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Abreviaturas empleadas 

 

BSA: Bovine Serum Albumin 

CCK-8: Cell counting Kit-8 

DMSO: Dimetilsulfóxido 

EDTA: Ácido etilendiaminotetraacético 

ESCs: Células madre embrionarias (Embryonic Stem cells) 

bFGF: Factor de crecimiento fibroblástico básico (basic Fibroblast Growth Factor) 

FITC: Isotiocianato de fluoresceína (Fluorescein IsoThioCyanate) 

GMP: Buenas prácticas de fabricación (Good Manufacturing Practices) 

HLA: Antígeno leucocitario humano (Human Leukocyte Antigen) 

HSCs: Células madre hematopoyéticas (Hematopoietic Stem Cells) 

MSCs: Células madre mesenquimales (Mesenchymal Stem Cells) 

PBS: Phosphate Buffered Saline 

PE: Ficoeritrina (PhycoErythrin) 

SAB: Suero AB 

SD: Desviación estándar (Standard Deviation) 

SFB: Suero fetal bovino 
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 Resumen: 

 Las células madre mesenquimales (MSCs) suponen, en la actualidad, una 

importante fuente de recursos en los campos de la terapia celular y la ingeniería de 

tejidos. Sin embargo, la mayoría de protocolos para su aislamiento y cultivo aún 

contemplan el suero fetal bovino (SFB) como suplemento del medio, lo que supone un 

riesgo potencial para las infecciones y reacciones inmunes. Con la finalidad de 

encontrar sustitutos adecuados al suplemento con SFB, se ha considerado la 

elaboración de medios químicamente definidos, lo que se ha visto dificultado en gran 

medida por la riqueza de componentes del SFB. Por este motivo, alternativas humanas 

que permitan conservar las características celulares y clínicamente relevantes de las 

MSCs han de ser estudiadas. Este trabajo se presenta con la intención de evaluar el uso 

de suero humano AB comercial y de un pool de plasmas humanos A- como alternativa 

al empleo de SFB para el cultivo de las MSCs. Para ello, se estudió la viabilidad celular y 

el inmunofenotipado en los diferentes medios. El crecimiento celular fue menor que 

en el control de SFB 10% en los medios suplementados con suero AB (SAB) 5%, SAB 

10% y pool de plasmas humanos, a todos los porcentajes probados. Sin embargo, fue 

mayor que el control en MSCs con SAB 15% y SAB 20%. No se observaron diferencias 

significativas en los marcadores de superficie por citometría de flujo entre las células 

cultivadas con medio suplementado con SFB y SAB humano comercial. Comprobamos 

que el SAB humano comercial y el pool de plasmas humanos pueden ser adecuadas 

alternativas al empleo con SFB, pero esta afirmación precisa de más estudios a fin de 

conseguir la mejor alternativa y disminuir todos los riesgos potenciales del SFB. 

 

Palabras clave:  

- Células madre mesenquimales - Suero fetal bovino - Suero humano - Plasma 

humano. 
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Abstract: 

MSCs are currently an important resource in cell therapy and tissue 

engineering. However, most isolation and expansion protocols for clinical-scale 

production of MSCs use fetal calf serum as supplement, which poses a potential risk 

for infections as well as immunological reactions. Chemically defined media production 

is been considered to find a suitable fetal calf serum substitute, but its development is 

difficult because of the numerous constituents of fetal calf serum. For this reason, 

various human blood-derived components have to be investigated. However, these 

components need to maintain all key cellular and therapy-relevant features of MSCs. 

In this project, in order to find a suitable fetal calf serum substitute, human 

commercial AB serum and human A- plasma were studied. We studied cell viability and 

immunophenotyping for all culture conditions. Cell growth was lower for cells cultured 

with 5%, 10% commercial serum AB and for these cultured with human A- plasma than 

the control with 10% fetal calf serum. It was higher than the control for cells with 15% 

and 20% human commercial AB serum. Besides, important differences in surface 

markers between MSCs in culture with fetal calf serum or human commercial AB 

serum were not noticed. We showed that human commercial AB serum and human A- 

plasma can be good alternatives to fetal calf serum for cartilage-MSCs culture, but 

more studies are needed to find the best alternative and to remove all fetal calf 

serum´s risks. 

  

Keywords: 

- Mesenchymal stem cells - Fetal calf serum - Human serum - Human plasma. 
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1. INTRODUCCIÓN  

1.1. Antecedentes 

Pocos tipos celulares han conseguido cautivar a tantos investigadores 

biomédicos en los últimos diez años como lo han hecho las células madre 

mesenquimales (Ranera, 2012). Pubmed, en 2015, identifica más de 34.000 referencias 

de “mesenchymal stem cells” y más de 22.000 para “mesenchymal stromal cells”. 

   Las primeras referencias sobre la existencia de células madre en el organismo, 

a finales de los años 50, se basan en los experimentos realizados con células madre 

hematopoyéticas (HSCs) (McCulloch y Till, 1960), pero la capacidad de regeneración de 

los tejidos ya era conocida con anterioridad. De hecho, hace ya más de 50 años que se 

emplea la terapia celular, concretamente el trasplante de HSCs, para el tratamiento de 

inmunodeficiencias, afecciones sanguíneas malignas y ciertos tumores sólidos (Alegre, 

2010). 

   En los últimos veinte años, un impulso notable de este campo dio lugar a la 

llamada medicina regenerativa, manifestando el potencial terapéutico de las células 

madre adultas. Aunque inicialmente el interés terapéutico de las MSCs parecía 

focalizarse en el aprovechamiento de su capacidad de diferenciación para la 

regeneración de los tejidos y órganos, ahora también se están valorando como 

potentes moduladores de microambientes en tejidos asociados a enfermedades 

(Matthew et al, 2013). 

1.2. Células madre 

   Las células madre son células progenitoras no especializadas que habitan en 

nichos en varios órganos y tejidos, pudiendo ser reclutadas para reemplazar células de 

tejido específicas que han muerto. Actúan como un sistema de reparación, pudiendo 

dividirse de manera ilimitada durante la vida del individuo o del animal. Poseen dos 

características fundamentales: en primer lugar, están dotadas de capacidad de auto-

renovación mediante división celular; en segundo lugar, bajo condiciones específicas, 

pueden originar células hijas que se convertirán finalmente por diferenciación en tipos 

celulares especializados con funciones biológicas únicas, además de poder implantarse 

tanto en tejidos dañados como en tejidos sanos (Rosenthal, 2003; Körbling y Estrov, 
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2003; Daley et al., 2003). Hallar en cualquier zona del cuerpo una célula progenitora no 

diferenciada, con capacidad para diferenciarse hacia células especializadas de tejidos y 

órganos, supone disponer del almacén ideal de material necesario para reemplazar y 

reparar tejidos.  

1.3. Clasificación 

   Existen diversos tipos de células madre:  

A) Si atendemos a su potencial de diferenciación, pueden clasificarse 

fundamentalmente en: totipotenciales, pluripotenciales y multipotenciales. 

