
TRABAJO FIN DE GRADO
DE INGENIERÍA INFORMÁTICA

Anotación semántica de grandes
colecciones de v́ıdeos a partir de

su audio

Directores
Sandra Baldassarri

Pedro Javier Álvarez Pérez-Aradros

Autor
Daniel Delgado Llamas

Escuela de Ingenieŕıa y Arquitectura
—

Zaragoza, Septiembre de 2015

Resumen

En Internet existen numerosos servicios de alojamiento y visualización de v́ıdeos. Este tipo de
plataformas permiten realizar búsquedas entre las grandes colecciones de v́ıdeos que almacenan.
Estas búsquedas comparan la consulta realizada por el usuario con la información que disponen
de cada uno de sus v́ıdeos. La fuente de información para este tipo de búsquedas puede ser muy
distinta dependiendo de cada servicio de alojamiento. En general, los elementos más importantes
que clasifican un v́ıdeo son: el t́ıtulo y las etiquetas asociadas a cada v́ıdeo y que describen su
contenido.
El t́ıtulo y las etiquetas de un v́ıdeo son, normalmente, asignados de forma manual por el usuario
que aloja el v́ıdeo en el servidor. El etiquetado de v́ıdeos consiste en asociar o añadir a la
información del v́ıdeo un conjunto de palabras o metadatos (datos que describen otros datos)
que permita clasificar o describir el contenido del v́ıdeo. Esta tarea, con colecciones de v́ıdeos
muy grandes, resulta muy costosa y a veces dif́ıcil de realizar por un usuario por desconocimiento
del contenido del v́ıdeo. En general, el etiquetado manual produce un conjunto de etiquetas que
describen el contenido de los recursos multimedia de forma genérica.
Este proyecto pretende conseguir que este proceso de etiquetado manual, por parte del usuario,
se realice de forma automática, permitiendo aśı reducir costes en el tiempo de etiquetado y
generando unas etiquetas que describan mejor el contenido del v́ıdeo utilizando información
presente en el audio del mismo, mejorando de esta forma la relevancia de las etiquetas con
respecto al etiquetado manual.

Este proceso de etiquetado consiste, en primer lugar, en obtener o descargar el v́ıdeo solicitado,
siguiendo con la extracción de su audio y el posterior reconocimiento de voz del mismo para
obtener el mayor número de palabras, de este audio, en forma de texto. A continuación, a
partir de un proceso de votación, en el que a partir de los resultados obtenidos mediante el uso
de algoritmos de extracción de términos, se determinan las palabras más relevantes que serán
utilizadas como etiquetas para clasificar el v́ıdeo. Estas etiquetas obtenidas pasan un proceso
de validación, por parte de usuarios, para comprobar que son adecuadas y corresponden al
contenido del v́ıdeo. Se decidió que este proceso de validación se realizase de forma externa al
sistema de etiquetado de v́ıdeos para que el sistema pudiese continuar aunque la validación no
hubiera finalizado. Finalmente, estas etiquetas pasan por un proceso en el que se relacionan estas
palabras más relevantes con conceptos de una ontoloǵıa (esquema conceptual dentro de varios
dominios con la finalidad de facilitar el intercambio de información entre diferentes sistemas y
entidades) de referencia, obtenida del repositorio de información estructurada llamado dbpedia
para obtener mayor significado e información sobre el v́ıdeo procesado.
Este proceso de etiquetado de v́ıdeos se encapsula dentro de un servicio que permite la entrada
de v́ıdeos y genera como resultados un conjunto de metadatos que describen los v́ıdeos en base a
su contenido. Este proceso de etiquetado consta de unas etapas con una alta complejidad, como
puede ser la extracción del audio o el reconocimiento de voz, que genera la necesidad de una
búsqueda de herramientas a integrar en este proceso que resuelvan cada etapa. Finalmente, se
lleva a cabo una evaluación de este proceso de etiquetado automático, valorando aspectos como
el rendimiento (costes de computo) o la calidad (tasa de aciertos) de algunos de los elementos
que intervienen en ese proceso.

i

Agradecimientos

En primer lugar, agradecer a toda mi familia el apoyo recibido en especial a mi madre y a mi
padre, sin su ayuda la realización de este proyecto no habŕıa sido posible.

También queŕıa tener una especial mención para Verónica, por todo su apoyo, ayuda y atención
durante la realización del proyecto y la carrera.

Agradecer también a todos mis amigos y compañeros que directa o indirectamente me han
ayudado o me han hecho más sencillo el transcurso de estos años.

Finalmente, y no por ello menos importante, agradecer a mis dos directores la oportunidad de
llevar a cabo este proyecto, la paciencia que han tenido conmigo y toda la ayuda recibida.

ii

Índice de contenidos

Índice de figuras v

Índice de tablas vi

1 Introducción 1
1.1 Motivación y contexto . 1
1.2 Problema a resolver y objetivos de alto nivel . 1
1.3 Estructura de la memoria . 2

2 Análisis 3
2.1 Objetivos más concretos y requisitos . 3
2.2 Requisitos funcionales . 3
2.3 Requisitos no funcionales . 4
2.4 Análisis de herramientas . 4

2.4.1 Descarga de v́ıdeo . 5
2.4.2 Extraer el audio . 6
2.4.3 Reconocimiento de voz . 6
2.4.4 Extracción de términos clave . 7
2.4.5 Validación de términos clave . 8
2.4.6 Obtención de metadatos . 8

3 Diseño 10
3.1 Entorno del sistema . 10
3.2 Diseño del sistema de etiquetado . 11
3.3 Diseño del sistema de validación de términos . 14

4 Implementación 16
4.1 Implementación del patrón . 16
4.2 Implementación de los buffers . 16
4.3 Implementación de las etapas . 18

5 Evaluación 23
5.1 Evaluación intermedia . 23

5.1.1 Calidad . 23
5.1.2 Rendimiento . 26

5.2 Estimación de los costes de computo . 28

6 Gestión del proyecto 30
6.1 Organización . 30
6.2 Esfuerzos . 31

7 Conclusiones y trabajo futuro 32
7.1 Conclusiones . 32
7.2 Trabajo futuro . 32

Anexos 34

A Prueba de integración 34

iii

B Grafo generado por la herramienta Pisixde 37

Bibliograf́ıa 41

iv

Índice de figuras

1 Etapas del sistema de etiquetado. 5
2 Herramientas del sistema de etiquetado. 9
3 Entorno del sistema. 10
4 Comparación estructural entre el patón Pipes and Filters y el sistema de etiquetado. 12
5 Interfaz de la aplicación web del sistema de etiquetado. 13
6 Sistema de validación de términos. 14
7 Ejemplo de tarea creada con por el sistema de etiquetado en Pybossa. 15
8 Listado de tareas dentro de un proyecto. 15
9 Secuencia de acciones de los Buffers y los Filtros. 17
10 Diagrama de clases del sistema de etiquetado. 22
11 Comparativa del tiempo de procesado entre las herramientas de reconocimiento

de IBM y Sphinx. 26
12 Diagrama de Gantt de la planificación inicial del proyecto. 30
13 Diagrama de Gantt del desarrollo final del proyecto. 30
14 Opciones presentas en la interfaz web del sistema de etiquetado. 34
15 Descarga de los resultados a través de la interfaz web del sistema de etiquetado. 35
16 Sucesión de eventos en la ejecución interna del sistema de etiquetado. 36
17 Grafo de conceptos del término clave Byte del v́ıdeo mars. 37
18 Tabla con los datos del grafo del término Byte del v́ıdeo mars. 38
19 Grafo de conceptos del término clave Byte del v́ıdeo mars. 39
20 Grafo de conceptos del término clave Byte del v́ıdeo mars. 40

v

Índice de tablas

1 Herramientas analizadas para la descarga de v́ıdeos. 5
2 Herramientas para la extracción de audio. 6
3 Herramientas para el reconocimiento de voz. 7
4 Referencias de cada v́ıdeo de la colección utilizada. 24
5 Tasa de aciertos (%) entre los reconocedores de voz CMU Sphinx e IBM. 25
6 Tiempo de procesado medio (en segundos) entre los reconocedores de voz IBM y

CMU Sphinx. 26
7 Tiempo de procesamiento para cada etapa del sistema de etiquetado para una

colección de veinte v́ıdeos. 28
8 Relación de las fases del proyecto y los esfuerzos dedicados. 31

vi

1 Introducción

En esta sección se describen los motivos que han llevado a desarrollar este trabajo, su contexto,
el problema que aborda y los objetivos que se han planteado. Finalmente se indican las distintas
partes de las que consta este documento.

1.1 Motivación y contexto

Con el aumento de la popularidad de los servidores de alojamiento de contenido audiovisual
en Internet, se disponen de grandes colecciones de v́ıdeos y surge la necesidad de documentar o
clasificar estos recursos. El etiquetado de v́ıdeos consiste en asociar o añadir a la información del
v́ıdeo un conjunto de términos o metadatos (datos que describen otros datos) que permita clasi-
ficar o describir el contenido del v́ıdeo. Lo normal es asignarles ciertos metadatos que describan
el v́ıdeo de forma general. En este proyecto se pretende que el etiquetado se realice en base a su
contenido.
Esta clasificación tiene como finalidad, dentro del proceso de recuperación de información, mejo-
rar y agilizar la tarea de búsqueda de v́ıdeos y/o facilitar el acceso a ellos. Actualmente esta
clasificación se realiza de forma manual por parte de los usuarios. La motivación de este proyecto
es conseguir diseñar un sistema capaz de realizar ese proceso de clasificación automáticamente
en base a su contenido.
Por último, otra de las motivaciones de este proyecto es conseguir que los recursos estén en-
trelazados (linked data). Cada etiqueta asociada a cada v́ıdeo estará relacionada con distintos
conceptos que tendrán una relación semántica entre ellos y que podrán o no estar relacionados
con otras etiquetas de otros v́ıdeos, consiguiendo aśı la interrelación de etiquetas y por lo tanto
la interrelación de v́ıdeos, una caracteŕıstica muy importante dentro de la situación actual de la
web (Web Semántica [1]).

1.2 Problema a resolver y objetivos de alto nivel

El problema que resuelve este proyecto es el etiquetado o clasificación de grandes colecciónes de
v́ıdeos de forma automática en base a la información contenida en el audio. Para llevar a cabo el
etiquetado se necesita obtener información sobre el contenido del v́ıdeo. Para ello se propusieron
dos métodos para conseguirlo: utilizar los subt́ıtulos del v́ıdeo (si estuvieran disponibles) o proce-
sar la información contenida en el audio. Finalmente se ha optado por el uso de la información
contenida en el audio debido a que no siempre se dispone de los subt́ıtulos de los v́ıdeos. Por otro
lado, para comprobar que este etiquetado es correcto y las etiquetas generadas corresponden al
contenido del audio, se realizará un proceso de validación de los metadatos obtenidos. Al realizar
un análisis previo del problema se observó que estaba compuesto por varios subproblemas: la
desgarga del v́ıdeo, la extracción del audio, el reconociemiento de voz, la extracción de términos
clave, la validación de términos clave y un subproblema final de obtención de más metadatos
relacionando las etiquetas con conceptos pertenecientes a ontoloǵıas (esquema conceptual con la
finalidad de facilitar el intercambio de información entre diferentes sistemas y entidades).
Para resolver el problema planteado, se han definido varios objetivos generales. El primer obje-
tivo a tratar es buscar y analizar tecnoloǵıas ya existentes que resuelvan parcial o completamente
algunos de los subproblemas del sistema de etiquetado.
El siguiente objetivo es realizar la implementación de dos aplicaciones de soporte para el sistema,
aśı como de la propia implementación del sistema: desarrollar una aplicación web que permita la
interacción de los usuarios con el sistema y desarrollar un interfaz web que permita a los usuar-
ios realizar una validación de los resultados del sistema. También se realizará la incorporación

1

y adaptación (si fuera necesario) de las tecnoloǵıas analizadas que han sido seleccionadas para
resolver alguna de las tareas del sistema.
Por último se llevará a cabo una evaluación de las prestaciones del sistema en cuanto a rendimiento
y calidad. También se realizarán evaluaciones intermedias para tomar decisiones al seleccionar
herramientas.

