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We give the first accurate results for B and B; meson masses from lattice QCD including the effect of u,
d, and s sea quarks, and we improve an earlier value for the B. meson mass. By using the highly improved
staggered quark (HISQ) action for u/d, s, and ¢ quarks and NRQCD for the b quarks, we are able to
achieve an accuracy in the masses of around 10 MeV. Our results are: mp = 5.291(18) GeV, mp =
5.363(11) GeV, and my_= 6.280(10) GeV. Note that all QCD parameters here are tuned from other

calculations, so these are parameter free-tests of QCD against experiment. We also give scalar, B, and
axial-vector, B,; meson masses. We find these to be slightly below threshold for decay to BK and B*K,

respectively.
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I. INTRODUCTION

B meson physics is one of the critical elements of the
flavor physics program. The mass differences between the
“heavy” and “light” eigenstates of the neutral B and B,
mesons are now known experimentally and can be used to
precisely constrain the ratio of Cabibbo-Kobayashi-
Maskawa (CKM) elements |V4|/|V| if the appropriate
theory results have been calculated with a matching error.
A first lattice QCD calculation of these mixing matrix
elements, including the effect of u, d, and s sea quarks,
was given recently and the critical quantity & =

f5.A/Bs./f5~/Bp was obtained to 3% [1]. Similarly, ex-
perimental results for the annihilation of charged B mesons
to leptons via a W boson can be used to constrain V;, and B
semileptonic decays to 77 or D can be used to constrain
V., and Vg, if the appropriate theory calculations of decay
constants or form factors are known. Again calculations of
these in full lattice QCD have been done and, for example,
the decay constant of the B meson is obtained to 7% [1].
To improve on these lattice QCD results requires pinning
down and eliminating sources of systematic error and test-
ing as stringently as possible that this has been done. Here
we provide a calculation of the masses of B mesons along
with their decay constants using b quarks in the NRQCD
formalism [2] with light quarks in the highly improved
staggered quark (HISQ) formalism [3]. The HISQ
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formalism has improved discretization errors compared to
the Asqtad improved staggered quark formalism used in
our previous calculations. Because we use NRQCD, which
can handle hadrons with either single or multiple b quarks,
we are able to do an accurate calculation of the B meson
masses by linking them to meson masses in bottomonium.
This provides a strong test of systematic errors. We are able
to handle all of the 4 lightest quarks—u/d, s, and c—using
the HISQ formalism and are therefore also able to calculate
mass differences and decay constant ratios accurately
between B, By, and B, mesons.

Section II outlines how the lattice QCD calculation was
done, and Sec. III describes the analysis and results.
Sec. IV compares the results to experiment and to other
lattice QCD calculations. Sec. V gives our conclusion.

II. LATTICE QCD CALCULATION

We are concerned here with mesons with one valence b
quark and a lighter valence antiquark, either c, s, or /. We
use the notation [, “light,” to refer to either the u or d
quark. Everywhere in these calculations m; = m, = my,
but we will correct for the effects of this, along with the
effects of missing electromagnetic interactions, when we
compare to experiment.

The bottom quark moves sufficiently slowly inside
bound states that it is well described by a nonrelativistic
formulation (NRQCD) on lattices of moderate lattice spac-
ing. The lighter partner quark, with balancing momentum
in a meson with zero total momentum, is moving much
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faster and requires a relativistic formulation. For this we
use the HISQ formulation, which offers control of discre-
tization errors to the level where even the ¢ quark can be
treated relativistically.

A. The gluon configurations

We make use of the MILC Collaboration’s library of
2 + 1-flavor gauge configurations [4]. These have two
degenerate flavors of light sea quarks and one flavor of
strange sea quark, formulated with the Asqtad action [5-7].
The gluon action is Symanzik-improved through O(a,a?)
except for terms of O(nya,a*) where n; is the number
of sea quarks. In fact, these terms [8] are of similar size to
the other a,a’ terms, so in practice the gluon action
has a,a” discretization errors. For this work we use five
different ensembles at three different lattice spacings, with
a = 0.16, 0.125, and 0.09 fm. We refer to these as ‘““‘very
coarse,” ‘“‘coarse,” and ‘“‘fine,” respectively. The configu-
rations have large spatial volumes (> (2.4 fm)?). Table I
lists the specific ensembles used in this work.

In this work we use values of the lattice spacing, a, on
each ensemble determined using the mass and decay con-
stant of the pseudoscalar s5 meson, the n,. Although this
particle is not seen in the real world because of mixing with
uii and dd which can be prevented on the lattice, its
properties can be determined from those known from
experiment of the 77 and K mesons, as described in [9].
Table I lists the values obtained in [9] for the ensembles we
are using here. The values of a are larger on coarse lattices
than those from the more traditional way of setting the
lattice spacing using the parameter ry, but the results agree,
as they should, in the continuum limit [9].

B. HISQ valence quarks

We use the HISQ formulation [3,10] for valence charm
and strange and light quarks.

The HISQ action further reduces the residual O(a,a?)
discretization errors coming from taste-changing effects
found in the Asqtad formulation. It does this with an
additional fattening step applied to the gluon field coupling
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to the quarks [3,10]. The errors are reduced by about a
factor of 3 [3,11], making HISQ therefore a better action to
use for / and s quarks.

We have shown that the HISQ action can even be used
for ¢ quarks [3], but in that case an additional step is
needed. The “ordinary” tree-level O(a?) discretization
errors coming from the finite difference discretization of
the covariant derivative are eliminated in both HISQ and
Asqtad formulations using an additional 3-link “Naik”
term. The Naik term corrects errors that would otherwise
appear at O(pa)? in the quark, and therefore meson, dis-
persion relation of energy versus momentum. A nonper-
turbative value for the Naik term coefficient (written as
1 + €) can be derived by studying the dispersion relation of
the 7, meson and tuning the coefficient until the square of
the speed of light in this relation is 1. Here we use the
values of the Naik coefficient determined in this way in
[10] appropriate to the values of m.a on each ensemble
[12]. Tuning the Naik coefficient in this way removes all
discretization errors from the HISQ action at leading order
in the square of the velocity of the ¢ quark [3]. At sublead-
ing order in v, there will be O(a,a?) errors.

On each configuration of the ensembles in Table I we
have generated and stored random-wall source charm and
strange and light valence propagators. These were calcu-
lated in the following way. On the source time slice ¢, we
generate a U(1) vector of random numbers 7(zy),. Then
we invert to get the HISQ propagator gHSQ(x, 1,):

gHISQ(Xy tO) = Mx_,;/ﬂ(fo)x'- (1)

For the fine ensemble we use a different random wall at
each of four values of 7, on every configuration. For the
coarse and very coarse configurations we use two random-
wall sources per configuration. Although the time sources
are equally spaced, their position in time varies from
configuration to configuration through the ensemble in a
pseudorandom manner to further reduce autocorrelations
within the ensemble.

We use the charm and strange and light HISQ quark
propagators from [10], but note that here we are using a
different definition of the lattice spacing and this affects the

TABLE I.  Ensembles (sets) of MILC configurations used with gauge coupling 3, size L3 X T,
and sea masses (X tadpole parameter, up, taken from the average plaquette) m;*! and m;™'. The
lattice spacing values in fm are determined using the 1, meson mass and decay constant [9] and
given in column 3. Column 7 gives the number of configurations and time sources per
configuration that we used for calculating correlators. On set 5 only half the number were

used for light quarks.

Set B a (fm) augpmy” auypms ! LT Negnt X N,
1 6.572 0.1583(13) 0.0097 0.0484 16/48 628 X 2
2 6.586 0.1595(14) 0.0194 0.0484 16/48 628 X 2
3 6.760 0.1247(10) 0.005 0.05 24/64 507 X 2
4 6.760 0.1264(11) 0.01 0.05 20/64 589 X 2
5 7.090 0.0878(7) 0.0062 0.031 28/96 530 X 4
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TABLE II. Parameters for the valence quarks. am, is the b
quark mass in NRQCD, and u,; is the tadpole-improvement
parameter used there [14]. We use stability parameter [14] n = 4
in NRQCD everywhere. Columns 4, 6 and 7 give the charm,
strange, and light bare quark masses for the HISQ action. 1 + €
is the coefficient of the Naik term in the charm case [3]. On set 1
we give additional values of m;, and m, that were used for tuning
purposes as described in the text. We also used alternative c;
coefficients for the am; = 3.4 case, specifically ¢; = ¢4 = 1.36
and c5 = 1.21, again as described in the text.

Set amy, ugy am, 1+e am amgilsq
1 34 0.8218 0.85 0.66  0.066 0.0132
3.6 0.8218 0.88 0.64  0.08 T
34(c; #1) 0.8218 ---
2 34 0.8225 0.85 0.66  0.066 0.0264
3 2.8 08362 0.65 0.79 0.0537  0.0067
4 2.8 0.8359 0.66 0.79 005465 0.01365
5 1.95 0.8541 043 0.885 0.0366  0.00705

meson masses in physical units and therefore the tuning of
the quark masses. We have included some additional quark
mass values on the very coarse lattices to be able to correct
for mistuning. We list the HISQ valence parameters used in
columns 3 to 7 in Table II.

The tuning of the HISQ valence ¢ and s masses to their
correct values on each ensemble is important to avoid
mistuning effects masquerading as, for example, lattice
spacing artifacts or sea quark mass dependence. We tune
the ¢ mass to give the correct 17, meson mass on each
ensemble. Here the correct 7. mass has to be adjusted
slightly from its experimental value of 2.980 GeV to allow
for the fact that our lattice QCD calculation is happening in
a world without electromagnetism and without ¢ quarks in
the sea and in which we do not allow the 7. meson to
annihilate to gluons (because we have not included such
“disconnected’ pieces in our 1, meson correlators). These
effects are all small and can be estimated from potential
models or perturbation theory. We take the physical value
of m,, appropriate to our calculations to be 2.985(3) GeV
[13], incorporating a shift of 2.6 MeV for electromagnetic
effects and 2.4 MeV for annihilation effects. Note that this
value also includes an increased experimental error to take
account of difficulties associated with determining the 7,
mass [15]. The effect of ¢ quarks in the sea is negligible;
this will be discussed in Sec. II C.

We tune the s quark mass from the value of the mass of
the n, meson. This is a fictitious pseudoscalar meson made
of s quarks, which is not allowed in our lattice calculation
to mix, by annihilation, with ui and dd mesons. We cannot
therefore fix its mass from experiment but must do so
within a lattice QCD calculation, in which we extrapolate
results for 77, K, and 1, meson masses and decay constants
simultaneously to the continuum limit and physical point
for the / and s quarks. This was done in [9] and the value
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M, = 0.6858(40) GeV was obtained as the value appro-
priate to this lattice QCD world.

The light quark valence masses are taken to match
approximately the light quark masses used in the sea.
The way that this is done is to take the ratio of the light
valence HISQ mass to the appropriate HISQ strange mass
value to be the same as the ratio of the sea light quark mass
to its appropriate s mass value (the ugp factors cancel in
that ratio). This can only be done approximately because
the sea “‘strange” quark masses are not very well tuned in
some cases [4] and the correct value for s is not known very
accurately. However, sea quark mass dependence is only a
very small effect for everything calculated here, so this is
not a big issue.

