E DEGREE PROJECT, IN COMPUTER SCIENCE , FIRST LEVEL
STOCKHOLM, SWEDEN 2015
o = S5

FKTHY

VETENSKAP
39 OCH KONST &%

N

Automatic Scheduling for schools

SCALABILITY OF THE HOPFIELD NEURAL
NETWORKS

DIEGO MARTINEZ MARRODAN

KTH ROYAL INSTITUTE OF TECHNOLOGY

CSC SCHOOL

o

B,
FKTHS

VETENSKAP
39 OCH KONST 9%

s

KTH Computer Science
and Communication

Automatic Scheduling for schools

Scalability of the Hopfield Neural Networks

DIEGO MARTINEZ MARRODAN

Degree Project in Computer Science, DD143X
Supervisor: Pawel Herman
Examiner: Orjan Ekeberg

CSC, KTH 2015-04

Abstract

This project is focused on evaluating, in terms of real time
needed to find a solution, the scalability of Hopfield Neural
Networks, a Machine Learning method, applied to a com-
mon problem that every educational institution has to deal
with at least once in every academic year, timetabling.

With this purpose, the problem is first introduced. And
secondly, in the background, the concept of "constraint" is
presented, to continue with a brief explanation of Artificial
Neural Networks, the state of the art and more specifically,
how Hopfield Neural Networks are characterized.

The formulation, modifications used, and the algorithm
are presented. This algorithm will be implemented in MAT-
LAB, and it will be run on data sets of different sizes.

The results obtained for the presented data sets are pre-
sented in a table and graphs, to later discuss these results.
In this discussion, it is found that the time spent to get a
solution could scale quadratically with respect to the size
of the problem, but there is not statistical evidence to this
hypothesis.

Finally, the conclusion is that Hopfield Neural Networks
could have a good scalability if the hypothesis worked for
bigger data sets, and some future work in the field is pre-
sented, like using sparse matrices for the implementation of
the problem, or studying the scalability of Hopfield Neural
Networks in other kinds of scheduling.

Contents

(1__Introductionl 1
I AT . . o o e e e e 2
1.2 Scopel 2
M3 0utling« oo 3

|2 Background| 4
2.1 Constraints in timetabling| 4
2.2 Artificial Neural Networksl)

[2.2.1 Hopfield Neural Networks|)

3 Methods 7
8.1 Formulationl 7
3.2 Hopfield Neural Networks applied to timetabling| 8

[3.2.1 Modifications and algorithm|. 9
|3.3 Parameters, data sets, and hardware and software] 10

4_Results 12

6_Discussion| 14
5.1 Analyzing the results|. 0000 14

6 Conclusionsl 17

IBibliography| 18

Chapter 1

Introduction

One of the problems that we have to solve every day with a higher or lower success
is organizing our schedule or scheduling. We have a set of activities that we have
or would like to do, and a limited amount of resources (space, time, people, capital,
etc.) for doing them. So we try to organize them in order to use the minimum
amount of resources required.

This problem can be applied to different kinds of scheduling, like job shop
scheduling, transportation scheduling, broadcast scheduling, academic scheduling,
etc. This project will be focused on the academic scheduling, specifically applied to
schools.

Schools have a limited amount of teachers, and classrooms, for a number of
registered students that are assigned to different classes. Schedules have to be
organized in such a way that students can attend all the lectures of the courses
that they have to take (which implies that there should be no conflicts between the
lectures of the courses that a class has to attend), having in mind constraints like
the limited number of classrooms, and that a teacher cannot deliver two lectures at
the same time.

Every resource has an associated cost, in time and capital. So there is a demand
for automated scheduling that can perform this task by optimising the resources,
in order to minimize the total cost. For this reason, there have been many inves-
tigations on the field with different approaches [11, 3], [5, 6, [8]. This project will be
focused on a Machine Learning approach to the problem, using Hopfield Neural
Networks.

Every year, schools have to design a schedule for the taught courses that matches
students with teachers into the available classrooms avoiding as many collisions as
possible. Traditionally, this task has been done manually and it can take up to
several weeks in the case of university scheduling [7].

Scheduling is a complex problem, usually a NP-Complete problem [2, 4], and
therefore traditional approaches to solve it (simulation models, analytical models,
heuristic approaches. ..) are quite inefficient [T, [2].