1.3 Estructura de la memoria

La estructura de esta memoria se compone de seis caṕıtulos o apartados:

Caṕıtulo 1: Breve introducción del proyecto, exponiendo el problema que aborda y el con-
texto por el cual surge.
Caṕıtulo 2: Análisis del proyecto. Descripción de los objetivos concretos y sus requisitos y las
tecnoloǵıas analizadas.
Caṕıtulo 3: En este apartado se explica la fase de diseño del sistema. Descripción del entorno,
sus componentes y la arquitectura utilizadas.
Caṕıtulo 4: Implementación del sistema. Descripción detallada de la implementación del sis-
tema de etiquetado.
Caṕıtulo 5: Resultados obtenidos respecto a la calidad y el rendimiento del sistema.
Caṕıtulo 6: Gestión del proyecto. Descripción de la metodoloǵıa utilizada, junto a la planifi-
cación y los esfuerzos dedicados.
Caṕıtulo 7: Conclusiones y trabajo futuro. Conclusiones sacadas sobre el proyecto y el futuro
trabajo que se puede hacer a partir del mismo.

2

2 Análisis

En esta sección se describen los objetivos del sistema propuestos. También se explicarán las
herramientas/tecnoloǵıas que han sido analizadas para integrarlas o no, razonando por qué han
sido descartadas o por qué han sido seleccionadas.

2.1 Objetivos más concretos y requisitos

El sistema de etiquetado ha desarrollar se divide de distintas tareas para obtener los resulta-
dos deseados: generar las etiquetas de los v́ıdeos de forma automática en base a la información
contenida en el audio. El objetivo inicial es llevar a cabo una búsqueda de herramientas o tec-
noloǵıas que puedan resolver los subproblemas detectados del sistema de etiquetado: la descarga
del v́ıdeo, la extracción del audio, la extracción de términos clave, la validación de términos clave
y la adición de nuevos términos con una relación semántica a los ya obtenidos.
Se realizará un análisis de las caracteŕısticas de las herramientas y según unos criterios que se
definirán en la siguiente subsección serán seleccionadas. Si varias herramientas han sido selec-
cionadas para resolver un mismo subproblema se realizará una evaluación de su rendimiento y
la calidad de los resultados, y se seleccionará la que mejores resultados muestre.

El siguiente objetivo es realizar la implementación de todos los componentes de los que consta
el sistema de etiquetado de v́ıdeos por contenido. Por un lado, desarrollar un componente que
permita a los usuarios enviar al sistema de etiquetado el conjunto de v́ıdeos a etiquetar y recibir
los resultados generados.
Por otro lado, realizar la implementación del sistema de etiquetado compuesto por las distintas
etapas o subproblemas detectados. Cada uno de estos subproblemas será resuelto por alguna de
las tecnoloǵıas seleccionadas, por lo tanto, otro objetivo será la integración de estas tecnoloǵıas
al sistema.
Otro objetivo es realizar la implementación del sistema de validación de términos clave. Este
sistema deberá permitir a los usuarios validar los términos obtenidos por el sistema, indicando
qué términos son correctos y cuáles no.

Por último se realizará una evaluación del sistema de etiquetado teniendo en cuenta aspectos
del rendimiento y la calidad. Para aspectos de rendimiento se realizarán medidas de tiempo,
tanto de procesamiento o de latencias en escritura y lectura. Para aspectos de la calidad de los
resultados se medirá la tasa de aciertos del sistema.

2.2 Requisitos funcionales

RF1: La interfaz de la aplicación web dispondrá de un formulario para que los usuarios inter-
actúen con el sistema.
RF2: La aplicación web debe permitir al usuario iniciar el proceso de etiquetado de v́ıdeos
suministrando una o o un conjunto de URLs que identifican uno o varios recursos (v́ıdeos).
RF3: La aplicación web deberá devolver al usuario los resultados del etiquetado de v́ıdeos una
vez haya acabado el proceso.
RF4: El sistema deberá ser capaz de descargar el v́ıdeo que identifica una URL y almacenarlo
localmente.
RF5: El sistema deberá ser capaz de extraer el audio de un v́ıdeo y almacenarlo.
RF6: El sistema será capaz de transcribir las palabras habladas contenidas en un fichero de
audio y almacenar el resultado en un fichero de texto.

3

RF7: El sistema será capaz de determinar y extraer los términos más significativos de un texto
y almacenar los resultados en un fichero de texto.
RF8: El sistema deberá ser capaz de validar términos mediante encuentas creadas automáticamente
v́ıa web con la participación de usuarios y almacenar los resultados de la validación.
RF9: El sistema será capaz de generar nuevos términos con una relación semántica a otro
conjunto de términos.

2.3 Requisitos no funcionales

RFN1: El sistema deberá ser capaz de procesar grandes colecciones de v́ıdeos.
RFN2: La aplicación web deberá comportarse de la misma manera en todos los navegadores
web.
RFN3: La aplicación web podrá manejar de forma concurrente peticiones de varios usuarios.

2.4 Análisis de herramientas

El etiquetado de un v́ıdeo es el proceso por el cual un usuario o entidad asigna un conjunto de
palabras o términos significativos que describan su contenido, permitiendo aśı tener disponible
información asociada y clasificarlo.
Este etiquetado se lleva a cabo en distintas etapas o subproblemas tal y como se observa en la
figura 1. En primer lugar se descarga el v́ıdeo alojado en algún servidor de almacenamiento.
Después se extrae el audio, con el que utilizando alguna herramienta de reconocimiento de voz,
se extraen las palabras que contiene. A continuación se determinan cuáles son las palabras
más significativas o que más ocurrencias tienen dentro de todo el conjunto. Estas palabras
más significativas pasan un proceso de validación por parte de usuarios que verifican que esas
palabras ciertamente aparecen en el v́ıdeo y describen su contenido. Finalmente, las palabras
más relevantes se “mapean” a conceptos de una ontoloǵıa de referencia.
Cada una de estas etapas consume unos datos y genera otros, formándose una cadena o flujo que
se puede observar representado mediante flechas en la figura 1. A este flujo entran URLs que
desencadenan el flujo de eventos y finalmente se consiguen como resultado los v́ıdeos etiquetados.

Para el análisis que se ha realizado de las tecnoloǵıas a usar se han tenido en cuenta las
siguientes caracteŕısticas:

- Funcionalidad.

- Formatos de entrada y salida.

- Desarrollado en Java o faćıl integración en una aplicación Java.

- Poĺıticas y precios de uso.

Una vez se ha hecho este primer análisis, si para un subproblema en concreto, se tiene más
de una herramienta aceptada se realizan unas pruebas de rendimiento y calidad para finalmente
seleccionar la que mejor resultados ofrezca:

- Rendimiento.

- Tasa de fallos/errores.

4

Figura 1: Etapas del sistema de etiquetado.

2.4.1 Descarga de v́ıdeo

Para la descarga de v́ıdeos se hizo una búsqueda en Internet y como resultado se encontraron
gran cantidad de aplicaciones web y de escritorio que resolv́ıan este problema, y que no es posible
integrarlas al resto del sistema, como por ejemplo: ClipConverter [2] (Aplicación Web) y aTube
Catcher [3] (Aplicación de escritorio). Como el objetivo es poder integrar una tecnoloǵıa que
resuelva el problema dentro del sistema se descartaron. Se hizo una nueva búsqueda más refinada
en busca de alguna libreŕıa o módulo que se pudiera incorporar sin problemas al sistema. Se
encontraron únicamente dos herramientas con ese propósito: VGET y YoutubeDL.
La idea que reside por debajo de estas dos herramientas es igual que la forma de visualizar v́ıdeos
a través de un navegador web en algún servidor de alojamiento de v́ıdeos. Al visualizar un v́ıdeo
en un navegador web lo que realmente se hace por debajo es una petición HTTP (Hypertext
Transfer Protocol) que permite la comunicación entre un cliente (el navegador web) y un servidor
(el servidor de alojamiento de v́ıdeos). Concretamente se realiza una petición HTTP de tipo
GET, que solicita información o datos al servidor, en este caso solocita un recurso v́ıdeo. Un
navegador al realizar esta petición recibe el recurso v́ıdeo y lo almacena para poder visualizarlo
cuando el usuario desee dentro de la web. Por lo tanto, las dos herramientas encontradas utilizan
esta idea para capturar el v́ıdeo. Realizan una petición GET contra el servidor y al recibir el
v́ıdeo lo copian desde su ubicación a otro directorio completando aśı la descarga.

La herramienta VGET [4] es una libreŕıa escrita en JAVA. Solo soporta descargas de los servi-
dores de Youtube y Vimeo. Como entrada se requiere la URL del recurso y como salida se obtiene
el v́ıdeo en formato FLV.
La herramienta YoutubeDL [5] es un script escrito en Python, con soporte para cientos de servi-
dores de alojamiento de v́ıdeos (que la comunidad de desarrolladores de GitHub aumenta
constantemente). Como entrada se requiere la URL del v́ıdeo y como salida se obtiene el v́ıdeo
en el formato con el que esté almacenado en el servidor. En la tabla 1 se pueden visualizar las
caracteŕısticas principales de ambas herramientas.

Herramienta Leng. Progr. Entrada Salida Servidores soportados
VGET JAVA URL Fichero FLV YouTube y Vimeo

YouTubeDL Python URL Fichero con formato de origen Más de 100 servidores

Tabla 1: Herramientas analizadas para la descarga de v́ıdeos.

Finalmente se seleccionó la herramienta YoutubeDL principalmente por la gran cantidad de
servidores a los que da soporte. Otra de las razones fue que la herramienta VGET no fun-
ciona correctamente y devuelve mensajes de error en su funcionamiento, por otro lado no recibe
actualizaciones desde hace un año lo que puede provocar este mal funcionamiento.

5

2.4.2 Extraer el audio

Para la tarea de extracción del audio, solo se encontraron dos herramientas: JAVE y Xuggler,
las cuales se pueden ver en la tabla 2.
La herramienta JAVE [6] (Java Audio Video Enconder) es una libreŕıa escrita en JAVA que
encapsula el framework FFmpeg [7]. FFmpeg es un software de código abierto escrito en lenguaje
C. Para que la libreŕıa de JAVE funcione correctamente se necesita tener instalada una versión
precompilada de FFmpeg en la máquina local. JAVE permite transcodificar ficheros de audio y
v́ıdeo desde un formato a otro. Soporta multitud de formatos y permite redimensionar el tamaño
de los v́ıdeos, aśı como sus proporciones.
La herramienta Xuggler es una libreŕıa también escrita en JAVA que permite descomprimir,
modificar y recomprimir cualquier fichero multimedia desde JAVA. Esta herramienta además
permite capturar en tiempo real imágenes del escritorio de la máquina local o de una cámara
conectada a la máquina. Asimismo hace uso por debajo del framework FFmpeg. Tiene soporte
para multitud de formatos. En la tabla 2 podemos observar que ambas herramientas tienen
caracteŕısticas semejantes, salvo en aspectos de funcionalidad, como la captura de imágenes de
una cámara en tiempo real, que Xuggler śı que lo permite, pero JAVE no.

