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Introduccion

Todas las obras de ingenieria civil se apoyan sobre el suelo de una u otra forma, y muchas de
ellas, ademds, utilizan la tierra como elemento de construccién para terraplenes, diques y rellenos en
general; por lo que, en consecuencia, su estabilidad y comportamiento funcional y estético estaran
determinados, entre otros factores, por el desempeiio del material de asiento situado dentro de las pro-
fundidades de influencia de los esfuerzos que se generan, o por el del suelo utilizado para conformar
los rellenos.

Si se sobrepasan los limites de la capacidad resistente del suelo o si, ain sin llegar a ellos, las
deformaciones son considerables, se pueden producir esfuerzos secundarios en los miembros estruc-
turales, quizds no tomados en consideracion en el disefio, productores a su vez de deformaciones
importantes, fisuras, grietas o desplomos que pueden producir, en casos extremos, el colapso de la
obra o su inutilizacién y abandono.

En consecuencia, las condiciones del suelo como elemento de sustentacién y construccién y las del
cimiento como dispositivo de transicién entre aquel y la supraestructura han de ser siempre observadas
a través de una correcta investigacion de mecdnica de suelos. La Torre de Pisa es un claro ejemplo de
un problema originado por deformaciones importantes.

En dicho estudio entra en juego la poroelasticidad. El término de poroelasticidad es el utilizado
para describir la interaccién entre el flujo de un fluido y la deformacién de s6lidos dentro de un medio
poroso. Dicho medio o material poroso es un sdlido, a menudo llamado matriz, impregnado por una
red interconectada de poros o huecos lleno de un fluido ya sea liquido o gas.

{ Y cémo se rige este comportamiento entre fluido y medio poroso ? Para ello observaremos la
Ley de Darcy que describe las caracteristicas del movimiento de liquidos a través de un medio poroso,
la Ley de conservaciéon de masas y la Ley de Hooke que establece que el alargamiento unitario que
experimenta un material eldstico es directamente proporcional a la fuerza aplicada sobre el mismo,
para finalmente plantear el problema de Biot cldsico que modela el movimiento de un fluido en un
medio poroso deformable y lo haremos a través del método de diferencias finitas y comprobaremos
que es valido probando su convergencia.
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Summary

In this project we will introduce Darcy’s law. Darcy’s law is a constitutive equation, that describes
the flow of a fluid through a porous medium. The law was formulated by Henry Darcy based on the
results of experiments on the flow of water through beds of sand, forming the basis of hydrogeology,
a branch of earth sciences. In the case of a current this gradient is related to the water level. In other
words, this law shows that the water velocity between two points is proportional to the gradient of the
state of energy between the two points.

Darcy in search of how to provide safe water his hometown developed an experiment to determine
the characteristics of the filtering process. Thanks to this experiment we have the following formula:

h3—h4A

0=k

Where:

0O = Flow innj:

L = Length in meters of the sample

Kk = A constant know as Darcy’s permeability coefficient, variable depending

on the sample material, in m/s.

A = Area of the cross section of the sample in m?.

hz = Height above the reference plane reaching the water in a tube placed at the entrance
of the filter layer.

h4 = Height above the reference plane reaching the water in a tube placed at the exit

of the filter layer.

Darcy discovers that the volumetric flow rate of water through the column, usually denoted by Q,
is proportional to the difference between the hydraulic heads /3 and A4, and the cross-sectional area
A, and inversely proportional to the distance between the two points L.

Darcy’s law can be extended to one-dimensional differential expression assuming that the asso-
ciated points are sufficiently close. Taking the limit of the distance approaches zero Darcy’s law is
expressed as

B th
=%
Darcy’s law is valid in a saturated, continuous, homogeneous and isotropic medium when inertial
forces are negligible.



2 Summary

Now that we know the law, we can use the finite difference method to model it mathematically.
The finite difference method is a method used to calculate approximate solutions to differential equa-
tions using difference formulas to approximate derivates. The domain is divided into space and time
and approximations of the solution are calculated at points of space or time. The error between the
numerical solution and the exact solution is determined by the error made by passing a differential
operator to difference operator. This error is called discretization error .

In our work we will use the finite difference method for modeling the Biot’s problem dealing
Darcy’s Law. We refer to the simple case of the one-dimensional problem

’u dp
—(l+2u)ﬁ+$—0, X e (O,l),
d du\  xdp
= oy 2 _ <
9 (YP+ 8x) 1o q(x,1), x€(0,0),0<t<T,

with boundary and intial conditions given by

d .
()L—FZIJ)%:—MQ, p=0,if x=0,
ap .
M—O,a—o, le—l,
du .
<yp+ax> (x) =0, 1n (O,Z), t=0.

After adimensionalization with respect to the length [ of the porous medium domain, the Lamé
stress constant A + 21, the term up, the permeability k and the viscosity 1, such that

x (A +2u)xt p (A+2u)u
xXi== = pi=—, ui=-——"

1’ Tllz U uol

the previous poroelastic problem becomes

2’u dp
_87_)(j2+87x:0’ XE(O,I)7
2
i(“’”gz)_%:ﬂx’”’ xe(0,0),0<t<T,
3”:_17 =0, if x=0,
x
u=>0, (;p:O, if x=1,
x
du .
ap+$ (x) =0, in (0,1),7=0.
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Capitulo 1

Problema fisico

1.1. Teoria de la poroelasticidad

El concepto de medio poroso originalmente emergié en mecénica de suelos y en particular en las
obras de Karl von Terzaghi (1883-1963), padre de la mecénica de suelos. Sin embargo un concepto
mas general de un medio poroeldstico es atribuido a Maurice Anthony Biot (1905-1985), un ingeniero
belga-americano. El término de poroelasticidad es el utilizado para describir la interaccidn entre el
flujo de fluido y la deformacion de s6lidos dentro de un medio poroso. Dicho medio o material poroso
es un sélido, a menudo llamado matriz, impregnado por una red interconectada de poros o huecos
lleno de un fluido: liquido o gas.

En una serie de publicaciones entre 1935 y 1957 Biot desarrolla la teoria de la poroelasticidad
dindmica, conocida ahora como teoria de Biot, aportando un completo estudio del comportamiento
mecdnico de un medio poroeldstico.

Muchas sustancias naturales, tales como las rocas, tejidos bioldgicos y materiales hechos por el
hombre tales como espumas y cerdmicas pueden ser considerados medios porosos.

1.2. Ley de Darcy

La ley de Darcy experimental (o Darcy) es una ley fisica, mecanicista y determinista que ex-
presa, en base a experimentos, el flujo de un fluido a través de medios porosos (supuesto isotropico).
La circulacién de este fluido entre dos puntos estd determinado por la conductividad hidraulica del
sustrato y el gradiente de presion del fluido. En el caso de una corriente este gradiente estd relaciona-
do con la altura del agua. En otras palabras, esta ley muestra que '"la velocidad del agua entre dos
puntos es proporcional al gradiente del estado de energia entre los dos puntos''.

1.2.1. Historia

Esta ley fue establecida en 1855 por Henry Darcy después de haber llevado a cabo varios experi-
mentos para determinar las leyes que gobiernan el flujo de agua a través de la arena. Un afio después,
en una segunda publicacién, Las fuentes piiblicas de la ciudad de Dijon, Darcy, queriendo conocer
el principio mecdnico que gobernaba el flujo de agua en un sélido reutiliza esta ley para controlar
y predecir el movimiento y la velocidad del agua en las tuberfas y sistemas de energia de las fuen-
tes de Dijon para producir agua potable. 150 afos después, la ley de Darcy y sus derivados siguen
desempefiando un papel importante en hidrogeologia y en particular en el drea de los sistemas hi-
draulicos subterraneos. Primero fue utilizada para evaluar las propiedades hidraulicas de diferentes
tipos de sustratos, la tasa potencial del agua subterrdnea que fluye verticalmente a través del suelo o
una capa geoldgica a, por ejemplo, una extraccién de agua que nos gustaria saber a qué velocidad no
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deberia ser suministrado. Luego fue especialmente utilizada para determinar las dreas de alimentacién
(y posiblemente de proteccion) de las cuencas de agua subterranea.