Solving the problem by applying Machine Learning techniques has been proven

CHAPTER 1. INTRODUCTION

to be quite effective [2], and therefore some algorithms for this have been developed
and evaluated. Nevertheless, there are not many evaluations of them in terms of
their efficiency when they are applied to data sets of different sizes, or the variation
of the size is proportional in all of the dimensions of the data sets [6].

1.1 Aims

This project will be focused on testing the behaviour of a Hopfield Neural Network
algorithm [6] on school requirement data sets of different size (in terms of groups
of students, teachers, and classrooms available, having in mind the total and the
relative amount of these resources, which are the dimensions of the problem), in
order to find out how its performance scales with the size of the problem.

The efficiency of the Hopfield Neural Network algorithm will be defined in terms
of computational speed in time (real time needed to find a solution in a given
computer since the algorithm starts to run), considering that the results should
have enough quality. This means that the number of constraints violated in the
generated schedules should be minimum (what is meant by constraints, is defined
in Chapter 2).

Thus, what the project will try to find out is how the time needed for finding
a solution to the problem increases or decreases when the amount of each resource
(dimensions of the problem) of it is bigger or smaller, respectively. And also whether
increasing or decreasing a specific resource (groups of students, teachers or class-
rooms available in this case), has more or less influence on this time than increasing
or decreasing a different resource.

1.2 Scope

In the project, school scheduling is chosen over university scheduling, among other
reasons, because in schools, students are assigned to classes that usually take the
same courses; while in universities, students have more freedom to select courses,
and all (or most) of them should be considered when designing the timetable, in-
creasing a lot the size of the problem. Choosing school scheduling, the problem is
simplified and its size is smaller.

Therefore, for this reason, students will be treated as groups and not as indi-
viduals, assuming that all students in a group have the same lectures at the same
time and place and move together as a group.

In addition, the schedule generated will be a weekly schedule that will be re-
peated during the term or academic year. This weekly schedule will consist of 30
periods, which can be easily distributed in 5 days in which each day has 6 periods.

This problem has four dimensions: classes or groups of students, teachers, class-
rooms or venues, and periods, being this last one fixed. Consequently, the set C of
groups of students, the set T of teachers, the set V of venues, and the set P of regular
periods or time-slots (of dimensions c, ¢, v and p respectively) are known. Also, it

CHAPTER 1. INTRODUCTION

will be assumed that there is available a matrix of requirements R of dimensions
¢ X t x v in which R;j indicates how many times the group i has to meet the teacher
j in the classroom k. Thus, the functionality of the algorithm will be to distribute
those requirements over the set P.

It is not a goal of this project to obtain a perfect solution (a solution without
conflicts), and either to apply the algorithm to real data sets. The algorithm will
be executed on three fictional data sets obtained from the OR-Library at Imperial
College London (http://www.ms.ic.ac.uk), and seven more modified from these
ones in order to have diversity in the relative and total amount of the resources
available.

1.3 Outline

After this introduction, following with the background, Artificial Neural Networks
are defined and the state of the art is presented. Then, in the methods chapter, the
formulation, algorithm, data sets, and settings used are shown.

Next in the report, the results obtained from the execution of the algorithm
in the different data sets, are displayed in a table and graphics. Continuing with
a discussion of these results, looking for an answer to the questions raised in the
introduction. And finally, the report ends with the conclusions obtained.

http://www.ms.ic.ac.uk

Chapter 2

Background

2.1 Constraints in timetabling

When designing a timetable for schools, lectures have to be scheduled following
some limitations called “constraints”. Usually, two kinds of constraints are defined
for this problem:

e Hard constraints: Constraints that cannot be violated in any way. A so-
lution that does not violate any hard constraint is called a valid or feasible
solution.

e Soft constraints: Constraints that are desirable, but not mandatory. The
less soft constraints violated, the better the solution will be.

There is not any global agreement about hard and soft constraints for school
scheduling, and different institutions usually have different requirements [7]. There-
fore, there are different hard and soft constraints considered among the literature
[5 6], 18, 9, [T0], but usually there are more similarities on the hard constraints. Some
examples of hard and soft constraints are the following:

Hard constraints

e No students or teachers attend more than one event at the same time.
e There is only one event in each room at any time slot.

e The room is big enough for all the attending students.
Soft constraints

A student or teacher has not more than an established number of lessons
consecutively.

A student or teacher has not more than an established number of lessons on
the same day.

A student or teacher has not big gaps between lessons.