Herramienta Leng. Progr. Entrada Salida
JAVE JAVA Vı́deo: MP4, AVI, FLV, M4V, ... Audio: MP3, WAV, AC3, FLAC, ...

Xuggler JAVA Vı́deo: MP4, AVI, FLV, M4V, ... Audio: MP3, WAV, AC3, FLAC, ...

Tabla 2: Herramientas para la extracción de audio.

Como conclusión, se ha seleccionado finalmente la herramienta JAVE debido a que su fun-
cionalidad es más sencilla que Xuggler y cubre con las necesidades del subproblema a tratar:
extraer el audio de un v́ıdeo. La libreŕıa de JAVE es por ello mucho más sencilla, con menos
clases o componentes y su utilización consta de pocas instrucciones para resolver la tarea, en
comparación con la herramienta Xuggler que ofrece gran cantidad de funcionalidades que para
resolver el subproblema planteado no se necesitan.

2.4.3 Reconocimiento de voz

En general existen multitud de soluciones o herramientas que abordan este problema: el re-
conocimiento de la voz humana. Existen distintos usos de aplicación de este campo, como pueden
ser: transcribir la voz de una persona a texto, reconocer la voz para interpretar órdenes, acciones
o autenticar accesos restringidos, etc. En este proyecto se busca en este tipo de herramientas
conseguir transformar la voz en texto. En una entrada en la enciclopedia libre Wikipedia, se
puede encontrar un listado de algunas de estas herramientas enfocadas cada una a distintos en-
tornos y sistemas [14]. De ese listado sólo se seleccionó una herramienta para analizar: CMU
Sphinx. El motivo fue que era la única herramienta escrita en JAVA y que diera soporte a un
entorno Linux.
Aparte de CMU Sphinx, se seleccionaron otras dos herramientas realizando otras búsquedas en
Internet. Una de ellas fue Google Speech API, un servicio web proporcionado por Google para
desarrolladores del grupo Chromium-dev [22], al cual se puede ingresar libremente. La última
herramienta seleccionada para analizar es un servicio web de reconocimiento de voz llamado
Speech to Text desarrollado por la compañia IBM [11].
El motivo principal para la selección de estas tres tecnoloǵıas fue que dentro de algunas restric-
ciones no eran de pago, mientras que la gran mayoŕıa requeŕıan de una compra prev́ıa o pago por

6

su uso. Otro de los aspectos de su selección fueron los comentarios de la comunidad haciendo
recomendaciones y reseñas positivas hacia ellas.

La herramienta CMU Sphinx [10] es una libreŕıa escrita en JAVA que permite realizar este
proceso de reconocimiento de voz de forma offline, sin depender de un servicio web externo. Esta
herramienta se puede configurar para ser utilizada por un lenguaje u otro, basta con modificar
tres elementos: el modelo acústico, el modelo del lenguaje y el diccionario del lenguaje a reconocer
por el sistema.
La herramienta Google Speech API [9] es un servicio web externo desarrollado por Google que
permite realizar peticiones enviando un fichero de audio y recibiendo como respuesta el resultado
de la transcripción en formato JSON. El audio enviado no puede superar los 12-15 segundos de
duración sino devuelve un resultado vacio. Por otro lado la versión gratuita de este servicio tiene
limitado su uso a 50 peticiones diarias.
La herramienta de reconocimiento de IBM, Speech to Text [13] es un servicio web externo igual
que la anterior herramienta, el cual permite realizar peticiones de reconocimiento de voz enviando
un fichero de audio y recibiendo como respuesta los resultados en formato JSON. El audio enviado
deberá tener una duración máxima de 3 minutos, de lo contrario devolverá una respuesta errónea.
Por otro lado, al contrario que la herramienta de Google, no tiene ĺımite de peticiones.
Los dos servicios web presentados parece que tienen unas caracteŕısticas muy semejantes pero
como se puede observar en la tabla 3 cada una tiene unas restricciones distintas en su uso. En
la tabla se muestra una comparativa entre las tres herramientas descritas.

Herramienta Acceso/Leng.Prog Entrada Salida Poĺıticas/Restricciones

Google Speech API Servicio Web Audio FLV Fichero JSON
· 50 peticiones/d́ıa

(online) · 12-15 seg. audio de entrada

CMU Sphinx Libreŕıa JAVA Audio WAV String Sin ĺımite
(offline)

IBM Watson
Developer Cloud

Servicio Web Audio WAV Fichero JSON
· Sin ĺımite de peticiones

(online) · 3 min. audio de entrada

Tabla 3: Herramientas para el reconocimiento de voz.

Como conclusión, se descartó la herramienta proporcionada por Google debido a sus fuertes
restricciones en la duración del audio de entrada en la versión gratuita. Por consiguiente, qued-
aban otras dos herramientas. Para determinar cuál era la que mejores resultados ofrećıa se llevo
a cabo una evaluación intermedia de caliadad y rendimiento cuyos resultados se pueden analizar
en el apartado de evaluación intermedia 5.1 de este documento. A partir de la evaluaciónn se
decició seleccionar el servicio web proporcionado por IBM ya que mostraba un coste de computo
de la mitad de tiempo que la otra alternativa (CMU Sphinx) y obteńıa unos resultados con una
tasa de aciertos muy superior (de media un 30% mejor).

2.4.4 Extracción de términos clave

Para la extracción de términos clave se va a hacer uso de la herramienta JATE [15]. JATE es
un framework compuesto por una colección de algoritmos destinados a la extracción de términos
dentro de un documento o un corpus de documentos. Al tratarse de una libreŕıa escrita en JAVA
no supone ningún problema el integrarla dentro del sistema.
La versión que se ha utilizado de Jate (v1.1) implementa 8 algoritmos para la extracción de

7

términos clave: Simple term frequency, TF.IDF, Weirdness, C-Value, GlossEx, TermEx, RIDF
y Average Term Frequency in Corpus. Cada uno de estos algoritmos realiza la extracción de
términos según distintas estrategias. La mayoŕıa de estos algoritmos tratan cada palabra como
un candidato a término clave mientras que, por ejemplo, el algoritmo C-Value utiliza conjuntos
de palabras (multi-words) como candidatos a términos clave.
Una funcionalidad importante de este framework es que aparte de la colección de algoritmos para
la extracción de términos, también implementa un algoritmo de votación por pesos para poder
utilizar un subconjunto de los algoritmos de extracción de manera conjunta asignándole a cada
uno de esos algoritmos un peso de mayor o menor relevancia.
Como trabajo de este proyecto se implementó un algoritmo de votación por mayoŕıa que se utilizó
con el mismo propósito que el de votación por pesos: utilizar de manera conjunta los distintos
algoritmos de extracción del framework. Este algoritmo de votación por mayoŕıa consiste en
recuperar los resultados de aplicar cada algoritmo de extracción por separado y puntuar los
primeros veinte términos de cada algoritmo con valoraciones de entre veinte a uno en orden,
por ejemplo: el término en la posición uno le corresponde una valoración de veinte, al segundo
de diecinueve y aśı hasta llegar al término veinte con una valoración de uno. Al final de esta
puntuación se almacenan los veinte términos con mejores valoraciones y son devueltos como los
términos más significativos del documento o corpus de documentos.
El resultado final de esta etapa de extracción de términos clave son los resultados obtenidos de
la votación por mayoŕıa implementada de los 8 algoritmos de extracción de términos que dispone
esta versión de Jate.

2.4.5 Validación de términos clave

Para la validación de términos clave se va a utilizar la herramienta Pybossa [16] debido a que
permite realizar esta tarea de validación de forma colaborativa. La herramienta es una aplicación
web con la que se pueden crear proyectos y asignarles tareas a resolver por los usuarios. Para
realizar la validación se crea una tarea nueva por cada v́ıdeo que entra al sistema, y en esa tarea
se pregunta a los usuarios (anónimos o registrados) si los términos obtenidos corresponden o
aparecen en el v́ıdeo. Las tareas tienen que ser contestadas por un número mı́nimo de usuarios
(determinados al crear la tarea) para que los resultados se puedan contrastar y detectar indicios
de respuestas incorrectas o incoherencias en los resultados. Al completarse la tarea, el creado
del proyecto y de la tarea tienen acceso a la información de los resultados obtenidos.
El objetivo final es poder preguntar, mediante este tipo de encuentas, a usuarios reales si los
términos generados por el sistema tienen alguna relación con el contenido del v́ıdeo correspondi-
ente.

2.4.6 Obtención de metadatos

Para la última tarea del sistema, se quiere completar el etiquetado de los v́ıdeos obteniendo
y enlazando metadatos con una relación semántica con los términos obtenidos en etapas anteri-
ores. Los metadatos son datos que describen otro datos. Con estos metadatos se quiere ampliar
semánticamente el significado de los términos asignados al v́ıdeo.
La herramienta que se va a utilizar para realizar o resolver esta tarea es: Pisixde. Esta her-
ramienta es la implementación de los algoritmos expuestos en el art́ıculo de investigación ‘Se-
mantic linking of learning object repositories to dbpedia’ [17], y dicha herramienta fue desarrollada
por los propios autores del art́ıculo.
Esta herramienta permite, dados unos términos de entrada, generar un grafo de instancias de la
dbpedia [18] que describe semánticamente un concepto. Esta herramienta realiza las búsquedas
haciendo consultas contra la dbpedia, un repositorio de información estructurada que ha

8

generado durante mucho tiempo información semántica a partir de la información almacenada
en la Wikipedia.

Figura 2: Herramientas seleccionadas para implementar el proceso del sistema de etiquetado.

En la figura 2 se puden observar las herramientas seleccionadas para cada una de las etapas
mostradas al principio de la sección.

9

3 Diseño

En este apartado se va a explicar la estructura del sistema, de que componentes está formado,
qué patrones arquitecturales se han utilizado y por último se expondrá la implementación de las
distintas partes del proyecto.

3.1 Entorno del sistema

En la figura 3 se puede observar la estructura y componentes del sistema: los actores del sistema,
los subsistemas de los que está compuesto y las interacciones entre los distintos componentes.
Antes de pasar a describir el entorno del sistema se van a describir dos elementos que se men-
cionarán durante las explicaciones: servicio web y aplicación web.
Un servicio web es un módulo que exporta un conjunto de funciones o métodos a aplicaciones a
través de la web (Internet) proporcionando independencia de plataformas hardware/software.
Una aplicación web es una herramienta o aplicación software que los usuarios pueden utilizar
accediendo a un servidor web a través de Internet mediante un navegador web.

Figura 3: Entorno del sistema.

