiiieie et 20
4.5. Algoritmo de generacion de la teXtUra TOCOSAcueeruieeiieriieeiieiie et eiie et eeiee e esaeeereeeees 21
SeRESUIEAAOS ..ot es 24
6. CONCIUSIONESooiiiiiiiiiii et ettt ettt et s e e be e st e e e e 28
ToTrabajo fUTUTOooooiiiiiii ettt e s e e st e e st e e eat e e e abeesnateeeeans 29
8. Diagrama temporalccoiiiiiii e e et e e e 30
9. BIDHHOGIafiaooiiiii ettt e et eenbee e e e 31
Anexo A — Utilizacion de ruido para la generacion de mundoccocoeeeiiiiieenniiineeeeennn, 32
Anexo B — Gestion del trabajoccoooiiiiiiiiiiiii e 34
BT, PlanifiCacionccc.cooiiiiiiiiiiiieeee ettt s 34

B.2. Herramientas UtTHZAAAS «...coeeeeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e e e eaeaeaeaeaeaaaaaeaaaeaaaaaeeeeerennnaas 35

1. INTRODUCCION

La industria del videojuego ha crecido a gran ritmo en los ultimos afios. Uno de los formatos de
videojuego mas populares es el de los juegos multijugador online. Como ejemplo, League of
Legends, el videojuego para PC mas popular actualmente, alcanzaba a principios de 2014 los 27
millones de jugadores diarios'.

Tipicamente, en un juego multijugador la interaccidon entre jugadores consiste en que cada jugador
controla una entidad diferente en el juego, ya sea un personaje, una nave espacial o una civilizacion,
y se enfrenta o coopera con el resto de jugadores. También existen algunos ejemplos de juegos en
los que varios jugadores controlan distintas partes de una misma entidad (por ejemplo, un jugador
controla el movimiento de un helicoptero mientras otro dispara la ametralladora que lleva
incorporada).

En este trabajo se plantea la idea de un nuevo tipo de interaccion entre jugadores, en la que varios
jugadores cooperan para controlar a un solo personaje en tiempo real mediante un sistema de
gobierno de la mayoria, llamado en este documento "control compartido". El sistema recibe
continuamente las acciones que desea realizar cada jugador y, cada pocos milisegundos, elige la
accion o acciones mayoritarias y las aplica. Con este tipo de interaccion, se busca que los jugadores
intenten coordinarse para lograr un objetivo comun, teniendo que reaccionar y adaptarse
rapidamente a las decisiones que toma la mayoria.

1 Dato ofrecido por la empresa desarrolladora del videojuego, disponible en:
http://www.riotgames.com/articles/20140711/1322/league-players-reach-new-heights-2014

2. OBJETIVOS

Para explorar la idea expuesta anteriormente, se ha propuesto desarrollar un sencillo videojuego de
plataformas en dos dimensiones, con dos condiciones importantes. Por un lado, el jugador debe
poder controlar al personaje usando un conjunto pequeio de acciones, de forma que la coordinacion
entre jugadores sea lo mas sencilla posible. Por otro lado, cada partida debe ser diferente para que
los jugadores no puedan memorizar una secuencia de acciones favorables y deban, por el contrario,
tomar decisiones rapidas si quieren obtener un buen resultado.

El trabajo se ha organizado en dos partes. La primera parte consiste en desarrollar el videojuego
para un solo jugador, con todas las caracteristicas que debe tener un videojuego de este tipo:
personaje, mundo que le rodea, elementos con los que interactua, efectos de sonido, musica, interfaz
de usuario, etc. La segunda parte consiste en extender el videojuego, afiadiendo un modo
cooperativo online que permita a varios jugadores controlar al personaje simultdneamente, y
realizar pruebas con usuarios para averiguar si el sistema de control compartido funciona, si es
divertido y como se podria mejorar.

3. ESPECIFICACION

En este apartado se describe el videojuego desde un punto de vista de disefio, explicando en detalle
sus caracteristicas y como se han desarrollado.

3.1. Historia y ambientacion

El juego esta ambientado en un planeta desierto con clima adverso, pero que contiene bajo su
superficie un mineral desconocido con propiedades valiosas (representado en forma de cristales
morados). El planeta estuvo habitado hace siglos por una civilizacidon que se considera extinta. Se
cree que dicha civilizacion se aprovechaba de las cualidades de este mineral para sobrevivir en las
profundidades del planeta.

El jugador controla a un robot de exploracion planetaria enviado por la humanidad para recoger la
mayor cantidad posible de mineral. La orografia del planeta es de naturaleza montafiosa y
cavernosa, por lo que el robot necesita gastar una considerable cantidad de energia para sortear los
desniveles del terreno y al mismo tiempo ser lo suficientemente pequefio para poder introducirse
por cavernas y tuneles en busca de mineral. Por ello, su bateria es de duracion muy limitada, por lo
que el robot necesita recoger otros minerales que le sirvan de combustible (representados en forma
de cristales azules) para continuar su viaje. Una vez el robot se queda sin energia, utiliza sus
baterias de emergencia para salir del planeta y llevar a los humanos los valiosos minerales
obtenidos.

La figura 1 muestra una imagen del robot en las profundidades del planeta. Debajo del robot se
puede ver una de las muchas runas magicas fabricadas por los antiguos habitantes del planeta, las
cuales tienen diversos efectos sobre el robot.

v

BB
el

ml -

s R
ST |

-4
=

Figura 1 — Protagonista del juego explorando una caverna, rodeado por runas y cristales

3.2. Jugabilidad

El objetivo del juego es conseguir el mayor nimero posible de cristales morados antes de quedarse
sin energia. El mundo se genera proceduralmente (es decir, durante la ejecucion del programa) a
partir de un nimero entero aleatorio (llamado semilla), para que el jugador no pueda memorizar los
caminos o la ubicacién de los cristales. El mundo es infinito (hacia abajo y a los lados) y continuo
(no dividido en niveles), por lo que se genera conforme el personaje avanza por el mismo.

La parte del planeta que interactiia con el robot esta formada por bloques cuadrados de tamafio algo
mas grande que el robot. Algunos de estos bloques contienen runas que se activan al entrar en
contacto con el robot, provocandole diversos efectos. Existen cuatro tipos de runas:

— Runa azul: al activarse, otorga al robot una mayor velocidad de movimiento durante unos
segundos.

— Runa verde: mientras esta activa, el robot obtiene una mayor potencia de salto.

— Runa amarilla: cuando se activa, el robot se queda pegado a la runa. Le permite apoyarse en las
paredes (para saltar desde ellas) o caminar por el techo (en este Gltimo caso, al saltar se despega de
la runa).

— Runa roja: al activarse, el robot pierde una considerable cantidad de energia.

Cerca de la superficie del planeta abundan los cristales azules que recuperan energia, pero no hay
cristales morados. En las zonas profundas se encuentran los preciados cristales morados, pero
también los cristales azules son mas escasos y es mas peligroso avanzar. De esta forma, el jugador
debera buscar cuevas profundas para encontrar mas cristales morados y, de vez en cuando, regresar
cerca de la superficie para reponer energia.