   Las células madre totipotenciales son aquéllas con potencial para originar un 

individuo completo, pudiendo producir tanto tejido embrionario como tejido extra-

embrionario (placenta). Se considera que sólo los estadios iniciales del zigoto 

constituirían dicho grupo (Verfaillie et al., 2002).  

   Las células madre pluripotenciales  son capaces de diferenciarse a tejidos de 

cualquiera de las tres capas embrionarias: ectodermo, mesodermo y endodermo, 

incluyendo las células germinales, pero no tienen capacidad para originar un 

organismo completo, pues carecen del trofoblasto que daría lugar a la placenta. Las 

células que proceden de la masa celular interna del blastocisto serían células 

pluripotentes.  

   Las células madre multipotenciales pueden diferenciarse hacia distintos tipos 

celulares de la misma capa embrionaria de la que derivan. Clásicamente, se 

consideraba a las células madre adultas como células multipotentes, pero algunos de 

estos tipos, como las células madre hematopoyéticas, son capaces de diferenciar a 

tejidos procedentes de las tres capas embrionarias (Jiang et al., 2002; Grant et al., 

2002).  

   Además de las anteriores, existen células oligopotentes, que dan lugar a uno 

o a unos pocos tipos de células, y células unipotentes, que son aquéllas que 

únicamente pueden diferenciar a un tipo celular (Verfaillie et al., 2002).  
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   B) Desde el punto de vista de su origen, las células madre se clasifican en 

células madre embrionarias (ESCs), que derivan del embrión, bien del blastocisto o de 

la cresta gonadal. Son capaces de proliferar indefinidamente, pero presentan 

limitaciones desde el punto de vista ético. Además, su uso a nivel terapéutico queda 

restringido por la posible formación de teratomas o teratocarcinomas, consecuencia 

de su alta tasa de proliferación. Las células madre adultas o somáticas, cuya capacidad 

de proliferación y diferenciación es más limitada que la de las ESCs, parecen entonces 

una alternativa más segura y prometedora en el campo de la medicina regenerativa 

(Alegre, 2010). Un tipo de células madre adultas son las MSCs, núcleo de este trabajo 

fin de grado. 

 

 

 

 

 

 

 

 

 

  

Fig. 1. Embriogénesis humana: potencial y grado de diferenciación. (Bonora-Centelles, A. et al, 

2008). 

 

1.4. Características 

    Las MSCs fueron las primeras células no hematopoyéticas que se aislaron de 

médula ósea. Se han aislado de varias especies, incluyendo humano, ratón, oveja o 

perro, entre otras. Representan entre un 2 y un 3% del número total de células 

mononucleares en médula ósea y pueden ser aisladas y expandidas, durante varios 

pases de cultivo, sin perder la capacidad para diferenciarse. Son células multipotentes, 

que adquieren una morfología fibroblástica cuando se ponen en cultivo y se 
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caracterizan por su capacidad de adhesión durante el cultivo en monocapa. Se debe 

tener en cuenta que las colonias de MSCs aisladas por adherencia al plástico 

posiblemente contienen otros tipos celulares, por lo que, se considera, lo único que 

puede cerciorar que un subconjunto aislado de células adherentes a la placa de cultivo 

derivadas de médula ósea son verdaderamente MSCs es que las células aisladas 

demuestran diferenciarse a múltiples linajes celulares (Alhadlaq et al, 2004). 

   Este hecho, sumado a la inexistencia de un marcador de superficie exclusivo 

para su identificación positiva entre los tipos celulares de médula ósea, lleva a que sea 

difícil definir las MSCs. Por este motivo, la Sociedad Internacional de Terapia Celular 

definió en 2006 una serie de estándares que las células aisladas de médula ósea 

humanas deben cumplir para que puedan ser denominadas MSCs:  

1. Capacidad de adherencia al plástico del material de cultivo. 

2. Expresión de ciertos marcadores de superficie: más de un 95% de las células en 

cultivo deben mostrar en su superficie las moléculas CD105 (endoglina), CD73 

(SH2 y SH3) Y CD 90 (Thy-1); y menos de un 2% de las mismas deben ser 

positivas en la detección de CD45 (antígeno común de leucocitos), CD34 

(marcador de células precursoras de células hematopoyéticas), CD14 ó CD 11b 

y CD79 α ó CD 19 ó HLA-DR. 

3. Multipotencialidad de diferenciación a osteoblasto, adipocito y condrocito. 

    Además de los marcadores anteriores, las MSCs expresan niveles 

intermedios-bajos del antígeno leucocitario humano-I (HLA-I) e insignificantes niveles 

de HLA-II en su superficie. Tampoco expresan moléculas co-estimuladoras como CD40, 

CD80 o CD86 (Dominici et al, 2006). 

   Igualmente, las MSCs inhiben la maduración de las células dendríticas, 

presentadoras de antígenos a las células T (Nauta et al, 2006), así como, la 

proliferación, producción de citoquinas y actividad citotóxica de las células NK y 

reducen el potencial proinflamatorio de los neutrófilos (Spaggiari et al, 2006; 

Raffaghello et al, 2008). De otro lado, las MSCs inhiben la proliferación y producción de 

citoquinas de las células T, y la citotoxicidad mediada por células TCD8+ contra células 
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alogénicas, células infectadas por virus y células tumorales (Di Nicola et al, 2002, 

Morandi et al, 2008, Prigione et al, 2009; Rasmusson et al, 2007, Delarosa et al, 2009; 

Gonzalez et al, 2009; Gonzalez-Rey et al, 2009; Jorgensen et al, 2003).  

   Las propiedades de baja inmunogenicidad y capacidad inmunosupresora 

hacen de las MSCs células “inmunológicamente privilegiadas” y las convierten en 

candidatas ideales para el desarrollo de terapias celulares frente a enfermedades 

autoinmunes o inflamatorias. Esto sugiere la posibilidad de obtener células de distintos 

donantes, expandirlas in vitro y congelarlas para su uso cuando sea necesario.  

 

Fig. 2 y 3. Morfología fibroblástica característica de las MSCs en cultivo. 

 

1.5. Obtención 

   Las células mesenquimales, además de obtenerse de médula ósea, pueden 

aislarse de otros tejidos adultos como tejido adiposo, sangre periférica, cordón 

umbilical y líquido sinovial. Derivan del mesodermo y, por tanto, son capaces de 

diferenciar in vitro hacia tejidos mesodérmicos como hueso o cartílago, músculo, tejido 

adiposo y otros tejidos conectivos, pero  se ha comprobado que tienen el potencial 

para diferenciarse además en otros tipos de células como células hepáticas, renales, 

cardíacas y células neurales. Por lo tanto, los términos descriptivos “pluripotente” o 

“multipotente” son usados mutuamente para describir la capacidad de las MSCs para 

diferenciarse en un amplio rango de tejidos de mamíferos (Alhadlaq et al, 2004). 