El sistema de etiquetado interacciona con otros elementos externos para llevar a cabo su
objetivo principal: el etiquetado de v́ıdeos.
Los usuarios (1) proporcionan los recursos necesarios al sistema de etiquetado: un v́ıdeo o una
colección de v́ıdeos. Estos v́ıdeos se pasan al sistema en forma de URL o un fichero que contiene
un conjunto de URLs.
Para realizar la comunicación entre los usuarios y el sistema de etiquetado se ha desarrollado
una aplicación web (2) que hace de frontend (en diseño software es la parte del software que
interactúa con el o los usuarios). Esta aplicación web se compone de dos sencillos formularios
con los que poder enviar al sistema de etiquetado un v́ıdeo (una URL) o una colección de v́ıdeos
(un fichero con un listado de URLs). La aplicación web al recibir las peticiones de los usuarios

10

comienza el proceso de etiquetado de v́ıdeos. Una vez finalizado el proceso de etiquetado, el
usuario recibe los resultados como respuesta a la petición realizada en la aplicación web.
En el proceso de etiquetado de v́ıdeos intervienen otros componentes externos necesarios para el
sistema de etiquetado: un servicio de reconocimiento de voz, un sistema de voting (votación) y
por último el repositorio de información descrita semánticamente llamado dbpedia.
El servicio de reconocimiento de voz se trata de un servicio web externo, al cual el sistema de
etiquetado accede o se comunica a través de Internet. Este servicio de reconocimiento devuelve
los resultados obtenidos como respuesta a la petición de reconocimiento de voz sobre un fichero
audio realizada.
El sistema de voting, para la validación de términos o palabras clave, consta de dos partes: un
servicio web y una aplicación web. Este servicio web del sistema de voting (3) es el medio por
el cual el sistema de etiquetado crea nuevas tareas que se almacenan en la aplicación web con la
finalidad de validar los términos o palabras clave de un v́ıdeo. Estas tareas se crean mediante
peticiones realizadas por el sistema de etiquetado contra este servicio web.
Por otro lado, la aplicación web del sistema de voting permite a los usuarios visualizar las tareas
de validación, creadas por el sistema de etiquetado, y participar en ellas a través de la web.
El último componente del entorno es el repositorio de información estructurada dbpedia [18].
La dbpedia es el resultado, por parte de la comunidad, de extraer información estructurada de
la Wikipedia [19] y poner esta información disponible en la web. La dbpedia permite realizar
consultas contra la información contenida en la Wikipedia y enlazar los diferentes conjuntos de
datos obtenidos a los datos de la propia Wikipedia. Este componente es utilizado por el último
proceso del sistema de etiquetado, donde se realizan consultas a la dbpedia para obtener datos
enlazados (linked data) sobre los términos clave obtenidos al final del proceso de etiquetado.
Estos datos enlazados también se denominan metadatos (4) ya que son datos que describen a su
vez otros datos.

3.2 Diseño del sistema de etiquetado

El sistema de etiquetado que se ha desarrollado está compuesto de distintas etapas o procesos.
Cada proceso necesita datos de entrada proporcionados por procesos o componentes previos y
genera datos de salida utilizados por procesos o componentes posteriores.
Esta secuencia de etapas o acciones para llegar a etiquetar un v́ıdeo dentro del sistema de
etiquetado tiene una estructura de ‘tubeŕıa’ en la que los datos van atravesando las distintas
etapas en orden.
El sistema de etiquetado consta de distintas etapas o tareas que se han comentado en el caṕıtulo
anterior: la descarga del v́ıdeo, la extracción del audio, la extracción de términos clave, la
validación de términos clave y la adición de nuevos términos con una relación semántica a los ya
obtenidos. Para el diseño del sistema de etiquetado se ha buscado una estructura que permitiera
separar estas etapas y a la vez permitir que trabajen conjuntamente para cumplir el objetivo
final: el etiquetado de v́ıdeos.
Los recursos que entran al sistema de etiquetado pasan por las etapas mencionadas anteriormente.
Cada etapa procesa los datos de entrada, genera unos datos resultantes tras realizar su designada
tarea y se los pasa a la etapa siguiente que realiza la misma secuencia de acciones, hasta llegar
a la última etapa que genera los resultados finales del sistema de etiquetado.
Con este propósito y estas caracteŕısticas se decidió utilizar el patrón Pipes and Filters [20]
(pipeline). Las ventajas de utilizar este patrón son: se adapta a la idea de separar distintas
tareas enlazando las salidas de datos de una etapa con la entrada de datos de la siguiente y
permite cambiar fácilmente una tarea por otra sin tener que modificar el resto de tareas.
Por otro lado, el incoveniente que tiene es: el tiempo de procesado total es la suma de todos los

11

tiempos de cada una de las etapas, lo que significa que si una etapa es costosa en tiempo retrasa
al resto ya que dependen de los resultados de etapas anteriores.

El patrón Pipes and Filters provee una estructura para sistemas que procesan un flujo de
datos. Cada etapa de procesado es encapsulada en un componente Filtro. Los datos pasan a
través de los Pipes (o buffers intermedios) que se encuentran entre filtros adyacentes. La fuente
de datos del sistema es el componente DataSource de donde el primer filtro lee los datos y da
comienzo el procesamiento de cada dato. El último filtro del sistema genera los datos resultado
finales el cual los almacena en el colector de datos llamado DataSink.

Figura 4: Comparación estructural entre el patrón Pipes and Filters y el sistema de etiquetado.

Por lo tanto, el patrón Pipes and Filters de forma general está compuesto por estos cuatro
componentes: DataSource, filtros, Pipes y DataSink. En la figura 4 se puede observar la corre-
spondencia entre los componentes del patrón y las etapas y elementos del sistema de etiquetado.
El componente DataSource corresponde con las URLs proporcionadas por los usuarios en la
aplicación web. Cada una de las etapas del sistema de etiquetado corresponde al componente
Filtro del patrón. Finalmente, el componente DataSink corresponde con el conjunto de v́ıdeos
etiquetados que se devuelven al usuario a través de la aplicación web.

12

Figura 5: Interfaz de la aplicación web del sistema de etiquetado.

La interfaz web que se puede ver en la figura 5 permite a los usuarios interaccionar con
el sistema de etiquetado descrito. Se optó por una interfaz sencilla y clara, separando en dos
apartados las dos opciones de env́ıo de URLs al sistema de etiquetado.

Más adelante se explicará como se ha llevado a cabo la implementación de este patrón de
diseño Pipes and Filters, para instanciar el sistema de etiquetado utilizando la estructura que
ofrece, encapsulando las herramientas de cada una de las etapas del sistema de etiquetado en el
componente filtro.

13

3.3 Diseño del sistema de validación de términos

El sistema de validación de términos o voting que se ha implementado utiliza el framework
llamado Pybossa. Este framework permite crear una aplicación web (ya creada por los
desarrolladores del framework) donde crear y mostrar tareas a resolver por los usuarios.

Figura 6: Sistema de validación de términos.

En la figura 6 se puede observar el entorno del sistema de validación. La creación de un nuevo
proyecto se realiza, por parte de un usuario, a partir de las opciones que ofrece la aplicación web
del sistema de validación (1) al seleccionar en la opción “crear un proyecto”. Una vez está creado
el proyecto el sistema de etiquetado ya puede añadir nuevas tareas mediante peticiones POST
contra su servicio web (2). Para que los usuarios puedan visualizar las tareas disponibles era
necesario crear un “presentador de tareas”. Este “presentador de tareas” es un fichero HTML
que se modifica o edita en un editor interno embebido dentro de la aplicación web de Pybossa. El
“presentador de tareas” (3) recupera la información de cada tarea y la muestra en formato web.
Los usuarios que participan o colaboran en la validación de términos visitan el “presentador de
tareas” y completan el formulario mostrado. Una vez la tarea se ha completado, los resultados
son accesibles por los usuarios a través de otra interfaz web (4) que permite descargarlos.
En la figura 7 se puede ver un ejemplo de tarea creado por el sistema de etiquetado. Se puede
observar: el listado de términos a validar de los cuales hay que seleccionar los términos que
aparecen en el v́ıdeo (1), el enlace al v́ıdeo (2) y un botón para enviar el resultado de la validación
(3). También está presenta (4) información referente a qué tarea se está resolviendo, y cuál es el
progreso de tareas completadas hasta ese momento dentro del proyecto.
En la figura 8 se puede observar un listado de tareas creadas (completadas y en progreso) dentro
de un proyecto en la aplicación web de Pybossa y junto a cada tarea de la lista se encuentra un
botón que da la opción de descargar los resultados.

14

Figura 7: Ejemplo de tarea creada por el sistema de etiquetado en Pybossa.

Figura 8: Listado de tareas dentro de un proyecto.

15

4 Implementación

En este apartado se describe detalladamente la implementación llevada a cabo para desarrollar
el sistema de etiquetado.

4.1 Implementación del patrón

En la implementación del patrón de diseño Pipes and Filters se han definido un conjunto de
interfaces que representan los componentes generales del patrón y que serán el ‘esqueleto’ de la
estructura del sistema de etiquetado. En el diagrama de clases de la figura 10 se pueden observar
tres paquetes que conforman todo el sistema de etiquetado. En el paquete pipeline se encuentran
las interfaces que definen la estructura del patrón: DataSource, Filter, BufferPipe, DataSink,
Pipeline y Data.
La interfaz DataSource se encarga de leer datos y suministrarlos al primer filtro del sistema. Esta
interfaz define un método de lectura (read()) que devuelve un elemento de tipo Data. La interfaz
Data representa el flujo de datos que atraviesa el sistema de etiquetado. En la interfaz Data se
encapsula el tipo de dato o conjunto de datos que utiliza el sistema. La interfaz Filter representa
cada una de las etapas de procesamiento del sistema de etiquetado. En la interfaz Filter se
define el método ‘doWork()’ cuyo único objetivo es realizar la tarea designada para el filtro del
sistema. Cada una de las etapas redefinirá este método para llevar a cabo su tarea concreta.
La interfaz BufferPipe representa los buffers intermedios ubicados entre dos filtros. Su objetivo
es almacenar los resultados de la salida de un filtro y proporcionárselos como entrada al filtro
siguiente. En la interfaz BufferPipe se definen los métodos ‘read()’ y ‘write()’ que permitirán
las lecturas y escrituras en el buffer. La interfaz DataSink se encarga de almacenar los resultados
generados por el último filtro del sistema. En la interfaz DataSink se define el método ‘write()’
que permite escribir o almacenar los resultados en la ubicación destino.
Por último, la interfaz Pipeline encapsula todos los componentes, la estructura y la gestión del
patrón utilizado. En la interfaz Pipeline se describen los métodos ‘design()’ y ‘run()’. El método
‘design()’ permite instanciar los componentes del sistema y a continuación con el método ‘run()’
se consige iniciar la ejecución pipeline.
Una vez definidas las interfaces que describen los componentes del sistema se procede a definir
las clases que los implementan.

4.2 Implementación de los buffers

La clase Pipe implementa la interfaz BufferPipe. Esta clase está compuesta por una estructura
cola que permite almacenar los resultados de los filtros. Se ha elegido una estructura de datos
FIFO (First In First Out) para que los datos circulen por el sistema de etiquetado en el orden que
van entrando al buffer. La clase Pipe implementa los métodos definidos en la interfaz BufferPipe
(read y write) que permite leer y escribir en la estructura de datos FIFO.
Por otro lado, la clase Pipe está compuesta también por un semáforo. Un semáforo es un
mecanismo de sincronización que constituye un método para restringir o permitir el acceso a un
recurso compartido. En este caso, el recurso compartido es la estructura de datos FIFO (cola).
El buffer es utilizado por dos filtros: el que genera los datos (y escribe en el buffer) y el que los
consume (y lee los datos del buffer). Por lo tanto es necesario un elemento de sincronización que
gestione la entrada y salida de datos del buffer : el semáforo. La variable semáforo internamente
es un contador. Los semáforos, de forma general, disponen de dos operaciones: ‘release()’ y
‘acquire()’. Mediante la operación ‘release()’ se incrementa el valor del semáforo en una unidad
mientras que con la operación ‘acquire()’ se decrementa en una unidad. Si el contador del

16

semáforo se encuentra a cero y se intenta realizar una operación ‘acquire()’, la entidad que ha
realizado la operación queda en un estado de suspensión (o bloqueo) hasta que otra entidad
distinta realice la operación de ‘release()’ e incremente en una unidad el contador interno del
semáforo, en cuyo momento quedará “liberada” la entidad bloqueada. Este mecanismo de sin-
cronización se utiliza con la finalidad de bloquear procesos (filtros) que quieran leer de buffers
sin datos y se queden a la espera de nuevos datos para poder leer.
En la figura 9 se puede observar la secuencia de acciones que lleva a cabo un filtro y como
interacciona con el buffer. En primer lugar el filtro 2 realiza la operación ‘acquire()’ y queda
bloqueado porque todav́ıa no hay datos en el buffer (Pipe). El filtro 1 al terminar de realizar
sus tareas (‘doWork()’) escribe sus resultados en el buffer mediante la operación ‘write()’. El
buffer, al recibir un nuevo dato a escribir, realiza internamente la operación ‘release()’ liberando
al filtro 2 de su bloqueo. A continuación el filtro 2 realiza la lectura de datos del buffer mediante
la operación ‘read()’ y lleva a cabo sus tareas con la operación ‘doWork()’.