1.2.2. Formulacion

La Hidrogeologia comienza en 1856 con la publicacion del libro Les Fontaines publiques de Dijon
por parte de Henry Darcy (Dijon, Francia, 10 de junio de 1803 - Paris, 2 de enero de 1858). Darcy en
su busca de como abastecer de agua potable su ciudad natal realizé un experimento para determinar
las caracteristicas del proceso de filtrado que podemos observar en la siguiente imagen.

2 entra
Bt 2 3 o
w1
-3 l
3
Arena
h3
£
& 1
€} zala A [—
h4
Plano da /
Referancia

Donde tenemos que la férmula de Darcy es la siguiente:

h3—h
Donde:

3
m
Q = Caudal en —
S
L = Longitud en metros de la muestra
k = Una constante, actualmente conocida como coeficiente de permeabilidad de Darcy,

variable en funcién del material de la muestra, en m/s
A = Area de la seccién transversal de la muestra en m?>

h3 = Altura, sobre el plano de referencia que alcanza el agua en un tubo colocado a la

entrada de la capa filtrante

h4 = Altura, sobre el plano de referencia que alcanza el agua en un tubo colocado a la
salida de la capa filtrante.

Darcy descubre que la tasa de flujo volumétrico de agua a través de la columna, que normalmente
llamaremos Q, es proporcional a la diferencia entre las cabezas hidrdulicas h3 y h4, y al drea de seccién
A, e inversamente proporcional a la distancia entre los dos puntos L. El signo negativo de la ecuacién
es una convencion debido a que el sentido del flujo es direccion hacia la cabeza hidrdulica baja. Este
coeficiente k¥ depende del medio poroso y el flujo de fluido a través de ella y que describe la facilidad
con la que un fluido puede moverse a través de los espacios de poros. Se puede expresar como

_ Ki pr&
n

K

(1.1)

Simulacion de fluidos en medios porosos deformables



1.2. Ley de Darcy 5

donde K es la permeabilidad del s6lido que sélo depende de las propiedades de la matriz porosa con
unidades en m?, 1) es la viscosidad dindmica del fluido en kg/ms, py es la densidad del fluido medido
en kg/m> y g es la constante gravitacional medida en m/s.

La tasa de flujo por area es definida por

ha—h
q:gz—x4 3
A L

(1.2)

y tiene como dimensiones m /s. Démonos cuenta que aunque tiene las mismas unidades que la veloci-
dad no es la velocidad de flujo. Tener en cuenta que g es el volumen de fluido por unidad de superficie
por unidad de tiempo, en donde el drea estd incluyendo tanto liquido y sélido.La carga hidraulica de
un fluido 4 tiene dos componentes, la carga de elevacidn z, medido con respecto a una posicién de
referencia especificada, y un valor de la presién p , llamado carga de presion, p/pyg , es decir, la carga
hidraulica puede ser expresada como

h=zt -2 (1.3)
Pr8

donde la presion p es una fuerza por drea medida en kg /ms>.

La ley de Darcy se puede extender a una expresion diferencial unidimensional suponiendo que los
puntos asociados estén suficientemente proximos. Tomando que el limite de la distancia tiende a cero
la Ley de Darcy se expresa como
=—K— 1.4
q iz (1.4)
Esta ecuacién puede extenderse al caso tridimensional de la siguiente forma:

q=—Kgrad h, (1.5)

donde q es llamada velocidad de Darcy. Combinando (1.1), (1.3) y (1.5) y asumiendo que py es
constante, obtenemos la version final de la ecuacién de Darcy

k
qz—ﬁ(gmdp—l)fg), (1.6)

donde hemos introducido la aceleracién gravitacional g = —g grad z.

1.2.3. Validez de la Ley de Darcy

La ley de Darcy es valida en un medio saturado, continuo, homogéneo e isétropo y cuando las
fuerzas inerciales son despreciables.

La Ley de Darcy es una de las piezas fundamentales de la mecanica de los suelos. A partir de los
trabajos iniciales de Darcy, un trabajo monumental para la época, muchos otros investigadores han
analizado y puesto a prueba esta ley. A través de estos trabajos posteriores se ha podido determinar
que mantiene su validez para la mayoria de los tipos de flujo de fluidos en los suelos. Para filtraciones
de liquidos a velocidades muy elevadas y la de gases a velocidades muy bajas, la ley de Darcy deja de
ser vélida.

En el caso de agua circulando en suelos, existen evidencias abrumadoras en el sentido de verificar
la Ley de Darcy para suelos como por ejemplo los limos. Para suelos de mayor permeabilidad, debera
determinarse experimentalmente la relacion real entre el gradiente y la velocidad para cada suelo y
porosidad estudiados.

Autor: Carlos Baquero Mufioz
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1.3. Ley de conservacion de masas

La ley de Darcy no es suficiente para resolver los problemas de flujo de agua subterranea. Observe
que (1.6) nos dan tres ecuaciones con cuatro incégnitas, los tres componentes del vector q y la presion
p- Una cuarta ecuacién serd dada por la ecuacion de continuidad basado en el principio de conserva-
cién de la masa. Tal principio establece que la masa no se ni crea ni se destruye.

En medios porosos, la porosidad, que se denota aqui por ¢, es la fraccién de espacio vacio dispo-
nible para el fluido y se define por la relacién

o=-" (1.7)

donde V;,, es el volumen de espacio vacio y V; es el volumen total del material, también llamada volu-
men aparente, incluyendo tanto el volumen sélido y vacio. La porosidad es un valor que se encuentra
entre 0 y 1 y mide la capacidad del s6lido de almacenar fluido. Como fue comentado en la seccién
anterior, la velocidad de Darcy, q es definida como el volumen de fluido por drea y tiempo, incluyendo
tanto fluido como matriz. El actual vector velocidad del fluido, que es denotado como vy, es el volu-
men de fluido por drea ocupado por tal fluido. Asi pues, ambas velocidades estin relacionadas por la
ecuacién

q=9vy (1.8)

Introducida la definicion anterior, podemos derivar la ecuacién continua. Consideremos un cubo in-
finitesimal con dimensiones Axj, AXx, y Ax3. La x-iésima componente del vector de flujo de masa
es piq;. La tasa de masa de fluido que recorre hacia el cubo a través de la superficie S’i” durante el
intervalo de tiempo [t, t + At] es

(Prq1)(x1)(AxaAx3At)

y la tasa de masa de fluido que recorre hacia fuera del cubo a través de la superficie S durante el
mismo intervalo es

((prq1)(x1 + Axy ) Ay Axs At

Asi,la diferencia entre la masa de fluido que sale y entra del cubo en la direccién de la coordenada x;
es

((Prg1) (x1 4+ Ax1) = (prqr) (x1)) Ax2Axs At
De forma andloga para x, y x3.