Sin embargo, los cristales azules no devuelven siempre la misma cantidad de energia. La cantidad
devuelta es un valor aleatorio cuya media disminuye lentamente con el nimero de cristales azules
obtenidos, limitando asi la duracidon de la partida. Para que el jugador reciba un feedback de la
cantidad de energia restaurada, al recoger un cristal azul se escucha una nota musical cuya mayor
agudeza significa una mayor cantidad de energia.

Algunos aspectos relacionados con la energia, como la cantidad que restauran los cristales azules, lo
rapido que disminuye la energia con el tiempo o la energia que se pierde al tocar una runa roja,
estan ajustados por un pardmetro de dificultad. Este parametro se utiliza para compensar la
dificultad mas elevada inherente a las partidas cooperativas.

A pesar de que la idea inicial fue que el robot dispusiera Uinicamente de un salto, de forma que
debiera tocar el suelo antes de volver a saltar de nuevo, finalmente se decidié dotar al robot de un
doble salto, pudiendo asi saltar una vez més en mitad del aire. De esta forma, mejoré6 mucho la
movilidad del robot, permitiéndole alcanzar los cristales con mas precision, evitar mas facilmente
las runas rojas y escalar mayores pendientes.

3.3. Controles e interfaz

Los controles son solo tres: izquierda, derecha y saltar, correspondientes a las teclas A, Dy W en la

version para PC y a distintas zonas de la pantalla tactil en la version para Android. Ademads, existen
algunas teclas de configuracion: F10 para activar o desactivar el modo de depuracién de errores,
F11 para activar o desactivar el modo de pantalla completa y Escape (manteniéndolo pulsado 1
segundo) para cerrar la aplicacion.

La interfaz es de estilo sencillo, pero cumple con su funcion. Al iniciar el juego aparece un menu
donde se puede elegir entre jugar una partida para un jugador, crear una partida cooperativa, unirse
a una partida cooperativa o modificar las opciones.

Durante la partida, se muestra un marcador en la parte superior izquierda de la pantalla en el que
aparece la puntuacion y la energia restante del robot. Al recoger cristales azules, cristales morados o
al tocar una runa roja, se muestra sobre el robot la cantidad de energia restaurada, los puntos
ganados o la energia perdida, respectivamente. Ademads, las luces del robot se iluminan segln las
teclas que estd pulsando el jugador. Esto evita que el jugador sienta que sus acciones no tienen
ningin efecto en la partida si no se corresponden con las ejecutadas por el sistema de control
compartido.

En la figura 2 se puede ver una captura del juego con algunos de los elementos mencionados: el
marcador, el indicador mostrado al perder energia y la luz verde del robot iluminada para indicar
que el jugador estd pulsando la tecla derecha.

Figura 2 — Muestra de algunos elementos de la interfaz

3.4. Graficos

El juego utiliza proyeccion ortografica, con tres planos superpuestos: el plano frontal, el plano
intermedio y el fondo, como se puede ver en la figura 3. Estos planos representan un corte lateral
del planeta, con su superficie y sus cuevas. El plano frontal es donde estan el robot y los bloques
que interactiian con éste: las paredes de las cuevas que se encuentran en el mismo plano que el
robot. Se mueve con la cdmara y colisiona con el robot. El plano intermedio representa el fondo

cercano al plano frontal, es decir, el fondo de las cuevas que recorre el robot. Se mueve con la
camara, pero no colisiona con el robot. Su funcién es decorar y dar sensacion de profundidad. El
fondo representa el fondo lejano al robot: las montanas en la superficie del planeta y el cielo. Solo
se mueve levemente con la cdmara al subir o bajar, pero no lateralmente, y no colisiona con el
robot.

Runa Runa
activa inactiva

Figura 3 — Muestra de algunos elementos graficos

El mundo representa un planeta arido y misterioso. Los bloques tienen una textura que se genera
proceduralmente a partir de un conjunto de patrones (ver apartado 4.5), obteniendo un aspecto
rocoso. Los bloques del plano frontal tienen un color blanco en la superficie, que se oscurece a
medida que se va descendiendo. Los bloques del plano intermedio son de un color algo mas oscuro
que los frontales para distinguir entre las paredes y el fondo de la cueva.

Las runas grabadas en algunos bloques tienen un color caracteristico segun el tipo de runa. En el
estado normal, el color es apagado, pero al activar estos bloques las runas brillan con un color mas
intenso durante el tiempo en el que estan activas. La forma de cada runa ha sido disefiada para que
sea facil de diferenciar y a la vez insinue sus propiedades. Se han utilizado formas rectangulares
alargadas para que se asemejen a la textura disefiada para la roca.

El robot es de color blanco y textura pulida. Tiene forma de tridngulo equilatero redondeado y en
cada uno de sus lados tiene un led. Las luces de los /eds se iluminan segun la tecla pulsada y son de
color azul, verde y rojo. La anchura y altura del robot son ligeramente superiores a medio bloque.

Para una mejor visualizacion de lo expuesto en este apartado, se pueden consultar mas imagenes del
videojuego en el apartado 5.

3.5. Musica y sonido

La musica se ha utilizado para crear un ambiente de mision espacial, reflejando que la accion
transcurre en un planeta remoto y desierto. Se ha elegido un solo tema de extensa duracion,
considerando que era suficiente para el ambito de este trabajo. Tanto esta musica como los efectos
de sonido usados en el juego se han obtenido del banco de sonidos Freesound® (algunos de ellos se
han editado posteriormente).

El jugador recibe una respuesta sonora cuando el robot interactia con algunos objetos del escenario.
Si recoge un cristal azul, se escucha una nota de xilofono cuya agudeza depende de la energia
restaurada. Para los cristales morados se utiliza una pequefia melodia de estilo robdtico. Al tocar
una runa roja, se reproduce un sonido corto de alerta, para avisar al jugador de que ha perdido
energia. Por ultimo, se afiadi6 un sencillo sonido de cuenta atras al iniciar la partida, que termina
justo al aterrizar el robot en la superficie del planeta.

2 Disponible en: http://www.freesound.org

4. DESARROLLO

A continuacioén, se presenta la descripcion del videojuego desde el punto de vista de la ingenieria
del software: requisitos definidos, casos de uso de la aplicacion, arquitectura del sistema y detalle

de los principales algoritmos.

4.1. Requisitos

Los requisitos que se plantearon al comienzo del trabajo fueron los siguientes. En las tablas 1 y 2 se
detalla la prioridad que se dio inicialmente a cada requisito y si se ha cumplido al final del trabajo.

