.2s Universidad
A0l Zaragoza

TRABAJO FIN DE GRADO
DE INGENIERIA INFORMATICA

Anotacion semantica de grandes
colecciones de videos a partir de
su audio

Directores
Sandr,a Baldassarri
Pedro Javier Alvarez Pérez-Aradros

Autor
Daniel Delgado Llamas

ESCUELA DE INGENIERIA Y ARQUITECTURA

Zaragoza, Septiembre de 2015

Resumen

En Internet existen numerosos servicios de alojamiento y visualizacién de videos. Este tipo de
plataformas permiten realizar busquedas entre las grandes colecciones de videos que almacenan.
Estas biisquedas comparan la consulta realizada por el usuario con la informacién que disponen
de cada uno de sus videos. La fuente de informacién para este tipo de busquedas puede ser muy
distinta dependiendo de cada servicio de alojamiento. En general, los elementos méas importantes
que clasifican un video son: el titulo y las etiquetas asociadas a cada video y que describen su
contenido.

El titulo y las etiquetas de un video son, normalmente, asignados de forma manual por el usuario
que aloja el video en el servidor. El etiquetado de videos consiste en asociar o anadir a la
informacién del video un conjunto de palabras o metadatos (datos que describen otros datos)
que permita clasificar o describir el contenido del video. Esta tarea, con colecciones de videos
muy grandes, resulta muy costosa y a veces dificil de realizar por un usuario por desconocimiento
del contenido del video. En general, el etiquetado manual produce un conjunto de etiquetas que
describen el contenido de los recursos multimedia de forma genérica.

Este proyecto pretende conseguir que este proceso de etiquetado manual, por parte del usuario,
se realice de forma automatica, permitiendo asi reducir costes en el tiempo de etiquetado y
generando unas etiquetas que describan mejor el contenido del video utilizando informacién
presente en el audio del mismo, mejorando de esta forma la relevancia de las etiquetas con
respecto al etiquetado manual.

Este proceso de etiquetado consiste, en primer lugar, en obtener o descargar el video solicitado,

siguiendo con la extraccién de su audio y el posterior reconocimiento de voz del mismo para
obtener el mayor nimero de palabras, de este audio, en forma de texto. A continuacién, a
partir de un proceso de votacién, en el que a partir de los resultados obtenidos mediante el uso
de algoritmos de extraccién de términos, se determinan las palabras maés relevantes que seran
utilizadas como etiquetas para clasificar el video. Estas etiquetas obtenidas pasan un proceso
de validacién, por parte de usuarios, para comprobar que son adecuadas y corresponden al
contenido del video. Se decidié que este proceso de validacién se realizase de forma externa al
sistema de etiquetado de videos para que el sistema pudiese continuar aunque la validacién no
hubiera finalizado. Finalmente, estas etiquetas pasan por un proceso en el que se relacionan estas
palabras mds relevantes con conceptos de una ontologia (esquema conceptual dentro de varios
dominios con la finalidad de facilitar el intercambio de informacién entre diferentes sistemas y
entidades) de referencia, obtenida del repositorio de informacién estructurada llamado dbpedia
para obtener mayor significado e informacion sobre el video procesado.
Este proceso de etiquetado de videos se encapsula dentro de un servicio que permite la entrada
de videos y genera como resultados un conjunto de metadatos que describen los videos en base a
su contenido. Este proceso de etiquetado consta de unas etapas con una alta complejidad, como
puede ser la extraccion del audio o el reconocimiento de voz, que genera la necesidad de una
bisqueda de herramientas a integrar en este proceso que resuelvan cada etapa. Finalmente, se
lleva a cabo una evaluacién de este proceso de etiquetado automatico, valorando aspectos como
el rendimiento (costes de computo) o la calidad (tasa de aciertos) de algunos de los elementos
que intervienen en ese proceso.

Agradecimientos

En primer lugar, agradecer a toda mi familia el apoyo recibido en especial a mi madre y a mi
padre, sin su ayuda la realizacién de este proyecto no habria sido posible.

También queria tener una especial mencién para Verdnica, por todo su apoyo, ayuda y atencién
durante la realizacién del proyecto y la carrera.

Agradecer también a todos mis amigos y compaifieros que directa o indirectamente me han
ayudado o me han hecho mas sencillo el transcurso de estos anos.

Finalmente, y no por ello menos importante, agradecer a mis dos directores la oportunidad de
llevar a cabo este proyecto, la paciencia que han tenido conmigo y toda la ayuda recibida.

ii

Indice de contenidos

[Indice de figuras|
[Indice de tablas|
I Tuccidn

[1.1 Motivacion y contexto]

[T.2 Problema a resolver y objetivos de alto nivel|

2_Analisisl

2.1 Objetivos mas concretos y requisitos|
2.2 Requisitos funcionales| 0000
2.3 Requisitos no funcionales|

[2.4.1 Descarga de video|

[3.2 _Diseno del sistema de etiquetado]

B33 Disefio del sistema. de validacién de términosd

[4 Implementacion|

[6_Evaluacion]

[6 Gestion del proyecto|

6.1 Organizacion|

|7 Conclusiones y trabajo futuro]

[(.1 _Conclusiones|
[7.2 Trabajo futuro|,

[Anexos]

|A Prueba de integracion|

il

[£1 Tmplementacidn del patrdn]

A2 Tmplementacién de los buffers|

4.3 Implementacion de las etapas|

<

2.

[N Sy

000 1O O U W wWw

16
16
16
18

23
23
23
26
28

30
30
31

32
32
32

34

34

IB Grafo generado por la herramienta Pisizde)

iv

37

41

Indice de figuras

11 Bitapas del sistema de etiquetado.|. 0oL 5
[~ Herramientas del sistema de etiquetado] 9
B Enfornodelsistemal 10
4 Comparacion estructural entre el paton Pipes and Filters v el sistema de etiquetado.| 12
5] Interfaz de la aplicacion web del sistema de etiquetado.| 13
6 Sistema de validacion de términos) . -o 14
[7 Ejemplo de tarea creada con por el sistema de etiquetado en Pybossa.| 15
[B Listado de tareas dentro de un proyecto.,| 15
19 Secuencia de acciones de los Buffers v los Filtros.|. 17
110 Diagrama de clases del sistema de etiquetado.| 22
[11 Comparativa del tiempo de procesado entre las herramientas de reconocimiento |
L de IBM v Sphanz.| e 26
12 iagrama de Gantt de la planificacion inicial del proyecto)]. 30
13 iagrama de Gantt del desarrollo final del proyecto.| 30
[14 Opciones presentas en la intertaz web del sistema de etiquetado.| 34
[15 Descarga de los resultados a través de la interfaz web del sistema de etiquetado.| 35
|16 Sucesion de eventos en la ejecucion interna del sistema de etiquetado| 36
[I7Grafo de conceptos del término clave Byte del video mars]. 37
18 abla con los datos del grato del término Byte del video mars.| 38
119 Grafo de conceptos del término clave Byte del video mars.|. 39
20 Grafo de conceptos del término clave Byte del video mars.|. 40

Indice de tablas

11 Herramientas analizadas para la descarga de videos.|

................ 5
...................... 6
[~ Herramientas para el reconocimiento de VOZJ. « v v v v v i e 7
4 Referencias de cada video de la coleccion utilizadal 24
5 Tasa de aciertos (%) entre los reconocedores de voz CMU Sphinz e IBM|. 25
6 Tiempo de procesado medio (en segundos) entre los reconocedores de voz IBM y |

L CMU Sphanz.| o e e e 26
[7 Tiempo de procesamiento para cada etapa del sistema de etiquetado para una |

coleccion de veinte videos. L 28
18 Relacion de las fases del proyecto y los estuerzos dedicados.| 31

vi

1 Introduccion

En esta seccién se describen los motivos que han llevado a desarrollar este trabajo, su contexto,
el problema que aborda y los objetivos que se han planteado. Finalmente se indican las distintas
partes de las que consta este documento.

1.1 Motivaciéon y contexto

Con el aumento de la popularidad de los servidores de alojamiento de contenido audiovisual
en Internet, se disponen de grandes colecciones de videos y surge la necesidad de documentar o
clasificar estos recursos. El etiquetado de videos consiste en asociar o anadir a la informacién del
video un conjunto de términos o metadatos (datos que describen otros datos) que permita clasi-
ficar o describir el contenido del video. Lo normal es asignarles ciertos metadatos que describan
el video de forma general. En este proyecto se pretende que el etiquetado se realice en base a su
contenido.

Esta clasificacion tiene como finalidad, dentro del proceso de recuperacién de informacién, mejo-
rar y agilizar la tarea de bisqueda de videos y/o facilitar el acceso a ellos. Actualmente esta
clasificacién se realiza de forma manual por parte de los usuarios. La motivacién de este proyecto
es conseguir disenar un sistema capaz de realizar ese proceso de clasificaciéon automaticamente
en base a su contenido.