El cambio de masa del fluido m = psn en el cubo durante el intervalo de tiempo [t, 7 +At] es

((pr9)(t +A1) = (prd) (1)) Axi AxaAxs

y el caudal de masa total afiadido o eliminado debido a una densidad fuente f(x,t) durante ese tiempo
es

(Prf)Ax1 A A3 A t

Simulacion de fluidos en medios porosos deformables



1.4. Ecuacién para el flujo en un medio poroso rigido 7

La ley de conservacién de masas afirma que la masa es una cantidad conservada a nivel local, la
diferencia entre la entrada y salida de la masa en el cubo debe ser igual a la variacién total de la masa:

((Pr®)(t+A1) = (pre) (1)) Ax1 AxyAxs =

—(prq1)(x1 +Ax1) — (prqr) (x1) Axo Axs At

—(Prq1)(x2 +Ax2) — (Prq1) (x2) Ax; Axs At

— (Prq3) (3 +Ax) — (prqs) (x3) (Ax1 Ao At ) + pr fAx Ay Axz At

Dividiendo esta ecuacion por Ax;AxyAx3At, observamos que

((pr@)(t+A1) = (pr9)(1) _ _ (Prar)(x1 +4Ax1) — (Prgi)(x1)

At N Axi
_(Pra2) (2 +Ax2) — (prg2)(x2)  (Prq3)(x3 +Axs) — (prgs)(x3) ot
Axy Ax3 f

Tomando el limite cuando Ax; — 0, i=1,2,3 y Ar — 0, obtenemos la ecuacion de conservacién de
masas

d(pr9)
ot

+div(psq) = prf (1.9)

1.4. Ecuacion para el flujo en un medio poroso rigido

Primero recordemos que la derivada temporal de una variable arbitraria p de material con respecto
al movimiento de un punto material con una velocidad v se define como
Dp dp

i : 1.1
Dr 3 +v-grad p (1.10)

Esto es llamado derivada de Lagrange. La siguiente identidad nos ser4 ttil
div(pv) =v-grad p + pdiv v

Un flujo es incompresible si la derivada de tiempo material de la densidad es cero. Usando la ecua-
cion de continuidad tal declaracidn es equivalente a una divergencia nula de la velocidad del flujo.
Deduzcamos ahora la ecuacion que gobierna el flujo de un fluido. Sustituyendo en (1.6) en (1.9)

0
00 (5

gradp—Pfg)> =prf (1.11)

Para un fluido incompresible, y suponiendo que la porosidad es independiente del tiempo, la ecuacién
se reduce a

~div (£(Vp—psg)) = f.

que es una ecuacidn para una incdgnita, y el sistema puede ser resuelto. Sin embargo, en el caso
general, el problema no puede resolverse sin ser combinada con la ecuacién de estado. Tenemos que
considerar la posible compresién tanto del fluido y la matriz s6lida. Teniendo en cuenta que el primer
término en el lado izquierdo de (1.11)

2(ps$) _ ¢Bpf +pf‘?;?

ot ot

Autor: Carlos Baquero Mufioz
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implica la compresibilidad del fluido % y la compresibilidad del medio poroso %—‘f. El primero condu-
ce a posibles cambios en la densidad del fluido y la segunda lleva a posibles cambios en la porosidad.
Con este fin, se introduce un estado desde la ecuacion del fluido en condiciones isotérmicas,

pr=ppe(p—p°), (1.12)

donde cy es el coeficiente de compresibilidad del fluido, y p? que es la densidad del fluido en la

presién de referencia p°. La diferenciacién con respecto al tiempo en ambos lados de (1.23) da como
resultado

dpy . dp
= =P, (1.13)

A partir de (1.12), observamos que este coeficiente puede definirse como

1 dpy

€F = bjdp

que establece cémo cambiard la densidad si la presién del fluido se cambia por otra cierta cantidad.
También introducimos el concepto de coeficiente de compresibilidad ¢ del solido, definido como

d
Cs = dj; (1.14)
Usando la regla de la cadena tenemos que
¢ _dodp _ dp (1.15)

9t dpor ot

Definiendo el coeficiente de compresibilidad total ¢; como ¢; = ¢;+ @c y sustituyendo (1.13) y (1.15)
en (1.11) vemos que

0 ) K
PfCraff —div (an(gradp - Pf8)> =psfs (1.16)

que es una ecuacion parabdlica con sélo una incégnita, la presion, y donde ps es dada por la férmula
(1.12).

En la préctica, a menudo se supone que los cambios espaciales en la densidad se pueden despreciar.
Bajo este supuesto, (1.16) se puede reescribir como

dp .. K
CzE—le <P,fn(gradP—Pfg)> =f (1.17)

1.5. Medios deformables

La elasticidad es la capacidad de los materiales para resistir y recuperarse de deformaciones crea-
das por fuerzas externas. Los dos conceptos bésicos de la teoria de la elasticidad son la tensién y
la deformacién. La tension es una magnitud fisica que representa las fuerzas internas que surgen en
un cuerpo deforme para equilibrar las fuerzas externas. A su vez, la deformacion es el cambio en el
tamafio o forma de un cuerpo debido a esfuerzos internos producidos por una o més fuerzas aplicadas
sobre el mismo o la ocurrencia de dilatacién térmica. La ley de Hooke describe las relaciones lineales
de tensién y deformacion.

Simulacion de fluidos en medios porosos deformables



1.5. Medios deformables 9

1.5.1. Tension

Consideremos un cuerpo sometido a un conjunto arbitrario de fuerzas externas. Podemos dividir
este cuerpo en dos partes: A y B por un plano que pasa por un punto O dado dentro del cuerpo.
Tengamos en cuenta que el plano Unicamente puede ser identificado por su unidad normal n. La
accion que la parte B ejerce sobre la parte A estd representada por una fuerza resultante f. Entonces,
el vector de tension t es la relacion de la fuerza resultante f por el drea de la seccion transversal a:

1.5.2. Ecuaciones de equilibro

Hasta ahora hemos hablado s6lo sobre las fuerzas de superficie que actian sobre una superficie de
un cuerpo. Pero puede haber fuerzas del cuerpo que actien sobre cada particula del cuerpo. Ejemplos
de estas fuerzas son la gravedad, las fuerzas magnéticas o las fuerzas inerciales. Para que un cuerpo
sobre el que se ejerce una presién permanezca en reposo es necesario que todas las fuerzas que actien
sobre €l se anulen entre si. Este requisito conduce a las ecuaciones de equilibrio. Considere un cubo
infinitesimal. Las fuerzas que actiian sobre este cuerpo son fuerzas normales ¢ a lo largo de las tres
direcciones. Manipuldndolas un poco y denotando f al vector de las componentes de las fuerzas del
cuerpo por unidad de volumen llegamos a la ecuacién de equilibrio.

divo +f=0. (1.18)

1.5.3. Deformacion

Consideremos un cuerpo donde identificamos un punto P y denotamos su localizacién dentro del
cuerpo por x=(x1,x,x3). Cuando se aplica una carga externa al cuerpo, el punto P se desplazara a una
nueva ubicacién x’=(x},x5,x;). El vector que conecta la ubicacion x inicial y la final ubicacién final x’
se denomina vector de desplazamiento u=(u1,us,us):

u=x—x’, ulle—xll, uzzxg—x’z, u3:x3—x’3 (1.19)

En general, el desplazamiento puede variar de punto a punto, de modo que cada componente (u1,
up,u3) también puede variar con las tres coordenadas de ubicaciéon xj, x;, x3. Ademds del desplaza-
miento de la deformacién también se cuantifica por una cepa, que es esencialmente una medida del
desplazamiento relativo. Considere un cuerpo rectangular de dos dimensiones bajo carga. En el limite
cuando A x; — 0, definimos la deformacién en el punto x; como la derivada espacial del desplaza-

miento:
e = lim ul(xl —|—Ax1)—u1(x1) o 8u1

Ax—0 Axi ~ dx

(1.20)