C. NRQCD b quarks

One can estimate the velocity of the quarks in bottomo-
nium mesons by comparing radial excitation energies to
masses. This shows that in the Y the b is very nonrelativ-
istic with v = 0.1 (in units of ¢?). By comparison, in
charmonium, v2 = 0.3. In a mixed system with a lighter
quark the b quark is even slower than in bottomonium.
Consider that in a B, meson the reduced quark mass is
roughly 1.5 times that of the bb system and 4.5 times that
of a c¢ system. For a constant mean kinetic energy [16]
across all three systems, we then expect vi = 0.04 and
v2 =~ 0.35 in the B,.. For a b quark combined with an even
lighter quark, vi will get even smaller. Assuming a mean
momentum of Agcp for the b quark inside a B or B; would
give v; = 0.01. An NRQCD approach is then well-
justified for the b quark in B., By, and B; mesons when
combined with a relativistic approach for the lighter
quarks.

As we have used a random-wall source for the HISQ
propagators, it is critical that we initialize the NRQCD b
propagators b with the same random-wall function 7(z;) .
as we used for the HISQ propagators. This is nontrivial
because the HISQ propagators have one only Dirac com-
ponent, whereas NRQCD propagators have explicit spin.
The spin information for the HISQ propagators is tied up
with the positions of source and sink; however, the source
site information is lost for a random-wall source once the
propagator has been calculated. If we had access to a HISQ
propagator from all source points to all sink points we
could reconstruct the full 4 X 4 spin structure by multi-
plying by Q(x)QT(y) where () is the staggering operator,
given as a product of Dirac gamma matrices as

Q@) = v 73y )
Here we cannot apply the source ) to the HISQ propa-
gators, but instead we can apply it as a source for the
NRQCD propagators. This then effectively “undoes” the
staggering transformation and gives a naive quark source

that can be combined with a b quark source, but it is
done after the staggered propagators have been made.

014506-3



ERIC B. GREGORY et al.

The b quark source then has to have 4 spin components
rather than the usual 2 for NRQCD because we cannot
separate the upper and lower components of the naive
quark source after the fact. Our b quark source is con-
structed from ()(x) multiplying the appropriate random
noise at each site, n(zy),, updating the standard method
of combining staggered quarks with other formalisms that
have explicit spin components derived in [17].

A further issue is that we must project onto pseudoscalar
or vector heavy-light mesons directly at the source of the b
quark propagator rather than combining appropriate spin
components at the end. We then have to calculate separate
b quark propagators for each of the pseudoscalar and
vector mesons.

Finally, to enhance our ability to isolate the ground-state
behavior, we smear the b propagator source with a smear-
ing function, S, of various functional forms and differing
radii, r;. Combining all of these factors, we therefore—on
time slice f,—initialize the NRQCD propagator as

GNP (x, 19) = D S(Ix — X r) ()T Q) (3)

where I' is an element of the Dirac algebra chosen to
project out either a pseudoscalar or a vector heavy-light
meson state.

On subsequent time slices we evolve the NRQCD propa-
gator recursively in the standard way [18]. Note that here,
because upper and lower components do not mix in
NRQCD, the upper and lower halves of our b-quark source
are simply evolved separately with the same evolution
equation. Our b-quark propagators then have only 2 spin
components at the sink end. The evolution equation is

G t+1) = (1 - 5—H)<1 - ﬂ)"Uj(x)(l - %)

2 2n
oH
X (1 - T)Gi(x, t), (4)
with
A@
Hy=—— 5
0 m, (5)
and
(A®)? ig L
O0H = — A-E—E-A
8 m) " 8m, ) )
ig ~ - L~ g -
—ci——0 " (AXE—EXA)—c,——0"B
8y ' am,
a’?A® a(A@)?
+ — . 6
S 2am,  “16n(m,)’ ©

E and B are improved versions of the naive lattice chromo-
electric and chromo-magnetic fields, £ and B. All the
gauge fields appearing are tadpole-improved by dividing
by a tadpole factor, u,;, derived from the mean link in
Landau gauge.
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The equations given above represent the standard
NRQCD action, used in many previous lattice QCD
calculations (for example, [14,18]), correct through v‘b‘.
The largest source of remaining systematic error from
this action is from radiative corrections to the coefficients
of the v} terms required to match full QCD through
O(a,v}) (the v? term is tuned nonperturbatively in fixing
the b quark mass as described below). Here we generally
use the tree-level values of ¢; = 1 for the constants, as we
have done before. However, we have also done some
calculations on set 1 using values of ¢, c¢s, and cg that
include radiative corrections, to be able to gauge the size of
the systematic error from these terms. How the radiative
corrections are calculated and further tests of them will be
described elsewhere [19,20]. The values we use on set 1 are
those appropriate to a value of m,a of 3.4 and «; in the V
scheme appropriate to the lattice spacing of that ensemble.
These are ¢; = ¢4 = 1.36 and ¢5 = 1.21 [19].

We list the NRQCD valence b masses used in column 2
of Table II along with the u,; parameters. We have used
two different masses on set 1, again to test for systematics
from quark mass tuning. Since NRQCD quarks propagate
in one direction in time only, we improve statistics by
generating propagators both forward in time (for 7/2
time units) and backward in time from each light quark
source.

The b quark mass is tuned by determining Y and 7,
meson masses [20]. Because the zero of energy has been
shifted in NRQCD, we cannot determine meson masses
directly from their energy at zero momentum as is done in a
relativistic formulation. Instead we must calculate the
“kinetic mass” of a meson, M, which appears in the
relationship between E(p) and p:

E(p) = E(0) + \/pz + M?* - M. @)

We are able to do this very precisely using random-wall
sources [9]. We determine the kinetic mass of both the Y
and the 7, mesons and use the spin average of the two, i.e.,
_ My + M,
—
to tune the b quark mass. The reason that we use the spin
average is to avoid systematic errors from the terms in the
NRQCD action that give rise to spin-splittings. These
terms are only included at leading (v‘g) order in the action
above [Eq. (6)], and we know that there are sizeble errors in
the hyperfine splitting between the Y and 7, as a result
[14]. These errors also have a small effect on the Kinetic
masses [20] and we take the spin average to remove them.
The experimental value for M, ; that we tune to must be
adjusted, as described above in the 7. case, to be the value
appropriate to our lattice QCD world, which is missing
some elements of the real world. We estimate the effect of
the electromagnetic attraction of the b and b to be 1.6 MeV
from a potential model. The absence of electromagnetism

Myp ®)
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shifts both My and M,, upward. The shift from not allow-
ing the 71, to annihilate to gluons we take to be the same as
for the 7. at 2.4 MeV. In addition, we must consider the
absence of ¢ quarks in the sea. This has only a very small
effect on charmonium states [13] but a somewhat larger
effect on bottomonium, because these states are more
sensitive to exchange of higher momentum gluons that
can generate a cc pair. The effect can be estimated pertur-
batively from that of a massive quark loop in the gluon
propagator that gives rise to the heavy quark potential [13].
It gives rise to a correction to the potential which is
proportional to a delta function at the origin:
1 ag 4

Teot (r)). ©)

Cra
s > — —Cra(-+
: r

V(r) =
r
This correction is very similar to the hyperfine potential in
bottomonium, except that it is not spin-dependent and the
mass that appears in the denominator is m, and not m,,. The
hyperfine potential induces the mass difference between
My and M, of 69 MeV [21]. The potential above has a
coefficient 14 times smaller, where this factor is given by
[807/(Ba,)] X (m./m;,)*> and we take m,/m, = 4.51
from [22]. We therefore expect a shift of around 5 MeV
to both Y and 7,. Again the absence of ¢ quarks in the sea
shifts the mass values upwards. The experimental 7, mass
is now 9.391(3) GeV [23] and the Y, 9.460 GeV, giving a
spin average of 9.443(1) GeV. Applying the shifts above
with 50% errors, we find the appropriate value for M,; for
us to tune to is 9.450(4)(1) GeV, where the first error is
from applying the shifts and the second is the experimental
erTor.

D. HISQ-NRQCD two-point functions

At the sink end of the propagators we must tie a two-
component NRQCD propagator with the one-component
HISQ propagator. We first convert the HISQ propagator
back into a multispin object by multiplying by {)(x) at each
sink site:

G1SQ(x, 1), = gMSQUx, 1) QU(X, 1), (10)

remembering that the Q1 factor that would normally be at
the source end has now been included in the NRQCD
propagators.

Finally, we generate the B meson correlator by combin-
ing the HISQ propagator and NRQCD propagators at the
sink time slice 7, again with smearing functions and appro-
priate Dirac structure:

Cr(t = 10);; = .G (x, OTS(lx — x'l: 7))

X GNRAP(x 7). (11)

Note that this is a sum over 4 spin components at the source
and 2 at the sink, so I" is either a 2 X 2 unit matrix for the
pseudoscalar meson or a Pauli spin matrix for a vector
meson.
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E. Extracting physical masses

We do simultaneous constrained fits [24] to the form

chp
N R
Cmeson(ly ’ lo,t) = Z bi,kbj',ke (t—10)
k=1

Ivexp_1
+ Y dipd (—1)we B,
kK'=1 ;
(12)

where i and j index the 3 X 3 matrix of source and sink
smearing functions. The second term fits the oscillating
“parity-partner”” states that appear in most staggered
meson correlators. Our correlation functions cover the
range of ¢t — #, values from zero to T/2, although we do
not fit all the way to t — 7, = 0. Instead, we start at 7,,;, =
2-4 for B, and B, fits and 6-8 for B, fits to reduce the effect
of excited states.

We constrain the parameters of the fit with prior values
and widths, which are fed into the augmented y? function
that the fit minimizes. These priors represent very general
information about mass splittings and amplitudes. The prior
value for the ground-state mass is simply taken from an
effective mass plot, with the prior width taken to be a factor
of 1.5 from this value. The mass parameters for the higher
mass states enter the fit as the logarithm of the mass differ-
ence with the state immediately below, so that the mass
difference is positive and higher mass states remain, by
definition, higher mass. We take a prior value on these
mass differences, both for normal states and oscillating
states, to be = 600 MeV, converted to lattice units for
each fit. The prior width on the mass differences is taken
to be a factor of 2. The prior on the mass of the lowest
oscillating state is taken to be = 400 MeV above the ground
state, with a prior width of a factor of 1.5. We use 0.1 =1.0
for the prior value and width for all amplitudes. Here the
prior value of 0.1 is simply to provide a nonzero starting
point for the fit. The width of 1.0 can be uniform across
correlators of different smearing functions because we nor-
malize them all so that ¥ S(x)> = 1 across a time slice.

In this way, we are able to obtain high-confidence fits
which are stable, both in the central value for the ground-
state mass and amplitude and their errors, with respect to
varying the number of exponential functions included,
Neyp- We take our results from fits with N, = 5, since
all our fits are stable by this point.