Por 1ltimo, otra de las motivaciones de este proyecto es conseguir que los recursos estén en-
trelazados (linked data). Cada etiqueta asociada a cada video estard relacionada con distintos
conceptos que tendran una relacién seméntica entre ellos y que podréan o no estar relacionados
con otras etiquetas de otros videos, consiguiendo asi la interrelacién de etiquetas y por lo tanto
la interrelacién de videos, una caracteristica muy importante dentro de la situacién actual de la
web (Web Semdntica [I]).

1.2 Problema a resolver y objetivos de alto nivel

El problema que resuelve este proyecto es el etiquetado o clasificacién de grandes colecciénes de
videos de forma automatica en base a la informacién contenida en el audio. Para llevar a cabo el
etiquetado se necesita obtener informacién sobre el contenido del video. Para ello se propusieron
dos métodos para conseguirlo: utilizar los subtitulos del video (si estuvieran disponibles) o proce-
sar la informacién contenida en el audio. Finalmente se ha optado por el uso de la informacién
contenida en el audio debido a que no siempre se dispone de los subtitulos de los videos. Por otro
lado, para comprobar que este etiquetado es correcto y las etiquetas generadas corresponden al
contenido del audio, se realizard un proceso de validacién de los metadatos obtenidos. Al realizar
un analisis previo del problema se observé que estaba compuesto por varios subproblemas: la
desgarga del video, la extraccién del audio, el reconociemiento de voz, la extraccién de términos
clave, la validacién de términos clave y un subproblema final de obtencién de m&s metadatos
relacionando las etiquetas con conceptos pertenecientes a ontologias (esquema conceptual con la
finalidad de facilitar el intercambio de informacién entre diferentes sistemas y entidades).

Para resolver el problema planteado, se han definido varios objetivos generales. El primer obje-
tivo a tratar es buscar y analizar tecnologias ya existentes que resuelvan parcial o completamente
algunos de los subproblemas del sistema de etiquetado.

El siguiente objetivo es realizar la implementacién de dos aplicaciones de soporte para el sistema,
asi como de la propia implementacion del sistema: desarrollar una aplicacién web que permita la
interaccion de los usuarios con el sistema y desarrollar un interfaz web que permita a los usuar-
ios realizar una validacién de los resultados del sistema. También se realizard la incorporacién

y adaptacién (si fuera necesario) de las tecnologfas analizadas que han sido seleccionadas para
resolver alguna de las tareas del sistema.

Por ultimo se llevara a cabo una evaluacion de las prestaciones del sistema en cuanto a rendimiento
y calidad. También se realizaran evaluaciones intermedias para tomar decisiones al seleccionar
herramientas.

1.3 Estructura de la memoria

La estructura de esta memoria se compone de seis capitulos o apartados:

Capitulo 1: Breve introducciéon del proyecto, exponiendo el problema que aborda y el con-
texto por el cual surge.

Capitulo 2: Analisis del proyecto. Descripcion de los objetivos concretos y sus requisitos y las
tecnologias analizadas.

Capitulo 3: En este apartado se explica la fase de diseno del sistema. Descripcién del entorno,
sus componentes y la arquitectura utilizadas.

Capitulo 4: Implementacion del sistema. Descripcion detallada de la implementacion del sis-
tema de etiquetado.

Capitulo 5: Resultados obtenidos respecto a la calidad y el rendimiento del sistema.
Capitulo 6: Gestion del proyecto. Descripcion de la metodologia utilizada, junto a la planifi-
cacion y los esfuerzos dedicados.

Capitulo 7: Conclusiones y trabajo futuro. Conclusiones sacadas sobre el proyecto y el futuro
trabajo que se puede hacer a partir del mismo.

2 Analisis

En esta seccion se describen los objetivos del sistema propuestos. También se explicaran las
herramientas/tecnologias que han sido analizadas para integrarlas o no, razonando por qué han
sido descartadas o por qué han sido seleccionadas.

2.1 Objetivos mas concretos y requisitos

El sistema de etiquetado ha desarrollar se divide de distintas tareas para obtener los resulta-

dos deseados: generar las etiquetas de los videos de forma automaética en base a la informacién
contenida en el audio. El objetivo inicial es llevar a cabo una bisqueda de herramientas o tec-
nologias que puedan resolver los subproblemas detectados del sistema de etiquetado: la descarga
del video, la extraccion del audio, la extraccién de términos clave, la validacién de términos clave
y la adicién de nuevos términos con una relacién seméantica a los ya obtenidos.
Se realizard un anélisis de las caracteristicas de las herramientas y segiin unos criterios que se
definirdn en la siguiente subseccion seran seleccionadas. Si varias herramientas han sido selec-
cionadas para resolver un mismo subproblema se realizard una evaluaciéon de su rendimiento y
la calidad de los resultados, y se seleccionard la que mejores resultados muestre.

El siguiente objetivo es realizar la implementacién de todos los componentes de los que consta
el sistema de etiquetado de videos por contenido. Por un lado, desarrollar un componente que
permita a los usuarios enviar al sistema de etiquetado el conjunto de videos a etiquetar y recibir
los resultados generados.

Por otro lado, realizar la implementacion del sistema de etiquetado compuesto por las distintas
etapas o subproblemas detectados. Cada uno de estos subproblemas serd resuelto por alguna de
las tecnologias seleccionadas, por lo tanto, otro objetivo sera la integracién de estas tecnologias
al sistema.

Otro objetivo es realizar la implementacién del sistema de validacién de términos clave. Este
sistema deberd permitir a los usuarios validar los términos obtenidos por el sistema, indicando
qué términos son correctos y cudles no.

Por ultimo se realizara una evaluacion del sistema de etiquetado teniendo en cuenta aspectos
del rendimiento y la calidad. Para aspectos de rendimiento se realizaran medidas de tiempo,
tanto de procesamiento o de latencias en escritura y lectura. Para aspectos de la calidad de los
resultados se medird la tasa de aciertos del sistema.

2.2 Requisitos funcionales

RF1: La interfaz de la aplicaciéon web dispondré de un formulario para que los usuarios inter-
actien con el sistema.

RF2: La aplicacién web debe permitir al usuario iniciar el proceso de etiquetado de videos
suministrando una o o un conjunto de URLs que identifican uno o varios recursos (videos).
RF3: La aplicacion web deberd devolver al usuario los resultados del etiquetado de videos una
vez haya acabado el proceso.

RF4: El sistema deberd ser capaz de descargar el video que identifica una URL y almacenarlo
localmente.

RF5: El sistema debera ser capaz de extraer el audio de un video y almacenarlo.

RF6: El sistema serd capaz de transcribir las palabras habladas contenidas en un fichero de
audio y almacenar el resultado en un fichero de texto.

RFT7: El sistema serd capaz de determinar y extraer los términos mas significativos de un texto

y almacenar los resultados en un fichero de texto.

RF8: Elsistema debera ser capaz de validar términos mediante encuentas creadas automaticamente
via web con la participacién de usuarios y almacenar los resultados de la validacion.

RF9: El sistema serd capaz de generar nuevos términos con una relacién seméntica a otro
conjunto de términos.

2.3 Requisitos no funcionales

RFN1: El sistema deberd ser capaz de procesar grandes colecciones de videos.

RFN2: La aplicacién web deberd comportarse de la misma manera en todos los navegadores
web.

RFN3: La aplicacién web podra manejar de forma concurrente peticiones de varios usuarios.

2.4 Anadlisis de herramientas

El etiquetado de un video es el proceso por el cual un usuario o entidad asigna un conjunto de
palabras o términos significativos que describan su contenido, permitiendo asi tener disponible
informacién asociada y clasificarlo.

Este etiquetado se lleva a cabo en distintas etapas o subproblemas tal y como se observa en la
figura En primer lugar se descarga el video alojado en algin servidor de almacenamiento.
Después se extrae el audio, con el que utilizando alguna herramienta de reconocimiento de voz,
se extraen las palabras que contiene. A continuacién se determinan cudles son las palabras
maés significativas o que mads ocurrencias tienen dentro de todo el conjunto. Estas palabras
mas significativas pasan un proceso de validacién por parte de usuarios que verifican que esas
palabras ciertamente aparecen en el video y describen su contenido. Finalmente, las palabras
mds relevantes se “mapean” a conceptos de una ontologia de referencia.

Cada una de estas etapas consume unos datos y genera otros, forméandose una cadena o flujo que
se puede observar representado mediante flechas en la figura A este flujo entran URLs que
desencadenan el flujo de eventos y finalmente se consiguen como resultado los videos etiquetados.

Para el andlisis que se ha realizado de las tecnologias a usar se han tenido en cuenta las
siguientes caracteristicas:

- Funcionalidad.

Formatos de entrada y salida.

- Desarrollado en Java o facil integracién en una aplicacién Java.

- Politicas y precios de uso.

Una vez se ha hecho este primer andlisis, si para un subproblema en concreto, se tiene méas
de una herramienta aceptada se realizan unas pruebas de rendimiento y calidad para finalmente
seleccionar la que mejor resultados ofrezca:

- Rendimiento.