La deformacién es llamada deformacion normal en la x-direccién. De forma similar, las tensiones
normales en las x, y x3-direcciones pueden ser definidas como

duy Jus

_ 9w dus 121
& 8x2’83 s (L.2D)

Esto demuestra que después de la deformacién el cuerpo no sélo se mueve, sino que también
cambia su forma. Este tipo de deformacion se llama deformacidn cortante y puede ser medida por el
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10 Capitulo 1. Problema fisico

cambio del 4ngulo entre dos lineas inicialmente ortogonales. Especificamente, la deformacién cortante
€13 se define como un medio del cambio del dngulo originalmente formado por dos lineas paralelas a
las direcciones xj y x»:

1
Slzzi(a‘f‘ﬁ) (1.22)

Para pequeias deformaciones, los dngulos & y 3 son calculados de la siguiente forma

dia g oM
ox;’ "~ oxy

~
~

Por lo tanto, la deformacién cortante es igual a

1/ duy | du
€12 = 5 (aXI + 8)62) (1.23)

La deformacién cortante €, es igual a la media de la derivada parcial del desplazamiento en la
direccidn x; con respecto a x; y la derivada parcial del desplazamiento en la direccidn x; con respecto
a x1. Por esta definicién, una deformacion cortante &) es igual a €1;. Similarmente, tenemos

1 [duy  dus 1 (duz  du
823—832—2<ax3+axz>7 &3] _8]3_2<axl+8x3> (1.24)

Entonces,

€11 €12 €13
€= &1 &2 &3
&1 &2 &3

El tensor deformacién puede escribirse como

1
€= i(grade—grad ul), (1.25)

donde grad u es el gradiente desplazamiento.

1.5.4. Ley de Hooke

El estado tensién-deformacién de un medio deformable es caracterizado por las seis componentes
de la tensién oy, 03, 03, 12, O3, 031 ¥ las seis componentes de la deformacién €, &, €3, €12, &3,
&31. Entonces, es 16gico asumir que hay una conexion entre ellas, que puede expresarse de la siguiente

forma:
o1 = fi(€&1,&,83,€12,€3,831),

)
02 = f2(€1,82,83,€12,63,81),
03 = f3(&1,&,83,€12,623,81),
o12 = fa(€1,€, 3, €12,€3,81),
023 = f5(&1,8, 83,812,823, 831),
031 = fo(&1,€2, 83,812,823, 831)

(1.26)

Simulacion de fluidos en medios porosos deformables



1.5. Medios deformables 11

Expandiendo estas ecuaciones en una serie de Taylor y queddndonos sélo los términos de primer
orden, obtenemos

O1 =C11€1 +C128 1+ C1383 +C14€12 + C15823 + C16E31,
02 = C21€1 + €228 +C23E3 + C24€12 +C25€23 + Co6E31,
03 = C31€] +C3282 +C3383 +C34€12 + C35€23 + C36E31,
O12 = C41€] + C428& +C43€3 + C44€12 + C45€23 1+ C46E31,
023 = C51€1 +C52€2 +C5383 + C54€12 + C55€23 + C56 €31,
031 = C61€1 +C62€2 1+ C63€3 +Cea€12 + Ce5€23 + C66E31

(1.27)

Aqui, tenemos treinta y seis coeficientes ¢;; llamados médulos eldsticos.

En la teorfa de la elasticidad lineal normalmente se trabaja con materiales homogéneos e isotré-
picos. Si un material es homogéneo, su comportamiento eldstico no varia espacialmente, y entonces
todos los médulos eldsticos son constantes. Ademds, si las propiedades eldsticas del material son las
mismas en todas las direcciones, el material es llamado isotrépico. Por otro lado, si no lo es, serd
llamado anisotrépico.

El comportamiento elastico de materiales isotrépicos puede ser con descrito dos mddulos elasticos
Ay 1 conocidos como pardmetros de Lame y asi las relaciones tensiéon-deformacién se simplifican
de la siguiente forma:

o1 =2ue +A(e1+&+¢&),
oy =2Uue+A(e1 + &+ &),
o3 =2ue3+A(e + &+ &),

1.28
O12 = 2U€l2, (1.28)
023 = 2U€3,
031 = 2U&3.

Estas ecuaciones son llamadas como Ley de Hooke y pueden escribirse en forma matricial como

o =2ue+Agl. (1.29)

donde I es el tensor identidad y &, la deformacidn volumétrica:
e=tr(e) =€ +&+e=dvu

Tengamos en cuenta que el pardmetro y también se conoce como el mddulo de corte 0 médulo de
rigidez. Ademds, se discuten otros pardmetros eldsticos que pueden ser utilizados para describir el
estado de tensién-deformacion de los materiales.

1.5.5. Parametros elasticos

En primer lugar, considerar el estado de tensién uniaxial cuando un cuerpo isétropo se carga de
manera uniforme en la x; direccidn , es decir, 0] # 0,0, = 03 = 712 = T3 = 731 = 0. Entonces, de las
ecuaciones (1.28), obtenemos

Ag,+2uE = 0y
Ae,+2ue; =0 (1.30)
Ae,+2ue3 =0
Resumiendo estas ecuaciones, obtenemos
g = ;Gl (1.31)
3A+2u
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12 Capitulo 1. Problema fisico

Si sustituimos esta ecuacion en la primera de las obtenidas anteriormente en (1.30) llegamos a que

(34 +2G)

& = Ee¢ 1.32
oy 1 1 (1.32)

o] =

donde E es el modulo de Young que caracteriza la rigidez de un material:

E— M (1.33)

A+u

La segunda y tercera ecuacién de (1.30) dan

A A
H=&=——6=————8€ = —VE 1.34
) =8 T G+ 1 (1.34)
Aqui, v es el ratio de Poisson:
A
V= ———. 1.35
2(A+n) (135

El ratio de Poisson es una medida de la expansion lateral relativa a la compresién longitudinal. Los
pardmetros de Lame se pueden expresar a través de E'y V:

Ev E

Py Py

Ahora, consideremos un cuerpo isétropo bajo carga uniforme, donde 07 = 0, = 03 = f, 01 =
023 = 031 = 0. Tomando en cuenta estas consideraciones, la ecuacion (1.41) puede ser escrita como

18v+2l~181 :f7
Ae,+2ue = f,
rAe,+2ues=f

Juntando estas ecuaciones, obtenemos
2 1

Aqui, K es el médulo bulk, ¢ es la compresibilidad de bulk:

2 1
K=A+3p c= (1.36)

Notemos que de los cinco pardmetros elésticos s6lo dos son independientes, es decir, si conocemos
dos parametros los otros pueden ser facilmente determinados.

Simulacion de fluidos en medios porosos deformables
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1.6. Poroelasticidad

1.6.1. Tension efectiva

Hay tres maneras en que puede aparecer un cambio de volumen de un medio poroso: por com-
presion del fluido, por compresién de los granos y por un reordenamiento de los granos. Los dos
primeros mecanismos son controlados por la compresibilidad del fluido y sélido, respectivamente. El
tercer mecanismo estd relacionado con el principio de la tensién efectiva. La tension total se realiza
en parte por el fluido y en parte por la estructura del suelo. La parte de la tensién total que no se
realiza por el fluido se llama la tension efectiva, y de hecho esta es la tensién aplicada a los granos del
medio poroso. Por lo tanto, la reorganizacién de los granos del suelo es causada por los cambios en la
tension efectiva y no por cambios en la tension total. Por lo tanto, la tensién total ¢ se puede dividir
en la suma de la tension efectiva, por lo general denotada por ¢’ y la presion total es

c=0c+apl,

donde a es el coeficiente de Biot , asumido como & = 1 — ¢ /¢y, donde ¢, es la compresibilidad del
medio poroso.