Where possible (sets 2—4), we simultaneously fit mul-
tiple light valence channels. That is, by fitting simulta-
neously Cp and Cp, we can eliminate correlated errors
from estimations of mass differences such as My — My,

One important issue with B meson correlators is their
exponentially falling signal/noise ratio, which means that
the statistical accuracy that can be obtained on masses and
decay constants is not as high as that of lighter mesons,
for example D/D, [13]. The variance of the B, correlator,
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for example, contains bbs5 propagators and can rearrange
them into an 7, and an 7. Thus, the noise (square root of
the variance) falls exponentially with a lowest energy
(E,, + M, )/2 at large times while the signal falls with
a lowest energy Ejp . This means that the signal/noise
degrades exponentially with a physical energy which is
the mass difference between the B, and (M, + M, )/2
(330 MeV). This is illustrated in Fig. 1, where we explicitly
compare the effective mass of the B correlator and the
effective mass of its statistical error, and show that the
“mass in the noise” is as expected. This physical mass
difference cannot be altered, but if we use smearing func-
tions, as we have done here, it is possible to extract the
ground-state B, mass from early ¢ — ¢, values, where the
noise is less of an issue. [25]

As discussed earlier, the zero of energy is changed in the
NRQCD formulation so the energy parameters E; and EJ,
include an energy shift for which we must correct before
comparing to experimental values. We can do this by
comparing the B meson state of interest (containing 1 b
quark) to a reference state, which can also be calculated
with NRQCD b quarks on the lattice and whose mass is
known experimentally. That is,

1 1
MB = (EB - ;Eref)a_l + ;Mref’ (13)

where E; is calculated on the same lattice ensemble, and
M..; comes from experiment (adjusted if necessary for the
absence of electromagnetism, etc. from our calculation). n
is the number of b quarks in the reference state. The
reference state can also be a linear combination of states,
such as the spin average of bottomonium states that we will
use below.

To minimize the contribution of the 0.8% uncertainty on
a~! to the overall uncertainty in Mp, it is important to
choose a reference state that makes the quantity (Eg —
E.¢/n) as small as possible. We will sometimes do this
below by subtracting the masses of additional reference

08

04 F

effective mass

02 F

FIG. 1 (color online).
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states, for example, ones made purely of ¢ quarks for the B,
case.

III. RESULTS ON THE SPECTRUM

A. B, meson mass

To determine Mg we follow the strategy described
earlier, using the spin average of bb states as a reference,
and calculate:

1
AB = (EB - _Eh5> Clil. (14)
’ ’ 2 latt
From this we can reconstruct Mg using
1
Mgt = Ap, + EMbE,phys (15)

Here E,; is the spin average of Y and 7, energies at zero
momentum calculated with the same NRQCD action and
on the same configurations as used for calculating the B
meson energies. M, is used to tune the b quark mass, as
discussed earlier, and M . is the physical value taken
from experiment, but adjusted (to 9.450 GeV) for the
lattice QCD world (missing electromagnetism, 7;, annihi-
lation, and charm-in-the-sea). To compare our results for
Mp_ 1, to experiment we have to add corrections to put
back in missing electromagnetism and charm-in-the-sea
effects. These corrections are negligible, however, as we
will discuss below.

Table III lists all our fitted values needed for determi-
nation of the B, meson mass. Note that the error on the
fitted B, meson energy is larger than any of the errors on
the other fitted energies. This is because of the signal/noise
problem in the B correlator discussed earlier. The other
correlators used here do not have that problem, and the fits
give much more precise results for ground-state masses.
Details of these other fits are given elsewhere [9].

In Figs. 2 and 3 we show how A varies with the square
of the 7, mass and the spin-averaged bb mass from our

T T T
0.5%(E,, +M,] ——

e 2
(o)} o]
T T
1 1

o
i

effective mass

<o
o

The effective mass of the signal (left) and noise (right) for B, correlators on the fine ensemble (set 5). The open

squares are from correlators with local sources and sinks and the bursts from correlators with smeared sources and sinks. The effective
mass is obtained from the natural logarithm of the ratio of the correlator (or its error) on successive time slices. The blue line on the left
plot corresponds to the fitted energy of the B, meson and the red line on the right plot to one half the sum of that for the 7, and 7,
mesons (at the same am,, and amy). This figure should be compared to Fig. 3 in [13].
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TABLE III. Results for energies and kinetic masses needed for the determination of the mass of the B, meson. All the results are in
units of the lattice spacing. For each set we list the valence b quark mass and its associated kinetic mass and energy for the spin average
of Y and m,, states. We also give the valence s quark mass and its associated 77, meson mass. These values are also given in [9]. Where
we have used multiple » and s masses on set 1, we give the 7, and E,; values only once to avoid confusion. In column 7, we give the
fitted energy of the By meson (i.e., E, from fits to the form given in Eq. (12)). In column 8 we give the hyperfine splitting, AMP =
E(B}) — E(B,), discussed in Sec. III D. This column is largely from [28] but includes some additional values on set 1 that we use for
studying systematic errors. Note also that the value for set 1 on line 1 is different from that in [28] although consistent with it. Here we
use a value from a fit to the B, and B correlators alone, rather than from a full fit including B, and By, to be in keeping with the other
B, values given on set 1. Columns 9 and 10 give the values of mass differences between scalar and pseudoscalar and between axial
vector and vector, respectively, discussed in Sec. IIIE.

PHYSICAL REVIEW D 83, 014506 (2011)

Set amy, aM,; ak,; am aM,, aEg aAMP aAY" —0" aAl’ "

1 34 7.260(9) 0.27843(8)  0.066 0.52524(36)  0.6409(11)  0.0343(11)  0.310(11) 0.308(14)
34 e e 0.080 0.57828(34)  0.6539(10)  0.0349(9) 0.317(11) 0.309(12)
3.6 7.688(5) 0.27662(7)  0.066 s 0.6466(13)  0.0324(14)  0.300(15) 0.307(16)
3.6 ce s 0.080 0.6604(9) 0.0332(9) 0.315(11) 0.308(11)

34(c; # 1)  7.248(4) 0.28048(7) ce e .- ce e e

2 34 7.261(9) 0.27902(7)  0.066 0.52458(35)  0.6417(14)  0.0359(21)  0.299(17) 0.316(19)

3 2.8 5.996(8) 0.28538(3)  0.0537 0.43118(18)  0.5470(15)  0.0287(19)  0.215(17) 0.254(6)

4 2.8 5.992(5) 0.28465(6) 0.05465 043675(24) 0.5527(16)  0.0261(27)  0.253(8) 0.249(16)

5 1.95 4.288(10)  0.25985(5)  0.0366 0.30675(12)  0.4172(10)  0.0189(12)  0.1708(48)  0.166(11)

results on set 1. These results allow us to correct for, and
estimate the errors from, mistuning b and s masses. The
lines are simple linear fits in M,; and M,27 The slope of
Ap against M,27 is 0.19, in good agreement with that
expected from the experimental data comparing B, and
B. The slope against M5 is very small because the b quark
mass effects naively cancel in Az . However, some residual

0.68 | | | I I I I
067 F -
0.66 F -
0.65 | m-

064 P

s

A (GeV)

063 b ;
062 """ 1

0.61 | i

0.6 1 1 1 1 1 1 1
0.4 042 044 046 048 0.5 052 054

Mnf (GeV?)

FIG. 2 (color online). Results from set 1 for the mass of the B
meson (specifically, the difference between that mass and one-
half of the spin-averaged mass of Y and 7,) as a function of the
square of the 17, meson mass, acting as a proxy for the strange
quark mass. The errors are statistical only, since lattice spacing
errors affect all the points together. The lines are fits to the results
allowing linear terms in M 37 and M ;. Here the lines join points
for a fixed b quark mass. See Fig. 3 for the equivalent as a
function of M.

dependence remains and gives a slope of 0.017, somewhat
smaller than the experimental result of 0.033 obtained over
a much larger mass range from comparing B and D.
Table IV gives the values of Ag , adjusted for mistuning
by using the slopes given above and the mismatch of M,;
and M %S on each ensemble compared to the physical values
[9.450 GeV and (0.6858 GeV)?, respectively]. We take a

0‘68 T T T T
0.67 | i

0.66 1

b L -

0.64 F .

@

Ag (GeV)

-l

0.62 F 1

0.61 | i

0.6 . . . .
8.8 9 9.2 9.4 9.6 9.8

Mpppar (GeV)

FIG. 3 (color online). Results from set 1 for the mass of the B
meson (specifically, the difference between that mass and one-
half of the spin-averaged mass of Y and 7,) as a function of the
spin-averaged kinetic mass of the Y and 7, acting as a proxy for
the b quark mass. The errors are statistical only, since lattice
spacing errors affect all the points together. The lines are fits to
the results allowing linear terms in M %7 and M ;. Here the lines
join points for a fixed s quark mass. See Fig. 2 for the equivalent
as a function of M2 .
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TABLE IV. Results for Ay (the mass difference between the
B, meson and the spin average of Y and 7, masses) on different
ensembles after tuning to the correct valence b and s quark
masses. The 3 errors listed are statistical, tuning, and from the
uncertainty in the lattice spacing. Columns 3 and 4 give dx; and
bx,, the fractional mistuning of the sea quark masses in units of
the s quark mass, as defined in the text.

Set Ap (GeV) Sx; Ox;

1 0.6392(16)(28)(25) 0.15 —0.08
2 0.6382(17)(85)(29) 0.34 —0.08
3 0.6401(24)(02)(26) 0.09 0.29
4 0.6433(25)(13)(29) 0.22 0.29
5 0.6417(22)(20)(26) 0.18 0.09

50% error on any shift applied for mistuning. Errors from
mistuning are smaller than the statistical errors except on
sets 1 and 2. Table IV also gives the error from the uncer-
tainty in the lattice spacing from Table 1. The error is
smaller by a factor of 2 than the naive result of multiplying
Ap by the percentage error in a~'. The reason is that
changing the lattice spacing requires the masses to be
retuned, and this affects A in the opposite direction.

The resulting errors on the tuned values for Ag are
typically less than 1%, around 4 MeV. Within these un-
certainties we are not able to distinguish any dependence
on sea quark masses or the lattice spacing. Sea quark mass
effects are expected to be very small, because the B, is a
gold-plated [29] particle and has no valence light quarks.
The lattice spacing dependence depends on the quantity
chosen to fix the lattice spacing. Earlier reporting of these
results [30], using the variable r; to set the scale, did show
visible lattice spacing dependence. Here it appears, per-
haps not surprisingly, as if A has the same discretization
errors as the 7, used to the fix the scale.

The tuned results from Table IV are used to reconstruct
My 1a [using Eq. (15)], and this is plotted in Fig. 4 against
the square of the lattice spacing. In order to quote a
physical value that can be compared to experiment we
need to fit our results as a function of lattice spacing
and sea quark mass so that systematic errors from such
dependence can be fed into our final error. The sea quark
mass dependence we take to be a simple polynomial
form in the variables dx,; and dx;, defined by dox, =
(M ea = My seaphys)/ My seaphys- These variables were used
in [13] but must be adjusted here consistently for the
change in definition of the lattice spacing and the new
values are given in Table IV. Any sea quark mass depen-
dence identified in our fit can be extrapolated to the physi-
cal point where éx; = dx, = 0, and our errors allow for
dependence not resolved by our fit.