Codigo Requisito funcional Prioridad | Cumplido
RF1 |La aplicacidon permitird comenzar una partida para un jugador Alta Si
RE2 La aphcqcmn permitird crear una partida cooperativa Alta Parcial

personalizada
REF3 La aplicacion permitira unirse a una partida cooperativa creada Alta Parcial
por otra persona
RF4 La aph,c.a(:lon permitira unirse a una cpla de emparejamientos Alta Parcial
automaticos (matchmaking) para partidas cooperativas
Al finalizar una partida, la aplicacion ofrecera al jugador o
RF5 |jugadores la posibilidad de guardar una imagen del mundo Baja No
generado en esa partida
La aplicacion permitird modificar las opciones del juego, entre . ,
RF6 ellas el volumen de la musica y los efectos de sonido y el idioma Media Si
RF7 La aphcacmn permitira al usuario ver las estadisticas de sus Baja No
partidas
Tabla 1 — Requisitos funcionales

Codigo Requisito no funcional Prioridad | Cumplido

RNF1 |La aplicacion podra ejecutarse en entornos Windows Alta Si

RNF2 |La aplicacion podra ejecutarse en entornos Android Baja Si

RNF3 |La aplicacion estara disponible en inglés Alta Si

RNF4 |La aplicacion estard disponible en espafiol Media No

Tabla 2 — Requisitos no funcionales

Algunos de los requisitos con menos prioridad no han podido abordarse debido al tiempo del que se
disponia. Caso especial son los requisitos RF2, RF3 y RF4. Debido a las limitaciones de tiempo y a
las herramientas con las que se contaba, se ha optado por implementar una opcion intermedia a
estos requisitos:

— La aplicacion permite al usuario organizar una partida cooperativa y afadirla a la lista de partidas

activas. La aplicacion ejerce como servidor (no jugador) para esa partida.

— La aplicacién permite al usuario unirse a una partida cooperativa. Se le asigna una partida
automaticamente entre las que hay disponibles en Ia lista.

Este sistema no funciona ni como una partida personalizada tradicional ni como una cola de
emparejamientos automaticos (ya que las partidas se crean de forma manual), pero se considerd que
era la forma mas rapida de poner en funcionamiento un sistema multijugador usando las
herramientas proporcionadas por Unity, el motor grafico usado para crear el juego.

4.2. Casos de uso

La figura 4 muestra los casos de uso de la aplicacion. Posteriormente, se detalla cada caso de uso

por separado (tablas 3 a 6).
Crear partida para un
jugador
Organizar partida
cooperativa
Unirse a partida
T cooperativa
Usuario Modificar opciones

Figura 4 — Casos de uso

Jugar partida

Caso de uso Crear partida para un jugador
Descripcion Este caso de uso le permite al usuario crear una partida para un
jugador

Precondiciones | El usuario se encuentra en el ment principal
Flujo de eventos | 1. El usuario pulsa el boton “PLAY SINGLE PLAYER”

2. El sistema inicia la partida
Tabla 3 — Caso de uso “crear partida para un jugador”

Caso de uso Organizar partida cooperativa

Descripcion Este caso de uso le permite al usuario organizar una partida
cooperativa, ejerciendo como servidor de la partida

Precondiciones | El usuario se encuentra en el ment principal

Flujo de eventos | 1. El usuario pulsa el boton “HOST MULTIPLAYER”

2. El sistema muestra una pantalla con las opciones para la partida:
numero de jugadores y puerto que se utilizara

3. El usuario selecciona las opciones deseadas, pulsa el botén “OK”
y espera a que el resto de jugadores se una a la partida

4. El sistema muestra una pantalla de espera con informacion de los
jugadores que se han unido a la partida hasta el momento

5. Cuando todos los jugadores necesarios se han unido, el sistema
inicia la partida

Tabla 4 — Caso de uso “organizar partida cooperativa”

Caso de uso Unirse a partida cooperativa

Descripcion Este caso de uso le permite al usuario unirse a una partida
cooperativa entre las disponibles

Precondiciones | El usuario se encuentra en el ment principal

Flujo de eventos

1. El usuario pulsa el boton “PLAY MULTIPLAYER”

2. El sistema muestra una pantalla de espera

3. Cuando todos los jugadores necesarios se han unido, el sistema
inicia la partida

Tabla 5 — Caso de uso “unirse a partida cooperativa”

Caso de uso Modificar opciones

Descripcion Este caso de uso le permite al usuario modificar las opciones del
juego

Precondiciones | El usuario se encuentra en el ment principal

Flujo de eventos

1. El usuario pulsa el boton "OPTIONS"

2. El sistema muestra una pantalla con las opciones del juego:
volumen de musica y efectos, pantalla completa y modo de
depuracion de errores

3. El usuario modifica las opciones deseadas y pulsa el boton “OK”
4. El sistema se actualiza segun las opciones modificadas y vuelve al
menu principal

Tabla 6 — Caso de uso “modificar opciones”

4.3. Arquitectura del sistema

En este apartado se detalla la estructura de la aplicacion, incluyendo las partes en las que estd
dividido el cédigo y los componentes que se ejecutan en un momento dado.

4.3.1. Vista de modulos

El siguiente diagrama de clases (figura 5) presenta la organizacién interna del codigo y las
relaciones mas importantes entre las distintas partes. Posteriormente, se explica brevemente la
funcion de cada clase del diagrama.

10

_____________::,

LEYENDA

Relacion de uso

—— I+ Relacion de herencia

[]

Hereda de la clase externa MonoBehaviour,
especifica el comportamiento de un objeto
del motor Unity

generation

‘ Perlinloise1D

"

|I'.'IenuEG |)| I'."Ienu| |I'."IenuEutmn ” Slider‘l.lfalue| | Scoreboard|

|ChunkGenPhase|

.
.,

PerlinNoise2D " T

\ﬂ

Rockﬁenerator| |Fading{iamras| |SpriteLigI|tT1,rpe|| PlayrerText|

. T=
-

- .
By g

.

‘ ChunkGenThread |>|

ChunkGenerator !

! Borderﬁenerator| | Letterboxing | | SpriteLigIlt| | Debug Stats |

world

=
-

-—

—_

F\
.

N]

s

"\.\.

‘ Position | |ChunI-LGrid |<- -------------
.. ”

s] T
|
i
I
H
i

by

T

unk|€--1 ChunkWinclfow‘

"

]
H
i

player

| PlayerBuffs | |C0ntrols |<1 SharedControl |
e

>| Plalwer | ------

PlayerControl

Single{iontrol|

misc

‘ CrystalType |

ScoreCrystal |

GIueRune|
{runofo-t—

_lDamageRune|

| RHG | | I."Iisc| |GameLoader|

| Resourceloader | | OneObject |

—(RunRune|

|Gamel'.'|0de| |Dr!.rnamicl'.'|atrix|

|RuneT1_.rpe| JumpRune|

| Options | |CurrentGameInfo|

Figura 5 — Diagrama de clases

ChunkGenThread — Gestiona la generacion asincrona de chunks (partes en que se divide el mundo)
segun se necesiten en cada momento.

ChunkGenerator — Genera chunks siguiendo un proceso en varias fases.

ChunkGenPhase — Enumera las distintas fases de generacion de chunks.

PerlinNoiselD — Genera de ruido de Perlin de una dimension, utilizado para generar la superficie

del planeta.

PerlinNoise2D — Genera de ruido de Perlin de dos dimensiones, utilizado para generar los sistemas
de cuevas del planeta.

RockGenerator — Genera la textura rocosa usada para los bloques y el fondo de los ments.

BorderGenerator — Genera la textura del borde que separa los bloques frontales y los bloques del

fondo.

11

MenuBG — Crea el fondo usado para los menus e instancia el menu principal al inicio de la
aplicacion.

Menu — Gestiona el comportamiento general de los menus y las caracteristicas particulares de cada
menu.

MenuButton — Gestiona el comportamiento de los botones de los mentlis y contiene las funciones
especificas que se ejecutan al pulsar cada boton.

SliderValue — Programa el comportamiento de una opcion de menu con s/ider (deslizador) para que
actualice el valor correspondiente.