Asimismo, han demostrado propiedades de angiogénesis, antifibróticas (Matthew et 

al, 2013) y de revascularización de nuevos tejidos formados. 
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1.6. Aplicaciones 

   Entre las aplicaciones con las que se han relacionado y dada su capacidad de 

diferenciación hacia células de linaje osteocondral, las MSCs pueden tener utilidad en 

enfermedades osteoarticulares como la artrosis o la artritis reumatoide, donde la 

regeneración del cartílago es clave y cuyo interés fundamental reside en un actual 

aumento de la prevalencia de forma paralela al incremento de la edad de la población 

en el mundo desarrollado. En la diferenciación hacia otros linajes celulares, se está 

estudiando su futuro en el tratamiento de patologías de base inmune, neurológicas, 

cardiovasculares, gastrointestinales y hematológicas, cuya investigación se ha visto 

potenciada en los últimos años (Simone, 2014). De todo ello extraemos que las MSCs 

constituyen actualmente una importante fuente que motiva estudios en los campos de 

la terapia celular y la ingeniería de tejidos. 

   El uso de MSCs como agentes inmunosupresores en enfermedades 

autoinmunes se ha probado con éxito en modelos animales (Bartholomew et al., 

2001). Debido a la escasez de estas células, en lo que a cantidad y calidad se refiere, 

asociado con la edad o enfermedades, se considera la posibilidad del uso de MSCs 

alogénicas. Además en estos casos, las células mesenquimales derivadas del propio 

paciente también pueden crear inconvenientes, ya que tendrán la misma carga 

genética (Alegre, 2010). 

1.7. Riesgos 

   Debido a su elevada complejidad y a su potencial de diferenciación, a sus 

propiedades inmunosupresoras, la producción de múltiples factores de crecimiento y 

citoquinas (Simone, 2014) y a su posible inmortalización o transformación durante el 

cultivo a largo tiempo, el uso de las células mesenquimales, además de numerosas 

ventajas, también podría reportar algunos riesgos. Así, por ejemplo, la diferenciación 

hacia tejidos no deseados o la transformación que podría ocurrir cuando las células 

permanecen mucho tiempo en cultivo (4-5 meses), pudiendo ayudar al desarrollo in 

vivo de tumores. Esto se evita cuando las células se mantienen en cultivo durante 
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períodos más cortos (6-8 semanas).  Es importante, para minimizar los riesgos, usar 

modelos animales previamente al implante en humanos.  

   La terapia basada en MSCs se enfrenta actualmente a una fase difícil tras la 

finalización de muchos ensayos preclínicos y clínicos. Varios ensayos informaron de 

beneficios moderados, no duraderos, lo que provocó una caída del entusiasmo inicial y 

señalaron la urgente necesidad de optimizar la eficacia del tratamiento con MSCs. El 

éxito futuro de la terapia basada en estas células radica en la optimización racional de 

estrategias terapéuticas, junto con una evaluación adecuada de los factores de riesgo y 

beneficio (Simone, 2014). 

   También, las diferencias entre las poblaciones de MSCs derivadas de 

diferentes tejidos son cada vez más evidentes, presentando un desafío adicional para 

la elaboración de una definición universal. Las MSCs tal y como se definen en la 

actualidad son un fenómeno de cultivo in vitro, lo que sugiere que la extrapolación de 

la función de estas células a la actividad in vivo debe hacerse con precaución por las 

razones anteriormente señaladas. Esta limitación destaca la necesidad de estudios 

directos in vivo con MSCs endógenas o una población equivalente fisiológicamente 

como un paso esencial para el establecimiento de su verdadero papel biológico. Es 

alentador a este respecto que los estudios recientes han empleado modelos de 

animales transgénicos para permitir el seguimiento y la evaluación de células MSCs in 

vivo. Los mecanismos subyacentes a la regeneración de tejidos y la modulación inmune 

con dosis terapéuticas de MSCs también requieren una aclaración adicional, en 

particular en la medida en que los dos procesos se cruzan. La apreciación más reciente 

de que las MSCs pueden no mediar en la regeneración de tejidos mediante el 

reemplazo celular directo también es probable que redirija la investigación en 

direcciones más fructíferas.  

   Por último, en vista del potencial clínico extraordinario de las MSCs, una 

reevaluación del enfoque para el desarrollo de protocolos clínicos basados en 

confirmaciones de laboratorio y observaciones preclínicas sería oportuna y útil 

(Armand, 2012). 
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1.8. Expansión in vitro de las MSCs 

   Una desventaja de la utilización de MSCs con fines clínicos es que se producen 

en poca cantidad en el tejido de origen, lo que obliga al uso de protocolos de 

expansión in vitro con el fin de lograr un número significativo de células que sean 

viables para trasplante. Lo ideal sería, por tanto, la expansión in vitro de MSCs que 

lograra una cantidad de células clínicamente relevantes de acuerdo a la guía de buenas 

prácticas de fabricación (GMP). Actualmente, la falta de estandarización y  desarmonía 

de los protocolos parece impedir el rápido progreso de esta fase transicional. Además, 

la mayoría de protocolos de aislamiento y expansión emplean aún SFB como 

complemento de medio, el cual supone una fuente potencial para infecciones y 

reacciones inmunes; situación que reclama unas condiciones de cultivo 

xenogénicamente libres. Los medios definidos químicamente  son el último logro en 

términos de estandarización. A pesar de ello, estos medios necesitan preservar todas 

las características celulares y clínicamente relevantes de las MSCs, lo que implica una 

composición en factores esenciales  óptima por los numerosos constituyentes del SFB, 

y que condiciona que su desarrollo se esté sólo iniciando. Mientras tanto, varios 

componentes derivados de sangre humana están siendo investigados, incluyendo 

plasma, suero humano, suero derivado de sangre de cordón umbilical y derivados de 

plaquetas (Asli et al, 2007; Sven and Karen, 2012). En este contexto, conviene 

diferenciar los términos de plasma y suero, siendo el plasma la solución líquida y 

acelular de la sangre, y el suero, el equivalente al plasma sanguíneo, pero sin las 

proteínas involucradas en la coagulación (fibrinógeno en su mayor parte).  

  Entre las limitaciones del cultivo con SFB encontramos el que se trata de una 

mezcla de aproximadamente 1.000 moléculas biológicas, incluyendo factores de 

crecimiento, hormonas, proteínas y vitaminas, con multitud de componentes aún 

desconocidos. Su función más destacada es la de proporcionar factores de crecimiento 

y hormonas, transportadores de proteínas, factores de unión y extensión, aminoácidos 

y vitaminas, ácidos grasos, inhibidores de proteasas, detoxificación y presión osmótica 

a los cultivos celulares, lo cual dificulta en gran medida la creación de medios definidos 

químicamente que consigan la estandarización. Además, la calidad y las 
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concentraciones de los factores estimulantes e inhibidores del crecimiento varían 

entre los lotes de SFB, lo que justifica  pruebas de optimización entre lotes.   

   Por tanto, las MSCs cultivadas en un medio alternativo al suplementado con 

SFB han de ser ampliamente investigadas para verificar que ningún biomarcador y 

especialmente ninguna característica clínicamente relevante se vea modificada. 