4

CHAPTER 2. BACKGROUND

For the project, only the two first hard constraints will be considered, since its
goal, as stated in chapter 1, is to look into the efficiency of the applied algorithm, and
not generating perfect or realistic schedules. Therefore, this can be done avoiding
a complex implementation.

2.2 Artificial Neural Networks

Artificial Neural Networks are a family of statistical learning algorithms inspired
by biological neural networks. In them, there are nodes called “neurons” that are
connected together to form a network. They are essentially mathematical models
defining a function f : X — Y, or a distribution over X or both X and Y. And are
typically defined by:

e The interconnection layer pattern between the different layers of neurons.
e The learning process for updating the weights of the interconnections.

e The activation function that converts a neuron’s weighted input to its output
activation.

In the field of school timetabling, there have been some investigations and com-
parisons between Neural Networks and other methods to solve the problem [6], 9, [10].
The implementation used in this project will be based on the algorithm presented
in [6] (and in chapter 3), using a Hopfield Neural Network.

2.2.1 Hopfield Neural Networks

Hopfield Neural Networks are characterized by being a fully interconnected network
with N neurons. Neuron i has a net input value or internal state u; and an output
value v; (which can have a real value bounded between 0 and 1 in the continuous
model, or a binary value in the discrete model, being this last one the one which
is going to be used in this project). Fig. represents a Hopfield Neural Network
consisting of four neurons. The internal state u; is obtained from the sum of the
multiplication of the output value of all the other neurons v;, by the strength of the
connections from neuron i to j, given by W;; (where W; = 0, and W;; = W};), and
then adding a bias current (or additional input) Z; [6l 9].

N

ui=>» Wivj+I; (1)
=1

The relationship between the internal state u; and its output value v; is given
by an activation function g(u;). Which is the following in the discrete model:

1, ifl/t,'>0

2
0, ifu; <0 @)

vi = g(u;) = {

CHAPTER 2. BACKGROUND

The neurons are updated in following steps (sequentially or in parallel) following
the next rules [6]:

N
M,‘(l‘ + 1) = I/t,'(t) + At (Z VVl'jVj + Ii) (3)

j=1

vi(t +1) = g(u;) (4)

Where At is a constant time-step, that will be 1 in this project. Applying this
updates, the network will converge to a local minimum of the following energy
function:

1 N N N
E = —izz:Wijvivj—ZIivi (5)
i=1

i=1 j=1

This energy is a real value that increases with the number of constraints violated,
so the higher this value is, the more constraints that are being violated, which results
in a worse schedule. Therefore, a perfect schedule would have an energy value of
0. Nonetheless, as stated in section 1.2, it is not a goal of the project to obtain
schedules with energy 0.

Figure 1. Example of Hopfield Neural Network with four nodes

Chapter 3

Methods

The implementation of the Hopfield Neural Network algorithm is going to be for
MATLAB, since there is a lot of work with matrices and MATLAB offers many
tools to manage them, making the task easier and more efficient.

The data sets that are going to be used are based on the ones publicly avail-
able from the OR-Library at Imperial College London (http://www.ms.ic.ac.uk).
Concretely, the original data sets hdtt4 (4 groups, 4 teachers and 4 venues), hdtt6
(6 groups, 6 teachers and 6 venues), and hdtt8 (8 groups, 8 teachers and 8 venues),
are going to be used and derived into another 7 different datasets. This way, the
number of groups, teachers and venues does not increase or decrease in the same
amount and it will be possible to show if any variable is more relevant than the
others when scaling the problem, and also, use the algorithm with a bigger problem
than the original data set hddt8 (hddt10). Since the number of periods considered
is going to be 30 for every week, the number of neurons, with the datasets used,
will range from 1920 neurons for the hdtt4 set to 30000 for the hdtt10 set. The
base data sets are totally constrained, which means that each period contains every
class, teacher and venue. This makes it extremely difficult to find a perfect solution
(solution with energy 0).

3.1 Formulation

The resulting schedule will be represented as a boolean matrix of dimensions ¢ x
t X v X p defined as follows:

(6)

1, if group ¢ and teacher j are assigned to venue k in period [
Xijkl = .
Y 0, otherwise

The formulation used is the following:

p
Y i =R (VieCjeT;keV) B
=1

http://www.ms.ic.ac.uk

CHAPTER 3. METHODS

t v

Y xiju<l (VieCleP) (8)
j=1lk=1

>N xiju<1l (VjeT;leP) (9)
i=1 k=1

c t

SN xiju<1l (VkeVileP) (10)
i=1 j=1
xijw =00r1l (MieC;jeT;keV;leP) (11)

The Equation ensures that the requirements (contained in the matrix R)
are satisfied. Equations , @ and prevent class, teacher, and venue clashes
respectively. And finally, Equation is needed to ensure the integrity of the
solutions.