The lattice spacing dependence is a trickier issue in
NRQCD because we cannot extrapolate naively to a = 0.
What we need to do is to fit the lattice spacing dependence

PHYSICAL REVIEW D 83, 014506 (2011)
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FIG. 4 (color online). Results for the mass of the B, meson
tuned to the correct s and b quark masses on each ensemble,
plotted against the square of the lattice spacing. The errors on the
points include statistical and tuning errors and the uncertainty in
the lattice spacing. The dark shaded band is our physical result,
allowing for sea quark mass and lattice spacing dependence as
described in the text. The width of the light shaded band reflects
our full error as given in the error budget, Table V. The black star
is the experimental result [23], offset from a®> = 0 for clarity.

and assess—using information from the fit—how much of
the dependence is physical and how much is unphysical,
and allow for both in the final error. Physical dependence
on the lattice spacing will arise from discretization errors
in the gluon and sea quark actions, and in the light valence
quark (HISQ) action. We expect this dependence to be
O(a,a®) at leading order, as discussed earlier.

The NRQCD action also has discretization errors. These
are corrected at tree level by the terms with coefficients c;
and c¢g in Eq. (6). Beyond tree level c¢5 and cg have an
expansion in powers of «, required for NRQCD to match
QCD at that order, whose coefficients depend on am,,. This
dependence will typically be mild for large am, but be-
come singular as amj; — 0. This has been explicitly
checked for the ¢5 and cq coefficients for a slightly differ-
ent action in [31] and results have also been derived for this
action [19,20]. They show almost no am, dependence for
amy, > 1. In general, however, the coefficients of discreti-
zation corrections can be amj-dependent in NRQCD and
therefore our discretization errors can be am,-dependent.
We need to allow for a mild nonsingular dependence (i.e.,
appropriate to the values of am,, that we are using) in our
fits, so that the systematic error from this can appear in our
final results. Since any smooth function can be expanded
over a limited range using a polynomial, we simply allow
for linear and quadratic terms in the variable dx,, =
(mpa — 2.7)/1.45. The factors 2.7 and 1.45 are chosen so
that dx,, changes from —0.5 on the fine lattices to +0.5 on
the very coarse lattices as ma covers the range that we
have used.
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We therefore fit our results for Az to the following
form:

Ag (a, 6x;, 6x,)

cj(Aa)* (1 + ¢, 8x,, + ¢jpp(6x,,)?)

2
j=1

= ABs,thSI: 1+
J

+2b,8x,(1 + ¢;(Aa)?) +2b,86x,(1 + c¢,(Aa)?)

+4b”(5x1)2+2b135x15x5+b55(5x3)2j|. (16)

We take the prior on Ag . to be 0.6(2). The priors on the
sea quark mass dependence, b; and b, are taken to be
0.00(7). Sea quark mass effects are suppressed by a factor
of 3 over valence mass effects, and here valence effects
correspond to a slope in quark mass of less than 0.2.
The priors for the b parameters corresponding to the qua-
dratic sea mass dependence are then set to (0.2)2/3, i.e.,
0.000(13). We take the scale of the physical a-dependence
to be the scale of A = 400 MeV, since we expect it to be
set by typical internal meson momenta in QCD. The
coefficients of the quadratic a dependence, ¢y, ¢;, and cy,
should be O(«;,) so we take priors of 0.0(5). For ¢, and the
amy, dependence of the discretization errors, c;, and ¢,
we take a very conservative prior of 0(1).

The result from the fit is Ap s = 0.638(6) GeV. The
fit sees no dependence on lattice spacing, am,,, or sea quark
masses, but our final error allows for all of these. The fit
and its error are robust under changes in the number of fit
parameters, for example, including or not including the a*
terms in Eq. (16). It is also robust under changes the prior
widths. For example, doubling the prior width on the lattice
spacing or sea quark mass dependence changes the final
result by less than 1 MeV.

In the error budget in Table V we separate the 6 MeV
error into component parts coming from the errors on the
original data points (statistics, tuning, and uncertainty in
the lattice spacing) and the errors coming from the lattice
spacing and sea quark mass dependence of the results,
using the method described in [13]. The error on the
original data points dominates.

To reconstruct My 1, we must add 9.450/2 GeV to
Ap_phys> as in Eq. (15). This gives My _in the lattice world
with no electromagnetism or ¢ quarks in the sea. The latter
effect should be negligible for the By, since it is a much
larger particle than the Y or 7, and therefore much less
sensitive to the gluon exchange that could create a ¢ pair.
The effect of electromagnetism can be estimated following
[13]. There we gave a phenomenological formula for elec-
tromagnetic and m,,/m, mass difference effects in heavy-
light mesons:

M(Q, q) = Mg (0, q) + Aeseq + Bel + Clm, — m).
a7

PHYSICAL REVIEW D 83, 014506 (2011)

TABLE V. Full error budget for B, and B, meson masses in
MeV. See the text for a fuller description of each error. The total
errors are obtained by adding the individual errors in quadrature
except in the case of the starred errors. They are correlated and
this must be taken into account as described in the text before
being squared and accumulated into the square of the total.

Error Mg, Mg nn Mg hs
Stats/tuning/uncty in a 55 29 14.0
Lattice spacing dependence 0.5 29 8.0
m, s, dependence 3.0 1.0 4.0
spin-ind. NRQCD systs. 8.0 6.0 7.5
spin-dep. NRQCD systs. 35 4.0 1.0
uncty in M, ) 1.0 s 23
em, annihiln, ¢, in bb 2.5 2.5% 0.0
em, annihiln, ¢, in c¢ s 1.5% 0.2
em effects in B or B, 0.1 1.0* 1.0
em effects in D s s 0.7
finite volume 0.0 0.0 0.0
Total (MeV) 11 9.5 19

Mg, is the mass of the meson in the absence of electro-
magnetism and with m, = m, . From experimental charged
and neutral B and D meson masses, we determined
A =4 MeV and B = 3 MeV. For the By, then, this for-
mula gives a shift between M(Q, g) and M, (0, q) as a
result of electromagnetism of —0.1 MeV, a very small
effect. We make no correction for this, but add an error
for it to our error budget.

Additional systematic errors that must be added in to the
error budget are those from relativistic corrections that are
not included in our NRQCD action. These errors affect
results at all lattice spacings equally and so cannot be
estimated from our results, as we have done for the dis-
cretization errors. We must consider the effect of relativ-
istic corrections on both the B, mass and on the Y and 7,
masses because they both appear in A . In fact, we expect
relativistic corrections to have a bigger effect in bottomo-
nium than on the B;. Our NRQCD action is correct through
O(v}) for bottomonium, and so the largest missing
terms are at a v} and vg. We expect the typical energy
shift of a spin-independent v} term to be =~ 50 MeV
(0.1 X 500 MeV), so a v} corrections could give rise to
15 MeV shifts in M,;. Similarly, a spin-independent v
correction could give rise to an energy shift of = 5 MeV.
Adding these two in quadrature and dividing by 2 gives an
estimate of the systematic error in Mp_from relativistic
corrections to M, ; of 8 MeV. For By, the appropriate power
counting for relativistic corrections is in v, = A/m,;. Our
NRQCD action already includes high-order terms in A /m,,
at tree level, and so there are no significant tree-level errors
for the B,. The leading error is at a v, in missing radiative
corrections to cy4, the coefficient that multiplies the o - B
term, giving rise to the hyperfine splitting. As we will
discuss in Sec. III D, we have plenty of evidence that errors
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coming from this term are small, at most 10% of the
hyperfine splitting itself. Since this error would vanish
for the spin average of the masses of the B, and the B},
which is 3/4 of the hyperfine splitting above the B, mass,
we take the error in the B, mass to be 3/4 of the error in the
hyperfine splitting, 3.5 MeV.

Errors from the uncertainties in M,, and M that we use
to tune the s and b quark masses can be estimated from the
slopes in Figs. 2 and 3. The 4 MeV uncertainty in M, feeds
into a 1 MeV uncertainty in A B, and, therefore, in M B, The
uncertainty in Ag from the 5 MeV uncertainty (simply
adding the statistical and systematic errors) in M, is very
small—Iess than 0.1 MeV because of the cancellation of
the b quark mass inside Ag . However, the uncertainty
reappears when we reconstruct My by adding M,;/2 to
Ap, . This then gives a sizable 2.5 MeV error in Mg .

Finite volume errors are expected from chiral perturba-
tion theory to be negligible for the masses of mesons
containing heavy quarks on volumes exceeding (2.4fm)?,
that we are using here.

The full error budget is given in Table V. The systematic
errors discussed above, added in quadrature, give 9 MeV,
dominating the 6 MeV errors coming from the statistical
errors of the data and its lattice spacing and sea quark
mass dependence. The final result is then My =
5.363(6)(9) GeV. Figure 4 shows a dark shaded band for
the first error and a lighter shaded band to encompass the
full error, adding 6 MeV and 9 MeV in quadrature to give
11 MeV. To reduce the full error will require improvements
to the NRQCD action, currently underway. The experi-
mental result for the B; mass is 5.3663(6) GeV.

B. B, mass

For the B, meson mass we could use exactly the same
procedure as for the B,. However, there is a better method,
in which we subtract in addition the mass of a charmonium
reference state, the 7., to reduce the energy difference
calculated on the lattice to a very small value:

1 -1
MB. = <EBe - E(Ebg + Mnc)) a

¢ latt
1
+ 5 (Mbl;,phys + Mm,phys)- (18)

We call this the “heavy-heavy’ (hh) subtraction method.
Here M, is the value of the m, mass calculated on the
lattice and M, . is its value from experiment appropri-
ately adjusted for the lattice QCD world, as described
earlier. Note that we are simply using the additional char-
monium subtraction to reduce errors from the uncertainty
in the lattice spacing. There is no issue with the zero of
energy in the charmonium case. When we use the HISQ
action for ¢ quarks, as here, the energy obtained from fits to
zero momentum charmonium correlators is the charmo-
nium mass.

PHYSICAL REVIEW D 83, 014506 (2011)

We will compare results of this to a second method,

MBF = (EB(. - (EBS + luDj))latta_1 + (MBS,phys + MDs,phys)’
(19)

that we call the “‘heavy-strange” (hs) subtraction method.
Here we are using the B, meson to cancel the NRQCD shift
of the zero of energy in the B,.. Again, the subtraction of the
D, meson mass, calculated with HISQ ¢ and s quarks, is
simply to reduce lattice spacing errors from the mass
difference.

We first discuss results from the hh method. The B.
energies and M, masses are given in Table VI and the
bb energies and masses, already used in the determination
of the B, mass, are given in Table III. As before, we have to
tune quark masses on each ensemble to their correct value.
We show in Fig. 5 how the splitting

1
AB[,hh - (EB( - E(Ebl; + M,,h_)) Cl71 (20)

latt

depends on M, ; from our results on set 1 at two values of
amy, and two values of am,.. We see that the slope is very
small, 0.014, because very little b quark mass dependence
is left after cancellation in this mass difference. An esti-
mate can be derived for the expected slope by comparing
results for the b quark mass set to the value of the ¢ quark
mass (when Ay ;, becomes —3/8 times the charmonium
hyperfine splitting). This gives a slope of 0.016 over a
much wider range. Figure 5 also shows the value of the
mass difference for the case where we use an NRQCD
action with ¢, cs, and ¢ set to the values, including O(a,)
radiative corrections appropriate for set 1. We see that this
makes negligible difference.

Figure 6 shows the results as a function of M, . The
slope here is very small but in the opposite direction to that
for the dependence on M,;. The value of the slope is
—0.004. Based on the arguments above we would expect
a slope of opposite sign but about 60% that of the b quark
mass dependence. However, as stated above, this estimate
is made over a much larger range than that depicted in the
figure.