1.6.2. Gobierno de la ecuacion para el flujo de una sola fase en un medio poroso de-
formable

En esta seccidn, el gobierno de la circulacién de fluido a través de un medio poroso deformable se
deriva de la teoria de mezclas (Bowen). En esta teoria, se supone que cada punto estd ocupado por los
constituyentes de la mezcla. Un medio poroso saturado por un fluido puede entonces ser considerado
como una mezcla de dos componentes, una fase sélida que representa los granos del suelo, y una fase
fluida que representa el fluido que llena los huecos del medio poroso. Consideremos ahora la ecuacién
de conservacién de la masa para cada fase.

La ecuacioén de conservacion de la masa para la fase sélida se puede escribir en ausencia de
términos fuente como

a((1— .
W02 L aiv((1 - 0)puw) =0 (137)
donde ¢ es la porosidad y ps y Vs son la densidad y la velocidad del sdlido respectivamente. La
ecuacién de la conservacién de masas para el fluido ya fue extraida en una anterior seccién y puede
ser escrita en ausencia de términos fuente como

(9¢py)

s, tdiv(¢psvp) =0, (1.38)

donde ps y vy son la densidad y velocidad del fluido respectivamente. La velocidad de Darcy q fue
escrita en términos de la velocidad del fluido relativa al sélido. Entonces, en este caso de un medio
poroso deformable, la velocidad del sélido tiene que estar tenida en cuenta, y como consecuencia
dicha expresion para la velocidad de Darcy ahora tiene que ser:

q=0(vy—vy) (1.39)

Percatémonos que la relacién (1.9) es un caso particular de la férmula (1.39) para un medio poroso
rigido, es decir, cuando v;=0.
Teniendo en cuenta la derivada de tiempo material para la fase sélida,

Dsps  dpy
Dt Ot

+ vy - grad py,
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14 Capitulo 1. Problema fisico
la ecuacién de balance de masa (1.37) puede reescribirse como

W+(l—¢)psdivvszo (1.40)

Si asumimos incompresibilidad de los granos sélidos,

Dsps o

Dt ’

que es una suposiciéon comun en mecénica de suelos, una ecuacién de balance de masa simplificada
es obtenida,

Dy¢

Dt

=(1—¢)divvy,=(1— (]))aatdivu, (1.41)

donde u es el vector desplazamiento del sélido. Siguiendo el mismo procedimiento con la ecuacién
de balance de masa de fluido (1.38), y escribiendo la velocidad del fluido como vy = (v = vs) + Vs,
tenemos que

(g)pf) + ¢pydivvg +div(ps(vy —vs)) =0,
o,
s D de
¢ Dpf Py ﬁ‘W’Pfa +div(prq) = (1.42)

Usando (1.41), la ecuacién precedente es escrita como

D Y f
Dt

de .
¢ +pr, +diviprg) =0

Aplicando la ley de Darcy, obviando términos expresando el producto de una velocidad y un gradiente
de un escalar, y considerando que el fluido tiene un coeficiente de compresibilidad cy, finalmente
llegamos a la ecuacién

(gradp pfg)> =0 (1.43)

Sin embargo, en algunos materiales la compresibilidad de los granos tiene que ser tenida en cuenta.
En estos casos, la ecuacion de masa balanceada escrita de forma mds general es

DO (1) 2 1 (1 g)pudive, (1.44)

P

Asumimos la siguiente dependencia de la densidad del s6lido con respecto el total isotrdpico estrés y
la presién del fluido (Verruijt),
aps_ CsPs <aG 8P>

ot 1—¢ \ ot

ot ot

Entonces, si de nuevo obviamos términos expresando el producto de una velocidad y un gradiente de
un escalar, la ecuacion (1.44) queda escrita como

Ds(p do  dp .
a <(%_at>+(1_¢>dwvs (1.45)

Simulacion de fluidos en medios porosos deformables



1.6. Poroelasticidad 15

Sustituyendo el derivado de material de la porosidad en la ecuacién, obtenemos que

Dipy (30 dp\, O o
Dr +Pfcs<at 5 ) TPry; Tdivlpra) =0

¢

Debido a que la tensién total isotrépico es 6 = 6’ + ap, con @ el coeficiente de Biot constante
o =1—cg/cp, y latension isotropica efectiva estd relacionada al volumen deformado por la expresion
o' = —€/cy, donde ¢, es la compresibilidad del medio poroso, se sigue que la ecuacién precedente
puede ser escrita finalmente como

dp de .
(¢cr+ (a— (P)Cs)y —I—Otg +divg=0

Aqui, de nuevo asumimos que los cambios espaciales en la densidad pueden despreciarse.
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Capitulo 2

Meétodo de diferencias finitas

2.1. Aproximacion de diferencias finitas

Existen diferentes métodos para resolver Ecuaciones Diferenciales Parciales(EDP), entre ellos
se encuentra el Método de las Diferencias Finitas(MDF). El método de las diferencias finitas es
un método utilizado para calcular de manera aproximada las soluciones a las ecuaciones diferenciales
usando férmulas en diferencias para aproximar derivadas. El dominio se divide en espacio y en tiempo
y aproximaciones de la solucién se calculan en los puntos de espacio o de tiempo. El error entre
la solucién numérica y la solucidn exacta se determina por el error que se comete al pasar de un
operador diferencial a un operador de diferencias. Este error se denomina error de discretizacion o de
truncamiento. El término error de truncamiento refleja el hecho de que una parte finita de una serie de
Taylor se utiliza en la aproximacién.

Para buscar simplicidad, consideraremos sélo el caso unidimensional. El concepto principal detrds
de cualquier esquema de diferencias finitas esta relacionado con la definicién de la derivada de una
funcién suave u en un punto x € R:

W' (x) = lim 7”(X+h})f”(x),
h—0
y al hecho de que cuando h tiende a 0, el cociente en el lado derecho proporciona una “buena” apro-
ximacion de la derivada. En otras palabras, & debe ser lo suficientemente pequefia para obtener una
buena aproximacién. Queda por indicar qué es exactamente una buena aproximacioén, en qué sentido.
En realidad, la aproximacién es buena cuando el error cometido en esta aproximacion (es decir, cuan-
do la sustitucion de la derivada por el cociente diferencial) tiende hacia cero cuando 4 tiende a cero.
Si la funcién u es suficientemente suave en un entorno de x, es posible cuantificar este error utilizando
una expansion de Taylor.

2.1.1. Serie de Taylor

Supongamos que la funcién u es C? continua en un entorno de x. Para algin 4 > 0 tenemos que

2
u(x+h) :u(x)+hu’(x)+%u”(x+h1) 2.1

donde /; es un ndmero entre 0 y A. Para el tratamiento de los problemas, es conveniente conservar
s6lo los dos primeros términos de la expresién anterior:

u(x+h) = u(x)+hu' (x) + O(h?)

donde el término O(h?) indica que el error de aproximacién es proporcional a 4>. De la ecuacién
precedente, deducimos que existe una constante C > 0 tal que para 4 > 0 suficientemente pequefio

17



18 Capitulo 2. Método de diferencias finitas

tenemos:
u(x+h) —u(x)

| [« () |
h

2 )

—u'(x) |[<Ch,C=sup
YExx+ho]

2.2)

para h < hy (hy > 0 dado). El error cometido reemplazando la derivada u/(x) por el cociente dife-
rencial es de orden h. La aproximacion es conocida como aproximacion hacia delante de u'. Més
generalmente , definimos una aproximacién de orden p de la derivada.