3.2 Hopfield Neural Networks applied to timetabling

In this project, the timetabling problem is represented as an optimization (or mini-
mization of the energy) problem that is going to be mapped into a Hopfield Neural
Network. In order to do so, it is needed to express the constraints of the problem as
penalty terms into the energy function that has to be minimized [0, 9]. This energy
function, can be expressed as in [6]:

a c t v)4 2 B c t v p t v
E=5>2.2 (Z Xijkl — Rijk) FT DD DD D Kk
1 i j=

i=1 j=1k=1 \I= i=1 j=1k=1I1=1 ji'=1k'=1
J'#i K #k
X c t Vv p c Vv }/ c v P c t
Ty DD D000 D e + B D000 wwrega (12)
i=1 j=1k=11=1i=1kK=1 i=1 j=lk=11=1i=1j'=1
il;éi k/;ék 1"751' j/?éj

Where a, 3, and y are the penalty parameters which have to be tuned to
equally balance the terms of the function. The first term in the Equation is
zero when Equation is fulfilled. The other three terms, will be zero when the
Equations , @D, and are satisfied, and otherwise, it will represent one or
more student, teacher or venue clashes respectively.

With the right network weights and external bias, a Hopfield network can be
designed to minimize this function. Considering the matrix of neurons v equivalent

CHAPTER 3. METHODS

to the solution matrix x, we have a eight-dimensional matrix of weights W since it
connects all neurons v;j; to all other neurons vy /7. Now, applying Equation
to this problem, the energy function would be:

1 c t v P c t v)4 c t v P
E=—5> 22222 > > Winajpwrvigvijier =33 > > hijaviju
i=1 j=lk=11=1¢=1j/=1kK=1I'=1 i=1 j=1k=11=1
(13)

At this point, the matrix W and the matrix of external bias I, can be obtained
expanding and rearranging the function , and comparing it with the function

(13)), as it is explained in [6]:

vvijkl,i’j’k’l’ = — a6ii/6jj/6kk/ — ﬁéji/(l — 6]]/)(1 — 5kk’)5ll’
— X(l — 61'1'/)5]']"(1 — 5kk’)5ll’ — '}/(1 — 5,'1'/)(1 — 5jj’)6kk’5ll’ (14)

Liji = OR; ji (15)

Where 6,/ is the Kronecker-Delta function, 6,y =1 if y =" and 0 otherwise.

There is also an additional constant term § {3 >0 354 R?jk to complete
the equivalence, but it can be ignored since it does not influence the location of the
local and global minima, and there is not a constant term in the Hopfield energy
function .

Finally, the rule for updating the internal states and output values of the neu-
rons, applied to this specific problem, would be the following;:

c t v)4
I/ll'jkl(t + 1) = Mijkl(t) + At (Z Z Z Z W/ijklvl-/j/k/l/vi/j/k/l/ +Iijkl> (16)

i'=1j=1k=11I=1

Vija (t + 1) = g(uijr) (17)

3.2.1 Modifications and algorithm

According to [6], one of the problems of Hopfield Neural Networks is that it usu-
ally converges to local minimas while performing the descent, so it does not reach
the global minima (which would be the best solution), and therefore the resulting
timetable is not very good. Thus, they propose some modifications to avoid this as
much as possible.

One of this modifications is terminating the updating after a small number of
iterations, and then modify the output value of a neuron vaccording to a threshold
between 0 and 1. So if the threshold is 0.8, there is a 20% chance that the output
value will be assigned to 1, and a 80% chance that it will be assigned to 0.

CHAPTER 3. METHODS

The other modification proposed is to allow a particular descent to terminate
prematurely if a local minima has been already found. With this purpose, a measure
called stability, that counts the number of neurons whose output value have changed,
will be used. If this number is below a predefined value, the current descent is
finished, the previous modification acts and then it continues with another descent.
Allowing this way to dynamically reduce the number of iterations if the stability
point has been reached.

