
Accurate evaluation of Bézier curves and

surfaces and the Bernstein-Fourier algorithm

Jorge Delgado b J. M. Peña a

aDepartamento de Matemática Aplicada, Universidad de Zaragoza, Spain
bDepartamento de Matemática Aplicada, Universidad de Zaragoza, Spain
Email address: jorgedel@unizar.es; Phone number: +34978618174

Abstract

The Bernstein-Fourier algorithm for the evaluation of polynomial curves is extended
for the evaluation of polynomial tensor product surfaces. Under a natural hypoth-
esis, accurate evaluation of Bézier curves and surfaces through several algorithms
is discussed. Numerical experiments comparing the accuracy of the corresponding
Horner, de Casteljau, VS and Bernstein-Fourier algorithms are presented.

Key words: Bézier curves and surfaces; Bernstein-Fourier algorithm; polynomial
evaluation

1 Introduction

In [2] L. H. Bezerra introduced a new method to evaluate Bézier polynomials,
that is, polynomials of the form

p(t) =
k∑

i=0

cib
k
i (t), t ∈ [0, 1], (1)

where the polynomials bki (s) =
(
k
i

)
si(1 − s)k−i are known as Bernstein basis

polynomials of degree k (k ≥ 0). The new method is based on using a so-called
Bernstein-Fourier representation. So, from now on, we will call Bernstein-
Fourier algorithm to the new algorithm. The author also carried out numerical
experiments in order to check the performance of the new method with respect
to computational cost and accuracy. In addition, a comparison of these two
aspects, in particular the computational cost, of the new method with respect
to the usual de Casteljau and VS algorithms for the evaluation of Bézier
curves was also performed. Assuming positive control points, the numerical
experiments with the three algorithms were accurate.

Preprint submitted to Elsevier 27 July 2015

In [4] and [7] some of the most usual algorithms for the evaluation of polyno-
mial curves were compared from the point of view of accuracy. In this paper we
complete the numerical experiments in [2], [4] and [7] comparing the de Castel-
jau algorithm, the VS, the Horner and the Bernstein-Fourier algorithms. We
also explain the theoretical reasons for expecting accuracy for the numerical
experiments of [2] when using VS and de Casteljau algorithms. In addition,
we will carry out the generalization of the Bernstein-Fourier algorithm for
the evaluation of Bézier tensor product surfaces and then we will compare
it numerically with the corresponding versions for tensor products of the de
Casteljau, the VS and the Horner algorithms.

In Section 2, de Casteljau and VS algorithms are recalled. It is also justified
why many algorithms in Computer Aided Design evaluate polynomial curves
to high relative accuracy under the natural hypothesis (in this field) of starting
with positive control points. In Section 3, we consider ill-conditioned polyno-
mials to compare univariate Horner, de Casteljau, VS and Bernstein-Fourier
algorithms. In Section 4, evaluation algorithms for polynomial tensor product
surfaces are derived and their high relative accuracy is discussed. We particu-
larize the cases of Bernstein-Fourier, de Casteljau and VS algorithms. Section
5 presents numerical examples in order to compare the algorithms.

2 Accuracy in C.A.G.D.

In [2] L. H. Bezerra performed the numerical experiments assuming that all
control points are positive. This assumption avoided ill-conditioned polynomi-
als. In this section, we shall show that this is a natural assumption in Com-
puter Aided Geometric Design (from now on, C.A.G.D.) and that it permits
to assure high relative precision for the evaluation through a large family of
representations in C.A.G.D.

We say that we know a quantity with high relative accuracy if its relative error
is bounded by O(ε), where ε is the machine precision. Given an algebraic ex-
pression defined by additions, subtractions, multiplications and divisions and
assuming that each initial real datum is known to high relative accuracy, then
it is well known that the algebraic expression can be computed accurately if it
is defined by sums of numbers of the same sign, products and quotients (cf. p.
52 of [8]). In other words, the only forbidden operation is true subtraction, due
to possible cancellation in leading digits. Moreover, in a (well-implemented)
floating point arithmetic high relative accuracy is also preserved even when
we perform true subtractions when the operands are original (and so, exact)
data (cf. p. 53 of [8]).