     Con la finalidad de encontrar un sustituto humano adecuado al empleo de 

SFB, se presenta este trabajo fin de grado, en el que la comparación entre medio de 

cultivo suplementado con SFB, suero AB humano o pool de plasmas humanos 

agrupados por grupos sanguíneos A- constituirán la base de tal hipótesis. Para la 

realización del trabajo experimental y como alternativa al SFB se ha empleado suero 

alogénico  humano comercial del grupo AB, así como, un pool de plasmas humanos A-. 

Generalmente, se emplea suero alogénico humano procedente de donantes AB para 

evitar la presencia de isoaglutininas, a pesar de que las MSCs no parecen expresar 

antígenos del grupo ABO. El número de publicaciones referentes al uso de plasma para 

el cultivo de MSCs es limitada, quizá porque el suero coagulado (que contiene factores 

liberados de la activación de plaquetas) es mucho más efectivo que el plasma en la 

promoción de la proliferación celular (Sven and Karen, 2012). 
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2. OBJETIVOS 

 

   El trabajo experimental se ha llevado a cabo en el laboratorio del servicio de 

Inmunología del Hospital Clínico Universitario Lozano Blesa. Para su elaboración se han 

empleado MSCs procedentes de una muestra de cartílago humano.  

 

   Los objetivos fueron: 

 

- Aprendizaje del manejo de material de laboratorio, medidas de asepsia y 

trabajo en condiciones de esterilidad, así como mantenimiento y cultivo de 

MSCs con fines experimentales. 

- Estudiar las diferencias en la expresión de marcadores de superficie de 

MSCs humanas de cartílago y su viabilidad, según el medio de cultivo. 

- Manejo de técnicas de microscopía e imagen. 

- Evaluación en la búsqueda de alternativas humanas al empleo de SFB para 

el cultivo de MSCs mediante la suplementación del medio de cultivo con 

SFB, SAB comercial y plasma humano. 

- Interpretación y análisis estadístico de los resultados. 

- Búsqueda de recursos en bases científicas y metodología para la correcta 

elaboración de informes experimentales. 
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3. MATERIAL Y MÉTODOS 

3.1. Obtención y cultivo celular 

3.1.1. Materiales de cultivo celular 

   La muestra de cartílago que hizo posible la recolección de las MSCs procedía 

de un varón de 77 años intervenido por el Servicio de Traumatología del propio 

hospital para una artroplastia de rodilla motivada por una artrosis. El paciente había 

sido informado de tal procedimiento existiendo copia del consecuente 

consentimiento. La muestra fue transportada al laboratorio en frascos estériles que 

contenían PBS (Phosphate Buffered Saline). El peso inicial de la muestra fue de 3.5 g. 

   El desarrollo de los cultivos se realizó en frascos de cultivo de 25 cm2 (T25) y 

75 cm2 (T75) (BD Falcon) con tapón de rosca con filtro, utilizando unos volúmenes 

finales de medio de 6 ml y 12 ml, respectivamente. El resto del material de plástico 

estéril, tubos para centrifugación, placas de cultivo y pipetas se obtuvieron de BD 

Falcon y TPP. Los tubos para centrifugación en minifuga fueron de Eppendorf y los 

sistemas de filtración para la esterilización de soluciones, fueron de Millipore. 

   Para el mantenimiento de los cultivos celulares se empleó el siguiente medio 

de cultivo: 

- α-MEM GlutaMAX medium (GIBCO). 

- 1% (v/v) de antibióticos (100 U/ml de penicilina y 0,1 mg/ml estreptomicina, 

Sigma-Aldrich). 

- 0.1% (v/v) de factor de crecimiento fibroblástico básico (bFGF, 1 µg/ml, Sigma-

Aldrich). 

   Suplementado con: 

- 10% (v/v) de suero fetal bovino (SFB, Biochrom AG) ó 

- 2,5%, 5% ó 10% (v/v) de suero humano AB comercial (Human serum type AB 

(male), SIGMA) ó 
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- 2,5%, 5% ó 10% (v/v) de un pool de cinco plasmas humanos agrupados por 

grupo sanguíneo A- que contenía 2UI/ml de heparina sódica 1% (Hospira Prod. 

Farm y Hosp, S.L), procedentes de donantes sanos del Banco de Sangre y 

Tejidos. 

3.1.2. Preparación de los medios de cultivo 

   Previa descongelación de las alícuotas, se añadieron las cantidades necesarias 

de SFB, SAB, pool de plasmas A-, antibióticos y bFGF al volumen correspondiente de 

medio α-MEM GlutaMAX (una vez atemperado), y se pasó todo ello por un sistema de 

filtrado de 0.22 micras de poro conectado a una bomba de vacío. Este paso tiene la 

finalidad de esterilizar, intentando eliminar posibles microorganismos y partículas no 

deseadas. 

3.1.3. Aislamiento de células mesenquimales en cartílago articular 

   El protocolo que se llevó a cabo en el momento del aislamiento se inició con 

el cálculo del peso de la muestra recibida que posteriormente se trasvasó a una placa 

de Petri de 10 cm con un pequeño volumen de PBS. Se consiguió separar la muestra 

del hueso y fragmentarla con bisturí del nº 23, trasvasando a un falcon de 50 ml el 

tejido limpio. Se volvió a pesar la muestra una vez eliminados componentes del tejido 

conectivo y otros que no eran de nuestro interés. Para la digestión enzimática, se 

añadió solución Colagenasa A (2 ng/ml) (Roche Diagnostics) preparada en medio de 

cultivo + 2% BSA (Bovine Serum Albumin), en una proporción de 10 ml Colagenasa A 

por 3 g de tejido, manteniendo en baño a 37ºC con agitación (120 rpm), overnight. 

Después de 12-18 horas, se añadió el mismo volumen de medio MSC + SFB 10% (v/v) 

para neutralizar la colagenasa y se procedió a filtrar la muestra, primero con un filtro 

de nylon de 100 µm y, después, con uno de 40 µm, pasando la muestra a un falcon de 

15 ml. Para retirar el SFB, se centrifugó la muestra  a 1800 rpm durante 10 minutos, se 

descartó el sobrenadante y se resuspendió el pellet en 5 ml de medio sin suero. De 

nuevo, centrifugación a 1600 rpm durante 10 minutos y descarte del sobrenadante. 

Por último, se resuspendió el pellet en 1 ml de medio sin suero y se procedió a realizar 

el contaje celular en cámara de neubauer (Apartado 3.1.6. de Material y métodos). La 
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densidad de sembrado a pase 0 fue de 104 células/cm2, en un frasco de cultivo de 25 

cm2 (T25). 