- Tasa de fallos/errores.

Descarga Extraccién Reconcimiento Extraccion Validacién Obtencién Nuevos Videos
E:> |:‘l> Audio E:> de Voz]E:> [Términos E:> Términos E:> Metadatos E> Etiquetados

Figura 1: Etapas del sistema de etiquetado.

2.4.1 Descarga de video

Para la descarga de videos se hizo una busqueda en Internet y como resultado se encontraron

gran cantidad de aplicaciones web y de escritorio que resolvian este problema, y que no es posible
integrarlas al resto del sistema, como por ejemplo: ClipConverter [2] (Aplicacion Web) y aTube
Catcher [3] (Aplicacién de escritorio). Como el objetivo es poder integrar una tecnologia que
resuelva el problema dentro del sistema se descartaron. Se hizo una nueva bisqueda mas refinada
en busca de alguna libreria o médulo que se pudiera incorporar sin problemas al sistema. Se
encontraron unicamente dos herramientas con ese proposito: VGET y YoutubeDL.
La idea que reside por debajo de estas dos herramientas es igual que la forma de visualizar videos
a través de un navegador web en algin servidor de alojamiento de videos. Al visualizar un video
en un navegador web lo que realmente se hace por debajo es una peticién HTTP (Hypertext
Transfer Protocol) que permite la comunicacién entre un cliente (el navegador web) y un servidor
(el servidor de alojamiento de videos). Concretamente se realiza una peticién HTTP de tipo
GET, que solicita informacién o datos al servidor, en este caso solocita un recurso video. Un
navegador al realizar esta peticién recibe el recurso video y lo almacena para poder visualizarlo
cuando el usuario desee dentro de la web. Por lo tanto, las dos herramientas encontradas utilizan
esta idea para capturar el video. Realizan una peticién GET contra el servidor y al recibir el
video lo copian desde su ubicacién a otro directorio completando asi la descarga.

La herramienta VGET [4] es una librerfa escrita en JAVA. Solo soporta descargas de los servi-
dores de Youtube y Vimeo. Como entrada se requiere la URL del recurso y como salida se obtiene
el video en formato FLV.

La herramienta YoutubeDL [5] es un script escrito en Python, con soporte para cientos de servi-
dores de alojamiento de videos (que la comunidad de desarrolladores de GitHub aumenta
constantemente). Como entrada se requiere la URL del video y como salida se obtiene el video
en el formato con el que esté almacenado en el servidor. En la tabla [l| se pueden visualizar las
caracteristicas principales de ambas herramientas.

Herramienta | Leng. Progr. | Entrada Salida Servidores soportados
VGET JAVA URL Fichero FLV YouTube y Vimeo
YouTubeDL Python URL Fichero con formato de origen | Més de 100 servidores

Tabla 1: Herramientas analizadas para la descarga de videos.

Finalmente se seleccioné la herramienta YoutubeDL principalmente por la gran cantidad de
servidores a los que da soporte. Otra de las razones fue que la herramienta VGET no fun-
ciona correctamente y devuelve mensajes de error en su funcionamiento, por otro lado no recibe
actualizaciones desde hace un ano lo que puede provocar este mal funcionamiento.

2.4.2 Extraer el audio

Para la tarea de extraccién del audio, solo se encontraron dos herramientas: JAVE y Xuggler,
las cuales se pueden ver en la tabla[2]
La herramienta JAVE [6] (Java Audio Video Enconder) es una librerfa escrita en JAVA que
encapsula el framework FFmpeg [7]. FFmpeg es un software de cédigo abierto escrito en lenguaje
C. Para que la libreria de JAVE funcione correctamente se necesita tener instalada una version
precompilada de FFmpeg en la maquina local. JAVE permite transcodificar ficheros de audio y
video desde un formato a otro. Soporta multitud de formatos y permite redimensionar el tamano
de los videos, asi como sus proporciones.
La herramienta Xuggler es una libreria también escrita en JAVA que permite descomprimir,
modificar y recomprimir cualquier fichero multimedia desde JAVA. Esta herramienta ademas
permite capturar en tiempo real imagenes del escritorio de la maquina local o de una cadmara
conectada a la maquina. Asimismo hace uso por debajo del framework FFmpeg. Tiene soporte
para multitud de formatos. En la tabla [2] podemos observar que ambas herramientas tienen
caracteristicas semejantes, salvo en aspectos de funcionalidad, como la captura de imagenes de
una camara en tiempo real, que Xuggler si que lo permite, pero JAVE no.

Herramienta | Leng. Progr. Entrada Salida
JAVE JAVA Video: MP4, AVI, FLV, M4V, ... | Audio: MP3, WAV, AC3, FLAC, ...
Xuggler JAVA Video: MP4, AVI, FLV, M4V, ... | Audio: MP3, WAV, AC3, FLAC, ...

Tabla 2: Herramientas para la extraccion de audio.

Como conclusion, se ha seleccionado finalmente la herramienta JAVE debido a que su fun-
cionalidad es mas sencilla que Xuggler y cubre con las necesidades del subproblema a tratar:
extraer el audio de un video. La libreria de JAVE es por ello mucho més sencilla, con menos
clases o componentes y su utilizacién consta de pocas instrucciones para resolver la tarea, en
comparacién con la herramienta Xuggler que ofrece gran cantidad de funcionalidades que para
resolver el subproblema planteado no se necesitan.

2.4.3 Reconocimiento de voz

En general existen multitud de soluciones o herramientas que abordan este problema: el re-
conocimiento de la voz humana. Existen distintos usos de aplicaciéon de este campo, como pueden
ser: transcribir la voz de una persona a texto, reconocer la voz para interpretar 6rdenes, acciones
o autenticar accesos restringidos, etc. En este proyecto se busca en este tipo de herramientas
conseguir transformar la voz en texto. En una entrada en la enciclopedia libre Wikipedia, se
puede encontrar un listado de algunas de estas herramientas enfocadas cada una a distintos en-
tornos y sistemas [I4]. De ese listado sélo se seleccioné una herramienta para analizar: CMU
Sphinz. El motivo fue que era la tnica herramienta escrita en JAVA y que diera soporte a un
entorno Linuz.

Aparte de CMU Sphinz, se seleccionaron otras dos herramientas realizando otras busquedas en
Internet. Una de ellas fue Google Speech API, un servicio web proporcionado por Google para
desarrolladores del grupo Chromium-dev [22], al cual se puede ingresar libremente. La tultima
herramienta seleccionada para analizar es un servicio web de reconocimiento de voz llamado
Speech to Text desarrollado por la compaitiia IBM [11].

El motivo principal para la seleccién de estas tres tecnologias fue que dentro de algunas restric-
ciones no eran de pago, mientras que la gran mayoria requerian de una compra previa o pago por

su uso. Otro de los aspectos de su seleccion fueron los comentarios de la comunidad haciendo
recomendaciones y resenas positivas hacia ellas.

La herramienta CMU Sphinz [10] es una libreria escrita en JAVA que permite realizar este
proceso de reconocimiento de voz de forma offfine, sin depender de un servicio web externo. Esta
herramienta se puede configurar para ser utilizada por un lenguaje u otro, basta con modificar
tres elementos: el modelo actistico, el modelo del lenguaje y el diccionario del lenguaje a reconocer
por el sistema.

La herramienta Google Speech API [9] es un servicio web externo desarrollado por Google que
permite realizar peticiones enviando un fichero de audio y recibiendo como respuesta el resultado
de la transcripcién en formato JSON. El audio enviado no puede superar los 12-15 segundos de
duracién sino devuelve un resultado vacio. Por otro lado la versién gratuita de este servicio tiene
limitado su uso a 50 peticiones diarias.

La herramienta de reconocimiento de IBM, Speech to Text [13] es un servicio web externo igual
que la anterior herramienta, el cual permite realizar peticiones de reconocimiento de voz enviando
un fichero de audio y recibiendo como respuesta los resultados en formato JSON. El audio enviado
deberd tener una duracién maxima de 3 minutos, de lo contrario devolveréd una respuesta errénea.
Por otro lado, al contrario que la herramienta de Google, no tiene limite de peticiones.

Los dos servicios web presentados parece que tienen unas caracteristicas muy semejantes pero
como se puede observar en la tabla [3] cada una tiene unas restricciones distintas en su uso. En
la tabla se muestra una comparativa entre las tres herramientas descritas.

Herramienta Acceso/Leng.Prog Entrada Salida Politicas/Restricciones
Google Speech API Ser(\(f)ir(lzilonéyeb Audio FLV Fichero JSON ?g_ﬁ)gtizigo.nzzﬁéa de entrada
CMU Sphinx Libr@% ﬁT e%VA Audio WAV String Sin limite
ﬁ&lersoélloud Ser(\éir(l:ilong)\/' eb Audio WAV | Fichero JSON ginmililr.m;iddiz gitiecri;)riidsa

Tabla 3: Herramientas para el reconocimiento de voz.

