000048124 001__ 48124
000048124 005__ 20210121114518.0
000048124 0247_ $$2doi$$a10.2147/IJN.S72670
000048124 0248_ $$2sideral$$a89613
000048124 037__ $$aART-2015-89613
000048124 041__ $$aeng
000048124 100__ $$aEap, S.
000048124 245__ $$aA living thick nanofibrous implant bifunctionalized with active growth factor and stem cells for bone regeneration
000048124 260__ $$c2015
000048124 5060_ $$aAccess copy available to the general public$$fUnrestricted
000048124 5203_ $$aNew-generation implants focus on robust, durable, and rapid tissue regeneration to shorten recovery times and decrease risks of postoperative complications for patients. Herein, we describe a new-generation thick nanofibrous implant functionalized with active containers of growth factors and stem cells for regenerative nanomedicine. A thick electrospun poly(e- caprolactone) nanofibrous implant (from 700 µm to 1 cm thick) was functionalized with chitosan and bone morphogenetic protein BMP-7 as growth factor using layer-by-layer technology, producing fish scale-like chitosan/BMP-7 nanoreservoirs. This extracellular matrix-mimicking scaffold enabled in vitro colonization and bone regeneration by human primary osteoblasts, as shown by expression of osteocalcin, osteopontin, and bone sialoprotein (BSPII), 21 days after seeding. In vivo implantation in mouse calvaria defects showed significantly more newly mineralized extracellular matrix in the functionalized implant compared to a bare scaffold after 30 days’ implantation, as shown by histological scanning electron microscopy/energy dispersive X-ray microscopy study and calcein injection. We have as well bifunctionalized our BMP-7 therapeutic implant by adding human mesenchymal stem cells (hMSCs). The activity of this BMP-7-functionalized implant was again further enhanced by the addition of hMSCs to the implant (living materials), in vivo, as demonstrated by the analysis of new bone formation and calcification after 30 days’ implantation in mice with calvaria defects. Therefore, implants functionalized with BMP-7 nanocontainers associated with hMSCs can act as an accelerator of in vivo bone mineralization and regeneration.
000048124 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc$$uhttp://creativecommons.org/licenses/by-nc/3.0/es/
000048124 590__ $$a4.32$$b2015
000048124 591__ $$aPHARMACOLOGY & PHARMACY$$b40 / 255 = 0.157$$c2015$$dQ1$$eT1
000048124 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b26 / 83 = 0.313$$c2015$$dQ2$$eT1
000048124 592__ $$a1.323$$b2015
000048124 593__ $$aBioengineering$$c2015$$dQ1
000048124 593__ $$aBiomaterials$$c2015$$dQ1
000048124 593__ $$aBiophysics$$c2015$$dQ1
000048124 593__ $$aOrganic Chemistry$$c2015$$dQ1
000048124 593__ $$aMedicine (miscellaneous)$$c2015$$dQ1
000048124 593__ $$aNanoscience and Nanotechnology$$c2015$$dQ1
000048124 593__ $$aDrug Discovery$$c2015$$dQ1
000048124 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000048124 700__ $$aKeller, L.
000048124 700__ $$aSchiav, J.
000048124 700__ $$aHuck, O.
000048124 700__ $$aJacomine, L.
000048124 700__ $$aFioretti, F.
000048124 700__ $$aGauthier, C.
000048124 700__ $$0(orcid)0000-0002-6873-5244$$aSebastian, V.$$uUniversidad de Zaragoza
000048124 700__ $$aSchwinté, P.
000048124 700__ $$aBenkirane-Jessel, N.
000048124 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000048124 773__ $$g10 (2015), 1061-1075$$pInt. j. nanomed.$$tInternational Journal of Nanomedicine$$x1176-9114
000048124 8564_ $$s8193581$$uhttps://zaguan.unizar.es/record/48124/files/texto_completo.pdf$$yVersión publicada
000048124 8564_ $$s52651$$uhttps://zaguan.unizar.es/record/48124/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000048124 909CO $$ooai:zaguan.unizar.es:48124$$particulos$$pdriver
000048124 951__ $$a2021-01-21-11:00:56
000048124 980__ $$aARTICLE