FadingCanvas — Implementa el efecto de aparecer y desvanecerse progresivamente que utilizan
algunos elementos de la interfaz.

Letterboxing — Adapta la resolucion del juego dependiendo de la proporcion de la pantalla del
dispositivo, anadiendo bandas negras si es necesario.

SpriteLight — Contiene la logica de la iluminacion de los sprites (imagenes del juego), en funcion
del tipo de sprite y su posicion. En otras palabras, es el responsable de que el mundo se oscurezca
lentamente conforme el jugador desciende por las cuevas.

SpriteLightType — Enumera los tipos de iluminacion que se aplican segln el tipo de sprite.

Scoreboard — Gestiona el marcador que muestra la puntuacion y la energia restante del robot.

PlayerText — Crea los indicadores que aparecen encima del robot cuando éste sufre algin efecto,
como recuperar energia al recoger un cristal.

DebugStats — Gestiona el texto que aparece en el modo debug (depuracion de errores), que ofrece
informacion sobre los frames por segundo, posicion actual del robot, semilla del mundo actual, etc.

Player — Controla toda la informacion relacionada con el robot: posicion, velocidad, efectos activos,
etc. Se encarga también de gestionar informacion sobre el estado y eventos de la partida. En el
modo cooperativo, es el responsable de sincronizar toda esta informacidon entre servidor y
jugadores.

PlayerBuffs — Contiene la informacion sobre algunos efectos que se aplican sobre el robot.

PlayerControl — Proporciona una base comun para las clases que controlan el comportamiento del
robot.

SingleControl — Controla el comportamiento del robot en el modo de un jugador, basandose en las
acciones del usuario: mover izquierda, mover derecha, detenerse, saltar.

SharedControl — Controla el comportamiento del robot en el modo cooperativo. Si la aplicacion
actia como servidor, recoge las acciones enviadas por los jugadores y decide qué accidn se ejecuta.

Si la aplicacion actua como jugador, envia las acciones que el usuario quiere ejecutar.

Controls — Recoge las acciones del usuario segun la plataforma: del teclado si es PC o de la pantalla

12

tactil si es Android.

World — Gestiona la informacion de los bloques que forman el mundo y coordina los algoritmos que
deciden qué chunks deben generarse segin el movimiento del personaje y qué bloques deben estar
activos segun si aparecen o no en pantalla.

ChunkWindow — Decide qué chunks deben generarse segun la posicion actual del personaje y envia
las peticiones correspondientes al generador de chunks.

BlockWindow — Activa y desactiva los bloques segun aparezcan o no en pantalla. Al activarse, el
bloque genera un objeto de Unity a partir de la informacion del bloque. Al desactivarse, se elimina
dicho objeto para liberar la memoria que ocupa.

ChunkGrid — Almacena todos los chunks generados en una estructura de matriz infinita con
coordenadas enteras. Ademas, contiene métodos para transformar las posiciones de bloques y
chunks entre las coordenadas de la matriz y las de la escena, para calcular la posicion de un bloque
dentro de su chunk, el chunk al que pertenece un bloque, etc. En la figura 6 se muestra un ejemplo
de la organizacion de la matriz de chunks.

=

e = ol e B L Tl
Figura 6 — Ejemplo de organizacion del mundo en chunks y bloques

Chunk — Gestiona la informacion de un chunk: posicidon, bloques que contiene, chunks vecinos, etc.

13

Block — Gestiona la informacion de un bloque: posicion, tipo, runa y/o cristal que contiene, bloques
vecinos, etc.

BlockType — Enumera los tipos de bloques existentes.

Position — Representa la posicion de un bloque o chunk como coordenadas enteras de una matriz.
Crystal — Implementa el comportamiento comun a todos los cristales.

CrystalType — Enumera los tipos de cristales existentes.

EnergyCrystal — Implementa el comportamiento de un cristal de energia (cristal azul).
ScoreCrystal — Implementa el comportamiento de un cristal de puntuacion (cristal morado).
Rune — Implementa el comportamiento comun a todas las runas.

RuneType — Enumera los tipos de runas existentes.

DamageRune — Implementa el comportamiento de una runa de dafio (runa roja).

GlueRune — Implementa el comportamiento de una runa de pegamento (runa amarilla).
RunRune — Implementa el comportamiento de una runa de correr (runa azul).

JumpRune — Implementa el comportamiento de una runa de salto (runa verde).

RNG — Genera numeros aleatorios de distintos tipos (entero, real, booleano) y distribuciones
(uniforme, gaussiana).

Misc — Contiene constantes y funciones de propoésito general.

GameLoader — Gestiona los procesos de la creacion de una partida. En partidas cooperativas, se
encarga de comunicar el servidor con los jugadores hasta que la partida estd preparada para
comenzar. Muestra informacion sobre estos procesos, como el porcentaje de carga, el nimero de
jugadores que se han unido a la partida, mensajes de espera, etc.

ResourceLoader — Inicializa algunas variables relacionadas con recursos del juego.

OneObject — Realiza tareas iniciales, como la carga de las preferencias del usuario, y tareas que se
mantienen durante toda la vida de la aplicacion, como comprobar las teclas que permiten salir de la
aplicacion y activar/desactivar la opcion de pantalla completa.

GameMode — Enumera los diferentes modos de juego.

DynamicMatrix — Estructura de datos que almacena una matriz dispersa de objetos con indices
enteros. Esta implementada como un diccionario de diccionarios (internamente tablas hash) con

claves enteras. Se usa en ChunkGrid para almacenar los bloques y en PerlinNoise2D para
almacenar los gradientes generados.

14

Options — Almacena las preferencias del usuario, las cuales se pueden modificar en el ment de
opciones.

CurrentGamelnfo — Almacena variables relacionadas con la partida actual: modo de juego,
jugadores, puerto, dificultad, semilla, etc.

4.3.2. Vista de Componentes y Conectores y Vista de Despliegue

Los siguientes diagramas de componentes y conectores (figuras 7 y 9) y diagramas de despliegue
(figuras 8 y 10) representan de forma general los componentes que se encuentran en ejecucion en el
sistema en un momento dado y en qué maquina se ejecuta cada componente, tanto en una partida
para un jugador como durante una partida cooperativa. Debajo de cada diagrama, se detallan los
elementos mas relevantes.

=3 Cliente

Thread Thread de
E principal E generacion

funciones C#

thizen thiPrin

Figura 7 — Diagrama de componentes y conectores para partida de un jugador

Cliente — Componente que engloba a todo el cddigo que se ejecuta en la maquina del usuario.
Contiene un Thread principal y un Thread de generacion, que se comunican entre si mediante
funciones C#.

Thread principal — Componente controlado por Unity, encargado de cargar las escenas, manejar los
recursos, ejecutar los comportamientos programados para cada objeto de la escena, etc. Al iniciar la
partida, crea un Thread de generacion, al cual envia peticiones para que se vayan generando las
partes del mundo que sean necesarias.

Thread de generacion — Componente que se encarga de generar trozos del mundo segin se vayan
necesitando. Después de generar cada trozo, envia un aviso al Thread principal.

Maqguina usuario

=1 : Cliente

Figura 8. Diagrama de despliegue para partida de un jugador

Madgquina usuario — Es la méquina en la que se ejecuta la aplicacion.