Como conclusion, se descarté la herramienta proporcionada por Google debido a sus fuertes
restricciones en la duracién del audio de entrada en la versiéon gratuita. Por consiguiente, qued-
aban otras dos herramientas. Para determinar cudl era la que mejores resultados ofrecia se llevo
a cabo una evaluacion intermedia de caliadad y rendimiento cuyos resultados se pueden analizar
en el apartado de evaluacién intermedia de este documento. A partir de la evaluaciénn se
decici6 seleccionar el servicio web proporcionado por IBM ya que mostraba un coste de computo
de la mitad de tiempo que la otra alternativa (CMU Sphinz) y obtenia unos resultados con una
tasa de aciertos muy superior (de media un 30% mejor).

2.4.4 Extraccién de términos clave

Para la extraccién de términos clave se va a hacer uso de la herramienta JATE [15]. JATE es
un framework compuesto por una coleccién de algoritmos destinados a la extraccion de términos
dentro de un documento o un corpus de documentos. Al tratarse de una libreria escrita en JAVA
no supone ningin problema el integrarla dentro del sistema.

La versién que se ha utilizado de Jate (v1.1) implementa 8 algoritmos para la extraccién de

términos clave: Simple term frequency, TF.IDF, Weirdness, C-Value, GlossFEx, TermFEx, RIDF
y Average Term Frequency in Corpus. Cada uno de estos algoritmos realiza la extraccion de
términos segun distintas estrategias. La mayoria de estos algoritmos tratan cada palabra como
un candidato a término clave mientras que, por ejemplo, el algoritmo C-Value utiliza conjuntos
de palabras (multi-words) como candidatos a términos clave.

Una funcionalidad importante de este framework es que aparte de la coleccién de algoritmos para
la extraccién de términos, también implementa un algoritmo de votacién por pesos para poder
utilizar un subconjunto de los algoritmos de extraccién de manera conjunta asignandole a cada
uno de esos algoritmos un peso de mayor o menor relevancia.

Como trabajo de este proyecto se implement6 un algoritmo de votacién por mayoria que se utiliz6
con el mismo propdsito que el de votaciéon por pesos: utilizar de manera conjunta los distintos
algoritmos de extraccién del framework. Este algoritmo de votaciéon por mayoria consiste en
recuperar los resultados de aplicar cada algoritmo de extraccién por separado y puntuar los
primeros veinte términos de cada algoritmo con valoraciones de entre veinte a uno en orden,
por ejemplo: el término en la posiciéon uno le corresponde una valoracién de veinte, al segundo
de diecinueve y asi hasta llegar al término veinte con una valoracién de uno. Al final de esta
puntuacién se almacenan los veinte términos con mejores valoraciones y son devueltos como los
términos mas significativos del documento o corpus de documentos.

El resultado final de esta etapa de extraccién de términos clave son los resultados obtenidos de
la votacién por mayoria implementada de los 8 algoritmos de extracciéon de términos que dispone
esta version de Jate.

2.4.5 Validacién de términos clave

Para la validacién de términos clave se va a utilizar la herramienta Pybossa [16] debido a que
permite realizar esta tarea de validacion de forma colaborativa. La herramienta es una aplicacién
web con la que se pueden crear proyectos y asignarles tareas a resolver por los usuarios. Para
realizar la validacion se crea una tarea nueva por cada video que entra al sistema, y en esa tarea
se pregunta a los usuarios (anénimos o registrados) si los términos obtenidos corresponden o
aparecen en el video. Las tareas tienen que ser contestadas por un nimero minimo de usuarios
(determinados al crear la tarea) para que los resultados se puedan contrastar y detectar indicios
de respuestas incorrectas o incoherencias en los resultados. Al completarse la tarea, el creado
del proyecto y de la tarea tienen acceso a la informacién de los resultados obtenidos.

El objetivo final es poder preguntar, mediante este tipo de encuentas, a usuarios reales si los
términos generados por el sistema tienen alguna relacién con el contenido del video correspondi-
ente.

2.4.6 Obtencion de metadatos

Para la ultima tarea del sistema, se quiere completar el etiquetado de los videos obteniendo
y enlazando metadatos con una relacién seméantica con los términos obtenidos en etapas anteri-
ores. Los metadatos son datos que describen otro datos. Con estos metadatos se quiere ampliar
semanticamente el significado de los términos asignados al video.
La herramienta que se va a utilizar para realizar o resolver esta tarea es: Pisizde. Esta her-
ramienta es la implementacién de los algoritmos expuestos en el articulo de investigacién ‘Se-
mantic linking of learning object repositories to dbpedia’ [17], y dicha herramienta fue desarrollada
por los propios autores del articulo.
Esta herramienta permite, dados unos términos de entrada, generar un grafo de instancias de la
dbpedia [18] que describe seménticamente un concepto. Esta herramienta realiza las biisquedas
haciendo consultas contra la dbpedia, un repositorio de informacién estructurada que ha

generado durante mucho tiempo informaciéon seméantica a partir de la informaciéon almacenada
en la Wikipedia.

Descarga Extraccién Reconcimiento Extraccion Validacién Obtencion Nuevos Videos
E>E:> Audio E:> de Voz]Q[Términoslt>[Términos |:> Metadatos E> Etiquetados
Videos
o) o) (o) € () 2 (o) e (o] > o] > | il

Figura 2: Herramientas seleccionadas para implementar el proceso del sistema de etiquetado.

En la figura [2| se puden observar las herramientas seleccionadas para cada una de las etapas
mostradas al principio de la seccion.

3 Diseno

En este apartado se va a explicar la estructura del sistema, de que componentes esta formado,
qué patrones arquitecturales se han utilizado y por tultimo se expondra la implementacién de las
distintas partes del proyecto.

3.1 Entorno del sistema

En la figura [3|se puede observar la estructura y componentes del sistema: los actores del sistema,
los subsistemas de los que estd compuesto y las interacciones entre los distintos componentes.
Antes de pasar a describir el entorno del sistema se van a describir dos elementos que se men-
cionaran durante las explicaciones: servicio web y aplicacion web.

Un servicio web es un médulo que exporta un conjunto de funciones o métodos a aplicaciones a
través de la web (Internet) proporcionando independencia de plataformas hardware/software.
Una aplicaciéon web es una herramienta o aplicacién software que los usuarios pueden utilizar
accediendo a un servidor web a través de Internet mediante un navegador web.

Video Usuario
APP

; URL @

- Do | | ===

/ APP

Videos
Etiquetados

Usuario

Coleccion
de Videos

Metadatos

Servicio de DBpedia
reconocimiento
de voz

Figura 3: Entorno del sistema.

El sistema de etiquetado interacciona con otros elementos externos para llevar a cabo su
objetivo principal: el etiquetado de videos.
Los usuarios (1) proporcionan los recursos necesarios al sistema de etiquetado: un video o una
coleccion de videos. Estos videos se pasan al sistema en forma de URL o un fichero que contiene
un conjunto de URLs.
Para realizar la comunicacién entre los usuarios y el sistema de etiquetado se ha desarrollado
una aplicacién web (2) que hace de frontend (en diseno software es la parte del software que
interactia con el o los usuarios). Esta aplicacién web se compone de dos sencillos formularios
con los que poder enviar al sistema de etiquetado un video (una URL) o una coleccién de videos
(un fichero con un listado de URLs). La aplicacién web al recibir las peticiones de los usuarios

10

comienza el proceso de etiquetado de videos. Una vez finalizado el proceso de etiquetado, el
usuario recibe los resultados como respuesta a la peticion realizada en la aplicacién web.

En el proceso de etiquetado de videos intervienen otros componentes externos necesarios para el
sistema de etiquetado: un servicio de reconocimiento de voz, un sistema de voting (votacién) y
por ultimo el repositorio de informacion descrita semanticamente llamado dbpedia.

El servicio de reconocimiento de voz se trata de un servicio web externo, al cual el sistema de
etiquetado accede o se comunica a través de Internet. Este servicio de reconocimiento devuelve
los resultados obtenidos como respuesta a la peticién de reconocimiento de voz sobre un fichero
audio realizada.

El sistema de wvoting, para la validacién de términos o palabras clave, consta de dos partes: un
servicio web y una aplicacién web. Este servicio web del sistema de wvoting (3) es el medio por
el cual el sistema de etiquetado crea nuevas tareas que se almacenan en la aplicacién web con la
finalidad de validar los términos o palabras clave de un video. Estas tareas se crean mediante
peticiones realizadas por el sistema de etiquetado contra este servicio web.

Por otro lado, la aplicacién web del sistema de voting permite a los usuarios visualizar las tareas
de validacién, creadas por el sistema de etiquetado, y participar en ellas a través de la web.

El dltimo componente del entorno es el repositorio de informacién estructurada dbpedia [I8§].
La dbpedia es el resultado, por parte de la comunidad, de extraer informacién estructurada de
la Wikipedia [19] y poner esta informacién disponible en la web. La dbpedia permite realizar
consultas contra la informacién contenida en la Wikipedia y enlazar los diferentes conjuntos de
datos obtenidos a los datos de la propia Wikipedia. Este componente es utilizado por el tltimo
proceso del sistema de etiquetado, donde se realizan consultas a la dbpedia para obtener datos
enlazados (linked data) sobre los términos clave obtenidos al final del proceso de etiquetado.
Estos datos enlazados también se denominan metadatos (4) ya que son datos que describen a su
vez otros datos.