3.1.4. Mantenimiento y condiciones de cultivo 

   Las células se cultivaron en un incubador (Binder) a 37ºC y atmósfera húmeda 

de 5% de CO2. A las 24 horas de haber sido sembradas tras el aislamiento, se cambió el 

medio de cultivo para descartar las células no adheridas. A partir de aquí, el medio se 

renovó cada 3 ó 4 días. Cuando el cultivo, a pase 0, alcanzó una confluencia 

aproximada del 80% (en nuestro caso, unos diez días), las células se soltaron del T25 

mediante tripsinización para proceder a su posterior expansión. A tal fin, se desechó el 

medio de cultivo completo, las células se lavaron dos veces con PBS, retirando los 

restos mediante pipeta para evitar la dilución de la tripsina, y se añadió  500 µl de 

solución de tripsina al 0,25%, 1mM ácido etilendiaminotetraacético (EDTA) (Sigma-

Aldrich). Se incubaron durante 5 minutos a 37ºC. Transcurrido ese tiempo, se bloqueó 

la tripsina con medio completo (4 veces el volumen añadido de la solución de tripsina) 

para neutralizar la acción enzimática. A continuación, toda la muestra se transfirió a 

tubos de fondo cónico y se centrifugaron a 1200 rpm durante 7 minutos a temperatura 

ambiente, se eliminó el sobrenadante y las células se resuspendieron en 1 ml del 

medio de cultivo correspondiente.  

   La viabilidad celular se valoró a través del método del azul Trypan, que se 

describe en el apartado 3.1.6. de Material y métodos. Finalmente, las células fueron 

sembradas a una densidad de sembrado de 2000 células/cm2 en el pase 2 y de 4000 

células/cm2 en los restantes. Durante el proceso de expansión, se determinó que la 

frecuencia de la renovación del medio de cultivo debía ser de dos veces por semana. 

3.1.5. Deprivación de suero 

Las MSCs se cultivan rutinariamente en medio suplementado con 10% de SFB. 

Con el objetivo de cambiar el medio de cultivo de las células de uno de los frascos y de 

una de las placas de 96 pocillos al medio con suero comercial AB se procedió primero a 

su deprivación. Este método consistió en, una vez alcanzada una confluencia óptima, 

retirar el medio completo, realizar dos lavados con PBS y añadir 6 ml de medio sin 

suero de ningún tipo, para a las 48 horas (período de tiempo en el que las células 
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consumen los restos de SFB que pudiera haber) proceder a la tripsinización y 

expansión ya en medio suplementado con el correspondiente suero (o plasma, en su 

caso). 

3.1.6. Contaje y estudio de la viabilidad celular 

   Para establecer la viabilidad celular, en el momento del aislamiento y después 

de cada pase, se empleó el método del azul Trypan. La base de este método es que el 

azul Trypan es un colorante no permeable cuando la membrana celular se haya 

intacta, considerando a estas células como células vivas.  En cambio, es capaz de 

penetrar en células muertas en las cuales la integridad de membrana está alterada, por 

lo que, estas células muertas, al microscopio óptico, mostrarán una coloración azulada.  

   El contaje celular se llevó a cabo en un hemocitómetro (cámara Neubauer). 

Este método, además de determinar la viabilidad celular, tiene la fundamental 

aplicación de permitirnos conocer el volumen exacto de células de las que disponemos 

en nuestra solución obtenida a lo largo de todos los pasos anteriores y, así, permitirnos 

sembrar a la densidad celular que necesitemos de forma bastante exacta para su 

expansión. El proceso consistió en  tomar una alícuota de la suspensión celular, previa 

homogenización, diluyéndola  en el mismo volumen (solución 1:2 ó 50 µl:50 µl) de una 

solución de Trypan Blue al 0,4% (Sigma) en un tubo eppendorf. Para evaluar la 

viabilidad celular se consideró el número células vivas respecto del número total de 

células, siendo en todos los casos superior al 95%.  

 

 

 

 

 

 

 

Fig. 4. Contaje celular en los cuatro cuadrantes de las esquinas del hemocitómetro.   
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   A continuación, se adjunta explicación para el cálculo de la densidad. En 

primer lugar, aplicamos la fórmula para el cálculo de la densidad: 

densidad = número de células/volumen (ml) 

de donde, el número de células será la suma de todas las células contadas en los 

cuatro cuadrantes, y el volumen será el volumen total de los cuadrados contados. Cada 

lado de un cuadrante mide 0.1 cm, por lo que, el área contada = 0.1 cm x 0.1 cm = 0.01 

cm2. La profundidad de la cámara de neubauer es 0.1 mm = 0.01 cm, por lo que el 

volumen de un cuadrante será: 0.01 cm2 x 0.01 cm = 0.0001cm2 = 1 x 10-4 ml. 

   De lo cual, se deduce que: 

densidad celular = células contadas x 1 x 104 ml x dilución/nº de cuadrantes contados = células/ml. 

Como solemos contar los cuatro cuadrantes (contamos hasta un mínimo de 100 

células) y el factor de dilución es 2: 

densidad = células contadas x ¼ x 2 x 104 

3.1.7. Determinación de la viabilidad celular por el método de Mosmann 

   Se utilizó el método Mosmann para determinar la viabilidad celular de los 

cultivos con los tres medios diferentes, a saber, medio con SFB, suero humano 

comercial AB y pool de plasmas humanos A-, a las distintas concentraciones.  

   Para ello, se sembraron las MSCs en una placa de 96 pocillos (Falcon), a una 

densidad de 4000 células/ cm2, con un volumen de medio de 150 µl/pocillo. 

Previamente se prepararon las distintas suspensiones celulares con los diferentes 

medios, haciendo los cálculos necesarios para que al dispensar 150 µl de cada 

suspensión se añadiera el número de células que nos interesaba por pocillo. 

   El medio se fue renovando hasta lograr una adecuada confluencia de las 

mismas. Conseguida la misma, se añadieron 8 µl de colorante CCK-8. Se sembraron los 

correspondientes blancos (pocillos sin células) para cada tipo de medio. Las MSCs 

cultivadas con 10% SFB se utilizaron como control.  
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   Tras 4 horas de incubación a 39ºC, se homogeneizaron las placas en un 

agitador de placas (Orbital mini, Ovan) a 70 rpm durante 10 minutos. Para finalizar, se 

midió la absorbancia a 450 nm empleando un lector de microplacas (Las, srl A3). 

3.2. Técnicas de microscopía 

   Para la visualización de las muestras se utilizaron los microscopios invertidos 

DMIL (Leica) y Primo Vert (Zeiss) del Instituto Aragonés de Ciencias de la Salud, 

ubicados en el Servicio de Inmunología del Hospital Clínico Universitario Lozano Blesa. 

La toma de fotografías de los cultivos se llevó a cabo en este último microscopio, que 

lleva una cámara AxloCam ERc 5s incorporada, para lo que se utilizó el programa ZEN 

2012 SP1. 

   Para el contaje de células en cámara de neubauer mediante la técnica 

anteriormente descrita (Apartado 3.1.6. de Material y métodos) se empleó el 

microscopio óptico (West Germany, Zeiss) disponible en el mismo servicio. 

3.3. Citometría de flujo  

   El fenotipado de las células se realizó por citometría de flujo utilizando 

anticuerpos contra distintos marcadores de membrana  marcados con fluorocromos 

con el fin de identificar y caracterizar las células. 