We can use the slope against M,; and against M, to
correct for the slight mistunings of the b quark and the ¢
quark that we have on some ensembles. Even though the
shifts from M,; and M, dependence are very small, they
are not negligible. This is because Ag_p itself is very small
and also because it is very precise, since all of the energies
involved have tiny statistical errors. We take a 50% error
on b quark mistuning but a 200% error from ¢ quark
mistuning to allow for the fact that we may be under-
estimating the slope with ¢ quark mass because of discre-
tization errors in the HISQ action for ¢ on the very coarse
lattices.
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TABLE VI. Results for energies and masses needed for the determination of the mass of the B. meson. All the results are in units of
the lattice spacing. For each valence b quark mass the kinetic mass and energy for the spin average of Y and 7, states is given in
Table III, as are the i, meson masses for each s quark mass and the corresponding B, meson energies. In column 4 we give the 7,
meson mass corresponding to each value of am,, and in the final column we give the corresponding D; meson mass. Note that the
values for M, and Mp_ are different from those reported in [13] because here we are using a nonperturbatively determined Naik
coefficient as discussed in the text. In column 5, we give the fitted energy of the B. meson (i.e., E, from fits to the form given in
Eq. (12)). In column 6 we give the hyperfine splitting, A™? = E(B*) — E(B..), discussed in Sec. IIl D. This column is largely from [28]
but includes some additional values on set 1 that we use for studying systematic errors.

Set amy, am, aM.,, aEp aA™? am, aMp,
1 34 0.85 2.27031(16) 1.34917(27) 0.0324(2) 0.066 1.5138(7)
i 0.85 s s e 0.080 1.5295(10)
34 0.88 2.32148(14) 1.37456(27) 0.0325(2) 0.066 1.5441(14)
s 0.88 s s cee 0.080 1.5587(10)
3.6 0.85 1.35415(29) 0.0309(3) s s
3.6 0.88 1.37593(29) 0.0311(3)
34(c; # 1) 0.85 s 1.34987(27) 0.0323(2) e s
2 34 0.85 2.26964(17) 1.34834(34) 0.0326(3) 0.066 1.5140(8)
3 2.8 0.65 1.84949(11) 1.11727(13) 0.0268(2) 0.0537 1.2260(5)
4 2.8 0.66 1.87142(12) 1.127 83(25) 0.0271(4) 0.054 65 1.2406(5)
5 1.95 043 1.31691(7) 0.81861(12) 0.0210(2) 0.0366 0.8709(3)

Table VII gives tuned values for Ag y, on each en-
semble, along with three errors; those from statistics,
from tuning, and from the uncertainty in the lattice spac-
ing. These latter two errors dominate. As before, variation
in the value of the lattice spacing means that masses must
be retuned. Here this has the effect of producing a net
change equal to the naive lattice spacing error. Figure 7

plots these results against the square of the lattice spacing,
after reconstructing the B, mass by adding back in
(M5 phys + My phys)/2 = 6.2175 GeV.

Clear lattice spacing dependence is visible in Fig. 7, but
there is no sign of sea quark mass dependence. As for the
case of Ap , we fit the results for Ag 1, as a function of
lattice spacing and sea quark mass to extract a physical
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FIG. 5 (color online). Results from set 1 for the mass of the B..

meson (specifically, the difference between that mass and one-  FIG. 6 (color online). Results from set 1 for the mass of the B,

half of the spin-averaged mass of Y and 7, added to the mass of
the 1, meson) as a function of the spin-averaged kinetic mass of
the Y and 7, acting as a proxy for the b quark mass. The errors
are statistical only, since lattice spacing errors affect all the
points together. The lines are fits to the results allowing linear
terms in M, and M,;. Here the lines join points for a fixed ¢
quark mass. See Fig. 6 for the equivalent as a function of M,, .
The third point at lower left gives results for ¢; # 1; it is not
included in the fit.

meson (specifically, the difference between that mass and one-
half of the spin-averaged mass of Y and 7, added to the mass of
the 7. meson) as a function of the mass of the 7. meson, acting
as a proxy for the ¢ quark mass. The errors are statistical only,
since lattice spacing errors affect all the points together. The
lines are fits to the results allowing linear terms in M,, and M ;.
Here the lines join points for a fixed b quark mass. See Fig. 5 for
the equivalent as a function of M ;. The third point at lower left
gives results for ¢; # 1; it is not included in the fit.
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TABLE VII.  Results for Ay , the mass difference between the
B, meson, and a particular reference mass, on different ensem-
bles after tuning to the correct valence b, ¢, and, where appro-
priate, s quark masses. The 3 errors listed are statistical, tuning,
and from the uncertainty in the lattice spacing. Column 2 gives
results from the hh method and column 3 from the hs method, as
described in the text.

Set Ap i (GeV) —Ap s (GeV)
1 0.0980(4)(12)(8) 1.034(2)(16)(4)
2 0.0974(4)(35)(9) 1.035(2)(28)(4)
3 0.0782(2)(5)(6) 1.044(3)(9)(4)
4 0.0788(3)(9)(7) 1.046(3)(10)(5)
5 0.0652(3)(14)(5) 1.054(2)(2)(4)

result. The fit form is essentially the same as for Ag.
However, because Ag 4, is such a small quantity, it cannot
set the scale for the discretization and sea quark mass
effects. So, instead of allowing a function of a, dx;, and
Ox,; to multiply Ag p,, we add such a function with a
multiplicative factor of 0.4 GeV, representing a typical
scale for QCD binding energies. We include more terms
for discretization errors than in the B, case and set their
scale by m,., rather than A, because in this case discretiza-
tion errors will come largely from the HISQ action for the ¢
quark.
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FIG. 7 (color online). Results for the mass of the B, meson
tuned to the correct ¢ and b quark masses on each ensemble
obtained from the ““hh method” and plotted against the square of
the lattice spacing. The errors on the points include statistical
and tuning errors and the uncertainty in the lattice spacing. The
dark shaded band is our physical result, allowing for sea quark
mass and lattice spacing dependence as described in the text, and
including electromagnetic effects. The width of the lighter
shaded band reflects our full error as given in the error budget,
Table V. The black star is the experimental result [23], offset
from a? = 0 for clarity.
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Ag pn(a, 8x;, 6x,) = Ap b phys
4

+ 0.4[2 cj(mca)zj(l + ¢jpox, + Cjbb(ﬁxm)2)
j=1

+ 2b,6x,(1 + c;(m.a)* + c;(m.a)?)
+2b,8x,(1 + c(m.a)’ + cg(m.a)*)

+ 4b”(8)€1)2 + 2b138X15)CS + bss(5xs)2:|. (21)

We take the prior on Ag_pp pnys to be 0.05(5). The priors on
the sea quark mass dependence, b; and b,, are taken to be
0.00(7), and on the parameters corresponding to the qua-
dratic sea mass dependence 0.000(13), as before. We take
the scale of the physical a-dependence to be the scale of
m. =~ 1 GeV, as discussed above. The coefficients of the
quadratic a-dependence, ¢, ¢;, and c,, should be O(«;), so
we take priors of 0.0(5). For ¢,, and the am,,-dependence of
the discretization errors cj;, and ¢, we take a very con-
servative prior of 0(1).

The result for Ag 1 snys 18 0.0616(42) GeV, giving a B,
mass of 6.279(4) GeV. The fit is robust under changes of
the prior values. For example, we tried the following
changes:

(1) taking the multiplier of a- and m,.,-dependence to be

0.8 instead of 0.4;
(ii) taking the priors for a-dependence to have width 2
instead of 1;
(iii) taking the priors on sea quark mass dependence to
be 0.5 rather than 0.2.

None of these changed the result by more than 1 MeV.

Our result is for a world without electromagnetism or
charm quarks in the sea. The effects of electromagnetism
on the B, can be estimated from a potential model in the
same way as we have done for bottomonium and charmo-
nium. The quark and antiquark in the B, have the same sign
of electric charge, however, and so the effect now is
repulsive rather than attractive. We estimate that the effect
of switching on electromagnetism is to shift our B, mass
upward by 2 MeV. The effects of ¢ quarks in the sea can be
estimated following the discussion in Sec. II C as approxi-
mately 1/60 of the hyperfine splitting in the B, system, or
1 MeV. This effect is attractive and so will counteract the
effect of electromagnetism. We take the net shift in the B,
mass as 1(1) MeV, moving our result to 6.280(4) GeV. This
is the value given by the dark shaded band in Fig. 7.

The complete error budget is given in Table V. Here we
have split up the 4 MeV error from the fit into its compo-
nent parts, as discussed in the B, case, and added sources of
systematic error. Errors from missing relativistic correc-
tions to the NRQCD action are similar to those for the B,
case. The leading missing spin-independent terms in the
NRQCD action are O(a,v}) and O(v$). We must estimate
the effect of these terms on both M ,; and Mp . v7 is about
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half the size in the B, compared to bottomonium. This
means that there is some cancellation of the a v} errors
in Ag ph, since we estimated asv;‘, errors previously as
a,v3(500 MeV). Independent confirmation that these
terms have a small net effect comes from the calculations
that we have done here for the case where ¢y, ¢5, and cg
take the values that include the @(« ) radiative corrections;
see Table VI and Figs. 5 and 6. There will be little cancel-
lation of the v errors, however, since v is much smaller
in the B, than in bottomonium. We take the systematic
error from spin-independent terms, then, to be 4 MeV for
a v} (i.e., half that for B,) and 5 MeV for v9, added in
quadrature to give 6 MeV. The leading spin-dependent
error is from missing radiative corrections to the o.B
term. This affects the B, only because of the spin-
averaging of M,;. As for the B, we take 3/4 of a possible
10% error in the hyperfine splitting, estimated in [28] at
53 MeV, i.e., 4 MeV.

Errors from the uncertainty in M,; and M,, do not affect
Ap_nn significantly, but My _inherits an error of half their
uncertainty when it is reconstructed from A, and those
masses. These two uncertainties are partly correlated, be-
cause they both contain estimates of electromagnetic and
annihilation effects in the two very similar charmonium
and bottomonium systems. The systematic errors from
electromagnetism and ¢ quarks in the sea for the B, are
also correlated with the errors for these effects from char-
monium and bottomonium. These errors are marked with a
star in Table V, and we separate out the different compo-
nents and add them linearly with appropriate signs before
squaring and accumulating into the total error. The error
from these three components is then increased by their
correlation from 3 MeV to 4.6 MeV. We estimate finite
volume errors to be negligible for the B,.. Our total error,
from adding statistical and systematic errors in quadrature,
is 9.5 MeV, giving a mass for the B, meson from the hh
method of 6.280(10) GeV. The total error is plotted as the
more lightly shaded band in Fig. 7.