Definicion 2.1.1. La aproximacion de la derivada u' en el punto x es de orden p (p > 0) si existe una
constante C > 0, independiente de h, tal que el error entre la derivada y la aproximacion estd acotado
por C h? (es decir, es exactamente una O(x?))

Del mismo modo, podemos definir la aproximacion hacia atrds de u' en el punto x como:
u(x—h) = u(x) — ' (x) + O(h?).

Obviamente, otras aproximaciones pueden ser consideradas. Con el fin de mejorar la precision de la
aproximacion, definimos una aproximacion consistente, llamada aproximacion central, tomando en
cuenta los puntos x — i y x+ h. Supongamos que la funcién u es tres veces diferenciable en un entorno
de x:

u(x+h) = u(x) +hu (x) + hz
u(x—h) = u(x) — hi (x) + 2

u
M

donde £1 € (x,x+h) y &~ € (x— h,x). Restando estas dos expresiones se obtiene, gracias al teorema
del valor intermedio:

ueth) ubh) () 4 1243) (&)

donde & es un punto de (x—h, x+h). Entonces, para todo 4 € (0, ), tenemos la siguiente acotacién
del error aproximado:

| dethlueh) ) 1<on?, €= sup OO
yE[x—ho,)C-’rho]

Esto define una segunda aproximacion consistente para u’.

Observacion 2.1.2. El orden de la aproximacion se relaciona con la regularidad de la funcion u. Si
u es C* continua, entonces la aproximacion es consistente en el orden uno solamente.

2.1.2. Aproximacion de la segunda derivada

Lema 2.1.3. Supongamos que u es una C* continua funcion en un intervalo [x — ho, x + hg), ho > 0.
Entonces, existe una constante C > 0 tal que para toda h € (0,hy), tenemos:

u(x+h) —2u(x) +u(x—h)

| i —u"(x) |< CI. (2.3)

. . . h)—2 —h . . .
El cociente diferencial ulxth) Z(QXHM(X )y (x) es una consistente aproximacion de segundo orden

de la segunda derivada u" (x) de u en un punto x.

Demostracion. Usamos el desarrollo de Taylor hasta términos de orden cuatro para obtener:

u(x+h):u(x)—i-hu’(x)—i-}%u”(x)—i-%:u@)() 24u DED)
u(x—h):u(x)—hu’(x)—i—%u”(x)—%u@)() 24u (5*)

Simulacion de fluidos en medios porosos deformables
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donde £* € (x,x+h)y &~ € (x— h,x). Como anteriormente, el Teorema del valor medio nos permite
escribir:

) 2 ) () 4 (g,

donde & € (x—h, x+ h). Asi, deducimos la relacién (6.2) con la constante

C= sup ‘”ﬁgy Iy

ye [xfho7 x+h0]

O

Observacion 2.1.4. Del mismo modo, la estimacion del error depende de la regularidad de la funcion
de u. Si u es C? continua, entonces el error es sélo del orden h.

2.2. Formulacion de diferencias finitas para un problema unidimensio-
nal

Consideremos un dominio acotado Q = (0,1) C Ry u : Q — R solucién del problema no homo-
géneo de Dirichlet:

() +eOul) 1), 2 (0.1,
D{ u(0) = a, u(l) = B, @4

donde c y f son dos funciones dadas, definidas en Q,¢c>0.

2.2.1. Un esquema de diferencias finitas

Supongamos que las funciones ¢ y f son al menos ¢ € C°(Q). El problema es entonces encontrar
u, € RN, tal que u; ~ u(x;), para todo i € 1,...,N (siendo x; la divisién que hacemos del dominio),
donde u es la solucién del problema (2.4). Introducimos la aproximacién de la derivada de segundo
orden por el coeficiente diferencial , consideramos seguidamente el siguiente problema discreto:

D) _u_/+l*2h“2j+u_/—l +c(xj)uj= f(xj),jel,---,N 2.5)
u(0) = e, u(1) = B,

El problema D ha sido discretizado por un método de diferencias finitas en base a un esquema cen-
trado en tres puntos para la derivada de segundo orden. El problema (2.4) se puede escribir en forma
matricial como:

Apup, = by,

donde Ay, es la matriz tridiagonal definida como:

c(x;) 0 .. 0
0 c(x) :
A =AY+
: . clxnv—1) O
0 0 c(xy)

con
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20 Capitulo 2. Método de diferencias finitas

)+ 35
f(x2)
by= :
Sen-1)
fon)+ 5

La cuestién planteada por esta formulacién estd relacionada con la existencia de una solucién. En
otras palabras, tenemos que determinar si la matriz Aj es invertible o no. La respuesta viene dada por
la siguiente proposicion.

Proposicion 2.2.1. Supongamos ¢ > 0. Entonces, la matriz Ay, es simétrica definida positiva.

Demostracion. Podemos observar que A es simétrica. Consideremos el vector v = (v;)1<j<y € RV,
Como ¢ > 0, tenemos:

VIARY = v’AEIO)V +Xe(x)v; > legzO)v’

y el problema se resume a mostrar que Al(lo) es definida positiva. Notemos que:

VAR = x2 + (xa —x1)? + ... + (xy_1 —xn)? +x%, y entonces V'A,v > 0. Ademds, si V'A,v =0
entonces todos los términos x; 11 —x; = x; = xy = 0. Entonces, concluimos que todos los x; =0 y el
resultado se demuestra.

]

Podemos resumir el concepto de diferencias finitas para el problema (2.4) en la tabla siguiente:

Teoria (continua) Diferencias finitas (discreto)
Dominio Q = (0,1) Iv=0,5+,..1
Incégnita u : [0,1] — R,u € C*(Q) up = (uy,...,uy) € RV
Condiciones u(0) = a,u(1) = f8 uy =0, un+1 =P
Ecuacion —u” +cu= f —M”]_Z}l# +clxj)u;j = f(x))

2.2.2. Esquema consistente

La férmula utilizada en los esquemas numéricos resulta de una aproximacion de la ecuacién usan-
do una expansién de Taylor. La nocién de coherencia y de exactitud ayuda a entender qué tan bien un
esquema numérico se aproxima a una ecuacion. Se introduce una definicién formal de la consistencia
que se puede utilizar para cualquier ecuacién diferencial parcial definida en un dominio Q y denotada

(Lu)(x) = f(x),

donde L denota un operador diferencial. La notacién (Lu) indica que la ecuacion depende de u y en
sus derivadas en cualquier punto x. Un esquema numérico puede ser escrito, para cada indice j, en
una forma mds abstracta como:

(Lpu)(x;) = f(x;), paratodo jel,--- N.

Simulacion de fluidos en medios porosos deformables
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Por ejemplo, en el problema de contorno (2.4), el operador L es:
(Lu)(x) = —u”" (x) + c(x)u(x),
y el problema se puede escribir de la siguiente forma: encontrar u € C?(Q) tal que

(Lu)(x) = f(x),para todo x € Q. (2.6)

Definimos el operador L, por:

_u(x,-+1)—2u}gj)+u(xj—1) +c(xj)u(x;), j€1,---,N

y el problema discreto (2.4) puede ser formulado como: encontrat u tal que
(Lyu)(xj) = f(x;), paratodojel,--- N. (2.7)

Definicion 2.2.2. Un esquema de diferencias finitas se dice que es consistente con la ecuacion dife-
rencial parcial que representa, si para cualquier solucion suficientemente suave u de esta ecuacion,
el error del esquema, correspondiente al vector €, € RN cuyos componentes se definen como:

(&r)j = (Lpu)(xj) — f(xj), paratodo j€ 1,--- N (2.8)

tiende uniformemente hacia cero con respecto a x, cuando h tiende a cero, es decir si:
limy0 [ €xl]e =0

Ademds, si existe una constante C > 0, independiente de u y de sus derivadas, tal que, para todo

h € (0,ho)(ho > Odado) tenemos:
|&n]| < ChP,
con p > 0, entonces se dice que el esquema es precisamente de orden p para la norma || -||.