15

=N Cliente (modo jugador) 5] Cliente (modo servidor)
Thread de Thread de
2] generacion 2] generacion
funciones C#I Ifunt:innes C#
=3 Thread principal =] Thread principal
delegate | senvidor UDP jugador [1,°]] dejegate
py il 1 = e
de %;-F'EE RPC I::e egate
L] L
T servidaor jugadaor [1,%] -

TCP

=3 MasterServer

j|_|g|adnr[1,*]|:ﬁI semnvidor [1,7]

Figura 9 — Diagrama de componentes y conectores para partida cooperativa

MasterServer — Componente externo, cuyo cddigo lo proporciona Unity. Se ejecuta en una maquina
remota y se encarga de manejar la lista de partidas y de poner en contacto a jugadores y servidores.

Cliente (modo servidor) — Similar al componente Cliente descrito anteriormente, pero con codigo
especifico para servidor de partida cooperativa. Al crear una partida, la registra en un MasterServer,
el cual le ofrece los datos de los jugadores que se conectan a la partida.

Cliente (modo jugador) — Similar al componente Cliente descrito anteriormente, pero con co6digo
especifico para jugador de partida cooperativa. Para unirse a una partida, se registra en un
MasterServer como jugador y éste le asigna un servidor que haya creado previamente una partida
cooperativa y le envia los datos del mismo.

Conector UDP — Lo utiliza el servidor enviar periodicamente el estado de la partida a los jugadores.

Conector RPC — Lo utilizan servidor y jugadores para enviar y recibir distintos mensajes, como las
acciones de cada jugador o algunos eventos de la partida.

16

Maguina usuario

: Cliente (modo
E jugador)

Internet / Intranet

Maguina usuario

*

Internet

: Cliente (modo
E servidor)

Internet

Servidor

= | : MasterServer

Figura 10 — Diagrama de despliegue para partida cooperativa

Madgquina usuario — Son las maquinas en las que se ejecuta una instancia de la aplicacion, ya sea
como jugador o como servidor. Dichas méaquinas pueden comunicarse a través de Internet o de red
local (intranet).

Servidor — Es la maquina en la que se ejecuta el MasterServer. Estd accesible al resto de maquinas a
través de Internet.

4.3. Algoritmo de generacion de mundo

Este algoritmo genera el planeta por el que se mueve el robot a partir de una semilla (nimero
entero) que se elige aleatoriamente al inicio de la partida. El mundo creado estd completamente
definido por la semilla, lo que posibilita que en una partida cooperativa cada cliente pueda generar
su mundo local s6lo con saber la semilla y no tenga que recibirlo del servidor.

Al iniciar la partida, el algoritmo genera mundo en un radio alrededor del punto inicial del robot.
Cuando éste se mueve, se genera poco a poco mas mundo en la direcciéon de desplazamiento. El
mundo esta dividido en chunks, que son trozos de 16x16 bloques, los cuales son generados por un
hilo separado, en concurrencia con el hilo principal.

El proceso para generar un chunk se divide en varias fases (ver figura 11):

Fase 0: Instanciacion — Se construye el objeto que almacenara el chunk en la matriz. Se le asigna
una semilla especifica para el chunk, basada en la semilla principal y la posicion del chunk. Esto
asegura que el orden en que se generan los chunks no influya en el resultado.

Fase 1: Superficie — Se genera la forma de la superficie del planeta, es decir, la altura maxima en la
que aparecen bloques en cada columna de la matriz. Se utiliza para ello ruido de Perlin 1D con 4
octavas (ver anexo A para mas informacion sobre la generacion y uso del ruido de Perlin). Las
alturas generadas se guardan en una estructura de datos aparte, de forma que sean reutilizables al
generar otros chunks de la misma columna.

17

Fase 3: Runas

..':;1'}

|
.Lu'-!" I"h-l g ...r'-'.g i

Figura 11 — Generacion de un chunk dividida en fases

Fase 2: Cuevas — Se generan los sistemas de cuevas que recorre el robot y se rellena el chunk con
bloques de frente de cueva, bloques de fondo de cueva y bloques vacios (los que estan por encima
de la superficie). En la generacion se utiliza ruido de Perlin 2D con sélo 1 octava, ya que este ruido
es mucho mas costoso de generar que el de una dimension.

Fase 3: Runas — Se generan runas en algunos bloques frontales. Para determinar la probabilidad de
que una runa se genere se tienen en cuenta tanto la altura de cada bloque como el tipo de los
bloques vecinos, aplicando ciertas reglas como que haya mas probabilidad de generar runas rojas en
bloques méas profundos y que no sea posible generar una runa de salto en el techo de una cueva.

Fase 4: Cristales — Se generan los cristales. Al igual que en la fase anterior, se tiene en cuenta la
altura del bloque para determinar la probabilidad de que se genere un cristal en ese bloque.

18

Cada fase requiere que la anterior esté finalizada, pero ademas, la fase 3 requiere que la fase 2 esté
finalizada para todos los chunks vecinos. Esto es debido a que se necesita saber de qué tipo son los
bloques vecinos a cada bloque, incluso para los bloques que estan en el borde del chunk. Por ello, al
iniciar la fase 3 se comprueba el estado de generacion de los chunks vecinos, y se generan los
chunks que hagan falta hasta que completen la fase 2.

En la figura 12 se muestra un diagrama de secuencia que describe como el hilo principal y el hilo de
generacion gestionan la generacion de chunks.

= |r: Thread principal

create

= |r1: Thread de generacidn

[ejecucidn en paralelo]

solicitarGenerarChunk(posicion)

k 2

encolar{posicidn)

F 3

[bucle infinito] desencolar(posicidn)

generarChunkiposician)

U notificarChunkGeneradol)

Figura 12 — Diagrama de secuencia para la generacion de mundo

Como se ve en el diagrama, se ejecutan dos interacciones en paralelo. Cuando el hilo principal
necesita generar un chunk, le envia una peticion al hilo de generacion, indicando la posicion del
chunk que se quiere generar. Por su parte, el hilo de generacion almacena estas posiciones en una
cola y de forma constante comprueba si hay nuevos chunks que generar. Cuando un chunk ha
terminado de generarse, el hilo de generacion lo notifica al hilo principal.

19

4.4. Algoritmo de control compartido

Este algoritmo permite a varios jugadores controlar a un unico personaje. Los jugadores envian
continuamente las acciones que desean realizar al servidor, el cual cada pocos milisegundos
selecciona las acciones a realizar.

Para dicha seleccion, se consideran dos tipos de acciones independientes: direccion y salto. El tipo
direccion tiene tres posibles valores: izquierda, derecha y no moverse, mientras que el tipo salto
tiene dos valores: saltar y no saltar. Para cada tipo, se selecciona la accién mas votada por los
jugadores, y en caso de empate se selecciona la accion nula (no moverse, no saltar).

La figura 13 muestra los cuatro procesos que ocurren simultdneamente:

— Una vez por frame (imagen mostrada por el juego), cada jugador envia mediante una llamada
RPC las acciones elegidas (direccion y salto), pero sélo si ha habido algun cambio respecto al
frame anterior. El servidor las recibe y las guarda en una estructura de datos con las ultimas
acciones recibidas de cada jugador.