Figura 9: Secuencia de acciones de los Buffers y los Filtros.

17

4.3 Implementación de las etapas

La primera fase del sistema de etiquetado es la obtención de las URLs de los v́ıdeos a procesar.
Estas URLs son proporcionadas por los usuarios a través de una aplicación web, cuya interfaz
ya se ha visto previamente en la figura 5.
Esta aplicación web se ha implementado dentro del paquete init que se puede observar en la
esquina superior izquierda de la figura 10. La aplicación web está compuesta por una clase
llamada initVT que hereda de la clase HTTPServlet. Un Servlet es una clase que permite que
una página web se pueda modificar dinámicamente a partir de los parámetros que se envien a
través de una petición desde un navegador web. Esta clase recibe las peticiones que realizan los
usuarios a través de la interfaz web. El método ‘doGet()’ responde a peticiones GET y devuelve
el fichero HTML de la interfaz web a los usuarios.
El método ‘doPost()’ captura las peticiones POST y procesa la petición. En el procesamiento
de la petición POST es donde se inicia la ejecución del sistema de etiquetado y al finalizar, se
contesta al usuario con los resultados obtenidos.

La ejecución del sistema de etiquetado se realiza instanciando la clase VideoLabelling que
implementa la interfaz Pipeline. Esta clase define internamente los componentes del sistema
(método ‘design()’). A su constructor se le pasan las URLs obtenidas de la petición POST
(realizada por el usuario a través de la aplicación web) y el destino deseado de los resultados
finales. Para iniciar la ejecución se llama a la operación ‘run()’.
Dentro del método ‘design()’ se definen los componentes que forman el sistema. En primer
lugar se instancia la clase URLInputSource que implementa la interfaz DataSource. A la clase
URLInputSource se le pasan (en el constructor) las URLs que se han recibido por parte de los
usuarios, y mediante el método ‘read()’ el primer filtro podrá leer cada una de las URLs.
Por otro lado se instancia la clase OutputSource que implementa la interfaz DataSink. Al con-
structor de la clase OutputSource se le pasa la ubicación donde almacenar los resultados del
sistema de etiquetado, que se llevará a cabo con el método ‘write()’ que implementa.
El resto de componentes que se definen dentro del método ‘design()’ son: todos los buffers del
sistema, todos los filtros del sistema y todos los semáforos que gestionarán los buffers. Antes de
acabar se crea un hilo de ejecución (Thread) para cada filtro y finalmente, en el método ‘run()’,
se ejecutan todos en paralelo dando comienzo a la ejecución del sistema de etiquetado.

A continuación se va a describir la implementación de las distintas etapas o procesos principales
del sistema de etiquetado junto a algunos fragmentos de código relevantes para cada una de las
etapas.
Todas las herramientas utilizadas tienen una clase que las implementa o gestiona sus libreŕıas
asociadas. Todas estas clases heredan de una misma clase: la clase Filtro. La clase Filtro es una
clase abstracta que a su vez implementa la interfaz Filter. Esta clase Filtro se ha diseñado para
encapsular atributos y métodos comunes a todas las herramientas. En esta clase se almacenan
atributos, entre ellos booleanos (ind y outd), que indican si el filtro tiene que leer o escribir de
un buffer, de un DataSource o en un DataSink. Esta clase Filtro permite abstraer la acción de
leer de un buffer o de un DataSource y de escribir en un buffer o en un DataSink, se consigue de
esta forma reutilizar la clase para poder realizar distintas acciones. También se definen métodos
de lectura y escritura: ‘readFromInput()’ y ‘writeFromInput()’. Estos métodos permiten que
dependiendo de los atributos mencionados antes se pueda leer de un buffer o del DataSource y
se pueda escribir en un buffer o en un DataSink.

18

YoutubeDL (Descarga de v́ıdeo): Para la herramienta YoutubeDL se ha implementado la
clase YoutubeDLTool. Esta clase ejecuta el script de la herramienta (youtube-dl.py) para realizar
la descarga de v́ıdeos. Para la ejecución de este script se utiliza la clase Process de JAVA.

1 Process p = Runtime.getRuntime().exec(command);

El método ‘exec()’ (ĺınea 1) permite ejecutar un comando externo, en este caso el script de la
herramienta YoutubeDL con los parámetros que necesite.

JAVE (Extraer el audio): Para la herramienta JAVE se ha implementado la clase JaveTool.
Esta clase hace uso de las libreŕıas de la herramienta para llevar a cabo la extracción del audio
de los v́ıdeos.

1 AudioAttributes audio = new AudioAttributes();

2 audio.setCodec("pcm_s16le"); //signed 16 bit little endian format

3 audio.setSamplingRate(new Integer(16000)); //sampling rate

4 audio.setChannels(1); //number of channels

5

6 EncodingAttributes attrs = new EncodingAttributes();

7 attrs.setFormat("wav"); //audio format

8 attrs.setAudioAttributes(audio);

9

10 Encoder encoder = new Encoder();

11 encoder.encode(source, target, attrs); //transcoding file

Para llevar a cabo la extracción del audio, en primer lugar se definen los atributos del audio
final que se quiere obtener (ĺıneas 1-4). A continuación se especifica el formato de salida del
audio (ĺıneas 6-8) y finalmente se realiza la transcodificación (conversión de un codec a otro) del
v́ıdeo a audio (ĺıneas 10-11).

IBM - SpeechToText (Reconocimiento de voz): Para la herramienta SpeechToText de
IBM se han implementado dos clases: IBMWS e IBMThread. La clase IBMWS analiza el fichero
de audio obtenido de la etapa anterior (JAVE). Esta clase realiza un troceado del audio en frag-
mentos de hasta tres minutos. Se realiza este troceado debido a que el servicio de reconocimiento
de voz de IBM solo permite procesar ficheros de audio con una duración no superior a tres
minutos. Cada uno de los trozos se pasa a la clase IBMThread.

1 File file = splitAudio();

2 IBMThread ibmt = new IBMThread(file,numPart,transText);

3 Thread T = new Thread(ibmt);

4 T.start();

Con la función ‘splitAudio()’ (ĺınea 1) se trocea el fichero original y cada trozo se pasa a un
objeto IBMThread junto con un identificador del número de trozo numpart y una referencia a
un vector de strings transText (ĺınea 2).

19

La clase IBMThread se trata de una clase que se ejecuta en un hilo de ejecución aparte (ĺıneas
3-4), ya que implementa la interfaz Runnable.

1 String recognizeURL = url_api;

2 URL obj = new URL(recognizeURL);

3 HttpsURLConnection con = (HttpsURLConnection) obj.openConnection();

4 con.setRequestMethod("POST");

5 responseCode = con.getResponseCode();

La clase IBMThread se encarga de realizar una petición al servicio de reconocimiento de voz
de IBM para extraer el texto de un fichero de audio. Esta clase al ejecutarse en un hilo de
ejecución en paralelo al principal, permite realizar multiples peticiones contra el servidor de IBM
a la vez, una para cada trozo o fragmento resultante. El resultado obtenido del reconocimiento
de voz se almacena en la variable transText.

JATE (Extracción de términos clave): Para la herramienta JATE se ha implementado
la clase JateTool. Esta clase hace uso de las libreŕıas de la herramienta para llevar a cabo la
extracción de términos.

1 Term[] tf = executeAlgorithm(new FrequencyAlgorithm(),

2 new FrequencyFeatureWrapper(termCorpusFreq));

3 \\ ... Para cada uno de los algortimos ...

4

5 String[] mresult = majority_voting(tf,avg,ridf,gloss,weird,cvalue);

Con el método ‘executeAlgorithm()’ (ĺınea 1) se ejecuta cada uno de los algoritmos que se
quieren utilizar y se almacenan los resultados de la extracción de terminos en un array de
términos (Term). Al finalizar la ejecución de cada uno de los algoritmos, se realiza una votación
por mayoŕıa utilizando la función ‘majority voting()’ que haciendo uso de los resultados obtenidos
por todos los algoritmos de extracción de términos, devuelve en un array de strings los 20
términos más significativos del documento o corpus de documentos utilizado.

Pybossa (Validación de términos clave): Para la herramienta Pybossa se ha implementado
la clase PybossaTool. Esta clase se encarga de crear nuevas tareas en la aplicación web de Pybossa
montada previamente de forma local, realizando peticiones POST con la información de la tarea.

1 String url = "http://localhost:5000/api/task?api_key=" + api_key;

2 URL obj = new URL(url);

3 HttpURLConnection con = (HttpURLConnection) obj.openConnection();

4 con.setRequestMethod("POST");

5 DataOutputStream wr = new DataOutputStream(con.getOutputStream());

6 String data = buildJSONData(terms,videoURL);

7 wr.writeBytes(data);

8 int responseCode = con.getResponseCode();

20

Para la creación de la nueva tarea se realiza una petición POST a la dirección almacenada en la
variable url (ĺınea 1). A esta petición POST se le añaden la información de los términos del v́ıdeo
y su enlace (ĺıneas 5-7) que conforman los datos de la tarea a crear al finalizar correctamente la
petición.

Pisixde (Obtención de metadatos): Para la herramienta Pisixde se ha implementado la
clase PisixdeTool. Esta clase ejecuta un script (pisixde.sh) externo al entorno de ejecución del
sistema. Se hace uso de la clase Process de JAVA para su ejecución igual que con la herramienta
YoutubeDL.

1 Process proc = Runtime.getRuntime().exec(command);

Igual que en la herramienta YoutubeDL el método ‘exec()’ (ĺınea 1) permite ejecutar un co-
mando externo, en este caso el script de la herramienta pisixde con los parámetros que necesite.

21

Figura 10: Diagrama de clases del sistema de etiquetado.

22

5 Evaluación

En esta sección se van a exponer las pruebas intermedias realizadas para la elección de la
herramienta a utilizar en el reconocimiento de voz del sistema y por otro lado se van a describir
los resultados obtenidos de evaluar el rendimiento general del sistema de etiquetado.

5.1 Evaluación intermedia

A continuación se va a realizar una evalución de las herramientas de reconocimiento de voz
que pasaron un primer análisis en la sección 2.4.3 (IBM y CMU Sphinx). Para determinar qué
reconocedor de voz se iba a utilizar, se han realizado pruebas en relación a su rendimiento y
calidad, realizando una prueba de reconocimiento de voz por separado, para ver que herramienta
teńıa mejores resultados. La prueba de rendimiento realizada consiste en comprobar los costes
de computo de ambas herramientas, mientras que la prueba de calidad consiste en comprobar
qué porcentaje de aciertos tiene cada una de las herramientas comparando el texto obtenido del
reconocimiento de voz con los subtitulos originales del v́ıdeo.