The hs method has different systematic errors from the
hh method and so provides a good cross-check. The raw
results needed for this method are given in Table VI, and in
Figs. 8-10 we show results for the quantity —Ap p
(because Ap_j, is negative) defined by

Ap ws = (Ep. — (Ep + Mp ))pa™ " (22)

In the figures, —Ajp j, results from set 1 are plotted against
the different quark masses involved in the calculation, with
M% M,;, and M,,‘_ acting as proxies for the s, b, and ¢
quark masses, respectively (we have two different values
for the masses of each quark). We see that there is fairly
strong dependence on the s quark mass but very little on
the b quark mass or the ¢ quark mass. The slope against
M%J is 0.41, which agrees well with that expected from
experiment if we substitute light quarks for s quarks in the
formula for Ap , above. The slope against M,; is 0.005
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FIG. 8 (color online). Results from set 1 for the mass of the B,
meson (specifically, the difference between that mass and the
masses of the B, and D, mesons) as a function of the square of the
7, meson mass, acting as a proxy for the strange quark mass.
The errors are statistical only, since lattice spacing errors affect all
the points together. The lines are fits to the results allowing linear
terms in M? , M,;, and M,, . Here the lines join points for fixed b
and ¢ quark masses. See Fig. 9 for the equivalent as a function of
M,; and Fig. 10 for the equivalent as a function of M,, .

and against M, is 0.07. These are only in very rough
agreement with the expectations of 0.02 and 0.04, respec-
tively, from comparing results over the much larger experi-
mental range from b to ¢ [23].
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FIG. 9 (color online). Results from set 1 for the mass of the B,
meson (specifically, the difference between that mass and the
masses of the By and D, mesons) as a function of the spin-
averaged mass of the Y and 7, M,;, acting as a proxy for the b
quark mass. The errors are statistical only, since lattice spacing
errors affect all the points together. The lines are fits to the results
allowing linear terms in M3 , M,;, and M, . Here the lines join
points for fixed s and ¢ quark masses. See Fig. 8 for the
equivalent as a function of M7 and Fig. 10 for the equivalent
as a function of M, .
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FIG. 10 (color online). Results from set 1 for the mass of the
B. meson (specifically, the difference between that mass and
the masses of the B; and D, mesons) as a function of the mass of
the 7, acting as a proxy for the ¢ quark mass. The errors are
statistical only, since lattice spacing errors affect all the points
together. The lines are fits to the results allowing linear terms in
M%h_, M,;, and M 5, Here the lines join points for fixed s and b
quark masses. See Fig. 8 for the equivalent as a function of M %,
and Fig. 9 for the equivalent as a function of M,;.

As before, we can use these results to compensate for
mistuning of the quark masses. Again we take a 50% error
on tuning shifts for » and s but a 200% error on those for ¢
to allow for discretization errors in our estimates of those
effects. The tuned results are given in Table VII. All of the
statistical, tuning, and lattice spacing errors are larger than
those of the hh method. The tuning error dominates on the
very coarse and coarse lattices, but on the fine ensemble it
is comparable to the other errors. The lattice spacing error
is reduced by a factor of 2 over the naive error by the
retuning required when the lattice spacing changes. Lattice
spacing dependence is small but visible in these results; no
sea quark mass dependence is evident.

As for the B, and the B, hh method, we fit the results for
Ap ps to a functional form allowing for lattice spacing
dependence, including NRQCD effects, and sea quark
mass dependence. The functional form is the same as
that used for the hh method, except that now we can
include these dependences as a multiplicative factor since
Ap_ps is not unusually small. We use

AB(.,hs (Cl, 8)6[, 6xs)

4
= AB{.,hs,physl:l + > cj(m.a)¥(1+¢jpx, + ¢jpp(6x,,)%)
=

+2b,6x,(1 + c;(m.a)* + c;(m.a)*)
+2b,6x,(1+ c,(m.a)*+ c,,(m.a)*) + 4b,(5x))*

+2b,8x;8x, + by (dx,)? ] (23)
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We take the same prior values as for the hh method except
for the prior for Ag 1 ohys» Which we take to be —1.0(2).

We obtain the result Ag poone = —1.054(17) GeV.
This changes by less than 1 MeV on doubling the prior
width for the lattice spacing dependence or the sea quark
mass dependence. To reconstruct the B, mass from this we
need to add the appropriate values for the B, and D, masses
in a world without electromagnetism or ¢ quarks in the sea.
As discussed earlier, electromagnetism has negligible ef-
fect on the B; mass. The D, mass is lower by 1.3(7) MeV,
however, in a world without electromagnetism, from the
phenomenological formula in Eq. (17). This gives a total
for the appropriate sum of M, + My of 7.334 GeV.
Figure 11 shows our tuned results for mp as a function
of lattice spacing. The dark shaded band is the result from
the fit just described, including the error obtained from it.
We have shifted the B, mass obtained upward by
1(1) MeV, to a central value of 6.281 GeV, as described
earlier to allow for electromagnetic and charm-in-the sea
effects that are not included in our calculation. The lighter
shaded band gives the total error, from the error budget of
Table V, the systematic error components of which we will
now discuss. The first three entries in the table are the split
of the 17 MeV error obtained from the fit among its differ-
ent components.

Errors from missing relativistic corrections to the
NRQCD action affect the B, energy and the reference B,
energy. The leading missing spin-independent terms in the
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FIG. 11 (color online). Results for the mass of the B. meson
tuned to the correct ¢ and b quark masses on each ensemble
obtained from the “hs method” and plotted against the square of
the lattice spacing. The errors on the points include statistical
and tuning errors and the uncertainty in the lattice spacing. The
darker shaded band is our physical result, allowing for sea quark
mass and lattice spacing dependence as described in the text, and
including electromagnetic effects. The width of the lighter
shaded band reflects our full error as given in the error budget,
Table V. The black star is the experimental result [23], offset
from a? = 0 for clarity.
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NRQCD action are O(a,v}) and O(v5). We earlier esti-
mated the shift from O(a,v}) terms on M,,; at 15 MeV. For
the B, we expect a systematic error of about half this value,
so we take 7.5 MeV, since vlz7 is roughly half as big. For B,
a v} terms have very little effect and neither meson will be
sensitive to vg terms. Spin-dependent NRQCD errors come
chiefly from missing radiative corrections to the o - B
term, but there will be cancellation here between the B,
and the B since both mesons will respond in the same way
to a change in c,. We therefore take a systematic error of
1 MeV, rounding up the difference between the 4 MeV
systematic previously allowed for this for the B, and the
3.5 MeV systematic for the B;.

Systematic errors from uncertainties in the physical
values of M ne Moy s and M,; which affect the quark
mass tuning can be estimated from the dependence of
Ap ns on these quantities discussed earlier. The error
from the uncertainty in M, is sizable at 2.3 MeV; the
others are very small. We must also allow for systematic
errors from uncertainties from electromagnetism and
charm-in-the-sea for the reference masses of the D
(0.7 MeV is half the shift applied in that case) and the B,
(negligible) as well as for the B, itself (1 MeV as discussed
above).

This gives a total error of 19 MeV, dominated by the
statistical and tuning errors of the raw data. Our final result
for the B, mass from the hs method is then 6.281(19) GeV.
This is plotted as the more lightly shaded band in Fig. 11.
The agreement between the hs and hh methods is very
good, although their systematic and statistical errors are
very different, with the hh method being significantly more
accurate. The agreement is in fact not surprising when we
consider that the B; mass determined in Sec. III A agreed
well with experiment. The B, hs method replaces M ,; with
My and M, with M, , so if the B; and D, masses are
known to agree with experiment given masses tuned from
My; and M, , then the B. from hs and hh will agree.
However, the fact that they were derived completely inde-
pendently is a good consistency check of the method and of
our error estimates.

TABLE VIIL

PHYSICAL REVIEW D 83, 014506 (2011)

C. B mass

The correlators for the B meson are noisier than those for
the By, as will be clear from the discussion of the signal/
noise earlier. This means that the B meson mass is the least
well-determined of all our masses. The best way, then, to
pin down the B mass is to consider the mass difference
between the B; and the B. NRQCD systematic errors
should entirely cancel in such a difference. However, be-
cause the difference is a small number we have a fairly
sizable statistical error even when we fit both correlators
together, as described earlier, and extract Ep — Ejp
directly from the fit.

Table VIII gives values for the energy difference be-
tween B and B extracted from our fits on each ensemble.
Statistical errors are 10—15% of the splitting. However, this
amounts to less than 10 MeV in terms of the absolute mass,
so still provides a good test against experiment for M.

We plot the results for My — Mp(= a~'(aEp — aEp))
against M3 — M2, which is a useful physical proxy for
mg; — m; in Fig. 12. We expect this mass difference to be
largely linear in m; — m; and our results are consistent
with this. Given the statistical errors, we fit a relatively
simple form to this difference:

(Mg, — Mg)(a, 5x;, bx,)
3
= Z a,fi(M, M)l + c;j(Aa)* + cjp(Aa)*)
=

+ 1M, M) (2b,5x,(1 + ¢(Aa)?))

+ 2b,6x,(1 + c,(Aa)?). (24)

Here the functions f; are simple ones that respect the
fact that Mp — Mp vanishes by definition when the light
quark mass is equal to the strange quark mass. So f| =
M3 =M%, f,=M; — My, and f3= M3 logM,, —
MZlogM>2. We allow these terms to have lattice spacing
dependence with a scale set by A = 400 MeV. We also
allow sea quark mass dependence in the terms multiplying
f1. The coefficients a; are given priors of 0.0(5) (we expect
a slope of 0.2 if the dependence on M %S — M2 were purely

Results for energies and masses needed for the determination of the mass of the

B meson. Column 6 gives the energy difference between B, and B; mesons, for different valence
b, s, and [ quark masses given in columns 2, 3, and 4. Column 5 gives the corresponding 7
meson mass, taken from [9]. Column 7 gives the hyperfine splitting for the B; meson, from [28],

AP = E(BY) — E(B)).

Set amy, am am,; aM aE(B,) — aE(B)) aA?yp

1 34 0.066 0.0132 0.2408(6) 0.0553(62) 0.0318(78)
3.4 0.080 0.0132 s 0.0683(62) e

2 34 0.066 0.0264 0.3348(6) 0.0369(29) 0.0374(55)

3 2.8 0.0537 0.0067 0.1567(4) 0.0446(46) 0.0306(54)

4 2.8 0.054 65 0.013 65 0.2222(5) 0.0336(41) 0.0245(68)

5 1.95 0.0366 0.007 05 0.1377(4) 0.0245(30) 0.0177(35)

014506-15



ERIC B. GREGORY et al.
0.12 T T T T

0.1 F

MBS - MBl (GeV)
o
(=)
[*)}

0 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

2 2 2.
M, 2-M,? (GeV?)

FIG. 12 (color online). Results for the mass difference be-
tween the B, and B mesons as a function of M3 — M2 acting
as a proxy for m; — m;. Open squares are results on very coarse
ensembles, triangles on coarse ensembles, and the cross is from
the fine ensemble. The green band represents the result of our fit,
adjusted for electromagnetic effects as described in the text. The
black star is the experimental result for My — (Mpo + Mp=)/2.

linear). For the ¢, a*-dependence coefficients we take 0.0
(1.0), and for ¢;; we take 0.0(5) since a® terms should be
suppressed by an additional power of «. For the sea quark
mass—dependent coefficients b; and b, we take priors of
0.00(7) as discussed earlier.

The physical value for Mp — My is then the value at
M, =0.6858 GeV and M, o = 0.135 GeV, for a=
6x; = 6x, = 0. We obtain 0.073(14) GeV. This value is
to be compared to the experimental mass difference be-
tween the B; meson and the average of the charged and
neutral B mesons which we denote B; (thus averaging the u
and d quark masses). However, it has to be adjusted for
electromagnetic effects not included in our lattice QCD
calculation. Following the discussion in Sec. III A we see
that electromagnetic effects in the B, and B, mesons are
very small. For the B,, however, because it is charged, the
shift is more substantial at 2.2 MeV[32]. Adding in elec-
tromagnetism then shifts our Mz — Mp, splitting down by
1 MeV. The result 72(14) MeV is shown as the shaded
green band in Fig. 12. It is in reasonable agreement with the
experimental result of 87 MeV [23].