3.2 Diseno del sistema de etiquetado

El sistema de etiquetado que se ha desarrollado estd compuesto de distintas etapas o procesos.
Cada proceso necesita datos de entrada proporcionados por procesos o componentes previos y
genera datos de salida utilizados por procesos o componentes posteriores.

Esta secuencia de etapas o acciones para llegar a etiquetar un video dentro del sistema de
etiquetado tiene una estructura de ‘tuberia’ en la que los datos van atravesando las distintas
etapas en orden.

El sistema de etiquetado consta de distintas etapas o tareas que se han comentado en el capitulo
anterior: la descarga del video, la extraccién del audio, la extraccién de términos clave, la
validacion de términos clave y la adicién de nuevos términos con una relacién semantica a los ya
obtenidos. Para el diseno del sistema de etiquetado se ha buscado una estructura que permitiera
separar estas etapas y a la vez permitir que trabajen conjuntamente para cumplir el objetivo
final: el etiquetado de videos.

Los recursos que entran al sistema de etiquetado pasan por las etapas mencionadas anteriormente.
Cada etapa procesa los datos de entrada, genera unos datos resultantes tras realizar su designada
tarea y se los pasa a la etapa siguiente que realiza la misma secuencia de acciones, hasta llegar
a la ultima etapa que genera los resultados finales del sistema de etiquetado.

Con este propdsito y estas caracteristicas se decidié utilizar el patrén Pipes and Filters [20]
(pipeline). Las ventajas de utilizar este patrén son: se adapta a la idea de separar distintas
tareas enlazando las salidas de datos de una etapa con la entrada de datos de la siguiente y
permite cambiar facilmente una tarea por otra sin tener que modificar el resto de tareas.

Por otro lado, el incoveniente que tiene es: el tiempo de procesado total es la suma de todos los

11

tiempos de cada una de las etapas, lo que significa que si una etapa es costosa en tiempo retrasa
al resto ya que dependen de los resultados de etapas anteriores.

El patron Pipes and Filters provee una estructura para sistemas que procesan un flujo de
datos. Cada etapa de procesado es encapsulada en un componente Filtro. Los datos pasan a
través de los Pipes (o buffers intermedios) que se encuentran entre filtros adyacentes. La fuente
de datos del sistema es el componente DataSource de donde el primer filtro lee los datos y da
comienzo el procesamiento de cada dato. El tdltimo filtro del sistema genera los datos resultado
finales el cual los almacena en el colector de datos llamado DataSink.

Sistema de etiquetado
términos
+
términos términos grafo de metadatos
Descarga Extraccion Reconcimiento Extraccién Validacién Obtencién Nuevos Videos
E> Videos E> [Audio] E:>[de Voz }E> [Términos E>[Términas E> Metadatos E:> Etiquetados

A A

DataSource

Filtro

Patrén "Pipes andFilters"

Figura 4: Comparacién estructural entre el patrén Pipes and Filters y el sistema de etiquetado.

Por lo tanto, el patrén Pipes and Filters de forma general estd compuesto por estos cuatro
componentes: DataSource, filtros, Pipes y DataSink. En la figura [] se puede observar la corre-
spondencia entre los componentes del patron y las etapas y elementos del sistema de etiquetado.
El componente DataSource corresponde con las URLs proporcionadas por los usuarios en la
aplicacién web. Cada una de las etapas del sistema de etiquetado corresponde al componente
Filtro del patrén. Finalmente, el componente DataSink corresponde con el conjunto de videos
etiquetados que se devuelven al usuario a través de la aplicaciéon web.

12

Video Annotation - Mozilla Firefox

Video Annotation * W

localhost:8080| v e

Video Annotation

1) Procesamiento de una URL:

Descargar resultados

Process

2) Procesamiento de varias URLs mediante fichero de texto:

Seleccionar archivo | Ningan archivo seleccionado

Process

Figura 5: Interfaz de la aplicacién web del sistema de etiquetado.

La interfaz web que se puede ver en la figura [5| permite a los usuarios interaccionar con
el sistema de etiquetado descrito. Se opté por una interfaz sencilla y clara, separando en dos
apartados las dos opciones de envio de URLs al sistema de etiquetado.

Mas adelante se explicard como se ha llevado a cabo la implementaciéon de este patréon de
diseno Pipes and Filters, para instanciar el sistema de etiquetado utilizando la estructura que
ofrece, encapsulando las herramientas de cada una de las etapas del sistema de etiquetado en el
componente filtro.

13

3.3 Diseno del sistema de validacién de términos

El sistema de validacién de términos o wvoting que se ha implementado utiliza el framework
llamado Pybossa. Este framework permite crear una aplicacién web (ya creada por los
desarrolladores del framework) donde crear y mostrar tareas a resolver por los usuarios.

crear

royecto
proy Sistema de

Validacion

@

Usuario

nuevo proyecto

Proyecto

visualizar
59 « iae o
Sistema de |términos
Etiquetado =
Usuarios

@ resultados de

la validacion

Usuario

Figura 6: Sistema de validacién de términos.

En la figura[6] se puede observar el entorno del sistema de validacién. La creacién de un nuevo
proyecto se realiza, por parte de un usuario, a partir de las opciones que ofrece la aplicaciéon web
del sistema de validacién (1) al seleccionar en la opcién “crear un proyecto”. Una vez estd creado
el proyecto el sistema de etiquetado ya puede anadir nuevas tareas mediante peticiones POST
contra su servicio web (2). Para que los usuarios puedan visualizar las tareas disponibles era
necesario crear un “presentador de tareas”. Este “presentador de tareas” es un fichero HTML
que se modifica o edita en un editor interno embebido dentro de la aplicacién web de Pybossa. El
“presentador de tareas” (3) recupera la informacién de cada tarea y la muestra en formato web.
Los usuarios que participan o colaboran en la validacién de términos visitan el “presentador de
tareas” y completan el formulario mostrado. Una vez la tarea se ha completado, los resultados
son accesibles por los usuarios a través de otra interfaz web (4) que permite descargarlos.

En la figura [7] se puede ver un ejemplo de tarea creado por el sistema de etiquetado. Se puede
observar: el listado de términos a validar de los cuales hay que seleccionar los términos que
aparecen en el video (1), el enlace al video (2) y un botén para enviar el resultado de la validacién
(3). También estd presenta (4) informacién referente a qué tarea se estd resolviendo, y cudl es el
progreso de tareas completadas hasta ese momento dentro del proyecto.

En la figura [8]se puede observar un listado de tareas creadas (completadas y en progreso) dentro
de un proyecto en la aplicaciéon web de Pybossa y junto a cada tarea de la lista se encuentra un
botén que da la opcién de descargar los resultados.

14

PyBossa - Mozilla Firefox
) PyBossa L]

€ | @ localhost:5000 . C"

Video Annotation: Contribuir

¢ Los términos clave listados a continuacion aparecen en el video adjunto?

Objs H Marcar los que en el video o sl no ap: . Una vez todos los términos apretar el botén de "Enviar’
para completar la tarea.

Enlace al video. @

Listado de términos:

0y

forwarding
network

<

<

side

<

example

Y

elastic

<

map

<

message

<

created

Y

brain

<

universe

<

favorite

<

complex

Eme

Estas realizando la tarea: [Ef] @

Has completado: [f[]] tareas de

Figura 7: Ejemplo de tarea creada por el sistema de etiquetado en Pybossa.

PyBossa - Mozilla Firefox

) PyBossa

5 daniel ™

Informacion

Video Annotation: Explorar tareas

Contribuir

+ Tarea Este nimero identifica Ia tarea del proyecto y es tnico
« 0 of 30: El primer nimero muestra cuantas respuestas se han conseguido para |a tarea” " y el segundo nimero
Configuracion cuantas deben obtenerse para marcar la tarea como completado.
- Barra de Progreso: La barra de progreso mostrara el porcentaje que ha sido completado para la tarea.
Audit Logs
Blog Tarea [ZE] 1 de 1 & Descargar los resultados

Tarea 57 2 de 2 & Descargar los resultados

Tarea [EE] 2 de 2

& Descargar los resultados

Tarea [E] 1 de 2

& Descargar los resultados
& Descargar los resultados
& Descar ultados

Figura 8: Listado de tareas dentro de un proyecto.

Tarea g5 1de 2

Tarea oyl 1de 2

15

4 Implementacion

En este apartado se describe detalladamente la implementacion llevada a cabo para desarrollar
el sistema de etiquetado.