5.1.1 Calidad

En primer lugar se van a describir los resultados obtenidos en la prueba de calidad. Para
ello, se seleccionaron 20 v́ıdeos (charlas) de la comunidad TED [21], cuya finalidad es divulgar
conferencias sobre tecnoloǵıa, entretenimiento y diseño. De cada v́ıdeo se seleccionaron los 3
primeros minutos (dado que para realizar la comparativa era necesario que todos tuvieran la
misma duración). Los v́ıdeos fueron introducidos al sistema utilizando por un lado el reconocedor
de IBM y por otro lado el reconocedor de CMU Sphinx. A continuación se compararon los
resultados obtenidos en el reconocimiento en cada uno, con los subtitulos de los v́ıdeos originales,
permitiendo aśı determinar cuántos términos o palabras reconocidas eran correctas y cuántas no.
En la tabla 5 se puede observar la tasa de aciertos para cada herramienta y para cada v́ıdeo.

En la tabla 5 se puede ver el listado de cada uno de los veinte v́ıdeos seleccionados (cuya du-
ración se ha acortado a tres minutos) junto a la tasa de aciertos (valores porcentuales) obtenida
por ambas herramientas en el reconocimiento de voz. Se ha comparado cada una de las palabras
obtenidas por cada herramienta con las palabras existentes en los subt́ıtulos originales de los
v́ıdeos (descargados de la web de procedencia de los v́ıdeos: TED).
También se puede observar como el conjunto de v́ıdeos de la colección utilizada obtiene unos
valores en las tasas de aciertos cercanos a la media, a excepción de tres v́ıdeos (senses (buenos
resultados), microbes (malos resultados) y hidden objects (buenos resultados)) que tienen unos
valores muy por encima o muy por debajo de la media. Estos resultados at́ıpicos, en estos tres
v́ıdeos, estan causados por distintos aspectos: caracteŕısticas del ponente de la charla (acento,
origen, edad, etc) y caracteŕısticas del lugar de la conferencia (existencia o no de ruido de fondo)
que puedan afectar a reconocer la voz del ponente. Estos aspectos intervienen en los resultados
obtenidos por los reconocedores de voz. Las caracteŕısticas del ponente de la charla, como el
acento o la nacionaliadd de origen, afectan al resultado del reconocimiento de voz negativa o pos-
itivamente dependiendo de los datos de entrenamiento utilizados por el reconocedor. Si el acento
del ponente encaja con el acento utilizado en el entrenamiento del reconocedor, se conseguirán
resultados positivos, de lo contrario el reconocedor perderá precisión. En las caracteŕısticas del
entorno de la conferencia afecta negativamente la presencia de ruido de fondo, complicando la
tarea de reconocimiento de voz, por el contrario, sin ruido de fondo el reconocimiento de voz será
más satisfactorio.

23

Vı́deo Nombre URL

1 mars
https://www.ted.com/talks/nathalie_cabrol_how_mars_might_

hold_the_secret_to_the_origin_of_life

2 bill gates ebola
https://www.ted.com/talks/bill_gates_the_next_disaster_we_

re_not_ready

3 3d printing
https://www.ted.com/talks/joe_desimone_what_if_3d_printing_

was_25x_faster

4 comets
https://www.ted.com/talks/fred_jansen_how_to_land_on_a_

comet

5 virtual reality
https://www.ted.com/talks/chris_milk_how_virtual_reality_

can_create_the_ultimate_empathy_machine

6 capitalism
https://www.ted.com/talks/paul_tudor_jones_ii_why_we_need_

to_rethink_capitalism

7 go to space
https://www.ted.com/talks/angelo_vermeulen_how_to_go_to_

space_without_having_to_go_to_space

8 senses
https://www.ted.com/talks/david_eagleman_can_we_create_new_

senses_for_humans

9 brain control
https://www.ted.com/talks/greg_gage_how_to_control_someone_

else_s_arm_with_your_brain

10 quasars
https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love_

with_quasars_blazars_and_our_incredible_universe

11 smart computers
https://www.ted.com/talks/nick_bostrom_what_happens_when_

our_computers_get_smarter_than_we_are

12 engineering food
https://www.ted.com/talks/pamela_ronald_the_case_for_

engineering_our_food

13 brain communication
https://www.ted.com/talks/miguel_nicolelis_brain_to_brain_

communication_has_arrived_how_we_did_it

14 butterflies
https://www.ted.com/talks/jaap_de_roode_how_butterflies_

self_medicate

15 computer vision
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_

computers_to_understand_pictures

16 bacterias
https://www.ted.com/talks/tal_danino_we_can_use_bacteria_

to_detect_cancer_and_maybe_treat_it

17 micro robotics
https://www.ted.com/talks/sarah_bergbreiter_why_i_make_

robots_the_size_of_a_grain_of_rice

18 microbes
https://www.ted.com/talks/rob_knight_how_our_microbes_make_

us_who_we_are

19 bees
https://www.ted.com/talks/anand_varma_a_thrilling_look_at_

the_first_21_days_of_a_bee_s_life

20 hidden objects
https://www.ted.com/talks/abe_davis_new_video_technology_

that_reveals_an_object_s_hidden_properties

Tabla 4: Referencias de cada v́ıdeo de la colección utilizada.

En la tabla 4 se muestran las URLs donde se pueden encontrar cada uno de los v́ıdeos de la
colección utilizada para realizar la evaluación.

24

https://www.ted.com/talks/nathalie_cabrol_how_mars_might _hold_the_secret_to_the_origin_of_life
https://www.ted.com/talks/nathalie_cabrol_how_mars_might _hold_the_secret_to_the_origin_of_life
https://www.ted.com/talks/bill_gates_the_next_disaster_we _re_not_ready
https://www.ted.com/talks/bill_gates_the_next_disaster_we _re_not_ready
https://www.ted.com/talks/joe_desimone_what_if_3d _printing_was_25x_faster
https://www.ted.com/talks/joe_desimone_what_if_3d _printing_was_25x_faster
https://www.ted.com/talks/fred_jansen_how_to_land_on_a _comet
https://www.ted.com/talks/fred_jansen_how_to_land_on_a _comet
https://www.ted.com/talks/chris_milk_how_virtual_reality _can_create_the_ultimate_empathy_machine
https://www.ted.com/talks/chris_milk_how_virtual_reality _can_create_the_ultimate_empathy_machine
https://www.ted.com/talks/paul_tudor_jones_ii_why_we _need_to_rethink_capitalism
https://www.ted.com/talks/paul_tudor_jones_ii_why_we _need_to_rethink_capitalism
https://www.ted.com/talks/angelo_vermeulen_how_to_go_to _space_without_having_to_go_to_space
https://www.ted.com/talks/angelo_vermeulen_how_to_go_to _space_without_having_to_go_to_space
https://www.ted.com/talks/david_eagleman_can_we_create _new_senses_for_humans
https://www.ted.com/talks/david_eagleman_can_we_create _new_senses_for_humans
https://www.ted.com/talks/greg_gage_how_to_control _someone_else_s_arm_with_your_brain
https://www.ted.com/talks/greg_gage_how_to_control _someone_else_s_arm_with_your_brain
https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love _with_quasars_blazars_and_our_incredible_universe
https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love _with_quasars_blazars_and_our_incredible_universe
https://www.ted.com/talks/nick_bostrom_what_happens _when_our_computers_get_smarter_than_we_are
https://www.ted.com/talks/nick_bostrom_what_happens _when_our_computers_get_smarter_than_we_are
https://www.ted.com/talks/pamela_ronald_the_case_for _engineering_our_food
https://www.ted.com/talks/pamela_ronald_the_case_for _engineering_our_food
https://www.ted.com/talks/miguel_nicolelis_brain_to_brain _communication_has_arrived_how_we_did_it
https://www.ted.com/talks/miguel_nicolelis_brain_to_brain _communication_has_arrived_how_we_did_it
https://www.ted.com/talks/jaap_de_roode_how_butterflies _self_medicate
https://www.ted.com/talks/jaap_de_roode_how_butterflies _self_medicate
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching _computers_to_understand_pictures
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching _computers_to_understand_pictures
https://www.ted.com/talks/tal_danino_we_can_use_bacteria _to_detect_cancer_and_maybe_treat_it
https://www.ted.com/talks/tal_danino_we_can_use_bacteria _to_detect_cancer_and_maybe_treat_it
https://www.ted.com/talks/sarah_bergbreiter_why_i_make _robots_the_size_of_a_grain_of_rice
https://www.ted.com/talks/sarah_bergbreiter_why_i_make _robots_the_size_of_a_grain_of_rice
https://www.ted.com/talks/rob_knight_how_our_microbes _make_us_who_we_are
https://www.ted.com/talks/rob_knight_how_our_microbes _make_us_who_we_are
https://www.ted.com/talks/anand_varma_a_thrilling_look _at_the_first_21_days_of_a_bee_s_life
https://www.ted.com/talks/anand_varma_a_thrilling_look _at_the_first_21_days_of_a_bee_s_life
https://www.ted.com/talks/abe_davis_new_video_technology_that_reveals_an_object_s_hidden_properties
https://www.ted.com/talks/abe_davis_new_video_technology_that_reveals_an_object_s_hidden_properties

Nombre del v́ıdeo IBM (%) CMU Sphinx (%) No palabras Ruido Origen
mars 82.72 48.61 463 Nada Francia
bill gates ebola 88.63 49.02 431 Nada EE.UU.
3d printing 79.67 53.25 418 Nada EE.UU.
comets 80.39 44.40 515 Nada Holanda
virtual reality 85.23 43.99 352 Poco EE.UU.
capitalism 83.82 55.26 445 Nada EE.UU.
go to space 79.92 48.42 503 Nada Bélgica
senses 90.52 65.78 464 Nada EE.UU.
brain control 77.09 42.59 585 Poco EE.UU.
quasars 68.99 45.24 416 Poco EE.UU.
smart computers 79.30 46.59 430 Nada Suecia
engineering food 89.87 47.76 385 Nada EE.UU.
brain communication 68.81 50.23 420 Nada Brasil
butterflies 80.84 50.18 574 Nada EE.UU
computer vision 82.35 54.59 357 Nada China
bacterias 79.45 44.83 506 Nada EE.UU.
micro robotics 86.36 55.68 572 Nada EE.UU.
microbes 71.59 34.69 521 Poco EE.UU.
bees 85.48 52.60 372 Nada EE.UU.
hidden objects 94.29 69.79 473 Nada EE.UU.
Media 81.77 50.18 460.1 - -

Tabla 5: Tasa de aciertos (%) entre los reconocedores
de voz CMU Sphinx e IBM.

En la tabla 5 también podemos observar: el número de palabras reales que se pronuncian en
cada v́ıdeo (obtenido a partir de los subt́ıtulos originales del v́ıdeo), la existencia o no de ruido
(Nada, Poco o Mucho) y el páıs de origen del ponente de la conferencia.
A partir de estos datos, se pone en el punto de mira los dos v́ıdeos de la colección que han
conseguido unas tasas de aciertos por debajo de la media con la herramienta de IBM : quasars y
brain communication. La razón por la que el primer v́ıdeo tienes estos malos resultados es debido
a que en el v́ıdeo la voz de la ponente se escucha algo distorsionada con una ligera existencia
de ruido de fondo. Por otro lado, el segundo v́ıdeo tiene una tasa de aciertos por debajo de la
media debido a que el ponente de la conferencia es de origen brasileño y en su charla utiliza
terminoloǵıa portuguesa y tiene un acento brasileño, lo que dificulta el reconocimiento de todas
las palabras de su charla.

25

5.1.2 Rendimiento

A continuación se van a describir los resultados de las pruebas en relación al rendimiento
mostrado (costes de computo). Para ello, utilizando los 20 v́ıdeos seleccionados en la subsección
anterior, se van a ejecutar las dos herramientas de reconocimiento de voz (IBM y CMU Sphinx)
para analizar el tiempo de procesado empleado por cada una de ellas. Las especificaciones del

procesador de la máquina utilizada son: Intel R© Core
TM

i7-4700MQ CPU @ 2.40GHz x 8 y
8GB de RAM. Los resultados obtenidos se pueden observar en la figura 11, que muestra el tiempo
en realizar el proceso de reconocimiento de voz para cada v́ıdeo y por cada herramienta.