— Una vez cada 33 milisegundos, el servidor selecciona, mediante el proceso descrito anteriormente,
las acciones que se ejecutaran durante los proximos 33 milisegundos.

— Una vez cada frame, el servidor ejecuta las acciones actuales (el salto solo se ejecuta la primera
vez, pero el movimiento lateral se ejecuta de forma continua).

— Una vez cada 33 milisegundos, el servidor envia via UDP el estado actual de la partida a los
jugadores, y éstos lo actualizan.

Seglin las pruebas realizadas con usuarios, el minimo nimero de jugadores para lograr resultados
aceptables es de 3. Con 2 jugadores se producen constantemente empates cuando uno de los
jugadores quiere ir a la izquierda y el otro a la derecha, lo que deja al robot parado. Las pruebas con
5 jugadores (el maximo con el que se ha podido probar) son las que han obtenido mejores
resultados. Sin embargo, aumentar mucho el nimero de jugadores, a pesar de que favorece la
coordinacion, proporciona al jugador menos sensacion de control sobre el robot, por lo que se
sospecha que el nimero 6ptimo deberia estar entre 5 y 7 jugadores.

20

Er : Cliente {(modo jugador) EH : Cliente (modo servidor)

[ejecucidn en paralelo]

[cada frame]

[si el input ha cambiado] enviarAcciones(jugador, acciones)

guardarAcciones(jugador, acciones) :

seleccionarAccionesActuales()

%)
ik}
=1
o
ta
o
n
m
=]
=
=]
o
=]
o,

[cada frame]
ejecutardccionesActuales()

[cada 33 milisegundos]

enviarEstadoPartidal)

actualizarEstado()

Figura 13 — Diagrama de secuencia de para el control compartido

4.5. Algoritmo de generacion de la textura rocosa

La textura rocosa utilizada para los bloques y el fondo de los menls también se genera

21

proceduralmente, pero para ahorrar en tiempo y en memoria (ya que habria que almacenar por
separado la textura de cada bloque) se generan 36 texturas diferentes al inicio de la partida, y se
utilizan éstas con diferentes rotaciones y volteos (en total 288 posibilidades).

Para generar una textura se utiliza uno de los patrones que hay definidos. Un patron es una
cuadricula de 4x4 que se rellena con diferentes colores siguiendo una sola regla: la cuadricula debe
estar dividida en parejas de casillas adyacentes, en horizontal o vertical. Existen 36 patrones
distintos que cumplen esta regla, algunos de los cuales se muestran como ejemplo en la figura 14,
en la que los nimeros representan la pareja a la que pertenece cada casilla.

El siguiente paso es colorear cada pareja con un color aleatorio escogido entre 16 tonos de gris. Las
dos casillas de cada pareja deben tener el mismo color, pero no hay ninguna otra restriccion en
cuanto a seleccion de colores. En la figura 14 se muestra el resultado de este proceso, pero se han
utilizado so6lo 4 colores para mayor claridad.

o|la|lNn|lo
o|la|N|e
Nln|lw|m
N|lv|lw|R=
sla|lw|le
nmlunm|lw|e
N leo|N|N
nmlum|le|e
N wlw|N
N ala|N
w [NIN|e
Nlwlw|e
mln|ealR
o|lo|s|m

J COLOREADO

F:_

RECURSION

Figura 14 — Generacion de la textura rocosa

22

El proceso que completa el algoritmo es la recursion, utilizada para crear un efecto fractal. Las
texturas generadas son cuadrados de 64x64 pixeles, mientras que los patrones son de 4x4, por lo
que cada casilla del patron corresponde en la textura final a un “subcuadrado” de 16x16 pixeles.
Con el algoritmo presentado hasta ahora estos cuadrados estarian rellenos de un solo color (ver
figura 14). Para dotar a la textura de un aspecto mas realista, se aplica el mismo algoritmo a cada
subcuadrado, utilizando como color base el color asignado a ese subcuadrado por el algoritmo
inicial y con una variacion de color mucho’® menor que el usado en el algoritmo inicial. Esta
recursion se aplica de la misma forma una segunda vez para rellenar los subcuadrados de 4x4
pixeles dentro de cada subcuadrado 16x16 pixeles.

3 Enconcreto 16 veces menor, ya que se usan 16 grises distintos. De esta forma, los colores del subcuadrado son mas
cercanos a su color base que a los colores de otro subcuadrado con distinto color base.

23

5. RESULTADOS

En este apartado se presenta una serie de capturas del programa final, explicando debajo de cada
captura a qué parte del programa corresponde y aspectos destacados de la misma.

Figura 15 — Menu principal

La figura 15 muestra el menu principal del juego, tal como se muestra al iniciar el programa. El
encabezado muestra el nombre del juego y la version. Las opciones que aparecen se explican en el
apartado 4.2 (casos de uso). Observar que la tercera opcion aparece resaltada porque se ha pasado el
raton sobre ella.

24

Figura 16 — Menu de opciones

La figura 16 muestra el ment de opciones. Las dos primeras controlan el volumen de efectos y
musica, y las restantes activan o desactivan la pantalla completa y el modo de depuracion de
errores.

Wiy L o

LB | | = L =
Figura 17 — Inicio de la partida

La figura 17 muestra el aspecto habitual del inicio de una partida, justo después de que el robot
aterrice en la superficie del planeta. Notar los tres planos diferentes: bloques frontales (roca blanca),

25

bloques de fondo (roca gris) y fondo. Arriba a la derecha aparece el marcador, con los valores
iniciales de puntuacion y energia.

F igura 18 — Recogiendo cristales
La figura 18 muestra como el robot recoge un cristal de energia. Sobre el robot aparece la energia

restaurada. Observar coémo se iluminan las luces del robot segin las acciones del jugador (en este
caso, ir hacia la derecha).

26

Figura 19 — En las profundidades

La figura 19 muestra al robot activando una runa de salto al pasar sobre ella, y a punto de recoger
un cristal de puntuacion. Se ha activado el modo de depuracion de errores, por lo que puede verse
informacion de interés en la esquina superior derecha de la pantalla, incluyendo la posicion actual
del robot: bloque (357, -302) y chunk (22, -19). Notar también que el ambiente es mas oscuro que
en la anterior captura, ya que el robot se encuentra a una altura mucho mas profunda.

27

6. CONCLUSIONES

Como se expone en el apartado 2, el objetivo general del trabajo era desarrollar el prototipo de un
videojuego que explorara la idea de control compartido. Dentro de las limitaciones del proyecto, el
objetivo se ha completado, desarrollando un sencillo videojuego con todas las caracteristicas
necesarias: personaje, mundo que le rodea, efectos de sonido, musica e interfaz, etc.

A este videojuego se ha afiadido un modo multijugador cooperativo que utiliza el sistema de control
compartido para dirigir las acciones del personaje. En las pruebas realizadas con este modo el
sistema ha funcionado de forma estable y con una latencia aceptable. Los jugadores han logrado
coordinarse de manera satisfactoria y han considerado la experiencia como divertida, especialmente
cuando los jugadores se encontraban en la misma sala y podian comunicarse entre ellos facilmente.