With these two modifications, the chances that the algorithm reaches a global
minima and does not get trapped into a local minima are much higher. This algo-
rithm, described also in [6], is the following:

Algorithm 1 Hopfield Neural Network algorithm
1: initialize u (randomly around zero)
2: calculate v using Equation
3: for i = 1 to descents do
4: for j =1 to iterations do

5: for k=1to N do

6: update u; using Equation

7 update v; using Equations (2))

8: end for

9: calculate stability = SN Avg

10: if stability criteria is satisfied then

11: exit j loop

12: end if

13: end for

14: randomly choose a neuron, and flip it according to threshold
15: renormalize u (ux — 1if up > 0; wr — 0 if ug < 0)
16: end for

In this project, the inner loop has been slightly modified in order to make it
easier to map from the result into a real schedule. Therefore, instead of a loop of
size N, there are four nested loops of size ¢, t, v and p, which does not make much
difference in terms of efficiency since N = c¢-t-v- p. And the updates for u and v
will follow Equations and respectively.

3.3 Parameters, data sets, and hardware and software

The parameters that are going to be used need to be tuned to get proper results.
After some tests over the data sets, these parameters that manage to get a low
energy without skipping many requirements (which would result in a low energy
value for terms 2, 3 and 4 in the Equation but a high energy value for term 1),
are the following:

o — 0.2

10

CHAPTER 3. METHODS

B —0.1
x — 0.1
Y— 0.1
descents — 4

iterations — 10

N
stability — 4 (Z Avk>
k=1

threshold — 0.5 (probability of modifying a random i neuron

output value v; to 0, otherwise to 1).

For the evaluation, the algorithm will be run in each data set 10 times, and the
time that the algorithm takes in each data set is going to be considered the average
of the running time of those 10 executions. After this, a relationship that correlates
the running time and the size of the problem, will be tried to be found. The
abbreviations that are going to be used on the graphics for the data sets evaluated
are the following:

D4 — (4 groups, 4 teachers and 4 venues)

D6 — (6 groups, 6 teachers and 6 venues)

D6_8C — (8 groups, 6 teachers and 6 venues)
D6_8T — (6 groups, 8 teachers and 6 venues)
D6 8V — (6 groups, 6 teachers and 8 venues)
D8 — (8 groups, 8 teachers and 8 venues)

D8 6C — (6 groups, 8 teachers and 8 venues)
D8 6T — (8 groups, 6 teachers and 8 venues)
D8 6V — (8 groups, 8 teachers and 6 venues)
D10 — (10 groups, 10 teachers and 10 venues)

The hardware and software used for running this algorithm on the different data
sets is a laptop with an Intel® Core™ i7-2670QM with 4 cores at 2.20GHz, and
8GB of RAM on a Windows 8.1 (64 bits) OS.

11

Chapter 4

Results

Table 1 shows the mean time (over 10 runs) that the algorithm took to find a
solution for the different data sets, in seconds. The parameters used in the program
are commented in Chapter 3.

D4 D6 D6_8C | D6_8T | D6_8V

4.3340 | 39.2513 | 68.1623 | 65.3964 | 66.1153

D8_6C | D8_6T | D8_6V D8 D10
127.6384 | 127.016 | 137.1521 | 240.4248 | 922.7398

Table 1. Time elapsed (in seconds)

Secondly, Fig. represents graphically the results shown in the table. In this
figure, the growth of the dimensions of the problem (shown in the x axis) is not
linear, and it may give a false illusion that the growth in time is exponential. Thus,
Fig. will be a modification of that figure, in which only the data sets D4, D6,
D8 and D10 are shown.

12

CHAPTER 4. RESULTS

1000 T T T T T T T T

800 -

800 -

700

/OO |

500

Time spent
(in seconds)

400 -

300 -

200

100 -

D 1 1 1 1 1 1 1
D4 D6 DB6BC D5 ST DB AV DB GC DBGT DBGEY DI DIO

Figure 2. Comparison of time spent finding a solution

1000 T T

800

800

700

BO0

500

Time spent
(in seconds)

400

300

200

100

0
D4 DB Da D10

Figure 3. Mean time for finding a solution to D4, D6, D8 and D10

13

Chapter 5

Discussion

In other investigations, like in [6], there are some graphs and tables showing the
time spent for the algorithm with data sets of different sizes. Nonetheless, all the
dimensions (except the periods) of the data sets in which the algorithm was run,
increased or decreased in the same amount, like in Fig. in this project. Moreover,
what is the scalability of the algorithm, is not discussed in them.