Figura 11: Comparativa del tiempo de procesado entre las herramientas
de reconocimiento de IBM y Sphinx.

IBM (s) CMU Sphinx (s)
T. de procesado medio 143.37 280.01

Tabla 6: Tiempo de procesado medio (en segundos) entre
los reconocedores de voz IBM y CMU Sphinx.

En primer lugar, en la figura 11 se puede apreciar que a lo largo de los veinte resultados (de los
veinte v́ıdeos) para cada herramienta se muestra una tendencia similar entre ambas herramientas.
Como se puede observar en la tabla 6, la herramienta CMU Sphinx tarda de media 1.95 veces
más tiempo en procesar el reconocimiento de voz de un audio, que la herramienta análoga de
IBM. Este hecho se puede apreciar también en la figura 11, en la que la ĺınea que representa
la herramienta CMU Sphinx tiene valores que, en general, doblan a los que tiene la ĺınea que
representa a la herramienta de IBM.
Por otro lado, teniendo en cuenta que se ha explicado antes que en la colección de veinte v́ıdeos,

26

tienen todos una duración de tres minutos, los tiempos de procesado vaŕıan entre cada v́ıdeo.
Este hecho se debe a que, al margen de la duración del v́ıdeo, cada v́ıdeo es la grabación de una
charla distinta, con una estructura y caracteŕısticas distintas, esto quiere decir que cada v́ıdeo
tiene, como es lógico, una afluencia de diálogos distinta, lo que provoca que aumente o disminuya
el tiempo de procesado según la cantidad de diálogos presentes en el v́ıdeo.
Para demostrar que los fragmentos con poco o ningún diálogo (silencios) requeŕıan menos tiempo
de procesado, se hizo una prueba con un fragmento de audio de 50 segundos de duración el cual
se procesó con las dos herramientas de reconocimiento de voz (IBM y CMU Sphinx). Los
resultados fueron un tiempo de procesado entorno a los dos segundos en ambas herramientas,
tiempo empleado por las herramientas para inicializar el proceso de reconocimiento de voz. Por lo
tanto, se llegó a la conclusión de que los fragmentos con silencios o sin diálogos no son procesado
por ninguna de las dos herramientas. Esta afirmación se puede observar nuevamente en la figura
11, comprobando que ambas herramientas tienen una tendencia de tiempo de procesado análoga.

Finalmente se ha seleccionado la herramienta de reconocimiento de voz de IBM debido a que,
como ya se ha visto en los resultados expuestos en esta sección, tanto su tasa de aciertos como el
tiempo de procesamiento que ofrece es claramente mejor al de la otra alternativa (CMU Sphinx).

27

5.2 Estimación de los costes de computo

Para la evaluación del sistema de etiquetado se ha puesto en marcha el sistema con las her-
ramientas finales elegidas para cada etapa, que se pueden observar en la figura 2, y se ha in-
troducido en el sistema la colección de v́ıdeos utilizada en la sección 5.1 (de tres minutos de
duración cada v́ıdeo). En este caso los v́ıdeos han atravesado todo el sistema de etiquetado y se
han almacenado los tiempos de procesamiento de cada etapa y los tiempos de lectura y escritura
en los buffers.
Una vez procesada toda la colección de v́ıdeos por el sistema de etiquetado, los tiempos de proce-
sado de cada etapa se pueden observar en la tabla 7. Viendo los resultados de la tabla se puede
observar que en la primera etapa (YoutubeDL) algunos valores sufren desviaciones importantes
sobre la media, esto es debido a que esta herramienta, al realizar la operación de descarga de
v́ıdeos, depende de la sobrecarga de la red y la conexión a Internet.

Vı́deo YoutubeDL (s) Jave (s) IBM (s) Jate (s) Pybossa(s)
1 8.07 1.074 165.031 1.136 0.015
2 12.12 0.908 128.201 0.768 0.024
3 14.12 0.852 124.631 1.009 0.017
4 15.35 0.898 158.149 0.635 0.013
5 23.07 0.811 157.257 0.648 0.012
6 11.52 0.922 107.89 0.602 0.011
7 9.26 0.888 155.542 0.632 0.014
8 16.21 0.756 164.042 0.587 0.017
9 12.46 0.784 158.485 0.629 0.021
10 13.18 0.872 116.353 0.590 0.017
11 9.14 0.83 157.182 0.611 0.013
12 12.55 0.842 170.951 0.698 0.015
13 10.59 0.826 147.697 0.592 0.016
14 11.03 0.684 160.359 0.809 0.012
15 12.32 0.904 138.885 0.738 0.017
16 9.22 0.843 180.193 0.626 0.013
17 10.74 0.684 138.222 0.563 0.013
18 13.67 0.708 106.149 0.583 0.013
19 9.45 0.808 113.155 0.838 0.015
20 10.89 0.743 119.013 0.584 0.013

Media 12.25 0.831 143.369 0.694 0.015

Tabla 7: Tiempo de procesamiento para cada etapa del sistema de etiquetado para una
colección de veinte v́ıdeos.

En la tabla 7 se puede apreciar los distintos valores de las medias del tiempo de procesamiento
de cada etapa. Viendo estos valores se puede determinar qué etapas son más o menos lentas, y
cuáles suponen un cuello de botella para el sistema de etiquetado, ya que esta etapa más lenta
penalizará en tiempo a todo el sistema por las dependencias de unas etapas con otras. La etapa
más lenta es, como se puede observar en la tabla, la etapa de reconocimiento de voz de IBM.

28

La evolución de estos costes de computo para v́ıdeos de una duración superior para cada etapa
se comportaŕıa de la siguiente forma. La etapa de YoutubeDL tendŕıa un comportamiento lineal
con respecto a la duración del v́ıdeo dependiendo siempre del estado de la conexión a Internet.
Las etapas de Jave, IBM y Jate también tendŕıan un comportamiento lineal con respecto a
la duración del v́ıdeo que entra al sistema de etiquetado, ya que cuanto mayor es la duración
de los v́ıdeos mayor cantidad de datos tiene que decodificar la herramienta Jave, mayor audio
tiene que reconocer la herramienta de IBM, y mayor cantidad de texto tiene que procesar la
herramienta Jate. Por último la herramienta Pybossa siempre debeŕıa tener un coste de computo
independiente de la duración del v́ıdeo que entra al sistema de etiquetado, ya que su tarea es
crear una nueva tarea para la validación de 20 términos clave.
Como se puede observar en la tabla no aparecen los resultados de la última etapa del sistema
Pisixde. Esto se debe a que al generar el grafo de conceptos relacionando los 20 términos clave
obtenidos en etapas anteriores no llega a finalizar, se queda bloquedado. Sin embargo, al generar
grafos de conceptos relacionando un menor número de términos si que llega a finalizar. Ajenos
al sistema de etiquetado, se ejecuto el script de pisixde por separado en una terminal sel sistema
operativo (distribución Linux) con 20 términos clave obtenidos del sistema de etiquetado para
comprobar si funcionaba estando fuera del sistema de etiquetado. El script finalizaba dando unos
costes de computo de 12 minutos para un v́ıdeo y 38 minutos para otro distinto y generando
correctamente los grafos de conceptos. Un ejemplo de grafo generado se puede visualizar en la
figura 17 del anexo B.

Para terminar con la evaluación del sistema de etiquetado, los tiempos de lectura y escritura
de los buffers del sistema han dado resultados muy cercanos a cero (0.001 segundos). Estos
tiempos de lectura y escritura se han obtenido midiendo el tiempo empleado en leer y escribir
de la estructura FIFO interna del buffer. Dado que la lectura y escritura se realiza sobre objetos
tipo File de JAVA, estas lecturas y escrituras se realizan de forma tan rápida ya que solo se lee
y escribe la dirección de memoria donde se ha creado el objeto fichero (File) y por otro lado los
ficheros que se han utilizado en la prueba no han sido de gran tamaño (no superior a 5MB).

29

6 Gestión del proyecto

En este apartado se va a describir la metodoloǵıa organizativa para la realización del trabajo
aśı como los esfuerzos empleados para llevarlo a cabo.

6.1 Organización

La metodoloǵıa utilizada para realizar el proyecto ha sido un desarrollo en cascada. Esta
metodoloǵıa divide el desarrollo en distintas etapas ordenadas, de tal forma que cada etapa debe
esperar a la finalización de la etapa anterior. Las principales etapas han sido: planificación,
análisis, diseño, implementación, pruebas y memoria.
Al inicio del proyecto se hizo un planteamiento del problema y un posterior análisis de herramien-
tas o recursos a integrar en el proyecto. A continuación se llevo a cabo una etapa de diseño de
la arquitectura del sistema y la implementación de la misma. Finalmente se realizaron pruebas
de integración (pruebas al conjunto de componentes del sistema) A y evaluación del sistema y
por último se llevó a cabo la redacción de este documento.
Periódicamente se han realizado reuniones de control y gestión del proyecto para revisar los pro-
gresos y analizar resultados.
El desarrollo real del proyecto se puede observar en la figura 13 donde se puede apreciar el desar-
rollo en cascada en un diagrama de Gantt. La planificación inicial del proyecto se puede observar
en la figura 12. Los motivos por los cuales derivó esta planificación en el desarrollo que se puede
observar en la figura 13 fueron: dificultades en la implementación y falta de experiencia a la hora
de preveer esfuerzos en la realización de un proyecto de estas caracteŕısticas.

Figura 12: Diagrama de Gantt de la planificación inicial del proyecto.

Figura 13: Diagrama de Gantt del desarrollo real del proyecto.

30

6.2 Esfuerzos

Para la finalización del trabajo se han llevado a cabo distintas fases y cada una de ellas han
supuesto unos esfuerzos u horas de dedicación. En la tabla 8 se detallan los esfuerzos para cada
una de esas etapas.

Etapa Horas
Planteamiento 10
Análisis 44.5
Diseño 12
Implementación 143.5
Pruebas 42.5
Evaluación 28
Memoria 85
Total 365.5

Tabla 8: Relación de las fases del proyecto y los esfuerzos dedicados.

31

7 Conclusiones y trabajo futuro

En este último apartado se va a finalizar este documento con las conclusiones finales obtenidas
del proyecto y el trabajo futuro que se puede realizar a partir de este.

7.1 Conclusiones

Finalmente se ha alcanzado el objetivo principal: desarrollar un sistema de etiquetado de
v́ıdeos de forma automática, utilizando para ello el contenido presente en el audio de los v́ıdeos.
Se ha realizado un análisis previo del sistema para determinar posibles herramientas a utilizar.
Tras el análisis realizado se han seleccionado las siguientes herramientas: YoutubeDL (Descarga
de v́ıdeo), Jave (Extracción de audio), IBM - SpeechToText (Reconocimiento de voz), Jate (Ex-
tracción de términos clave), Pybossa (Validación de términos clave) y Pisixde (Obtención de
nuevo metadatos).
Se ha conseguido desarrollar una aplicación web que permita a usuarios, sin necesidad de
conocimientos del sistema, utilizar el sistema de etiquetado, pudiendo etiquetar grandes colec-
ciones de v́ıdeos.
Se ha desplegado y desarrollado otra aplicación web con el objetivo de que los usuarios puedan
validar los resultados obtenidos por el sistema de etiquetado y aśı detectar posibles v́ıdeos con
etiquetas que no corresponden a su contenido.
Se ha llevado a cabo una evaluación del sistema a partir de pruebas de integración de todas los
componentes que intervienen en el sistema de etiquetado.
Los problemas detectados durante el transcurso del desarrollo del proyecto han sido relacionados
con la herramienta Pisixde. Al principio el servidor remoto no contestaba a las peticiones ya
que se debia a un cambio en el nombre de la dirección utilizada. Por otro lado, al integrar la
herramienta al sistema, no llegaba a finalizar con éxito al pasarle un conjunto de 20 términos
clave para generar los grafos de conceptos.