Let us recall that the VS algorithm evaluates polynomials of degree n repre-

2

sented in the form

p(t) =
n∑

i=0

cit
i(1− t)n−i, t ∈ [0, 1], (2)

with a computational cost of 2n − 1 products, 2n − 1 additions and 1 quo-
tient. This algorithm has a nested nature like Horner and was introduced for
bivariate triangular polynomials in [10]. In fact, taking into account that

p(t) =
n∑

i=0

cit
i(1− t)n−i = tn

n∑
i=0

ci

(
1− t

t

)n−i

= (1− t)n
n∑

i=0

ci

(
t

1− t

)n−i

,

VS algorithm computes p(t) applying Horner algorithm at points 1−t
t

(if t ≥
1/2) or t

1−t
(if t < 1/2), and then multiplying the obtained result by tn or

(1 − t)n, respectively. For more details in the algorithm see for example [7].
Observe that Horner algorithm and VS algorithm can be computed accurately
when the control points are positive. The same conclusion holds for the de
Casteljau algorithm and, more generally, for corner cutting algorithms as we
shall show in the following paragraphs.

In C.A.G.D., given a system of functions (u0, . . . , un) defined on a compact
interval I = [a, b], and points P0, . . . , Pn ∈ Rs, a parametric curve γ is defined
by:

γ(t) =
n∑

i=0

ui(t)Pi. (3)

The points are called control points of γ, and the polygon P0 · · ·Pn is called
control polygon of γ. We now recall an important family of systems in C.A.G.D.
called corner cutting systems in [5]. Let us denote by Λi(t) the bidiagonal
matrix 

1− λ
(i)
0 (t) λ

(i)
0 (t)
.

.

1− λ
(i)
i−1(t) λ

(i)
i−1(t)


(4)

for all i ∈ {1, . . . , n}, where λ
(i)
j : [a, b] → [0, 1] for 0 ≤ j < i ≤ n. We say

that Λ1(t) · · ·Λn(t) is a corner cutting representation on [a, b] of the system of
functions (u0, . . . , un) defined on [a, b] if

(u0(t), . . . , un(t)) = Λ1(t) · · ·Λn(t), (5)

where the matrices Λi(t) are given by (4) for all i ∈ {1, . . . , n} and the func-

tions λ
(i)
j : [a, b] → [0, 1] are continuous and increasing for all 0 ≤ j < i ≤ n

(and are called cutting functions). A system of functions admitting a corner
cutting representation on [a, b] will be called a corner cutting system on [a, b].

3

By (5), any function

f(t) =
n∑

i=0

ciui(t) (6)

can be evaluated by the corner cutting algorithm provided by

Λ1(t) · · ·Λn(t)(c0, . . . , cn)
T = f(t). (7)

In fact, the evaluation of the curve given in (3) can be reduced, componentwise,
to s evaluations as in (6). Let us also denote by (Rs)+ the set of points of
Rs such that all their components are positive (for instance, if s = 3, then
(Rs)+ is the positive octant). Observe that, for design purposes, in order to
draw any curve, we can take all control points belonging to (Rs)+. So, if we

can calculate accurately λ
(i)
j (t) and 1 − λ

(i)
j (t) for all i, j, then we also can

perform accurately the evaluation of each component of the parametric curve
γ (3) through the corner cutting algorithm given by (7) because we are always
multiplying nonnegative numbers and summing nonnegative numbers.