Therefore, here it will be discussed if a relation between the size of the problem
and the running time of the algorithm can be found. And also, whether increasing
or decreasing a specific dimension has more impact on this time than increasing or
decreasing a different dimension.

5.1 Analyzing the results

From Fig. , it can be clearly appreciated that a change of size in one dimension
has the same influence as changing another different dimension (e.g. a schedule for
a number of 6 groups, 6 teachers and 8 venues, needs the same time to be found as
another for a number of 8 groups, 6 teachers and 6 venues). Therefore, from here
it can be extracted that just the total size of the problem (c - ¢ - v), ignoring the
variation in the number of periods since it is supposed to be constant, is relevant
for the time that the algorithm will spend finding a solution.

Respecting the scalability of the problem, it can be seen in Figs. and
that the increase of the running time with respect to the size (or dimension) of the
problem, is not linear. But it also needs to be considered that, when the size of the
problem is increased in all the dimensions (except the periods) in, for example, 2
times, its size is going to increase from c-7-v- p to 2¢- 2t - 2v - p, and therefore, the
total increase is 2-2-2 =8, (23).

Thus, in order to find a relation, the rate between the computation time of D8
and D4 will be computed, and then since the result of this can be seen as a cubic
number (because the three dimensions are being multiplied by 2), the cubic root of
this will be also computed:

240.4248/4.3340 = 55.4741 (Op.1)

14

CHAPTER 5. DISCUSSION

V/55.4741 = 3.8138 (Op.2)

Now, the same can be done with the running time of D6 and D4. In this case,
the three dimensions are being increased by 1.5. Then, the question will be whether
there is a relation between the factor 2 and the result of the operations above, and
the factor 1.5 and the result of the operations below, or not:

39.2513/4.3340 = 9.0566 (Op.3)
V/9.0566 = 2.0844 (Op.4)

So now, having in mind that 22 = 4 and that 1.5% = 2.25, it could be thought,
from Ops. (2) and (4), that an increase of a dimension by a factor f would mean that
the time spent to get a schedule would be multiplied by a factor around f2. This
hypothesis can be checked with the remaining data sets, by applying the inverse
operations. For D6_ 8%, the factors are 1.5, 1.5, and 2 from D4; or 1, 1, and 1.33
from D6. For D8 6*, they are 1.5, 2, and 2 from D4; or 1, 1.33, and 1.33 from D6.
And for D10, they are 2.5, 2.5, and 2.5 from D4; 1.66, 1.66, and 1.66 from D6; or
1.25, 1.25, and 1.25 from D8:

D4 % 1.5% % 1.5% % 22 = 87.7635 (Op.5)
D6« 12 %1% % 1.33% = 69.78 (Op.6)
D4 x1.5% % 22 % 22 = 156.024 (Op.7)
D6 x 12 % 1.33% 1.33% = 124.0535 (Op.8)
D4 % 2.5% % 2.52 % 2.52 = 1058.1055 (0p.9)
D6 % 1.66° % 1.662 % 1.66% = 841.2916 (Op.10)
D8 % 1.25% % 1.25% % 1.252 = 917.1478 (Op.11)

D4, D6, and D8 refer to the mean time over 10 executions shown in Table
(). Operations (5) and (6) estimate the time needed to find a solution to D6_8*;
operations (7) and (8) do the same but for the data set D8_ 6*; and operations (9),
(10), and (11) for the data set D10.

Looking at the results of Operations (5) and (6), it can be appreciated that
the computing time of D6_ 8* follows the proposed hypothesis. As well as D8 6*
looking at Operations (7) and (8) also has the same tendency. It can be also noticed
in Operations (9), (10), and (11), that the real time needed for finding a solution to
D10 is around the estimated time obtained from the times needed for D4, D6 and
D8, respectively.

Fig. shows a comparison between the mean time that the algorithm took
finding a solution for the data sets D6_8* D8 6%, D8 and D10; and the predicted
time using the hypothesis extracted in this chapter, using the data set D4 as the
base for the prediction. The double blue line in D6 _8* and D8 6* expresses the
minimum and maximum mean time in the three variations of these data sets.