3.3.1 Anticuerpos 

   Los anticuerpos utilizados estaban marcados, indistintamente, con los 

fluorocromos isotiocianato de fluoresceína (FITC) y ficoeritrina (PE). Sus características 

se recogen en la Tabla 1: 
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Antígeno Distribución Función Referencia 
Concentración 

(Dilución) 

CD13 Células mieloides Procesamiento antigénico 
BD Pharmigen 

(555394) 
5 µl (1/10) 

CD 31 
Monocitos, plaquetas, 
granulocitos, células 

endoteliales 

Receptor de CD 38, 
adhesión 

BD Pharmigen 
(555445) 

5 µl (1/10) 

CD 34 
Precursores 

hematopoyéticos, 
endotelio vascular 

Adhesión, se une a CD62-L, 
marcador de células madre 

Beckman coulter 
(IM1870) 

5 µl (1/10) 

CD 36 

Adipocitos, plaquetas, 
monocitos, células 

endoteliales, líneas de 
células tumorales 

humanas 

Receptor de proteínas de la 
ECM, adhesión, fagocitosis 

BD Pharmigen 
(555454) 

4 µl (1/12,5) 

CD 44 

Células hematopoyéticas 
y no hematopoyéticas 

excepto plaquetas, 
hepatocitos 

Receptor del ácido 
hialurónico, adhesión 

Beckman coulter 
(IM1219) 

5 µl (1/10) 

CD 73 

Subpoblaciones de 
linfocitos T y B, células 

epiteliales y endoteliales, 
MSCs 

Co-estimulación de 
linfocitos T, adhesión 

linfocitos a endotelio, ecto 
5´nucleotidasa 

BD Pharmigen 
(550257) 

4 µl (1/12,5) 

CD 90 

Células humanas de 
hígado fetal, de cordón 

umbilical, de médula 
ósea, neuronas 

Diferenciación de HSCs y 
neuronas, adhesión, 

transducción de señales 

BD Pharmigen 
(555595) 

12 µg/ml 

CD 105 
Células endoteliales, 
subpoblaciones de 

médula ósea 

Adhesión, respuesta celular 
a TGF-β1, angiogénesis 

embrionaria 

Beckman coulter 
(A07414) 

5 µl (1/10) 

CD 133 
Subpoblaciones de HSCs, 

células epiteliales y 
endoteliales 

Desconocida 
MACS (130-080-

801) 
3 µl (1/16.6) 

CD 166 
Células hematopoyéticas, 
endoteliales, fibroblastos, 

MSCs de médula ósea 
Adhesión 

Beckman coulter 
(A22361) 

4 µl (1/12.5) 

HLA-DR 
APC, linfocitos T 

activados, células B 
Presentación de péptidos a 

los linfocitos CD4+ 
BD Pharmigen 

(555561) 
5 µl (1/10) 

Tabla 1. Anticuerpos utilizados en citometría de flujo. 



Esmeralda García Torralba 

 

20 
 

  

3.3.2 Fenotipado de células mesenquimales derivadas de cartílago articular humano 

por citometría de flujo  

   Los cultivos en medio con SFB y SAB, al alcanzar una confluencia celular del 

80-90%, se sometieron a tripsinización (apartado 3.1.5 de Materiales y Métodos) y se 

recogieron las células, que posteriormente se centrifugaron a 1200 rpm durante 7 

minutos. Previo descarte del sobrenadante, se preparó una suspensión celular de 

210.000 células (30.000 células por cada pareja de anticuerpos que vamos a utilizar, 7 

en total) en 400 μl de PBS-EDTA 2 mM. Las suspensiones se incubaron con 8 µl de 

bloqueante (Purified Rat Anti-mouse CD16/CD 32 (Mouse BDFc Block,BD Pharmigen)). 

Éste tiene la finalidad de bloquear receptores inespecíficos de la membrana, durante 5 

minutos a 4ºC. Transcurrido ese tiempo, se añadieron 50 µl de la suspensión celular 

bien resuspendida al volumen correspondiente de anticuerpos marcados (Ver Tabla 2) 

previamente dispensado en tubos de citometría de flujo (BD Falcon). Se incubaron a 

temperatura ambiente y en oscuridad durante 15 minutos y seguidamente, las células 

se diluyeron con PBS-EDTA 2mM hasta un volumen final de 400 μl.  

   Finalmente, se analizó la expresión de estos marcadores en MSCs, utilizando 

el citómetro de flujo Epics- XL (Beckman). Para el tratamiento de los datos se utilizó el 

programa Expo 32 ADC, definiendo la población celular en base a los parámetros de 

tamaño y complejidad. 

En la Tabla 2, se recoge el volumen utilizado de los distintos anticuerpos: 

Antígenos Volumen 
No marcados 0 µl 

CD 90 
CD 13 

FiTC 
PE 

6 µl 

CD 34 
CD 166 

FiTC 
PE 

8 µl 

CD 44 
CD 133 

FiTC 
PE 

8 µl 

CD 31 
CD 105 

FiTC 
PE 

8 µl 

CD 36 
CD 73 

FiTC 
PE 

7 µl 

HLA-DR PE 5 µl 

  Tabla 2. Volúmenes de los diferentes anticuerpos empleados en citometría de flujo. 
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3.4. Análisis estadístico 

   En el proceso de recogida de datos y su posterior evaluación gráfica se 

empleó el programa Microsoft Excel versión 2010. 

   Hipótesis 

   Para facilitar la comparación y dado que son datos repetitivos, a fin de 

controlar las diferencias, supondríamos que los datos siguen distribuciones normales.  

   En la valoración de los resultados obtenidos a través de la técnica de 

Mosmann, dispondríamos de la media y de la desviación estándar como estadísticos. 

Se emplearía el test ANOVA de análisis multivariante, en caso de que más de dos 

medias fueran en apariencia muy distantes. Si sólo dos medias son las que 

aparentemente precisan de comparación, consideraríamos innecesario aplicar ANOVA 

y emplearíamos el test de de la t Student para datos independientes, relacionando 

dichas medias. Previamente recurriríamos a la distribución F de Snedecor para el 

contraste de varianzas. 

   En el fenotipado por citometría también se ha utilizado la media y la 

desviación estándar, al igual que en la técnica anterior, pero sólo consideraríamos el 

análisis con tests estadísticos en caso de que los resultados obtenidos impresionasen 

de no característicos. 

   En cualquier caso, un valor p<0,05 sería considerado estadísticamente 

significativo. 

Tras la hipótesis inicial, finalmente, por el volumen de datos obtenido debido a 

la limitación temporal y previo acuerdo con los especialistas en bioestadística, se 

decide que los datos son insuficientes para alcanzar una significación estadística 

representativa, por lo que, nos limitaremos al análisis a través de Excel de los 

resultados obtenidos, utilizando la media y las desviaciones estándar.  
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4. RESULTADOS Y DISCUSIÓN 

   Como se ha descrito desde el inicio de este trabajo, el objetivo fundamental 

ha sido la evaluación de las alternativas de SAB comercial y pool de plasmas humanos 

A- al empleo de SFB como suplementos del medio para el cultivo de MSCs derivadas de 

cartílago humano. 