Por otro lado, con este proyecto se han asentado conocimientos relacionados con la ingenieŕıa
del software y las tecnoloǵıas web. También se ha logrado adquirir experiencia al embarcarse en
un proyecto de esta magnitud.

7.2 Trabajo futuro

Algunas de las opciones para dar continuidad al trabajo desarrollado son las que se exponen
a continuación:

- Almacenar toda la información referente y disponible de los v́ıdeos procesados (términos
clave, t́ıtulo, descripción, fecha, etc) en ficheros XML (eXtensible Markup Language) para
una mejor representación y posterior procesamiento. Al procesar grandes colecciones de
v́ıdeos se obtendŕıa una colección de ficheros XML con la que poder gestionar y procesar
toda esa información. La idea principal que se propone es conseguir tener toda esta in-
formación relacionada (o enlazada) para poder llevar a cabo un buscador semántico de la
colección de v́ıdeos procesados por el sistema de etiquetado.

- Completar las tareas de validación generadas por el sistema de etiquetado a partir de todos
los v́ıdeos procesados por dicho sistema.

32

- Utilizar los resultados generados por el sistema de etiquetado por herramientas de apren-
dizaje electrónico (e-learning). Utilizar el sistema de etiquetado para procesar v́ıdeos de
las plataformas de e-learning para ofrecer a sus usuarios mejor información referente al
contenido de los recursos multimedia que disponga la plataforma.

33

Anexos

A Prueba de integración

En este anexo se va a describir el proceso llevado a cabo para realizar una prueba de integración
del sistema de etiquetado.

Para comenzar la prueba el usuario deberá acceder a la interfaz web que permite interactuar
con el sistema de etiquetado. Esta interfaz web permite al usuario enviar los v́ıdeos que quiere
etiquetar al sistema de etiquetado indicando su URL. Como se puede observar en la figura 14,
la interfaz web tiene dos opciones para enviar las URLs de los v́ıdeos. Por un lado, se permite
enviar una única URL de un único v́ıdeo (1) y por otro lado, se permite enviar al sistema de
etiquetado un fichero de texto (2) que contenga un listado de las URLs de una colección de
v́ıdeos.

Figura 14: Opciones presentas en la interfaz web del sistema de etiquetado.

Para la primera opción se puede elegir si visualizar los resultados (las etiquetas generadas) en
la propia interfaz al finalizar o descargar los resultados en un fichero comprimido (.ZIP) como se
puede ver en la figura 15 (1).

34

Figura 15: Descarga de los resultados a través de la interfaz web del sistema de etiquetado.

Internamente, una vez se han enviado los v́ıdeos, el sistema de etiquetado empieza a procesar
lo v́ıdeos y los datos van pasando por las distintas etapas. En la figura 16 se puede observar un
ejemplo de ejecución y de los eventos que ocurren dentro del sistema de etiquetado. Una vez
finaliza la ejecución de toda la petición de v́ıdeos se contesta al usuario enviándoles los resultados.

35

Figura 16: Sucesión de eventos en la ejecución interna del sistema de etiquetado.

36

B Grafo generado por la herramienta Pisixde

En este anexo se van a mostrar dos ejemplos de grafos generados por la herramienta Pisixde
a partir de los términos clave generados por el sistema de etiquetado para dos v́ıdeos. Se van
a mostrar los grafos de dos términos distintos, siendo cada término perteneciente a un v́ıdeo
distinto. Como los grafos están definidos como ficheros XML se va a hacer uso de una her-
ramienta externa llamada Gephi [23] para la visualización de los mismos. Los grafos generados
por esta herramienta presentan nodos y aristas. Los nodos representan cada uno de los conceptos
recuperados, mientras que las aristas entre ellos representan las relaciones existentes.

En primer lugar se va a mostrar el grafo que pertenece al término Byte del v́ıdeo mars de la
colección de v́ıdeos utilizada en este documento. El grafo se puede ver en la figura 17 junto a los
datos de cada nodo que se pueden observar en la figura 18 que muestra una tabla de los datos
del grafo.

Figura 17: Grafo de conceptos del término clave Byte del v́ıdeo mars.

37

Figura 18: Tabla con los datos del grafo del término Byte del v́ıdeo mars.

Como se puede ver en el grafo y en la tabla de datos, el término clave Byte se encuentra en
el nodo 3 y esta relacionado con términos o conceptos como Computer memory (8), Data (4) y
Binary prefix (2).

El segundo ejemplo que se presenta es el término Animal del v́ıdeo senses. En la figura 19 se
puede ver el grafo que conforman todos los conceptos relacionados de alguna manera con este
término. Mientras que en la figura 20 se pueden apreciar los datos de cada nodo del grafo.

38

Figura 19: Grafo de conceptos del término clave Animal del v́ıdeo senses.

En este caso podemos ver como del nodo 32 (el concepto Animal) salen un gran número de
aristas que representan relaciones con otros nodos o conceptos, como por ejemplo el nodo 33 que
representa el concepto Zoology.

39

Figura 20: Tabla con los datos del grafo del término Animal del v́ıdeo senses.

40

Bibliograf́ıa

[1] Gúıa Breve de la Web Semántica - W3C (World Wide Web Consortium) [en ĺınea].
Disponible en: http://www.w3c.es/Divulgacion/GuiasBreves/WebSemantica [Consulta:
Agosto 2015]

[2] Lunaweb Ltd. ClipConverter [en ĺınea]. Disponible en: http://www.clipconverter.cc/

es/ [Consulta: Septiembre 2015]

[3] Diego Uscanga. aTube Catcher [en ĺınea]. Disponible en: http://www.atube.me/video/

[Consulta: Septiembre 2015]

[4] Alexey Kuznetsov. VGET - GitHub [en ĺınea]. Disponible en: https://github.com/axet/
vget [Consulta: Agosto 2015]

[5] Ricardo Garćıa. Youtube-dl - GitHub [en ĺınea]. Disponible en: https://github.com/rg3/
youtube-dl [Consulta: Agosto 2015]

[6] Carlo Pelliccia. JAVE - Java Audio Video Encoder [en ĺınea]. Disponible en: http://www.

sauronsoftware.it/projects/jave/index.php [Consulta: Agosto 2015]

[7] Crowd-Sourced Community. FFmpeg. [en ĺınea]. Disponible en: https://ffmpeg.org/

[Consulta: Agosto 2015]

[8] ConnectSolutions, LLC. Xuggler [en ĺınea]. Disponible en: http://www.xuggle.com/

xuggler [Consulta: Agosto 2015]

[9] Alphabet Inc. Google Speech API [en ĺınea]. Disponible en: https://www.google.com/

speech-api/v2/recognize [Consulta: Agosto 2015]

[10] CMU Sphinx. [en ĺınea]. Disponible en: http://cmusphinx.sourceforge.net/ [Consulta:
Agosto 2015]

[11] IBM - Wikipedia, la enciclopedia libre. [en ĺınea]. Disponible en: https://es.wikipedia.

org/wiki/IBM [Consulta: Septiembre 2015]

[12] IBM Corp. IBM Speech to text. [en ĺınea]. Disponible en: http://www.ibm.com/

smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html [Consulta:
Agosto 2015]

[13] IBM Corp. IBM Watson Developer Cloud. [en ĺınea]. Disponible en: http://www.ibm.com/
smarterplanet/us/en/ibmwatson/developercloud/ [Consulta: Agosto 2015]

[14] List of speech recognition software - Wikipedia, la enciclopedia libre [en ĺınea]. Disponible
en: https://en.wikipedia.org/wiki/List_of_speech_recognition_software [Con-
sulta: Agosto 2015]

[15] Ziqi Zhang. JATE - Java Automatic Term Extraction [en ĺınea]. Disponible en: http:

//code.google.com/p/jatetoolkit/ [Consulta: Agosto 2015]

[16] Daniel Lombraña. Pybossa [en ĺınea]. Disponible en: http://pybossa.com/ [Consulta:
Agosto 2015]

[17] M. Lama, J. C. Vidal, E. Otero-Garćıa, A. Bugaŕın, S. Barro, ”Semantic linking of learning
object repositories to dbpedia”, Educational Technology & Society, vol. 15 (4) (2012), páginas
47–61.

41

http://www.w3c.es/Divulgacion/GuiasBreves/WebSemantica
http://www.clipconverter.cc/es/
http://www.clipconverter.cc/es/
http://www.atube.me/video/
https://github.com/axet/vget
https://github.com/axet/vget
https://github.com/rg3/youtube-dl
https://github.com/rg3/youtube-dl
http://www.sauronsoftware.it/projects/jave/index.php
http://www.sauronsoftware.it/projects/jave/index.php
https://ffmpeg.org/
http://www.xuggle.com/xuggler
http://www.xuggle.com/xuggler
https://www.google.com/speech-api/v2/recognize
https://www.google.com/speech-api/v2/recognize
http://cmusphinx.sourceforge.net/
https://es.wikipedia.org/wiki/IBM
https://es.wikipedia.org/wiki/IBM
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/
https://en.wikipedia.org/wiki/List_of_speech_recognition_software
http://code.google.com/p/jatetoolkit/
http://code.google.com/p/jatetoolkit/
http://pybossa.com/

[18] Crowd-Sourced Community. DBpedia [en ĺınea]. Disponible en: http://wiki.dbpedia.

org/ [Consulta: Agosto 2015]

[19] Crowd-Sourced Community. Wikipedia, la enciclopedia libre [en ĺınea]. Disponible en:
https://www.wikipedia.org/ [Consulta: Septiembre 2015]

[20] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal.
Pattern-oriented Software Architecture: A System of Patterns (VOLUME 1) (pp. 53-70).
New York, NY, USA: John Wiley & Sons, Inc, 1996.

[21] TED [en ĺınea]. Disponible en: https://www.ted.com/talks [Consulta: Septiembre 2015]

[22] Chromim-dev [en ĺınea]. Disponible en: https://groups.google.com/a/chromium.org/

forum/#!forum/chromium-dev [Consulta: Septiembre 2015]

[23] Crowd-Sourced Community. Gephi - makes graphs handy [en ĺınea]. Disponible en: http:

//gephi.github.io/ [Consulta: Septiembre 2015]

42

http://wiki.dbpedia.org/
http://wiki.dbpedia.org/
https://www.wikipedia.org/
https://www.ted.com/talks
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-dev
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-dev
http://gephi.github.io/
http://gephi.github.io/

	Índice de figuras
	Índice de tablas
	Introducción
	Motivación y contexto
	Problema a resolver y objetivos de alto nivel
	Estructura de la memoria

	Análisis
	Objetivos más concretos y requisitos
	Requisitos funcionales
	Requisitos no funcionales
	Análisis de herramientas
	Descarga de vídeo
	Extraer el audio
	Reconocimiento de voz
	Extracción de términos clave
	Validación de términos clave
	Obtención de metadatos

	Diseño
	Entorno del sistema
	Diseño del sistema de etiquetado
	Diseño del sistema de validación de términos

	Implementación
	Implementación del patrón
	Implementación de los buffers
	Implementación de las etapas

	Evaluación
	Evaluación intermedia
	Calidad
	Rendimiento

	Estimación de los costes de computo

	Gestión del proyecto
	Organización
	Esfuerzos

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Anexos
	Prueba de integración
	Grafo generado por la herramienta Pisixde
	Bibliografía