15

CHAPTER 5. DISCUSSION

1200 | | |

Real time
Predicted time

1000

800

Real vs. predicted
time
3]
=
=

400

200

I:I | 1
D& DE_&* 05 _B* Da 10

Figure 4. Real time vs. predicted time

Therefore, it looks that this Hopfield Neural Network algorithm could scale
quadratically with the size of the problem for every dimension. Nevertheless, there
is no statistical evidence for this affirmation, it is just a trend that these limited
number of data sets follow. Consequently, the hypothesis cannot be generalized for
every data set of any size.

16

Chapter 6

Conclusions

In reference to the problem statement, at the beginning of this project, a relation
between the size of the problem for every dimension and the time needed to run the
algorithm has been found, but it is only a hypothesis since there is no statistical
evidence that support it. This hypothetical relation can be expressed as a poly-
nomial quadratic function, which means that it could be a good alternative to the
traditional approaches to the timetabling problem (which usually is a NP-complete
problem, as stated in Section 1) if the hypothesis were confirmed.

It was tried to execute the algorithm on a bigger problem (16 groups, 16 teachers
and 16 venues), but it did not fit in memory. The matrix that takes the most space
in memory is the matrix of weights W, and since MATLAB uses 8 Bytes of memory
for a double value, this matrix would use 112.5 GB in this case. One solution to
this that can be tried in future work could be using sparse matrices as proposed in
[6].

Also, it could be interesting to apply this method to more realistic problems
and evaluate how it behaves. This could be, using the algorithm with real schools
requirements, and check whether the algorithm scales as in the hypothesis (con-
sidering that the algorithm uses sparse matrices, since probably real data sets are
bigger than the example that did not fit), and if it is reasonable to replace manual
timetabling by this method. If so, the algorithm could be used to avoid the effort
that is needed every year for doing this task [7].

Another interesting topic of investigation could be applying this method to other
kinds of scheduling (job shop scheduling, public transport scheduling, broadcast
scheduling, etc.). And then study whether its scalability is good for those problems.

17

Bibliography

1]

H. Aytug, S. Bhattacharyya, G.J. Koehler, and J.L. Snowdown, “A review of
Machine Learning in Scheduling”, IEE Transactions on Engineering Manage-
ment, Vol. 41, No. 2, pp. 165-171, May 1994

C.-Y. Lee , S. Piramuthu & Y.-K. Tsai, “Job shop scheduling with a ge-
netic algorithm and machine learning”, International Journal of Production
Research, Vol. 35, No. 4, pp. 1171-1191, 1997, http://dx.doi.org/10.1080/
002075497195605

Michael L. Pinedo. Scheduling. Theory, Algorithms and Systems, Fourth Edi-
tion, pp. 491-496, 2012.

Mark S. Fox, Bradley P. Allen, Stephen Smith, and Gary A. Strohm, “ISIS:
A Constraint-Directed Reasoning Approach to Job Shop Scheduling System
Summary”, tech. report CMU-RI-TR-83-08, Robotics Institute, Carnegie Mel-
lon University, June 1983.

A H. Karami, M. Hasanzadeh, "University course timetabling using a new hy-
brid genetic algorithm," 2012 2nd International eConference on Computer and
Knowledge Engineering (ICCKE), pp.144-149, 18-19 October 2012.

Kate A. Smith, David Abramson, David Duke, “Hopfield neural networks for
timetabling: formulations, methods, and comparative results”, Computers &
Industrial Engineering, Vol. 44, Issue 2, pp. 283-305, February 2003.

Edmund Burke, Dave Elliman, Peter Ford, Rupert Weare, “Examination
timetabling in British Universities: A survey”, Practice and Theory of Au-
tomated Timetabling, pp. 76-90, 1996

M. Doulaty, M. R. Feizi Derakhshi, and M. Abdi, "Timetabling: A State-of-
the-Art Evolutionary Approach," International Journal of Machine Learning
and Computing, Vol. 3, no. 3, pp. 255-258, 2013

M.P. Carrasco, M.V. Pato, “A comparison of discrete and continuous neural
network approaches to solve the class/teacher timetabling problem”, Furopean
Journal of Operational Research, Vol. 153, Issue 1, pp. 65-79, 16 February 2004

18

http://dx.doi.org/10.1080/002075497195605
http://dx.doi.org/10.1080/002075497195605

BIBLIOGRAPHY

[10] Helmut E. Mausser, Michael J. Magazine, “Comparison of neural and heuris-
tic methods for a timetabling problem”, Furopean Journal of Operational Re-
search, Vol. 93, Issue 2, pp. 271-287, 6 September 1996

19