Due to the arguments of the previous paragraphs, we deduce that the follow-
ing evaluation algorithms of polynomial curves (of degree n) can be performed
with high relative accuracy when all control points belong to (Rs)+. Observe

that all satisfy that the cutting functions λ
(i)
j (t) are either a nonnegative con-

stant or the given parameter t (and so each 1− λ
(i)
j (t) can also be computed

accurately because it is a subtraction of two exact data):

• The de Casteljau algorithm, which uses λ
(i)
j (t) = t for all i, j. It is associated

to the Bernstein basis and is the most usual algorithm for the evaluation
of Bézier curves. It evaluates a polynomial Bézier curve of degree k with a
computational cost of O(k2) elementary operations. The best well known
evaluation algorithm is the Horner algorithm, which evaluates a k degree
polynomial with a computational cost of O(k) elementary operations in
contrast to the O(k2) computational cost of de Casteljau. So in the last
years two more efficient alternatives to the de Casteljau algorithm have
been researched in the literature. These alternatives are VS algorithm and
Bernstein-Fourier algorithm.

• The evaluation algorithm of the Wang-Ball basis, which uses (cf. [11])

λ
(i)
j (t) = 0, for j ∈

{
0, . . . ,

[
i− 3

2

]}
, (8)

λ
(i)
j (t) = t , for j ∈

{[
i− 1

2

]
,
[
i

2

]}
, (9)

λ
(i)
j (t) = 1, for j ∈

{[
i

2

]
+ 1, . . . , i− 1

}
, (10)

where [r] denotes the greatest positive integer less than or equal to r.
• The evaluation algorithm of the basis introduced in [3] and called DP basis
(cf. [9]), which uses

4

λ
(i)
0 (t) = λ

(i)
i−1(t) = t , (11)

λ
(i)
j (t) = 1, j = 1, . . . ,

[
i

2

]
− 1, (12)

λ
(i)
j (t) = 0, j =

[
i+ 1

2

]
, . . . , i− 2, (13)

and, in addition, if i ≥ 3 is odd, λ
(i)
i−1
2

(t) = 1
2
.

• The evaluation algorithm of the pruned curves (see [1]), which also use

λ
(i)
j (t) = t or λ

(i)
j (t) = 1 or λ

(i)
j (t) = 0.

The extension of the evaluation algorithms for Bézier curves to the evaluation
algorithms considered in Section 4 for Bézier surfaces inherits the accuracy
under positive control points. Therefore, from now on, we shall focus on nu-
merical examples with ill-condioned polynomials and whose coefficients are
not necessarily positive, in the univariate as well as in the bivariate case.

3 Numerical examples with ill-conditioned univariate polynomials

First we shall compare the Bernstein-Fourier algorithm of [2] (see the tensor
product version in Section 4) for the evaluation of polynomial curves with the
de Casteljau, the VS and the Horner algorithms. In [12] and [13] Wilkinson
considered the following two ill-conditioned polynomials:

f(t) =
20∏
i=1

(
t− i

20

)
and g(t) =

20∏
i=1

(
t− 2

2i

)
.

We have computed, using Mathematica with infinite precision, the exact coef-
ficients of both polynomials with respect to the Bernstein basis and the mono-
mial basis. Then we have evaluated both polynomials f(t) and g(t) by using
the four algorithms with the standard IEEE 754 double precision arithmetic
at the points of the sequences given by U := { 1

72
+ i

36
}35i=0 and V = { i

39
}38i=1,

respectively. Finally, we have obtained the exact values of both polynomials at
the points of the two meshes by symbolic computation, and the corresponding
relative and absolute errors for the four algorithms. The relative errors when
evaluating f and g are shown in Figure 1 (a) and (b), respectively. On the
other hand, the absoute errors are shown in Figure 2 (a) and (b). As we can
see the absolute errors for the four algorithms are low but, since the values of
the Wilkinson polynomials in [0, 1] are small numbers, not all algorithms yield
low relative errors. In particular, we can observe that the Horner algorithm
has less accuracy than the other algorithms for the polynomial f(t) and that
the Bernstein-Fourier algorithm has less accuracy than the other algorithms
for the polynomial g(t).