La definicién establece que el error de discretizacién se define mediante la aplicacién del opera-
dor de diferencia L a la solucién exacta u. Esto significa que un esquema coherente implica que la
solucidn exacta casi resuelve el problema discreto.

Lema 2.2.3. Supongamos que u € C*(Q). Entonces, el esquema numérico (2.5) es consistente y de
segundo orden para la norma || ||.

Demostracién. Usando el hecho de que —u” +cu = f'y si suponemos que u € C*(Q), tenemos que

£, (x) = — M2 () o+ f) = —ulxy) + B u® (&) +c(x)ulx)) + flx) =

Hul(&;).

donde cada &; € (x;_1,x;41). Entonces, tenemos que:

2
el < 5 sup [ u® (y) |,
yeQ

y el resultado se cumple. O

Observacion 2.2.4. Ya que la dimension espacial N estd relacionado con h por la relacion h(N+1) =
1, tenemos:

ll&alli = O(R), yl&nll2 = OH/?).
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22 Capitulo 2. Método de diferencias finitas

El error de consistencia es un primer paso para el andlisis del error de convergencia del método de
aproximacion. Sin embargo, no es suficiente para analizar un esquema numérico. Para ello necesita-
mos de la estabilidad. Imaginemos que perturbamos f para convertirla en una f = f + g, resultando
en una perturbacién de la solucién discreta 1, = L;l f». Usando normas podemos medir el ratio de
perturbacién

et —unl| _ 1IL;, &

If—fll el

Definicion 2.2.5. Definimos la estabilidad constante Cp,, que es nuestra medida cuantitativa medi-
da para la estabilidad, como el mdximo valor que el anterior ratio puede alcanzar para cualquier
perturbacion €,. En otras palabras, la estabilidad constante es la norma del operador L;l.

L 'e
sup 1Ly, &l

I%h =h !
oS e Ml

Teorema 2.2.6. Supongamos c > 0y que la solucion del problema D es de clase C (4)(9). Entonces
el esquema de diferencias finitas Dy, es convergente de segundo orden para la norma ||||-. Por otra
parte, si u'y uy, son soluciones de (2.6) y (2.7), tenemos la siguiente aproximacion:

it — t|oo < 2 sup | 1) (x) |
xeQ

Simulacion de fluidos en medios porosos deformables



Capitulo 3

Aplicacion del método de diferencias
finitas al problema de poroelasticidad

unidimensional

Nos referimos al simple caso de un problema unidimensional

’u 9
SR, T7) Bk ) x € (0,0),
dx2  ox G.1)
LAY ORI W A0 B €(0,),0<1<T '
at yp ax n axz - q X,1), X 1Y) — £
con condiciones iniciales y de contorno
(7L+2u)@:—uo, p=0,5si x=0,
dx
u:O,gi:O, si x=1, (3.2)
du
(}’p—f—ax) (x) =0, en (0,1),r=0.

Después de adimensionalizar con respecto a la longitud / del medio poroso, la constante de Lamé
de tensién A + 2, el término wug, la permeabilidad k y de la viscosidad 1, de la siguiente manera

X . (A+2u)kt p‘—ﬁ L (A+2u)u

= = y

Xi=- = :
1’ n /2 ’ uo ’ M()l
el problema poroeldstico anterior se convierte en

’u dp

—ﬁ+£:0, x € (0,1),
i(ap+3z>—gj£:f(x,t), x€(0,0),0<t<T,

o1 p=0, i x=0, (3.3)
w=0, g’;:o, siox=1,

<ap+3z) (x) =0, en (0,1), 1 =0.

donde f(x,7) = ag(x,t) es un término fuente de escalado y a = ¥(A + 2u). Por conveniencia en la
formulacion tedrica, haciendo i(x,t) = u(x,t) +x— 1 transformamos el problema previo en en un pro-
blema con condiciones de contorno homogéneas y condiciones iniciales (ap + %(x, 0) = 1,en(0,1).

23



24 Capitulo 3. Aplicacion del método de diferencias finitas al problema de poroelasticidad unidimensional

3.1. Discretizacion por diferencias centrales

3.1.1. Mallay operadores

Consideramos una malla uniforme en el intervalo [0, 1], con tamafio de paso :
= {xi]xi = ih, i= 0,-~- ,N}.

Definimos el espacio de Hilbert Hg de las funciones discretas u = (ug,u1,--- ,uy) en la malla @, con
producto escalar y norma dados por

Ugvo + UNV Nl
(u,v) =h (OONN+ ) um) Nl =/ (u,u).
i=1

2

De una forma similar introducimos los espacios de Hilbert
HW—Z{MEHW—‘MNZO}, HW+Z{MEHW+|M():0},

con los productos escalares

~(uovo N-1 (v N1
(Mvv)W* =h T + Z uivi |, (M,V)W+ =h D) + Z uvi |,
i=1 i=1

y las normas asociadas.
Usando la notacién estdndar de la teoria de los esquemas de diferencias, para las derivadas por la

derecha, izquierda y centrales escribimos

y :u(x+h)—u(x) ui:u(x)—u(x—h) u.:u(x+h)—u(x—h)
X h b X h Y X 2h bl

y la segunda derivada es dada por la expresion

u(x+h) —2u(x) +u(x—h)
h2

Uzx =

Aproximamos el operador diferencial A por el operador de diferencias A definido en H,, por

=0,
1 N—1,

i i
(Au),- = —(M*x i i
i=N

Para u,v € H,, tenemos que (Au,v),, = (u,Av),,, es decir, A es un operador auto-adjunto en H,, .
Ademas, (Au,u),, > OVu € H,; excepto para u=0. Entonces, el operador en diferencias A es, como el
operador diferencia A, auto-adjunto y definido positivo.

Introducimos los siguientes operadores G en H, y D en H,, que aproximan el gradiente y la
divergencia G y D, respectivamente,

(px)i 1=V,

(Gp)l = (Px)t = ) 7N_ 17
0 i=N
0 i=0,

(Du); = Ui)i i=1,---,N—1,

Simulacion de fluidos en medios porosos deformables



3.1. Discretizacion por diferencias centrales 25

Es fécil de ver que

(Gp,u),, = —(p,Du);}, V(u,p) € H, x H)}.
Definidos A,B,G y D llegamos al problema de Cauchy para el sistema de ecuaciones
Au+Gp=0
d o 3.4
E(ap—i—Du)—l—Bp:f(x,t), xXeEw

con condiciones iniciales
ap(0) 4+ Du(0) = s.

3.1.2. Aproximacion totalmente discreta

Vamos ahora a construir un esquema de diferencias para la aproximacion de la solucién (u, p) para
el problema de Cauchy. Utilizamos una red uniforme para la discretizacién del tiempo con tamafio
de paso T > 0. Sean u" € H,, y p" € H,| aproximaciones a u(x,t,) y p(x,t,), donde t, = nt,n =
0,1,--- MMt=T.

Un esquema ponderado es dado por

Au"“—i—Gp"H:O, n=0,1,--- ,M—1 3.5
ntl _n n+1_D n
a? Z P += p Bt = fat, n=0,1,- M-1 (3.6)

con i = ap" 4 (1-0)p" y 2 (x) = f(x,6ts1 +(1 - 0)in) y0< 0 < 1.
Bajo las condiciones estandar para o, la estabilidad del sistema de diferencias mostrado puede ser
establecida. Mds precisamente, el siguiente resultado lo permite.