Our final result for Mp = (Mp: + Mpo)/2 is 5.363 —
0.072 = 5.291(11)(14) GeV. The first error comes from
the mass of the B, and is discussed in Sec. III A, the second
comes from the mass difference between the B, and B,;. We
do not expect any significant additional systematic errors
from NRQCD, beyond those that the B; inherits from the
B, in this method, because those errors should cancel in
My — Mp,. The error budget for My, is then as given for
Mp_in Table V with the additional 14 MeV given above.
Our result for Mg of 5.291(18) GeV can be compared to
the experimental result of 5.2794(3) GeV [23].

PHYSICAL REVIEW D 83, 014506 (2011)
D. B* — B splittings

By projecting out the vector states at the source and sink
we can measure the correlator for the B*, Bj, and Bj. As
they come from exactly the same configurations and va-
lence HISQ propagators as the corresponding pseudoscalar
states, they are highly correlated. In this case we can do
simultaneous fits to both the pseudoscalar and vector me-
son propagators, and extract a value for the Mp — Mp
splittings.

This hyperfine splitting is generated by the o - B term in
the NRQCD action, Eq. (6). This is O(v}) in the relativistic
power counting for heavyonium and O(A/M,) in heavy-
light power counting. In our action we take the coefficient
of this term, c4, to be 1, but it will have radiative correc-
tions when matched through O(a,) with full QCD. We are
also missing higher dimension operators that correct for
discretization errors and add relativistic corrections. For B
systems, which are relatively large with very slow-moving
b quarks, we do not expect these latter effects to be as
important as the issue of the determination of ¢4 beyond
tree level. The heavy-light hyperfine splitting generated by
the o - B term is proportional to ¢4, and so uncertainty in ¢4
leads directly to an O(«y), i.e., 25%, uncertainty in the
splitting which decreases only slowly on finer lattices.
Thus, to determine this splitting accurately we need a
determination of c,.

Since we use exactly the same NRQCD action for all our
calculations, however, we can effectively determine c4 by
comparing one set of heavy-light hyperfine splittings to
experiment and then predicting the others. Equivalently,
we can take ratios of hyperfine splittings in which the
normalization factor, ¢4, cancels. This is what we did in
[28]. By using the B — B, mass difference, which is 46.1
(1.5) MeV from experiment [23], we showed that this
splitting does not depend on the mass of the lighter quark
even for as heavy a quark as the charm quark, and we were
able to predict a B — B, splitting of 53(7) MeV.

We will not discuss that analysis further here, but we
give the table of results of the hyperfine splittings for
completeness in Tables III, VI, and VIII. They include
some additional values over those in [28] for the purposes
of further testing systematic errors. Figure 13 shows such a
test in a plot of the mass difference between B; and B, as a
function of M, for two different s quark masses (the first 4
rows of entries in Table III). Dependence on the b quark
mass is visible, but dependence on the s quark mass is very
small. Results are also shown for B — B, for the same b
quark masses and they show a parallel slope. In addition,
we show a result for the NRQCD action with c; coefficients
different from 1 and no change is seen.

Here we are interested in analyzing the systematic error
in the B, B, and B, meson masses from any uncertainty in
c4. We do this by comparing our B; — B, splitting to
experiment and interpreting any mismatch as a signal for
cys # 1. We use the B — B, because this is the most
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FIG. 13 (color online). Results for the mass difference be-
tween the B; and B, mesons (open squares) and between B
and B, mesons (crosses) as a function of the spin average of the
Y and 7, meson masses used to tune the b quark mass. Bi — B,
results include two values of the s quark mass, and B} — B,
results include two different values of the ¢ quark mass as well as
results for ¢, cs, and cg coefficients differing from 1.

accurately determined splitting from our analysis that is
also known experimentally. This method can be used as a
nonperturbative determination of ¢4, and we used this
previously to bound the errors on our prediction of the
hyperfine splitting in bottomonium based on earlier B and
B hyperfine splitting results [14]. Figure 14 shows our
results as a function of lattice spacing. We have adjusted
them for mistunings of the b quark mass according to the
results in Fig. 13, but the corresponding shifts are small and
less than the statistical errors in all cases. The results show
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FIG. 14 (color online). Results for the mass difference be-
tween the Bj and B, mesons as a function of lattice spacing.
Results have been corrected for mistuning of the » quark mass
and the errors include statistics, mistuning, and lattice spacing
uncertainties. The black star and block dashed lines give the
experimental result [23].
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little sign of any lattice spacing dependence or sea quark
mass dependence, and we see that a value of ¢4 of = 1.1
would give agreement with experiment for all the values.
We therefore estimate that the correct value of ¢, for this
NRQCD is 1.1(1) and that we make a systematic error of
about 10% in the heavy-light hyperfine splitting by using
¢4 = 1. This produces a systematic error on the B, and B,
meson masses discussed in earlier subsections and in-
cluded in Table V.

Note that the behavior of the hyperfine splitting in
bottomonium is quite different from that of the Bj,
being strongly dependent on the lattice spacing [14].
However, it is the same operators in the NRQCD action,
with the same coefficients, that control the fine structure in
both systems. The matrix elements of the operators can
behave quite differently, and bottomonium is expected to
be a lot more sensitive to the lattice spacing than the B;.
This means that the B is a good system from which to
determine c, because it is really only sensitive to that
coefficient.

E. Scalar and axial-vector meson masses

When generating the NRQCD propagators we choose
Dirac structures I' to explicitly project out pseudoscalar
and vector mesons. Parity partners of both of these con-
tribute to their correlators, as shown in Eq. (12), and must
be included in the fit. The parity-partner state of the
pseudoscalar is a scalar meson, and the vector meson has
as its parity partner a axial-vector state. So, by carefully
fitting the correlators of the 0~ and 1~ states we get also
the spectra of the 0% and 17" states for free.

In fact, our fit results return directly the mass difference
between the ground state in the oscillating channel and
the ground state in the nonoscillating channel, i.e., the
0" — 0~ and 1" — 1~ mass differences. We report these
results in Table III for the B; (i.e., for the B}, and By,
mesons). For B; and B,. our errors are too large on some fits
to give a full picture across all ensembles.

The results for the scalar-pseudoscalar mass difference
are shown in Fig. 15. There is no signal for any systematic
dependence on the b or s quark mass, or on the lattice
spacing. In deriving a physical result we allow for both
physical and unphysical lattice spacing dependence as
described for the B; mass in Sec. III A, as well as sea quark
mass dependence. We use the same fit form as for the
B, mass, given in Eq. (12). The priors are taken to be the
same except that we take the prior on the physical value
of the scalar-pseudoscalar mass splitting to be 0.4(2). We
also allow for more sea quark mass dependence than in
that case, because the scalar meson is not gold-plated (this
will be discussed further below). We therefore do not
take the factor 3 suppression of sea quark mass effects in
this case, so the prior on the sea quark mass—dependent
terms is simply 0.0(2) for the linear terms and 0.00(4) on
the quadratic terms. The physical result we obtain is
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FIG. 15 (color online). Results for the mass difference be-
tween the scalar B}, and B, mesons as a function of lattice
spacing. The squares show our results (with multiple b and s
quark masses on the very coarse ensemble, set 1) and the shaded
band the physical result from the fit described in the text. This
result does not include any adjustment or error for the fact that
the scalar is not a gold-plated meson.

0.385(16) GeV, and this is plotted as the shaded band on
Fig. 15.

Exactly the same procedure is followed for the axial-
vector—vector splitting. The results are plotted in Fig. 16.
From the same fit as that described above, we obtain the
physical result for the mass difference between the axial
vector and vector of 0.391(15) GeV, plotted on the figure as
a shaded band.
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FIG. 16 (color online). Results for the mass difference be-
tween the axial-vector B,; and B; mesons as a function of lattice
spacing. The squares show our results (with multiple b and s
quark masses on the very coarse ensemble, set 1) and the shaded
band the physical result from the fit described in the text. This
result does not include any adjustment or error for the fact that
the axial vector is not a gold-plated meson.

PHYSICAL REVIEW D 83, 014506 (2011)

Since we have calculated the mass differences between
the scalar and axial-vector B, mesons and the correspond-
ing pseudoscalar and vector B; mesons we expect only
very small systematic errors coming from NRQCD.
Because the b quark is very nonrelativistic in these sys-
tems, as discussed in Sec. III A, the errors from missing
higher-order relativistic corrections in NRQCD are very
small. They will be reduced further here by cancellation in
the mass difference. The main source of systematic error
from NRQCD will come from radiative corrections to spin-
dependent terms in the NRQCD action. In Sec. IIID we
showed that these systematic errors are not large, at least
for the o - B term. There, the errors amounted to 10% of
the hyperfine splitting, around 5 MeV, split between the
vector and pseudoscalar states. Assuming a similar error
for other spin-dependent terms which would affect p-wave
states, we take a systematic error of 5 MeV from NRQCD
in the mass differences.

A potentially much larger source of systematic error is
the fact that the scalar and axial-vector mesons have strong
decay modes, i.e., they are not “‘gold-plated”. This will be
discussed further in the next section. The strongest decay
mode, if kinematically allowed, will be to BK (for the B)
or B*K (for the By). If the masses are such that the mesons
are below threshold for this decay mode, there will still in
principle be coupling between the meson and this virtual
decay channel which can shift the meson mass. There is in
addition a Zweig-suppressed (and, more importantly,
isospin-suppressed) decay mode to B,r/B%, which will
be kinematically possible.

On the lattice, the coupling between single and multi-
particle states is distorted by the fact that u/d quark
masses are heavier than their physical values and the
volume of the lattice is relatively small. The fact that
u/d masses are unrealistic means that decay thresholds
are higher than in the real world. In principle, sensitivity
to decay thresholds would be seen in the results as sea
quark mass dependence, but that may not become visible
until much closer to real-world u#/d mass values. The
finite volume of the lattice restricts the decay momenta
that real or virtual multiparticle states can have. A lattice
analysis on multiple volumes allows single and multi-
particle states to be separated. In practice [33], it seems
that bilinear operators of the kind that we have used here
have very small overlap with multiparticle states. So,
although in principle there may be a multiparticle state
(such as Bg7r) at a lower mass value than the By it is very
hard to pick it out of a lattice QCD calculation without
explicitly using multiparticle operators, which we have
not done.

A simple model to analyze the effect of multiparticle
states is one in which pointlike meson states are coupled
together via a perturbation which is a simple pointlike
vertex. We can then calculate the shift on the single particle
energy from this coupling by integrating over the momenta
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of the decay products in the initial particle rest frame.
For example, for B}, coupling to BK:

Ay, =g [t AL 1
Ery, @m)* My, — (Ep + Ex)’

(25)

A represents an ultraviolet cutoff required for this model to
make sense. A = 500 MeV and g> = (0.5/A). If our cal-
culation is correct that the B, is close to, but below,
threshold, then we can treat the B and K as nonrelativistic
and, dropping the B kinetic term,

A, =8 [ A pldp
Ery 27 ) pr/2My) + AM’
where AM = Mp + Mgy — M p, (unperturbed values). The
AM-dependent piece of the mass shift is then given by

A . gzv AMZMK2MK
E -_— .
4

*
B.YO

(26)

27

Numerically, this gives a shift downward of a few tens of
MeV for AM values of a few tens of MeV. From this we
conclude that a reasonable systematic error for the absence
of coupling to strong decay channels is 25 MeV (which we
take to be a symmetric error).