5

Finally, for comparing the four algorithms for the evaluation of polynomials
we have considered the following ill-conditioned polynomial:

h(t) =
(
t− 1

2

)20

.

We have repeated the same process than for polynomials f and g, but now at

the points of the mesh
{

4i
100

}24

i=1
. We have obtained the relative errors and the

absolute errors shown in Figures 3 and 4, respectively. We can observe that, in
this case, the algorithm with a good behaviour everywhere is the de Casteljau
algorithm.

4 Evaluation of tensor product surfaces

Let us consider a sequence (Pij)
0≤j≤n
0≤i≤m of points in the space. Then a tensor

product Bézier surface is defined as

F (x, y) =
m∑
i=0

n∑
j=0

Pijb
m
i (x)b

n
j (y). (14)

Since

F (x, y) =
m∑
i=0

n∑
j=0

Pijb
m
i (x)b

n
j (y) =

m∑
i=0

(
n∑

j=0

Pijb
n
j (y))b

m
i (x)

and denoting fi(y) :=
∑n

j=0 Pijb
n
j (y), for i = 0, 1, . . . ,m, we have

F (x, y) =
m∑
i=0

fi(y)b
m
i (x). (15)

Hence, taking into account the previous reasoning we can evaluate the ten-
sor product surface (14) at a point (x, y) ∈ [0, 1] × [0, 1] by evaluating the
m + 1 Bézier polynomial curves fi(y), i = 0, 1, . . . ,m, of degree n at point
y, and then evaluating the polynomial Bézier curve of m degree represented
in the Bernstein basis polynomial of the same degree with control points
f0(y), f1(y), . . . , fm(y) (15) at point x. Observe that, if the control points Pij

are positive, then the high relative accuracy of the algorithm is assured when
the corresponding curve evaluation algorithms satisfy the same property. Us-
ing the previous approach we can extend the univariate algorithms to the
tensor product case.

6

4.1 The Bernstein-Fourier algorithm

The Bernstein matrix of order k + 1, Bk(s), is the lower triangular matrix
whose (i, j) entry is given by bi−1

j−1(s) for each k ≥ i ≥ j ≥ 1, that is,

Bk(s) =



1 0 0 · · · 0

1− s
(
1
1

)
s 0 · · · 0

(1− s)2
(
2
1

)
(1− s)s

(
2
2

)
s2 · · · 0

...
...

...
. . . 0

(1− s)k
(
k
1

)
(1− s)k−1s

(
k
2

)
(1− s)k−2s2 · · ·

(
k
k

)
sk


Let us consider the Bézier polynomial of degree k given by p(s) =

∑k
i=0 ci b

k
i (s)

with ci ∈ R for all i ∈ {0, 1, . . . , n}. The previous polynomial can be expressed
as

p(s) = eTk+1Bk(s)c, (16)

where ek+1 = (0, . . . , 0, 1)T ∈ Rk+1 and c = (c0, c1, . . . , ck)
T . Given wk = e−

2π i
k+1

we consider the (k + 1)× (k + 1) Fourier matrix

Wk =



1 1 1 · · · 1

1 wk (wk)
2 · · · (wk)

k

1 (wk)
2 (wk)

4 · · · (wk)
2k

...
...

...
. . .

...

1 (wk)
k (wk)

2k · · · (wk)
k2


,

which is a particular case of Vandermonde matrix. From (16), since Wk is an
invertible matrix, we have

p(s) = eTk+1Bk(s)Wk((Wk)
−1c).

Denoting u := (Wk)
−1c = (u0, u1, . . . , uk) and taking into account that

eTk+1Bk(s)Wk = ((1− s+ s)k, (1− s+ wks)
k, . . . , (1− s+ (wk)

ks)k)

we have

p(s) =
k∑

i=0

ui(1 + s((wk)
i − 1))k.