4.1 Implementacion del patrén

En la implementacién del patrén de diseno Pipes and Filters se han definido un conjunto de
interfaces que representan los componentes generales del patrén y que seran el ‘esqueleto’ de la
estructura del sistema de etiquetado. En el diagrama de clases de la figura 10| se pueden observar
tres paquetes que conforman todo el sistema de etiquetado. En el paquete pipeline se encuentran
las interfaces que definen la estructura del patron: DataSource, Filter, BufferPipe, DataSink,
Pipeline y Data.

La interfaz DataSource se encarga de leer datos y suministrarlos al primer filtro del sistema. Esta
interfaz define un método de lectura (read()) que devuelve un elemento de tipo Data. La interfaz
Data representa el flujo de datos que atraviesa el sistema de etiquetado. En la interfaz Data se
encapsula el tipo de dato o conjunto de datos que utiliza el sistema. La interfaz Filter representa
cada una de las etapas de procesamiento del sistema de etiquetado. En la interfaz Filter se
define el método ‘do Work()’ cuyo tnico objetivo es realizar la tarea designada para el filtro del
sistema. Cada una de las etapas redefinird este método para llevar a cabo su tarea concreta.
La interfaz BufferPipe representa los buffers intermedios ubicados entre dos filtros. Su objetivo
es almacenar los resultados de la salida de un filtro y proporcionarselos como entrada al filtro
siguiente. En la interfaz BufferPipe se definen los métodos ‘read()’ y ‘write()’ que permitirdn
las lecturas y escrituras en el buffer. La interfaz DataSink se encarga de almacenar los resultados
generados por el ultimo filtro del sistema. En la interfaz DataSink se define el método ‘write()’
que permite escribir o almacenar los resultados en la ubicacién destino.

Por ultimo, la interfaz Pipeline encapsula todos los componentes, la estructura y la gestion del
patrén utilizado. En la interfaz Pipeline se describen los métodos ‘design()’ y ‘run()’. El método
‘design()’ permite instanciar los componentes del sistema y a continuacién con el método ‘run()’
se consige iniciar la ejecucién pipeline.

Una vez definidas las interfaces que describen los componentes del sistema se procede a definir
las clases que los implementan.

4.2 Implementacion de los buffers

La clase Pipe implementa la interfaz BufferPipe. Esta clase estd compuesta por una estructura
cola que permite almacenar los resultados de los filtros. Se ha elegido una estructura de datos
FIFO (First In First Out) para que los datos circulen por el sistema de etiquetado en el orden que
van entrando al buffer. La clase Pipe implementa los métodos definidos en la interfaz BufferPipe
(read y write) que permite leer y escribir en la estructura de datos FIFO.

Por otro lado, la clase Pipe estd compuesta también por un seméaforo. Un semaforo es un

mecanismo de sincronizacién que constituye un método para restringir o permitir el acceso a un
recurso compartido. En este caso, el recurso compartido es la estructura de datos FIFO (cola).
El buffer es utilizado por dos filtros: el que genera los datos (y escribe en el buffer) y el que los
consume (y lee los datos del buffer). Por lo tanto es necesario un elemento de sincronizacién que
gestione la entrada y salida de datos del buffer: el seméaforo. La variable seméaforo internamente
es un contador. Los seméforos, de forma general, disponen de dos operaciones: ‘release()’ y
‘acquire()’. Mediante la operacién ‘release()’ se incrementa el valor del seméforo en una unidad
mientras que con la operacién ‘acquire()’ se decrementa en una unidad. Si el contador del

16

seméforo se encuentra a cero y se intenta realizar una operacién ‘acquire()’, la entidad que ha
realizado la operacién queda en un estado de suspensién (o bloqueo) hasta que otra entidad
distinta realice la operacién de ‘release()’ e incremente en una unidad el contador interno del
semaforo, en cuyo momento quedara “liberada” la entidad bloqueada. Este mecanismo de sin-
cronizacion se utiliza con la finalidad de bloquear procesos (filtros) que quieran leer de buffers
sin datos y se queden a la espera de nuevos datos para poder leer.

En la figura [9] se puede observar la secuencia de acciones que lleva a cabo un filtro y como
interacciona con el buffer. En primer lugar el filtro 2 realiza la operacién ‘acquire()’ y queda
bloqueado porque todavia no hay datos en el buffer (Pipe). El filtro 1 al terminar de realizar
sus tareas (‘doWork()’) escribe sus resultados en el buffer mediante la operacién ‘write()’. El
buffer, al recibir un nuevo dato a escribir, realiza internamente la operacién ‘release()’ liberando
al filtro 2 de su bloqueo. A continuacién el filtro 2 realiza la lectura de datos del buffer mediante
la operacién ‘read()’ y lleva a cabo sus tareas con la operacién ‘doWork()".

Filtro1 : Buffer : Filtro2 :

acquire()

doWork() T
write() i)
release() |
read()]
data
1 doWork()

]

Figura 9: Secuencia de acciones de los Buffers y los Filtros.

17

4.3 Implementacion de las etapas

La primera fase del sistema de etiquetado es la obtencién de las URLSs de los videos a procesar.
Estas URLs son proporcionadas por los usuarios a través de una aplicacién web, cuya interfaz
ya se ha visto previamente en la figura
Esta aplicaciéon web se ha implementado dentro del paquete init que se puede observar en la
esquina superior izquierda de la figura La aplicaciéon web estd compuesta por una clase
llamada initVT que hereda de la clase HTTPServiet. Un Servlet es una clase que permite que
una pagina web se pueda modificar dindmicamente a partir de los parametros que se envien a
través de una peticién desde un navegador web. Esta clase recibe las peticiones que realizan los
usuarios a través de la interfaz web. El método ‘doGet()’ responde a peticiones GET y devuelve
el fichero HTML de la interfaz web a los usuarios.

El método ‘doPost()’ captura las peticiones POST y procesa la peticién. En el procesamiento
de la peticién POST es donde se inicia la ejecucion del sistema de etiquetado y al finalizar, se
contesta al usuario con los resultados obtenidos.

La ejecucion del sistema de etiquetado se realiza instanciando la clase VideoLabelling que
implementa la interfaz Pipeline. Esta clase define internamente los componentes del sistema
(método ‘design()’). A su constructor se le pasan las URLs obtenidas de la peticién POST
(realizada por el usuario a través de la aplicacién web) y el destino deseado de los resultados
finales. Para iniciar la ejecucién se llama a la operacién ‘run()’.

Dentro del método ‘design()’ se definen los componentes que forman el sistema. En primer
lugar se instancia la clase URLInputSource que implementa la interfaz DataSource. A la clase
URLInputSource se le pasan (en el constructor) las URLs que se han recibido por parte de los
usuarios, y mediante el método ‘“read()’ el primer filtro podrd leer cada una de las URLs.

Por otro lado se instancia la clase OutputSource que implementa la interfaz DataSink. Al con-
structor de la clase QutputSource se le pasa la ubicacién donde almacenar los resultados del
sistema de etiquetado, que se llevard a cabo con el método ‘write()’ que implementa.

El resto de componentes que se definen dentro del método ‘design()’ son: todos los buffers del
sistema, todos los filtros del sistema y todos los semaforos que gestionaran los buffers. Antes de
acabar se crea un hilo de ejecucién (Thread) para cada filtro y finalmente, en el método ‘run()’,
se ejecutan todos en paralelo dando comienzo a la ejecucién del sistema de etiquetado.

A continuacion se va a describir la implementacion de las distintas etapas o procesos principales

del sistema de etiquetado junto a algunos fragmentos de cédigo relevantes para cada una de las
etapas.
Todas las herramientas utilizadas tienen una clase que las implementa o gestiona sus librerias
asociadas. Todas estas clases heredan de una misma clase: la clase Filtro. La clase Filtro es una
clase abstracta que a su vez implementa la interfaz Filter. Esta clase Filtro se ha disenado para
encapsular atributos y métodos comunes a todas las herramientas. En esta clase se almacenan
atributos, entre ellos booleanos (ind y outd), que indican si el filtro tiene que leer o escribir de
un buffer, de un DataSource o en un DataSink. Esta clase Filtro permite abstraer la accién de
leer de un buffer o de un DataSource y de escribir en un buffer o en un DataSink, se consigue de
esta forma reutilizar la clase para poder realizar distintas acciones. También se definen métodos
de lectura y escritura: ‘readFromlInput()’ y ‘writeFromInput()’. Estos métodos permiten que
dependiendo de los atributos mencionados antes se pueda leer de un buffer o del DataSource y
se pueda escribir en un buffer o en un DataSink.

18

YoutubeDL (Descarga de video): Para la herramienta YoutubeDL se ha implementado la
clase YoutubeDLTool. Esta clase ejecuta el script de la herramienta (youtube-dl.py) para realizar
la descarga de videos. Para la ejecucion de este script se utiliza la clase Process de JAVA.

Process p = Runtime.getRuntime() .exec(command) ;

El método ‘ezec()’ (linea 1) permite ejecutar un comando externo, en este caso el script de la
herramienta YoutubeDL con los parametros que necesite.