   Por tanto, con dicha finalidad se procedió al análisis de la viabilidad mediante 

contaje celular y método Mosmann, así como a su caracterización fenotípica por 

citometría de flujo una vez alcanzada una adecuada confluencia celular tras varios 

pases de cultivo, según se describe en los correspondientes apartados de Material y 

métodos. 

4.1. Análisis morfológico de MSCs de cartílago en SFB y SAB 

Las células mesenquimales derivadas de cartílago, en los medios de cultivo 

suplementados con SFB, SAB y pool de plasmas humanos A-,  fueron visualizados por 

microscopía invertida, como se describe en el apartado 3.2 de Materiales y Métodos. 

La morfología celular fue fibroblástica, similar en los tres medios de cultivo empleados, 

sin diferencias morfológicas apreciables (Figuras 5 y 6). 

 

  

 

 

 

 

 

 

Fig. 5 y 6. MSCs cultivadas en medio suplementado con SFB (Fig. 5) y SAB (Fig. 6). Visión en 

microscopio invertido. Las imágenes se realizaron por microscopía de contraste de fases 

usando el objetivo de 10 x y 20 x, respectivamente, en un microscopio invertido. 
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4.2. Estudio de la viabilidad celular mediante la técnica de Mosmann 

La técnica se realizó dos veces con el objetivo de comparar los tres medios de 

cultivo. En la primera, se sembraron cuatro columnas de ocho repeticiones (pocillos) 

en una placa de 96 pocillos. La primera columna contenía MSCs en SFB al 10%, la 

segunda células mesenquimales suplementadas con SAB 10% y, la tercera y cuarta se 

consideraron blancos de las dos primeras, según se puede comprobar en las imágenes 

7 y 8. 

 

Fig. 7 y 8. Viraje en la coloración de los pocillos tras añadir CCK-8 e incubación (Medios de las 

columnas por orden: SFB, SAB, Blanco SFB, blanco SAB). 

El medio suplementado con SFB al 10% se empleó como control. Las células 

cultivadas en medio SAB humano comercial presentaron un crecimiento seis veces 

menor que el control, tal y como se refleja en la Figura 9: 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Viabilidad celular por el método Mosmann en cultivos de MSCs enriquecidos con SFB y 

SAB. Empleo del SFB como control. 
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En el segundo experimento, se incluyeron los tres medios de cultivo a distintas 

concentraciones, junto a una fila de medio sin suero. También se sembraron por 

columnas de ocho repeticiones.  Para ello, se tripsinizó un cultivo con medio 

suplementado con 10% de SFB, resuspendiendo las células en medio sin suero. Se 

realizó un contaje con azul Trypan y se sembró la cantidad adecuada de células en cada 

pocillo, procediéndose a su deprivación durante 48 horas. Transcurrido este tiempo se 

retiró el medio sin suero, que se reemplazó con el mismo volumen del medio 

correspondiente. La distribución de la placa fue la siguiente: 

 1 2 3 4 5 6 7 8 9 10 11 12  

A 

SFB 
 
10% 

MEDIO 
SIN 

SUERO 

SUERO 
AB 
5% 

SUERO 
AB 

10% 

SUERO 
AB 

15% 

SUERO 
AB 

20% 

PLASMA 
A- 
5% 

PLASMA 
A- 

10% 

PLASMA 
A- 

15% 

PLASMA- 
20% 

 
 
 
 
 
 
 
BLANCOS 
 
 
 
 
 
 

A 

B B 

C C 

D D 

E E 

F F 

G G 

H H 

 

Tabla 3. Distribución de los medios de cultivo en la placa de 96 pocillos para método 

Mosmann. 

 

En este caso, y empleando de nuevo el medio suplementado con SFB 10% como 

control, se comprobó un crecimiento menor de las células suplementadas con SAB al 

5% y 10%, de 0,5 y de 0,25 veces menor, respectivamente. En cambio, las células 

mesenquimales de los medios cultivados con proporciones del 15% y 20% de SAB 

crecieron en mayor medida que el control, 1,6 y 2,1 veces más, respectivamente. 

En cuanto a las MSCs cultivadas en medio suplementado con plasma, el 

crecimiento fue menor, no superando al del control a ninguna de las concentraciones. 

Según las mismas de 5%, 10%, 15% el crecimiento fue de la mitad respecto al medio 

con SFB, en sentido creciente. En cambio, las células en medio enriquecido con 20% de 
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plasma A- sufrieron un ligero descenso del crecimiento, lo que puede explicarse por un 

fenómeno de saturación. 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Crecimiento de los medios suplementados con diferentes concentraciones de SAB y 

plasma respecto al control de SFB 10%. 

 

4.3. Análisis fenotípico de MSCs de cartílago humano cultivadas en medio 

enriquecido con SFB y SAB 

Para el fenotipado celular por citometría de flujo se emplearon células en pase 

4 de cultivo en medio con SFB y pase 3 en el cultivo con SAB, debido a su menor 

velocidad de crecimiento.  

Las células cultivadas en medio suplementado con SFB analizadas fueron 

negativas para el marcador hematopoyético CD34, así como las MSCs derivadas de 

cartílago en medio con SAB (2,66%).  

Asimismo, las células mesenquimales en medio con SFB y SAB fueron negativas 

para CD31 (PECAM-1) y CD36 (glicoproteína IV), marcadores de células endoteliales y 

de adipocitos, respectivamente.  

En el caso de CD133, otro marcador hematopoyético, su expresión fue 

inexistente para las células cultivadas en ambos medios.  



Esmeralda García Torralba 

 

26 
 

Si nos fijamos en HLA-DR (MHC-II), su expresión fue nula en células con SFB 

(0.1%), igualmente en células que contenían SAB como suplemento del medio de 

cultivo (0,33%). 

El porcentaje de células que expresaron CD13 (aminopeptidasa N), CD44 

(Homing-associated Cell Adhesion Molecule, receptor del ácido hialurónico), CD90 

(antígeno de diferenciación de timocitos-1) y CD166 (molécula de adhesión celular de 

leucocitos activados) detectado fue mayor del 95% en todos los casos y para ambos 

cultivos. Los porcentajes fueron similares para cada marcador en ambos cultivos. 

CD73 (SH3/4) se expresó en un 99,90% y un 99,96%, respectivamente, en los 

cultivos enriquecidos con SFB y SAB.  

La expresión de CD105 (endoglina, SH2) fue elevada en MSCs humanas 

derivadas de cartílago. En el caso del medio con SFB, fue de 98,46% y de 98,99 en 

medio suplementado con SAB. 

Los resultados de la expresión de los distintos marcadores, analizados por 

citometría de flujo, se encuentran recogidos en la Figura 11. 