According to the previous formula and taking into account that u can be
computed applying the inverse fast Fourier transform to c and the previous
discussion in this section about the evaluation of a Bézier tensor product
surface F (x, y), we provide the following pseudo-code for its evaluation:

7

Algorithm 1 BerFourEVAL algorithm for the evaluation of a polynomial by
the Bernstein-Fourier algorithm

Require: (Pij)
0≤j≤n
0≤i≤m, (x, y) ∈ [0, 1]× [0, 1]

Ensure: F (x, y) =
∑m

i=0

∑n
j=0 Pijb

m
i (x)b

n
j (y)

for i = 0 to m do
Pi = (Pi0, Pi1, . . . , Pin)

T

Ui = ifft(Pi)
fi(y) =

∑n
j=0(Ui)j(1 + y((wn)

j − 1))n

end for
f = (f0(y), f1(y), . . . , fm(y))
V = ifft(f)
F (x, y) =

∑m
i=0 Vi(1 + x((wm)

i − 1))m

The previous algorithm requires a computational cost ofO(n log n) elementary
operations (see [2] for more details in the univariate case).

4.2 The de Casteljau algorithm

The de Casteljau algorithm evaluates polynomials of degree n represented in
the form (1), with a computational cost of n(n− 1) sums and 2n(n− 1) prod-
ucts. Taking into account the discussion at the beginning of the current section
we can obtain a de Casteljau algorithm for the evaluation of the correspond-
ing tensor product functions (see also [6]). So, the computational cost of the
corresponding tensor product algorithm is of (m+1)n(n−1)+m(m−1) sums
and 2(m+ 1)n(n− 1) + 2m(m− 1) products.

4.3 The VS algorithm

The VS algorithm evaluates polynomials of degree n represented in the form
(2). Taking into account the discussion at the beginning of the current section,
we can obtain a VS algorithm for the evaluation of the corresponding tensor
product polynomials. From the computational cost of the univariate VS algo-
rithm seen in Section 2, we can conclude that the computational cost for the
corresponding tensor product VS algorithm is of (2n− 1)(m+ 1) + (2m− 1)
sums, (2n− 1)(m+ 1) + (2m− 1) products and m+ 2 quotients.

8

5 Bivariate numerical experiments

Now we shall compare the adaptation of the de Casteljau, the VS, the Horner
and the Bernstein-Fourier algorithms for the evaluation of tensor product sur-
faces, which have been implemented according to the approach discussed in
Section 4. In order to compare the algorithms and see the accuracy at ill
conditioned problems we have considered two bivariate polynomials defined
on [0, 1] × [0, 1], which are generalizations of the two univariate polynomials
considered by Wilkinson in [12] and [13], in the sense that the first tensor
product polynomial has all its roots uniformly distributed on [0, 1]× [0, 1] and
the second one has the most of its roots localized very close to the point (0, 0).
The particular functions are the following:

F (x, y) =
12∏
i=1

(
x− i

12

) 12∏
j=1

(
y − j

12

)
and G(x, y) =

12∏
i=1

(
x− 2

2i

) 12∏
j=1

(
y − 2

2j

)

So we have two tensor product polynomials that present stability problems
when evaluating at points close to its roots. First we have evaluated the func-
tion F (x, y) at 1296 points uniformly distributed on [0, 1] × [0, 1] with the
four algorithms considered in IEEE754 double precision. Figure 5 shows the
corresponding relative errors and Figure 6 the corresponding absolute errors,
where the exact values for the polynomials have been obtained by symbolic
computation.

We can observe that the four algorithms behave in a very similar way respect
to accuracy than its univarite versions with f(t).

Then we have evaluated the function G(x, y) at 1444 points uniformly dis-
tributed on [0, 1]× [0, 1] with the four algorithms considered in IEEE754 dou-
ble precision. Figure 7 shows the corresponding relative errors and Figure 8
shows the corresponding absolute errors. We can observe that the four algo-
rithms behave in a very similar way respect to accuracy than its univarite
versions with g(t).