JAVE (Extraer el audio): Para la herramienta JAVE se ha implementado la clase Jave Tool.
Esta clase hace uso de las librerias de la herramienta para llevar a cabo la extraccion del audio
de los videos.

AudioAttributes audio = new AudioAttributes();

audio.setCodec("pcm_s16le"); //signed 16 bit little endian format
audio.setSamplingRate(new Integer(16000)); //sampling rate
audio.setChannels(1); //number of channels

EncodingAttributes attrs = new EncodingAttributes();
attrs.setFormat ("wav"); //audio format
attrs.setAudioAttributes(audio);

Encoder encoder = new Encoder();
encoder.encode(source, target, attrs); //transcoding file

Para llevar a cabo la extraccién del audio, en primer lugar se definen los atributos del audio
final que se quiere obtener (lineas 1-4). A continuacién se especifica el formato de salida del
audio (lineas 6-8) y finalmente se realiza la transcodificacién (conversién de un codec a otro) del
video a audio (lineas 10-11).

IBM - SpeechToText (Reconocimiento de voz): Para la herramienta SpeechToText de
IBM se han implementado dos clases: IBMWS e IBMThread. La clase IBMWS analiza el fichero
de audio obtenido de la etapa anterior (JAVE). Esta clase realiza un troceado del audio en frag-
mentos de hasta tres minutos. Se realiza este troceado debido a que el servicio de reconocimiento
de voz de IBM solo permite procesar ficheros de audio con una duracién no superior a tres
minutos. Cada uno de los trozos se pasa a la clase IBM Thread.

File file = splitAudio();

IBMThread ibmt = new IBMThread(file,numPart,transText);
Thread T = new Thread(ibmt);

T.start();

Con la funcién ‘splitAudio()’ (linea 1) se trocea el fichero original y cada trozo se pasa a un
objeto IBMThread junto con un identificador del ntimero de trozo numpart y una referencia a
un vector de strings transText (linea 2).

19

La clase IBMThread se trata de una clase que se ejecuta en un hilo de ejecucién aparte (lineas
3-4), ya que implementa la interfaz Runnable.

String recognizeURL = url_api;

URL obj = new URL(recognizeURL) ;

HttpsURLConnection con = (HttpsURLConnection) obj.openConnection();
con.setRequestMethod ("POST") ;

responseCode = con.getResponseCode() ;

La clase IBMThread se encarga de realizar una peticion al servicio de reconocimiento de voz
de IBM para extraer el texto de un fichero de audio. Esta clase al ejecutarse en un hilo de
ejecucién en paralelo al principal, permite realizar multiples peticiones contra el servidor de IBM
a la vez, una para cada trozo o fragmento resultante. El resultado obtenido del reconocimiento
de voz se almacena en la variable transText.

JATE (Extraccién de términos clave): Para la herramienta JATE se ha implementado
la clase JateTool. Esta clase hace uso de las librerias de la herramienta para llevar a cabo la
extraccion de términos.

Term[] tf = executeAlgorithm(new FrequencyAlgorithm(),
new FrequencyFeatureWrapper (termCorpusFreq)) ;
\\ ... Para cada uno de los algortimos

String[] mresult = majority_voting(tf,avg,ridf,gloss,weird,cvalue);

Con el método ‘executeAlgorithm()’ (linea 1) se ejecuta cada uno de los algoritmos que se
quieren utilizar y se almacenan los resultados de la extracciéon de terminos en un array de
términos (Term). Al finalizar la ejecucién de cada uno de los algoritmos, se realiza una votacién
por mayoria utilizando la funcién ‘majority_voting()’ que haciendo uso de los resultados obtenidos
por todos los algoritmos de extraccién de términos, devuelve en un array de strings los 20
términos mas significativos del documento o corpus de documentos utilizado.

Pybossa (Validacién de términos clave): Para la herramienta Pybossa se ha implementado
la clase PybossaTool. Esta clase se encarga de crear nuevas tareas en la aplicacion web de Pybossa
montada previamente de forma local, realizando peticiones POST con la informacién de la tarea.

String url = "http://localhost:5000/api/task?api_key=" + api_key;
URL obj = new URL(url);

HttpURLConnection con = (HttpURLConnection) obj.openConnection();
con.setRequestMethod ("POST") ;

DataOutputStream wr = new DataOutputStream(con.getOutputStream());
String data = buildJSONData(terms,videoURL) ;

wr.writeBytes(data);

int responseCode = con.getResponseCode();

20

Para la creacion de la nueva tarea se realiza una peticion POST a la direccién almacenada en la
variable url (linea 1). A esta peticién POST se le afiaden la informacién de los términos del video
y su enlace (lineas 5-7) que conforman los datos de la tarea a crear al finalizar correctamente la
peticion.

Pisixde (Obtencién de metadatos): Para la herramienta Pisizde se ha implementado la
clase PisizdeTool. Esta clase ejecuta un script (pisizde.sh) externo al entorno de ejecucién del
sistema. Se hace uso de la clase Process de JAVA para su ejecucién igual que con la herramienta
YoutubeDL.

Process proc = Runtime.getRuntime() .exec(command) ;

Igual que en la herramienta YoutubeDL el método ‘exec()’ (linea 1) permite ejecutar un co-
mando externo, en este caso el script de la herramienta pisizde con los parametros que necesite.

21

init + semaphore l,U n pipeline
‘Semaphore +bufferPipe g
HttpServiet . . bufferPips pr————— <cinterface>> <<interface>> <cinterface>>
EEE Ll F BufferPipe Data DataSource pipeline
. 1 $o0.1 -+ read(): Data + setData() +read(): Data + design()
T :Ie +write(in dt: Data) + setProperties() + setProperties() + run()
- file: + size() + getData() + report()
nitVT =
a1 = % =
doGet| i datasoll o A1)
#anns(n)() e = {r + dataSourcs
- requestFile() Object DataSink Runnable
- requestURL() + write{in dt- string)
+ setProperties()
.1
+object | 1
| — Inerface>>
T Fifter
+ doWork()
+ report()
“+ﬁ\lsrT1 n
J ;
—]
1 & i 545 &
" L]]
0.1 01 J 0.1 0.1
DataBlock DataContainer Filtro
01
-file - File -0 : Object i =~ #dt:-Data
. : 01| -8-
RRE stmg + getData(): Object j'_%i'f;ifhm
+ getURI() string + setData(in o- Object) SO
. - out - Object
+ getFile(): File + setProperties() K
3 -ind : boolean
+ DataBlock(in uri string) P -
+ DataBlock{in file: File, i ; e Rodiean
3 dataBlack . + Filtro{in ds: DataSource, in bp: BufferPipe)
* dstablod 4—|EIMThread‘L1 4l + Filtro{in bpi- BufferPipe. in bpo- BufferPipe, in S: Semaphore)
IBMThread + Filtro{in bp: BufferPipe. in dsk- DataSink, in S: Semaphore)
+ doWorkf()
= CIERT FE + readFrominput(: Data
- numPart : integer N
- N + writeFrominputiin dt: Data)
- transcribedPart - string
+ run()
+ [BMThread(in audiopart: File. in numpart: integer. in transcribedpart: string) + report()
+ curlRequest(in file: string) & ALLAL
+
Ll JateTool
1 + JateTool(in bpi: BufferPipe, in bpo: BufferPipe, in S: Semaphor...
IBMWS + JateTool(in bp: BufferPipe, in dsk: DataSink, in S: Semaphore)
+ IBMWS(in bpi- BufferPipe, in bpo: BufferPipe, in S Semaphore) +‘J326;|Dug‘(m dsri.Da(‘)ESDumE' BbpiBuferiipe)
+ IBMWS(in bp: BufferPipe, in dsk- DataSink, in S: Semaphore) — < WI“ el
+ IBMWSiin ds: DataSource, in bp: BufierPipe) :;‘;?;)T’gﬁ“;&)'”gu
- splitAudio(in source: string, in dst: string, in startsec: integer. in secondstosplit: integer) - executeAlgorithm()
ol i) + doWark()
+ report() o
report()
URLInputSource
- url - string JaveTool OutputSource
- urls - string + JaveTool(in bpi: BufferPipe, in bpo: BufferPipe, in S: Semapho... - dstFolder - string
- empty * boolean + JaveTool(in bp: BufferPipe. in dsk- DataSink, in S: Semaphore) + OutputSource(in dstrolder: string)
- muttipleURLs - boolean + JaveTool(in ds- DataSource, in bp- BufferPipe) pUt0U - sting
- actual * integer + doWork) +write(in dt: Data)
+ setProperties()
+ URLInputSource(in url: string) + report()
+ URLInputSource(in urls: string)
+ read() Data PisixdeTool
+ setProperties() YoutubeDLTool + PisixdeTool(in bpi: BufferPipe, in b...
+ “YoutubeDLTool(in bpi: BufferPipe, in bpo: BufferPipe. in 5: Se... + PisixdeTool(in bp: BufferPipe, in d...
S Pipe L + YoutubeDLTool(in bp: BufferPipe, in dsk: DataSink. in S: Sem... + PisixdeTool(in ds. DataSource, in ...
_ + YoutubeDLTool(in ds: DataSource, in bp: BufferPipe) + doWork()
+ 5 : Semaphore DownloadC d 2 String in tide: + report()
+id integer - getl ownloadComman (in uri: string, in title: string)
e 7] + FIFD - <no type= - getVideoTitle(in uri: string)
B - VP - getVideoExtension(in uri: string)
+ Pipe(in S: Semaphore, in id: integer) + doWork()
+ read() Data + report()
+ write(in dt- Data) 4
+ size()
+videoLabelling VideoLabelling g
+ Videol abelling(in url- string, in output: string) : ﬁ
PybossaTool ot N : -
+ Videol abelling(in urls- string, in output: string)
+ PybossaTool(in bpi- BufferPipe. in bpo: BufferPipe, in S: Semaph... - DataSourceFactory(in type: integer): DataSource
+ PybossaTool(in bp: BufferPipe, in dsk: DataSink, in S: Semaphore) + design()()
+ PybossaTool(in ds- DataSource, in bp: BufferPipe) + run()
+ readTerms() + reporti)
+ doWorki()
+ report()

Figura 10: Diagrama de clases del sistema de etiquetado.

