Self-organized criticality, plasticity and sensorimotor coupling. Explorations with a neurorobotic model in a behavioural preference task
Resumen: During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a consider- able progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in cou- pled brain-body-environment systems, since existing models and experiments typically tar- get either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with ho- meostatic plasticity and the ability to develop behavioural preferences mediated by sensori- motor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simul- taneous conditions: a) non-linear interaction dynamics capable of generating stable collec- tive patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neuro- dynamic regimes. We carry out a number of experiments to show that both synaptic plastici- ty and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically in- cludes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/ƒ noise.
Idioma: Inglés
DOI: 10.1371/journal.pone.0117465
Año: 2015
Publicado en: PloS one 10 (2015), 0117465 [24 p.]
ISSN: 1932-6203

Factor impacto JCR: 3.057 (2015)
Categ. JCR: MULTIDISCIPLINARY SCIENCES rank: 11 / 62 = 0.177 (2015) - Q1 - T1
Factor impacto SCIMAGO: 1.427 - Agricultural and Biological Sciences (miscellaneous) (Q1) - Medicine (miscellaneous) (Q1) - Biochemistry, Genetics and Molecular Biology (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/MEC/AP-2010-6036
Financiación: info:eu-repo/grantAgreement/ES/MICYT/TIN2011-24660
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-01-21-11:20:13)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2016-03-15, última modificación el 2021-01-21


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)