28

7. TRABAJO FUTURO

A partir de los resultados de este trabajo, se pretende continuar con el desarrollo, con el objetivo
futuro de lanzar el juego comercialmente en la plataforma de distribucion digital Steam. Para ello
sera necesario refinar algunos de los apartados del proyecto y afiadir nuevas caracteristicas. Las
mejoras proyectadas a medio plazo son:

— Generacion de mundo mas variada y compleja, con zonas del planeta diferenciadas, que detecte
los posibles caminos que puede tomar el jugador y coloque las plataformas, las runas y los cristales
de forma inteligente en funcién de la dificultad de la partida.

— Mejoras en la interfaz del juego, en algunos de los recursos graficos y en la variedad de la musica.

— Cola de emparejamientos automaticos para partidas cooperativas, que permita formar partidas
agrupando a los jugadores en funcion de su experiencia y habilidad.

— Sistema de pings con el que los jugadores puedan usar el raton para sefialar al resto de jugadores
una parte de la pantalla, como modo de comunicacion.

— Otras mejoras: tutorial, mas tipos de cristales, zonas secretas, animaciones del robot, traduccion a

distintos idiomas, posibilidad de ver estadisticas de las partidas, posibilidad de guardar el mundo
generado como una imagen, etc.

29

8. DIAGRAMA TEMPORAL

La realizacion del trabajo ha llevado un total de 340,83 horas. En el siguiente diagrama de Gantt
(figura 20) se muestra el desarrollo de las tareas realizadas a lo largo del tiempo. En el anexo B se
explican en detalle dichas tareas, asi como otros aspectos relacionados con la gestion del trabajo.

p WD o o014 2015
A 1w, I I T i I T T I T
Name |Begindate End date et October Mowember December January Fehruary March Al Mty Jure
© Estudio previo 22/09/14 03/10/14 ™
o Requisitos 22/09/14 22/09/14 |
o Analisis 22/09/14 03/10/14 [
¢ Documentacién 22/09/14 14/04/15 P \
o Doc. Unity 22/09/14 09/12/14 [
o Doc.C# 02/10/14 24710/14 [
@ Doc. aspectos de red 10/04/15 14/04/15 O
@ Videojuego para un jugador 03/10/14 02/06/15 4 A
© Jugabilidad 03/10/14 26/05/15 | |
© Generaciénde munde 14/10/14 08/12/14 O
© Interfaz y controles 13/10/14 02/06/13 [|
© Gréficos 06/10/14 20/03/15 | |
© Efectos de sonido 30/03/15 07/04/15 O
o Misica 06/04/15 09/04/15]
© Modo cooperativo 16/04/15 15/05/15 pr—
o Arquitecturadered 16/04/15 15/05/15 I
© Control compartido 28/04/15 07/05/15 —
© Pruebas conusuarios 01/05/15 15/05/15 1
o Memoria del trabajo 26/05/15 24/06/15 | I

Figura 20 — Distribucion temporal de las tareas realizadas durante las 340,83 horas

30

9. BIBLIOGRAFIA

Toda la bibliografia aqui enumerada se encuentra disponible en inglés. Las paginas web de este
apartado han sido accedidas por tltima vez el 15 de junio de 2015.

Estudio previo
— Introducing Shared Character Control to Existing Video Games, Anna Loparev, Walter S.

Lasecki, Kyle I. Murray y Jeffrey P. Bigham, 2014. Disponible en:
http://repository.cmu.edu/hcii/277

— Real-time Crowd Control of Existing Interfaces, Walter S. Lasecki, Kyle I. Murray, Samuel White,
Robert C. Miller y Jeffrey P. Bigham, 2011. Disponible en:
http://www.cs.rochester.edu/hci/pubs/pdfs/legion.pdf

Documentacion

— Tutoriales sobre Unity Engine. Disponibles en: https.//unity3d.com/learn/tutorials/modules

Generacion de mundo

— How to Make Insane, Procedural Platformer Levels, Jordan Fisher, 2012. Disponible en:
http://www.gamasutra.com/view/feature/170049/How_to_Make_Insane_Procedural_Platformer Le

vels _.php

— Articulo "Perlin Noise" en Wikipedia. Disponible en: https.//en.wikipedia.org/wiki/Perlin_noise

— Glosario de la libreria de ruido coherente "libnoise". Disponible en:
http.//libnoise.sourceforge.net/glossary

Arquitectura de red

— Articulo "Source Multiplayer Networking" en la wiki de desarrolladores de Valve. Disponible en:
https://developer.valvesoftware.com/wiki/Source Multiplayer Networking

— Legacy Network Reference Guide, Unity Engine. Disponible en:
http.//docs.unitv3d.com/Manual/NetworkReferenceGuide.html

Optimizacion

— Reducing Memory Usage in Unity, C# and .NET/Mono, Andrew Fray, 2013. Disponible en:
https://andrewfrav.wordpress.com/2013/02/04/reducing-memory-usage-in-unity-c-and-netmono

31

http://repository.cmu.edu/hcii/277/
https://andrewfray.wordpress.com/2013/02/04/reducing-memory-usage-in-unity-c-and-netmono
http://docs.unity3d.com/Manual/NetworkReferenceGuide.html
https://developer.valvesoftware.com/wiki/Source_Multiplayer_Networking
http://libnoise.sourceforge.net/glossary
https://en.wikipedia.org/wiki/Perlin_noise
http://www.gamasutra.com/view/feature/170049/How_to_Make_Insane_Procedural_Platformer_Levels_.php
http://www.gamasutra.com/view/feature/170049/How_to_Make_Insane_Procedural_Platformer_Levels_.php
https://unity3d.com/learn/tutorials/modules
http://www.cs.rochester.edu/hci/pubs/pdfs/legion.pdf

ANEXO A - UTILIZAC],I(')N DE RUIDO PARA LA
GENERACION DE MUNDO

Como se explico en el documento principal, se ha utilizado ruido de Perlin para generar el mundo.
Un ruido es una funcién matematica (o algoritmo) que para cada punto del espacio (n-dimensional)
devuelve un valor real, generalmente entre -1 y 1. El ruido de Perlin deriva de los llamados ruidos
coherentes®, los cuales tienen tres propiedades:

1. El mismo valor de entrada genera siempre el mismo valor de salida.
2. Un cambio pequefio en el valor de entrada produce un cambio pequeo en el valor de salida.
3. Un cambio grande en el valor de entrada produce un cambio aleatorio en el valor de salida.

La primera propiedad permite que se pueda generar el ruido a trozos (chunks), sin que existan
discontinuidades entre trozos generados por separado. La segunda asegura precisamente dicha
continuidad (coherencia) del mundo generado. La tercera otorga una apariencia de aleatoriedad y no
predictibilidad al mundo.

El ruido de Perlin se genera sumando varias muestras de ruido coherente (generado en tiempo de
ejecucion, utilizando un algoritmo sencillo®) de distintas frecuencias, llamadas octavas. Cada octava
tiene el doble de frecuencia que la anterior y la mitad de peso en el ruido final. El resultado es un
ruido fractal que, como se muestra en las figuras 21 y 22, genera formas mas parecidas a las
naturales: sistemas montafiosos, humo, etc.