This then gives the following mass differences:

My, — Mg = 0.385(16)(5)(25),

28)
— Mg = 0.391(15)(5)(25),

Mp

s1

where the first error is statistics/fitting, the second is the
NRQCD systematic error, and the third is the error from
not including coupling to strong decay channels.

IV. DISCUSSION

Figure 4 shows that our result for the mass of the B
meson agrees well with experiment with total errors of
11 MeV (0.2%). The errors are dominated by statistical
errors and systematic errors from NRQCD, both of which
are being improved in work that is underway.

As discussed earlier, because we fix the b quark and s
quark masses from other mesons, the B, mass determina-
tion is completely free from any parameter tuning. An
alternative for the b quark mass, adopted by some other
lattice QCD calculations, is to fix the b quark mass from the
B, meson mass itself. However, it is still possible, then, to
determine Ay = My — M,;/2, as a test of the b quark
systematic errors. The only other full lattice QCD calcu-
lation of this quantity is from the Fermilab Lattice/MILC
Collaboration using the Fermilab formalism for the b
quark [34]. They determine, in fact, the quantity Az =
My — M,;/2, where By is the spin average of the B, and
the B; masses. This quantity has reduced systematic errors
from the spin-dependent terms in the action, in the same
way that the use of M,; reduces these systematic errors for
the bottomonium system. The Fermilab Lattice/MILC
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Collaboration obtain the value 1359 = 304 t301 MeV for
2A with a partial error budget [34]. We can also deter-
mine A in exactly the same way as we determined Ay .
We obtain 0.671(7) GeV for the physical result from our
calculation. This becomes 0.675(11) GeV when corrected
for electromagnetic, annihilation, and charm-in-the-sea ef-
fects in bb and with a full error budget (essentially the same
as in Table V but with a reduced error for NRQCD system-
atics in the By). The experimental result is 0.6817(11) GeV
[23].

Figure 17 shows the results for Ay and Ap from this
paper and from the Fermilab Lattice/MILC Collaboration
compared to experiment. Both results agree with experi-
ment but we are able to provide a 2% test of these mass
differences, which is a nontrivial test of QCD.

Back in 2004 we predicted the mass of the B, ahead of
the CDF experimental discovery in a collaboration with the
Fermilab Lattice Collaboration [35]. We used NRQCD for
the b quarks, as here, but the Fermilab formalism for the ¢
quarks and the Asqtad formalism for the s quarks in the hs
method. As a result, we had larger statistical and systematic
errors than we have here, particularly for the hs method.

Figure 18 shows the comparison between our old results
and the new ones given here, as well as the current experi-
mental value. The improvements in lattice QCD calcula-
tions since 2004, including the development of the HISQ
action for ¢ and s, give us a substantial improvement in
errors and consistency between the hh and hs methods
today.

® FNAL/MILC: 0912.2701

HPQCD: this paper

° o Experiment

0.5 0.6 0.7 0.8 0.9
Ag or Ag .. (GeV)

FIG. 17 (color online). Results for the mass differences Ap
and Ap between the B, and the spin average of B, and B?,
respectively, and the spin average of the Y and 7, (see text). The
top result is from the Fermilab Lattice/MILC Collaboration for
A [34], the middle two results are from this paper, and the
lower two points and shaded vertical lines are from experiment.
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FIG. 18 (color online). Results for the mass of the B, obtained
from the hh and hs methods. The top two results (hh above hs)
are the 2004 HPQCD/Fermilab Lattice calculation [35] and
the bottom two results (again hh above hs) are from this paper.
The middle point (and the shaded vertical line) is the current
experimental value.

Our result for the mass difference between the B, and the
B; meson is the first full lattice QCD calculation of this
quantity. As discussed in Sec. III C our result is in agree-
ment with experiment, but with substantial statistical
errors. These will be improved in further work which is
under way.

In Sec. I11 E we gave results for the masses of the 0* and
1" B, mesons. The 0" has not been seen experimentally.
A 17 state has been seen but may not be the one whose
mass we have calculated.

Figure 19 shows how our results fit into the current
experimental picture of ‘“p-wave” charm-light and
bottom-light mesons. Charmonium and bottomonium
p-wave mesons are also shown for comparison [23]. For
heavy-light mesons the p-wave states are expected from
heavy-quark symmetry [36] to appear in two doublets,
classified according to the J of the light quark which can
be either 1/2 or 3/2, when L = 1is combined to s; = 1/2.
The j, = 1/2 doublet then separates into a 0" and 1%
meson at noninfinite heavy-quark mass, when the heavy-
quark spin is coupled in. The j; = 3/2 doublet is likewise
made up of 1* and 27 states. This is in contrast to the
heavyonium case where there is a triplet of 0", 1* and 2
states with total quark-antiquark spin of 1, and a single 1*
state with total spin 1. The existing experimental results are
shown as solid points in Fig. 19 divided appropriately
according to the picture above. For D and D; mesons
both doublets have been seen; for B and B; mesons only
the j, = 3/2 doublet has been seen (assuming that the 17
state seen is associated with that doublet). For charmonium
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FIG. 19 (color online). Results for the mass difference be-
tween 07, 1% and 2™ D, D,, B, and B, states and the spin
average of the corresponding 0~ and 1~ states. The solid circles
are from experiment [23] and are divided, where results exist,
into the expected 07 /1% and 1% /2% doublets. For the B and B,
only the upper 11 /2% doublet has been seen. The open circles
for the B, are the lattice QCD results given here. We have not
included an error for the coupling of these states to decay
channels. The rightmost two sets of points are the p-wave
charmonium and bottomonium states for comparison. The black
lines show the D™ K and B K thresholds for the Zweig-allowed
decay of the 0" and 1% D, and B, states.

all 4 states of the y, triplet and the h,. are known; for
bottomonium the /4, has not been seen. The experimental
masses are given relative to the spin average of the s-wave
states, a pseudoscalar and a vector in every case. That
removes the overall mass scale of each system from the
plot and shows, as is well-known but still somewhat
surprising, that the orbital excitation energies of heavy
degrees of freedom in heavyonium are very similar to those
of light degrees of freedom in a heavy-light system.

Since mass splittings between the S =1 states in
heavyonium and between the members of the j, = 1/2 or
J; = 3/2 doublets in the heavy-light case are caused by
heavy-quark spin effects proportional to the inverse of the
heavy-quark mass, we expect to see larger splittings in the
¢ case than in the b case. This is borne out in the experi-
mental data for charmonium and bottomonium and in the
comparison of D and B results for the j, = 3/2 doublet
(although the disagreement between B and B, might in-
dicate that the doublet assignment for the B 1% in the
figure is wrong). The splitting between j; = 1/2 and 3/2
doublets is a light quark effect that does not vanish as
mg — oo. However the splitting will vary with m, slightly
because of A/m,, terms in the effective heavy-quark action
(NRQCD) away from that limit. A variation in the splitting
of order 100 MeV out of 500 MeV is then reasonable
between D and B.

Our results are entered on Fig. 19 as open circles in the
B, column. Since we have 0" and 17 states we have placed
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them as the j, = 1/2 doublet. However, it should be
stressed that we do not know that that assignment for the
1" is correct. In any case the 1% states from the two
doublets can mix and we have not allowed for that.

Given the discussion above, our results fit fairly natu-
rally into the picture described. As a j, = 1/2 doublet they
sit below the known j; = 3/2 doublet. They sit closer to
the j, = 3/2 doublet than for the D, case, but this can be a
A /m effect as discussed above. The splitting between the
two states in the doublet is about one-third that in the Dy
case, consistent with this splitting being a 1/m,, effect.

In the D, case the discovery of the lower 0" /1* doublet
[37-39] caused much surprise because the states were low
compared to model calculations. The states had been ex-
pected to be above threshold for strong decay to DK and
D*K, respectively, and therefore broad (unlike the upper
doublet which has to decay in a d-wave). Instead they are
below threshold and so decay to the D 7r and D chan-
nels. These channels are Zweig-suppressed but also, more
importantly, strongly further suppressed by having to cre-
ate isospin-1 particles out of isospin 0. The states are
therefore very narrow. We have marked the DK, D*K,
BK, and B*K thresholds on Fig. 19. Like the D%, our 0"
B state is also below, but very close to, its Zweig-allowed
decay threshold. A similar situation holds for the 1% state.
This might indicate that these states would be narrow.
However, there will also be effects from coupling to the
decay channel that are not included in our calculation. On
our lattices the light sea quark masses are heavier than in
the real world and hence the K mesons containing a
valence s quark and a sea light quark would be too heavy
to allow the B}, to decay to BK. B decay is allowed but
with a very restricted phase space compared to the real
world. Coupling to these channels would in principle show
up as sea quark mass dependence but would need a bigger
range of sea quark masses than we have used. In Sec. I[IIE
we allowed a 25 MeV systematic error for these coupled-
channel effects, noting that the coupling to BK decay will
tend to push the mass down.

Our results are the only ones in full lattice QCD to date
and with realistic b quarks. There have, however, been
several recent lattice QCD results for the case of u and d
sea quarks only and taking b quarks in the static limit
[33,40-42]. The most complete is that of the ETMC
Collaboration [42]. They give a mass difference between
the B, j; = 1/2 doublet and the spin average of B, and B}
of 413(12) MeV, with an estimated additional possible
systematic error of 20 MeV, including coupling to multi-
particle states. Using experimental results from charmed
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mesons to estimate 1/m, corrections to the static limit,
they conclude, as we have done, that the scalar B, state is
close to the BK threshold.

V. CONCLUSIONS

We have given the first accurate result for the B, meson
mass from lattice QCD including the effect of u, d, and s
sea quarks, and with a full error budget. We have improved
significantly on an earlier value for the B, meson mass,
achieving smaller errors and better consistency between
two different methods. The determination of both of these
masses provides a strong test of our lattice QCD approach
to b physics, because they test the consistency of heavyo-
nium and heavy-strange or heavy-charm physics from the
same heavy-quark action. All of the QCD parameters used
here are tuned from other calculations so our results are
parameter free tests of QCD against experiment.

The mass of the B meson, specifically the difference
between B, and B meson masses, depends on light quark
physics since heavy-quark effects cancel. Our result agrees
with experiment but needs higher statistical precision for a
good test.

We also discuss scalar and axial-vector meson masses
for the B,. Our results indicate masses below, but close to,
threshold for Zweig-allowed decay modes. From our cur-
rent calculation, however, it is not possible to include
effects of coupling to either allowed or suppressed decay
channels, so significant shifts to our results from these
effects are possible.

Further improvement to these results will come with
improved statistical accuracy in calculations, now under-
way. This will lead also to improved determination of
decay constants and other B meson matrix elements.
Confidence in those calculations and the error analysis
associated with them is strongly bolstered by this analysis
of the associated meson masses.
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