In order to see in detail the difference in the relative errors when evaluating
G(x, y) we have computed the mean of the relative errors at the mesh of points
for each of the algortihms. For the de Casteljau algorithm the average relative
error is 3.37e−13, for the VS algorithm is 1.61e−13, for the Horner algorithm
7.87e+ 01 and for the Bernstein-Fourier 1.03e− 2.

Finally, we have considered the tensor product polynomial

H(x, y) = (x− 1/2)12(y − 1/2)12,

which is a very ill-conditioned polynomial because of its roots. Then we

9

have evaluated the function H(x, y) at 1444 points uniformly distributed on
[0, 1]× [0, 1] with the four algorithms considered in IEEE754 double precision.
Figure 9 shows the corresponding relative errors and Figure 10 shows the cor-
responding absolute errors. We can observe that in this case only de Casteljau
algorithm has a satisfactory behaviour.

In order to see in detail the difference in the relative errors when evaluating
H(x, y) we have computed the mean of the relative errors at the mesh of points
for each of the algortihms. For the de Casteljau algorithm the average relative
error is 5.48e−15, for the VS algorithm is 2.09e+18, for the Horner algorithm
2.25e+ 23 and for the Bernstein-Fourier 1.07e+ 04.

Acknowledgements

This work has been partially supported by the Spanish Research Grant MTM2012-
31544 and by Gobierno de Aragón and Fondo Social Europeo.

References

[1] P.J. Barry, T.D. DeRose and R.N. Goldman, Pruned Bezier Curves, Proceedings
Graphics Interface 90 (1990) 229-238.

[2] L.H. Bezerra, Efficient computation of Bézier curves from their Benstein-Fourier
representation, Appl. Math. Comput. 220 (2013) 235-238.

[3] J. Delgado and J.M. Peña, A shape preserving representation with an evaluation
algorithm of linear complexity, Comput. Aided Geom. Design 20 (2003) 1-10.

[4] J. Delgado and J.M. Peña, On efficient algorithms for polynomial evaluation in
CAGD, Monogr. Semin. Mat. Garćıa de Galdeano 31 (2004) 111-120.

[5] J. Delgado and J.M. Peña, Corner cutting systems, Comput. Aided Geom.
Design 22 (2005) 81-97.

[6] J. Delgado and J.M. Peña, Error analysis of efficient evaluation algorithms for
tensor product surfaces, J. Comput. Appl. Math. 219 (2008) 156-169.

[7] J. Delgado and J.M. Peña, Running Relative Error for the Evaluation of
Polynomials, SIAM J. on Sci. Computing 31 (2009) 3905-3921.

[8] J. Demmel, M. Gu, S. Eisenstat, I. Slapnicar, K. Veselic, and Z. Drmac,
Computing the singular value decomposition with high relative accuracy, Linear
Algebra Appl. 299 (1999) 21-80.

[9] C. Jie and G.-J. Wang, Construction of triangular DP surface and its
application, J. Comput. Appl. Math. 219 (2008) 312-326.

10

[10] L. L. Schumaker and W. Volk, Efficient evaluation of multivariate polynomials,
Computer Aided Geometric Design 3 (1986) 149-154.

[11] H. Shi-Min, W. Guo-Zhao and Tong-Guang, Properties of two types of
generalized Ball curves, Computer-Aided Design 28 (1996) 125-133.

[12] J. H. Wilkinson, The evaluation of the zeros of ill-conditioned polynomials,
Parts I and II, Numer. Math. 1 (1959) 150-166 and 167-180.

[13] J. H. Wilkinson, Rounding Errors in Algebraic Processes, Notes on Applied
Science, Vol. 32. Her Majesty’s Stationery Office, London, 1963.