-) o=1

—
-
-

1

i
Perlin Noise
Figura 22 — Ruido de Perlin de dos dimensiones, obtenido al sumar 6 octavas

En la figura 23 se muestra un ejemplo simplificado de como se generan las cuevas a partir de ruido
de Perlin de dos dimensiones. Si el valor del ruido para la posicion del bloque estéd entre -0.1 y 0.1,
se genera un bloque de fondo (color oscuro). En caso contrario, se genera un bloque frontal (color
claro).

4 Mas informacion en la pagina web de la libreria de ruido coherente "libnoise":
http://libnoise.sourceforge.net/glossary
5 Puede verse la idea basica del algoritmo utilizado en Wikipedia: http://en.wikipedia.org/wiki/Perlin_noise

32

33

ANEXO B - GESTION DEL TRABAJO

En este anexo se exponen aspectos relacionados con la gestion del trabajo realizado.

B.1. Planificacion

Al inicio del trabajo se disend una lista de tareas generales a realizar, asignando un tiempo estimado
a cada una, teniendo en cuenta un objetivo de 300 horas para la totalidad del trabajo. La tabla 7
recoge la lista de tareas, junto con su tiempo estimado y su tiempo real (expresados en minutos y
horas). Las tareas marcadas con un asterisco se realizaron parcialmente en un trabajo para la
asignatura de Videojuegos, el cual fue la base para el presente trabajo. El tiempo dedicado a esas

tareas en el anterior trabajo no se incluye en la tabla.

TAREA ESTIM. (m) | ESTIM. (h) | REAL (m) | REAL (h)
Estudio previo del problema 1320 22 950 15,83
Requisitos * 120 2 90 1,5
Analisis * 1200 20 860 14,33
Documentacion sobre las tecnologias a utilizar 3480 58 2440 40,67
Documentacién sobre Unity 2400 40 1590 26,5
Documentacién sobre C# 600 10 530 8,83
Documentacion sobre aspectos de red * 480 8 320 5,33
Desarollo del videojuego para un jugador 8700 145 11620 193,67
Jugabilidad 1200 20 2270 37,83
Generacién de mundo 2400 40 4430 73,83
Interfaz y controles 1500 25 1390 23,17
Graficos 2100 35 2490 41,5
Musica 1200 20 270 4,5
Efectos de sonido 300 5 770 12,83
Desarollo del modo cooperativo 3000 50 3360 56
Arquitectura de red 2100 35 2370 39,5
Algoritmo de control compartido 600 10 510 8,5
Pruebas con usuarios 300 5 480 8
Memoria del trabajo 1500 25 2080 34,67
TOTAL 18000 300 20450 340,83

Tabla 7 — Distribucion de tareas

El trabajo comenz6 con un estudio (parcialmente ya realizado) sobre las caracteristicas del
videojuego que se queria desarrollar y los problemas mas importantes que se deberian afrontar:
generacion de mundo, control compartido, etc. A partir de ahi, se generaron unos requisitos y se
plantearon ideas generales para la resolucion de estos problemas.

El segundo paso fue consultar la documentacion disponible sobre el motor Unity y el lenguaje C#
(usado por Unity para programar comportamientos de los objetos). Cuando se tuvo cierto dominio
de las herramientas a utilizar, se comenz6 a desarrollar el videojuego, centrandose en el modo para

un jugador.

Cuando ya se tuvo el primer prototipo con caracteristicas minimas de jugabilidad (personaje,

34

bloques, movimiento, saltos, etc.) se comenz6 el diseno del sistema de generacién procedural del
mundo, el cual llevdo mayor tiempo del esperado debido a su complejidad, hasta que finalmente se
decidié dar por terminado, no habiendo dado tiempo a introducir todas las caracteristicas que se
plantearon en un principio.

Una vez se completaron las caracteristicas principales del videojuego, se comenzd a extender el
mismo para permitir jugar en red. Se adaptd el juego para que admitiera varios jugadores en red, de
forma que cualquiera de ellos pudiera controlar al personaje. Mas tarde, se implement6 el sistema
de control compartido y, cuando estuvo terminado, se realizaron pruebas con usuarios.

En el siguiente diagrama de Gantt (figura 24) se muestra el desarrollo de las tareas anteriores a lo
largo del periodo de realizacion del trabajo.

-f._ 2014 2015
el w. T T | i T | | T |
Name |Begin dat-e|‘E nd date e Octaber Movember December January February March Al e June
@ Estudio previo 22/09/14 03/10/14 ™
o Requisitos 22/09/14 22/09/14 |
o Analisis 22/09/14 03710714 [
¢ Documentacién 22/09/14 14/04/15 P \
© Doc. Unity 22/09/14 09/12/14 |
© Doc.C# 02/10/14 2411014 [
© Doc.aspectosdered 10/04/15 14/04/15 O
@ Videojuego para un jugador 03710714 02/06/ 15 P ———,
© Jugabilidad 03/10/14 26/05/15 | |
© Generaciénde mundo 14/10/14 08/12/14 7]
@ Interfaz y controles 13/10/14 02/06/15 [|
o Gréficos 06/10/14 20/03/15 | |
© Efectos de sonido 30/03/15 07/04/15 [
o Misica 06/04/15 09/04/15 O
o Modo cooperativo 16/04/15 15/05/15 pr—
© Arquitecturadered 16/04/15 15/05/15 /1
@ Control compartido 28/04/15 07/05/15 —
© Pruebas con usuarios 01/05/15 15/05/15 1
© Memoria del trabajo 26/05/15 24/06/15 /T

Figura 24 — Diagrama de Gantt del trabajo

Como se puede apreciar en el diagrama, algunas tareas, como la documentacion sobre tecnologias o
la creacion de los recursos graficos del videojuego, se han realizado cuando parecia adecuado o era
necesario para avanzar en el resto de tareas. Por otro lado, tareas como la implementacion del
sistema de generacion de mundo o de la arquitectura de red se han realizado en periodos mas cortos
de tiempo, pero ocupando la mayor parte del esfuerzo durante estos periodos.

B.2. Herramientas utilizadas

Se han empleado las siguientes herramientas durante la realizacion del trabajo. Todas ellas son
gratuitas y algunas son software libre.

Unity Engine — Desarrollo del videojuego (motor gréafico)

Visual Studio C# Express — Desarrollo del videojuego (programacion)

GIMP — Creacion de recursos graficos para el videojuego y de figuras para la memoria
Audacity — Edicion de efectos de sonido

Modelio — Creacion de diagramas usados en andlisis y en la memoria

35

LibreOffice — Creacion de la memoria y otros documentos

GanttProject — Creacion del diagrama de Gantt para la memoria

Dropbox — Copia de seguridad y sincronizacion entre distintas maquinas de trabajo
Facebook — Grupo dedicado para la coordinacion de las pruebas con usuarios

36

	3.1. Historia y ambientación 3
	3.2. Jugabilidad 4
	3.3. Controles e interfaz 4
	3.4. Gráficos 5
	3.5. Música y sonido 7
	4.1. Requisitos 8
	4.2. Casos de uso 9
	4.3. Arquitectura del sistema 10
	4.3. Algoritmo de generación de mundo 17
	4.4. Algoritmo de control compartido 20
	4.5. Algoritmo de generación de la textura rocosa 21
	B.1. Planificación 34
	B.2. Herramientas utilizadas 35

