Quasi-Bi-Hamiltonian structures of the 2-dimensional Kepler problem
Resumen: The existence of quasi-bi-Hamiltonian structures for the Kepler problem is studied. We first relate the superintegrability of the system with the existence of two complex functions endowed with very interesting Poisson bracket properties and then we prove the existence of a quasi-bi-Hamiltonian structure by making use of these two functions. The paper can be considered as divided in two parts. In the first part a quasi-bi-Hamiltonian structure is obtained by making use of polar coordinates and in the second part a new quasi-bi-Hamiltonian structure is obtained by making use of the separability of the system in parabolic coordinates.
Idioma: Inglés
DOI: 10.3842/SIGMA.2016.010
Año: 2016
Publicado en: Symmetry Integrability and Geometry-Methods and Applications 12 (2016), [16 pp.]
ISSN: 1815-0659

Factor impacto JCR: 0.765 (2016)
Categ. JCR: PHYSICS, MATHEMATICAL rank: 45 / 55 = 0.818 (2016) - Q4 - T3
Factor impacto SCIMAGO: 0.56 - Analysis (Q3) - Mathematical Physics (Q3) - Geometry and Topology (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E24-1
Financiación: info:eu-repo/grantAgreement/ES/MICINN/MTM2012-33575
Tipo y forma: Article (Published version)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.

Exportado de SIDERAL (2020-02-21-13:24:55)

Este artículo se encuentra en las siguientes colecciones:

 Record created 2016-03-03, last modified 2020-02-21

Versión publicada:
Rate this document:

Rate this document:
(Not yet reviewed)