0 0.2 0.4 0.6 0.8 1
10

−20

10
−15

10
−10

10
−5

10
0

(a) Relative errors for f(t)

0 0.2 0.4 0.6 0.8 1
10

−20

10
−10

10
0

10
10

(b) Relative errors for g(t)

Cast
VS
B−Fourier
Horner

Fig. 1. Relative errors for Wilkinson polynomials

0 0.2 0.4 0.6 0.8 1
10

−26

10
−24

10
−22

10
−20

10
−18

10
−16

10
−14

10
−12

(a) Absolute errors for f(t)

0 0.2 0.4 0.6 0.8 1
10

−45

10
−40

10
−35

10
−30

10
−25

10
−20

10
−15

(b) Absolute errors for g(t)

Cast
VS
B−Fourier
Horner

Fig. 2. Absolute errors for Wilkinson polynomials

11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−20

10
−10

10
0

10
10

10
20

Cast
VS
B−Fourier
Horner

Fig. 3. Relative errors for h(t)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−50

10
−45

10
−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

Cast
VS
B−Fourier
Horner

Fig. 4. Absolute errors for h(t)

12

0
0.5

1

0

0.5

1
10

−10

10
0

10
10

(a) De Casteljau algorithm

0
0.5

1

0

0.5

1
10

−10

10
0

10
10

(b) VS algorithm

0
0.5

1

0

0.5

1
10

−20

10
0

10
20

(c) Horner algorithm

0
0.5

1

0

0.5

1
10

−10

10
0

10
10

(d) Bernstein−Fourier algorithm

Fig. 5. Relative errors for F (x, y)

0
0.5

1

0

0.5

1
10

−20

10
−10

10
0

(a) De Casteljau algorithm

0
0.5

1

0

0.5

1
10

−20

10
−10

10
0

(b) VS algorithm

0
0.5

1

0

0.5

1
10

−20

10
−10

10
0

(c) Horner algorithm

0
0.5

1

0

0.5

1
10

−20

10
−10

10
0

(d) Bernstein−Fourier algorithm

Fig. 6. Absolute errors for F (x, y)

13

0
0.5

1

0

0.5

1
10

−20

10
−15

10
−10

(a) De Casteljau algorithm

0
0.5

1

0

0.5

1
10

−20

10
−15

10
−10

(b) VS algorithm

0
0.5

1

0

0.5

1
10

−5

10
0

10
5

(c) Horner algorithm

0
0.5

1

0

0.5

1
10

−20

10
0

10
20

(d) Bernstein−Fourier algorithm

Fig. 7. Relative errors for G(x, y)

0
0.5

1

0

0.5

1
10

−50

10
0

(a) De Casteljau algorithm

0
0.5

1

0

0.5

1
10

−50

10
0

(b) VS algorithm

0
0.5

1

0

0.5

1
10

−40

10
−20

10
0

(c) Horner algorithm

0
0.5

1

0

0.5

1
10

−40

10
−20

10
0

(d) Bernstein−Fourier algorithm

Fig. 8. Absolute errors for G(x, y)

14

0
0.5

1

0

0.5

1
10

−16

10
−14

10
−12

(a) De Casteljau algorithm

0
0.5

1

0

0.5

1
10

−50

10
0

10
50

(b) VS algorithm

0
0.5

1

0

0.5

1
10

−50

10
0

10
50

(c) Horner algorithm

0
0.5

1

0

0.5

1
10

−20

10
0

10
20

(d) Bernstein−Fourier algorithm

Fig. 9. Relative errors for H(x, y)

0
0.5

1

0

0.5

1
10

−60

10
−40

10
−20

(a) De Casteljau algorithm

0
0.5

1

0

0.5

1
10

−40

10
−30

10
−20

(b) VS algorithm

0
0.5

1

0

0.5

1
10

−40

10
−20

10
0

(c) Horner algorithm

0
0.5

1

0

0.5

1
10

−40

10
−30

10
−20

(d) Bernstein−Fourier algorithm

Fig. 10. Absolute errors for H(x, y)

15