 

 

 

 

 

 

 

 

 

Fig. 11. Fenotipo de MSCs derivadas de cartílago cultivadas en medio suplementado con SFB y 

SAB, respectivamente.  
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Fig. 12. Selección de histogramas de citometría de flujo, en las que se recoge la expresión de marcadores de membrana en MSCs cultivadas con SFB 

(columna 1) y SAB (columna 2).  
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4.4. Discusión 

Las células cultivadas en los medios suplementados con SFB, SAB y pool de 

plasmas humanos A-, fueron aisladas en todos los casos con Colagenasa A a partir de la 

muestra de cartílago. En general, las células cultivadas en medio enriquecido con SFB 

proliferaron más rápido que las cultivadas con SAB y pool de plasmas humanos, con un 

tiempo entre un pase y el siguiente de 9-10 días, en el primer caso. Las células 

suplementadas con SAB lograron una confluencia del 80-85% en 14-15 días. Por este 

motivo, se optó por un primer sembrado de todas las células que se emplearon para 

los experimentos en medio enriquecido con SFB y posterior deprivación de suero. 

Kocaoemer et al encontraron una tasa de proliferación mayor en MSCs derivadas de 

tejido adiposo cultivadas en suero AB humano en comparación con las suplementadas 

con SFB. La diferencia en la procedencia de las MSCs y el suplemento con suero 

humano no comercial hacen difícil establecer una comparación entre estos resultados 

y los de nuestro estudio (Asli et al1, 2007). 

En el estudio de la viabilidad celular se encontraron diferencias en el 

crecimiento entre los distintos medios, así como, en función de las concentraciones de 

los mismos. Empleando como control en ambos experimentos realizados el SFB al 10%, 

se observó un menor crecimiento de las MSCs cultivadas en SAB  a las concentraciones 

de 5% y 10%, obteniéndose en cambio un mayor crecimiento de las mismas cuando se 

cultivaban en medios con 15% y 20% de SAB.  

En cuanto al análisis de la viabilidad de las MSCs en medio de cultivo 

enriquecido con plasma A-, se vio que la tasa de crecimiento de las mismas respecto al 

control fue menor, aunque en sentido ascendente según la concentración. La 

excepción la constituyó el plasma A- a la concentración de 20%, ya que, experimentó 

un descenso del porcentaje de crecimiento respecto a las concentraciones menores 

del mismo. Esto puede deberse a un fenómeno de saturación del crecimiento celular 

por altas concentraciones del medio de cultivo. 

Estos resultados son preliminares y sería necesario hacer un mayor número de 

pruebas variando la composición de los medios (porcentaje de SAB o plasma) hasta 

conseguir un crecimiento parecido al control de SFB. Sería conveniente hacer un 
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estudio de las citoquinas presentes en los distintos medios por si hiciera falta 

suplementarlas con algún componente extra. Se valorarían además otros suplementos 

del medio de cultivo como derivados plaquetarios, por ejemplo. 

En el fenotipado celular mediante citometría de flujo de nuestro estudio, 

hemos podido comprobar que las MSCs cultivadas en  medio suplementado con SFB y 

medio con SAB expresan los marcadores propuestos en 2006 por 

the Mesenchymal and Tissue Stem Cell Committee of the International Society for 

Cellular Therapy como criterios mínimos para definir las MSC: CD 105, CD 73 y CD 90. 

Asimismo, en lo referente a los marcadores que no deben expresar para ser 

consideradas MSCs propuestos por la misma sociedad, observamos que las células 

cultivadas en medio suplementado con SFB ni las células mesenquimales en cultivo con 

SAB expresan el marcador hematopoyético CD34. El marcador HLA-DR, cuya expresión 

debe ser nula según dichos criterios mínimos, lo fue totalmente en las células 

cultivadas en ambos medios (Dominici et al., 2006).  

También, las células mesenquimales cultivadas en medios con SFB y SAB fueron 

negativas para CD133, otro marcador hematopoyético, CD31, marcador de células 

endoteliales y CD36, propio de adipocitos, lo que habla a favor de su etiología 

mesenquimal. Los marcadores CD13 (aminopeptidasa N), CD44 (receptor del ácido 

hialurónico) y CD166 (molécula de adhesión celular de leucocitos activados) se 

expresaron en un elevado porcentaje. Así, algunos autores demostraron que el 

cartílago articular contiene una pequeña subpoblación de células CD105/CD166-

positivas que son capaces de diferenciar hacia condrocitos, osteoblastos y adipocitos y 

que se encuentran en mayor porcentaje en cartílago con artrosis (Alsalameh et al., 

2004; Hiraoka et al., 2006), como es el de nuestra muestra. De hecho, las células 

aisladas de cartílago articular, en nuestro caso, han mostrado ser positivas para ambos 

marcadores, en porcentajes superiores al 80%. Este incremento se ha relacionado, 

bien con el aumento de la proliferación de las células residentes o con el reclutamiento 

de células procedentes de otras zonas, como la membrana sinovial o el líquido sinovial 

(Marinova-Mutafchieva et al., 2000). 
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Por tanto, el fenotipo por citometría de flujo, especialmente el de las células 

cultivadas en medio con SFB, fue similar al propuesto como criterios mínimos que 

debían expresar las MSCs para ser consideradas como tales. Además, todas las células 

aisladas y analizadas, mostraron capacidad de adherencia al plástico del frasco de 

cultivo, adquiriendo una morfología fibroblástica (Dominici et al., 2006).  

A este respecto, a pesar de que todavía no existe un consenso acerca de un 

marcador único de MSCs (Pittenger y Martin, 2004) y teniendo en cuenta que estos 

criterios probablemente requieran de modificación en lo que el conocimiento se 

desarrolla, la importancia de este conjunto mínimo de criterios estándar referidos 

reside en la intención de fomentar una caracterización más uniforme de las MSCs y 

facilitar el intercambio de datos entre los investigadores (Dominici et al., 2006). 
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5. CONCLUSIONES 

 

En primer lugar, en el presente trabajo se han estudiado el potencial 

proliferativo, la viabilidad celular y las diferencias fenotípicas in vitro, de células 

mesenquimales de cartílago, con el objeto de hallar fuentes alternativas al empleo de 

SFB para el cultivo de MSCs.  

Tras los resultados obtenidos, se pueden extraer las conclusiones que se 

exponen a continuación: 

 

- El crecimiento de las MSCs en medio suplementado en pool de plasmas fue 

siempre menor que el de las células cultivadas en SFB, independientemente del 

porcentaje de suplementación. En cambio, el crecimiento de las MSCs en 

medio suplementado con suero AB humano comercial fue menor que el de las 

células cultivadas en SFB al 10% a porcentajes bajos (5 y 10%) y mayor a 

porcentajes altos (15 y 20%). 

- La viabilidad de las células no se ve afectada por el cultivo con SAB humano o 

pool de plasmas, en todos los casos fue mayor del 90%. 

- La expresión de marcadores de superficie fue bastante similar en MSCs 

cultivadas con SFB y SAB humano. 

- Sería conveniente realizar más experimentos ajustando los porcentajes de SAB 

o plasma y la composición del medio hasta optimizar los cultivos y conseguir un 

crecimiento similar al control. Habría que valorar también otras alternativas 

como el uso de derivados plaquetarios. 

- Asimismo, convendría realizar estudios que valoraran la influencia de la edad y 

la patología. 
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