000047858 001__ 47858
000047858 005__ 20200221144125.0
000047858 0247_ $$2doi$$a10.1016/j.applthermaleng.2015.09.084
000047858 0248_ $$2sideral$$a92330
000047858 037__ $$aART-2016-92330
000047858 041__ $$aeng
000047858 100__ $$0(orcid)0000-0002-2417-2400$$aSanz-Serrano, F.$$uUniversidad de Zaragoza
000047858 245__ $$aInverse modeling of pan heating in domestic cookers
000047858 260__ $$c2016
000047858 5060_ $$aAccess copy available to the general public$$fUnrestricted
000047858 5203_ $$aThe heating uniformity of the cooking vessels in domestic stoves depends on the type of heat source (induction, electric resistance, gas burner, etc.) and of the way in which the power is transferred to the pan. The evaluation of the stove functionalities is currently carried out by the manufacturers with costly experimental tests with real food, which are an important phase of the design process for the improvement of their performance in the food elaboration. In order to help to design the cookers and avoid the expensive tests, it is interesting to know how the heating power is distributed in each situation, so that the cookers can be adapted to obtain a more uniform heating. The contribution of this work is an inverse thermal model for the three aforementioned technologies of domestic cookers, which allows the calculation of the power distribution generated in the bottom of the pan from the measurement of the surface temperature. The results show that the proposed inverse model is of interest in many practical situations and can be used under diverse conditions.
000047858 536__ $$9info:eu-repo/grantAgreement/ES/MEC/AP2013-02769$$9info:eu-repo/grantAgreement/ES/MINECO/IPT2011-1158-920000$$9info:eu-repo/grantAgreement/ES/MINECO/RTC-2014-1847-6
000047858 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000047858 590__ $$a3.356$$b2016
000047858 591__ $$aENGINEERING, MECHANICAL$$b12 / 130 = 0.092$$c2016$$dQ1$$eT1
000047858 591__ $$aTHERMODYNAMICS$$b8 / 58 = 0.138$$c2016$$dQ1$$eT1
000047858 591__ $$aMECHANICS$$b10 / 133 = 0.075$$c2016$$dQ1$$eT1
000047858 591__ $$aENERGY & FUELS$$b29 / 92 = 0.315$$c2016$$dQ2$$eT1
000047858 592__ $$a1.437$$b2016
000047858 593__ $$aIndustrial and Manufacturing Engineering$$c2016$$dQ1
000047858 593__ $$aEnergy Engineering and Power Technology$$c2016$$dQ1
000047858 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/submittedVersion
000047858 700__ $$0(orcid)0000-0002-3032-954X$$aSagues, C.$$uUniversidad de Zaragoza
000047858 700__ $$0(orcid)0000-0003-4609-1254$$aLlorente, S.
000047858 7102_ $$15007$$2520$$aUniversidad de Zaragoza$$bDpto. Informát.Ingenie.Sistms.$$cÁrea Ingen.Sistemas y Automát.
000047858 773__ $$g92 (2016), 137-148$$pAppl. therm. eng.$$tApplied Thermal Engineering$$x1359-4311
000047858 8564_ $$s890000$$uhttps://zaguan.unizar.es/record/47858/files/texto_completo.pdf$$yPreprint
000047858 8564_ $$s51732$$uhttps://zaguan.unizar.es/record/47858/files/texto_completo.jpg?subformat=icon$$xicon$$yPreprint
000047858 909CO $$ooai:zaguan.unizar.es:47858$$particulos$$pdriver
000047858 951__ $$a2020-02-21-13:03:24
000047858 980__ $$aARTICLE