Proposicion 3.1.1. Para 6 > 1/2 la solucion del sistema de diferencias satisface la siguiente aproxi-
macion.

112 12 2 2, T 12
[l 3 +allp™ 17 < Mz +allp"17 + 5 15 1 3.7
Demostracién. Introduzcamos la nueva funcién malla u2t! = ou™! + (1 — 6)u”. Tenemos para 0 <
n<M-1
n+l _ . n n+l _ n
(Aug“, “”) + (Gp'g,“, ””) —0, (3.8)
T T
Y +1 +1
pn _pn Dut! — Dy

a (T,p’é“ | e ) A B ) = (f6T P B9)

Sumando (3.8) y (3.9) obtenemos
un-‘rl —u" pn-‘rl *Pn
(At S Y (T ) B ) = ),
y como (f,6", p&t!) < |[p5 ||+ 1/4]| 57|51, obtenemos que

(Aug™ "™ —u") +a(ps™, T p") < /411 £5 T |5

Usando la identidad & + (1 —0) = 1/2(E + &) + (6 —1/2)(& — ) en la expresion de U y de
P s ¥

it tenemos la desigualdad
1 2 AN 2 2
5 Ul R = 1 113) + S (= 111

1 T
# (o= 3 ) At =Bl 571 < F11E g
y si 0 > 1/2, se sigue lo propuesto en (3.7). O
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26Capitulo 3. Aplicacion del método de diferencias finitas al problema de poroelasticidad unidimensional

Para deducir los limites de error para el esquema de diferencias, aplicamos la metodologia de
analisis de los métodos de esquemas de diferencias finitas. Consideramos las ecuaciones en diferen-
cias para el error en los desplazamientos y la presion du”(x) = u"(x) — u(x,t,) y 8p"(x) = p"(x) —
p(x,1,),x € @, respectivamente,

AU + GSpmt =it n=0,1,--- ,M—1, (3.10)

3pn+l —61)” DS — DS
a +
T
Los términos de la derecha de ambas ecuaciones son las aproximaciones del error del problema. Para
ecuaciones suaves, tenemos

‘Iﬂfﬂ(xi) = —Au(xi,thy1) — Gp(xi,tas1) = O(h™),

istn - istn D istn _D isln
() = folx) ol ZPUt) DUt ) = Dl (3.12)
—B(op(xisty1) + (1= 0)p(xistar1)) = O(tV +h%),

donde oy =1sii=000; =2sii£0,p=1sii=Nyv=2sic=1/20v=2si0#1/2.Con
el objetivo de aplicar las ecuaciones del error en desplazamiento y presion para estimar du” y dp”,
1 <n <M, separamos el desplazamiento error du" = ] + @5, siendo w? =0yo,1<n<M,la
solucién de A} = 7.

Esta parte del error satisface la estimacién

+BSpL = prtl n=0,1,-- ,M—1. (3.11)

o lla < [[wi'lla-1, n=0,1,-- M. (3.13)
En esta situacién, @}, y 0 p" son la solucién del problema
Ay +G8p"t! =0, n=0,,M—1

Sp"tl —8p" D' — Do D"t — D!
2P P + 2% 2+B§p'(’,“:‘1‘§“—¥, n=0,---,M—1

T T T
(3.14)
donde el lado derecho de las ecuaciones es cero. Si ¢ > 1/2, por la proposicién anterior obtenemos

T Do* ! — D
Wit |5 + L[| 6p" 1 1* < @)z +allSphll* + 522:0 (||‘V§+] 51 + HT]||%;—1> ' (3.15)

n=0,--- M—1.

Por (3.14) y la desigualdad ||yA |31 < C||w5™'|, donde C es una constante independiente de
los pardmetros de discretizaci6n, obtenemos || WA (|51 = O(t +K*/?).

KL ok
1@ —
T

Una estimacién para ||Ds*™!|| 51, siendo s+ , es dada por el siguiente lema.

Lema 3.1.2. Con la notacién precedente tenemos que
2
||Dsn+]||125‘*1 §g|lsn+]||%\7 I’l:O,"',M—l,
donde § es el minimo valor propio del operador B, y consecuentemente Ds"*' = O(t¥ + h3/?), donde
v=2sic=1/20v=1sic#1/2.
Demostracion. Teniendo en cuenta que B > OE (E denota el operador identidad, asi (Bp, p) > (0p,p),Vp €
H,J)

DSV < 51052

5
0
Abhora por la definicion del operador D y A, con unos simples cdlculos obtenemos

IDs" 1> < 25" 3 (3.16)

Simulacion de fluidos en medios porosos deformables
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3.1.3. Analisis de convergencia

Proposicién 3.1.3. Sean u° y p® O(13/?) aproximaciones de u(x,0) y p(x,0), donde u(x,t) y p(x,t)
son soluciones suaves del problema continuo. Sean u” y p" las soluciones del problema de diferencias
(3.5) y (3.6). Para ¢ > 1/2 la convergencia sostiene

" = u(stn)la +allp™ = p(tarn)[| = O(2¥ +H2)
dondev=2sic=1/20v=1sic#1/2

Demostracion. Notemos que
H5u”“||A +al|8p"1? < [lof HZ + 5 G +all 5p" .

Si o > 1/2, usando (3.13) y (3.15) tenemos

1 n+l)2 nt1)2 012 012 ntl1))2 T v k+112 2 ¢ V’f’““l’? 2

5 A < A 1 a1 5 > 1T —— lla

8B+l 5p P < @15 +al 801+ w3 Y (AR + 5 Y I
k=0 k=0

y ahora es suficiente utilizar las estimaciones de orden para los errores de aproximacion Yy, v y para
el error inicial, para obtener el resultado. O

De esta ultima proposicion las propiedades de convergencia para desplazamientos en la A-norma
y para presiones en la Ly-norma discreta si a # 0 se siguen. Ahora consideremos la convergencia de
los gradientes presidn o equivalentemente la convergencia de la presion en la B-norma. De (3.5) y
(3.6) tenemos

un+1 n n+1

—u P =p
Tllfllfﬁaf!\fllz +(BpG P =) = (5 P =),

que proporciona la desigualdad

1 a 1
= F 4 —1?7"||2+*(Hp"+1 15— 11p"13)
T T 2
1 n n a n n
+Ho =Dl =p"z < || Ly
En este casoa #0y o > 1/2 tomando @ = 2a/f tenemos
P 3 < llp" 15+ a‘|f3+1”2' G.17)

Proposicion 3.1.4. Supongamos las mismas condiciones que en la proposicion anterior. Para a # 0
y 6 > 1/2 tenemos la estimacion

p" = p(-sta)lls = O(z" + H/?),
dondev=2sic=1/2o0v=1si0c#1/2
Demostracion. Como a # 0, la estimacion de (3.17) en el ecuacion de error (3.14) da

T
187" 3 < 18P°115 + - Z <||%+1”2+ |

Dot — Dot P
Y
2a =,

T

oo,

y por (3.16) y || -1 tenemos que

k1

Spt2 < 15012+ & yht |2 zu

16p" 5 < |l PHB+2 Z | 1= +2| /=g
al=, T

El resultado se sigue utilizando las estimaciones de orden para el errores de aproximacion yj' y v y
para el error inicial 8 p°. O
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En el incomprensible caso en el que a = 0, no tenemos resultado de convergencia para las apro-
ximaciones de la presién tanto en la L>-norma y la B-norma. Para el caso contrario hemos probado la
convergencia de método de diferencias finitas para el problema de porosidad unidimensional.

Simulacion de fluidos en medios porosos deformables
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