22

5 Evaluacion

En esta seccién se van a exponer las pruebas intermedias realizadas para la eleccién de la
herramienta a utilizar en el reconocimiento de voz del sistema y por otro lado se van a describir
los resultados obtenidos de evaluar el rendimiento general del sistema de etiquetado.

5.1 Evaluacién intermedia

A continuacién se va a realizar una evalucién de las herramientas de reconocimiento de voz
que pasaron un primer andlisis en la seccién (IBM y CMU Sphinz). Para determinar qué
reconocedor de voz se iba a utilizar, se han realizado pruebas en relacién a su rendimiento y
calidad, realizando una prueba de reconocimiento de voz por separado, para ver que herramienta
tenia mejores resultados. La prueba de rendimiento realizada consiste en comprobar los costes
de computo de ambas herramientas, mientras que la prueba de calidad consiste en comprobar
qué porcentaje de aciertos tiene cada una de las herramientas comparando el texto obtenido del
reconocimiento de voz con los subtitulos originales del video.

5.1.1 Calidad

En primer lugar se van a describir los resultados obtenidos en la prueba de calidad. Para
ello, se seleccionaron 20 videos (charlas) de la comunidad TED [21], cuya finalidad es divulgar
conferencias sobre tecnologia, entretenimiento y disefio. De cada video se seleccionaron los 3
primeros minutos (dado que para realizar la comparativa era necesario que todos tuvieran la
misma duracién). Los videos fueron introducidos al sistema utilizando por un lado el reconocedor
de IBM y por otro lado el reconocedor de CMU Sphinz. A continuacién se compararon los
resultados obtenidos en el reconocimiento en cada uno, con los subtitulos de los videos originales,
permitiendo asi determinar cudntos términos o palabras reconocidas eran correctas y cuantas no.
En la tabla [5| se puede observar la tasa de aciertos para cada herramienta y para cada video.

En la tabla [5se puede ver el listado de cada uno de los veinte videos seleccionados (cuya du-

racién se ha acortado a tres minutos) junto a la tasa de aciertos (valores porcentuales) obtenida
por ambas herramientas en el reconocimiento de voz. Se ha comparado cada una de las palabras
obtenidas por cada herramienta con las palabras existentes en los subtitulos originales de los
videos (descargados de la web de procedencia de los videos: TED).
También se puede observar como el conjunto de videos de la coleccion utilizada obtiene unos
valores en las tasas de aciertos cercanos a la media, a excepcién de tres videos (senses (buenos
resultados), microbes (malos resultados) y hidden_objects (buenos resultados)) que tienen unos
valores muy por encima o muy por debajo de la media. Estos resultados atipicos, en estos tres
videos, estan causados por distintos aspectos: caracteristicas del ponente de la charla (acento,
origen, edad, etc) y caracteristicas del lugar de la conferencia (existencia o no de ruido de fondo)
que puedan afectar a reconocer la voz del ponente. Estos aspectos intervienen en los resultados
obtenidos por los reconocedores de voz. Las caracteristicas del ponente de la charla, como el
acento o la nacionaliadd de origen, afectan al resultado del reconocimiento de voz negativa o pos-
itivamente dependiendo de los datos de entrenamiento utilizados por el reconocedor. Si el acento
del ponente encaja con el acento utilizado en el entrenamiento del reconocedor, se conseguiran
resultados positivos, de lo contrario el reconocedor perderd precisién. En las caracteristicas del
entorno de la conferencia afecta negativamente la presencia de ruido de fondo, complicando la
tarea de reconocimiento de voz, por el contrario, sin ruido de fondo el reconocimiento de voz sera
mas satisfactorio.

23

Video

Nombre

mars

2 bill gates ebola
3 3d printing

4 comets

) virtual reality

6 capitalism

7 go to space

8 senses

9 brain control

10 quasars

11 smart computers
12 engineering food
13 brain communication
14 butterflies

15 computer vision
16 bacterias

17 micro robotics
18 microbes

19 bees

20 hidden objects

URL
https://www.ted.com/talks/nathalie_cabrol_how_mars_might_
hold_the_secret_to_the_origin_of_life
https://www.ted.com/talks/bill_gates_the_next_disaster_we_
re_not_ready
https://www.ted.com/talks/joe_desimone_what_if_3d_printing_| |
was_2bx_faster
https://www.ted.com/talks/fred_jansen_how_to_land _on_a_
comet
https://www.ted.com/talks/chris_milk_how_virtual_reality_
can_create_the_ultimate_empathy_machine
https://www.ted.com/talks/paul_tudor_jones_ii_why_we_need_
to_rethink_capitalism
https://www.ted.com/talks/angelo_vermeulen_how_to_go_to_
space_without_having to_go_to_space
https://www.ted.com/talks/david_eagleman_can_we_create_new_
senses_for_humans
https://www.ted.com/talks/greg_gage_how_to_control_someone_
else_s_arm_with_your_brain
https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love_ | |
with_quasars_blazars_and_our_incredible_universe
https://www.ted.com/talks/nick_bostrom_what_happens_when_
our_computers_get_smarter_than_we_are
https://www.ted.com/talks/pamela_ronald_the_case_for_
engineering_our_food
https://www.ted.com/talks/miguel_nicolelis_brain_to_brain_
communication_has_arrived_how_we_did_it
https://www.ted.com/talks/jaap_de_roode_how_butterflies_
self_medicate
https://www.ted.com/talks/fei_fei_1li_how_we_re_teaching_
computers_to_understand_pictures
https://www.ted.com/talks/tal_danino_we_can_use_bacteria_
to_detect_cancer_and_maybe_treat_it
https://www.ted.com/talks/sarah_bergbreiter_why_i_make_
robots_the_size_of_a_grain_of_rice
https://www.ted.com/talks/rob_knight_how_our_microbes_make_| |
us_who_we_are
https://www.ted.com/talks/anand_varma_a_thrilling look_at_
the_first_21_days_of_a_bee_s_life
https://www.ted.com/talks/abe_davis_new_video_technology_
that_reveals_an_object_s_hidden_properties

Tabla 4: Referencias de cada video de la coleccién utilizada.

En la tabla |4 se muestran las URLs donde se pueden encontrar cada uno de los videos de la
coleccién utilizada para realizar la evaluacion.

24

https://www.ted.com/talks/nathalie_cabrol_how_mars_might _hold_the_secret_to_the_origin_of_life
https://www.ted.com/talks/nathalie_cabrol_how_mars_might _hold_the_secret_to_the_origin_of_life
https://www.ted.com/talks/bill_gates_the_next_disaster_we _re_not_ready
https://www.ted.com/talks/bill_gates_the_next_disaster_we _re_not_ready
https://www.ted.com/talks/joe_desimone_what_if_3d _printing_was_25x_faster
https://www.ted.com/talks/joe_desimone_what_if_3d _printing_was_25x_faster
https://www.ted.com/talks/fred_jansen_how_to_land_on_a _comet
https://www.ted.com/talks/fred_jansen_how_to_land_on_a _comet
https://www.ted.com/talks/chris_milk_how_virtual_reality _can_create_the_ultimate_empathy_machine
https://www.ted.com/talks/chris_milk_how_virtual_reality _can_create_the_ultimate_empathy_machine
https://www.ted.com/talks/paul_tudor_jones_ii_why_we _need_to_rethink_capitalism
https://www.ted.com/talks/paul_tudor_jones_ii_why_we _need_to_rethink_capitalism
https://www.ted.com/talks/angelo_vermeulen_how_to_go_to _space_without_having_to_go_to_space
https://www.ted.com/talks/angelo_vermeulen_how_to_go_to _space_without_having_to_go_to_space
https://www.ted.com/talks/david_eagleman_can_we_create _new_senses_for_humans
https://www.ted.com/talks/david_eagleman_can_we_create _new_senses_for_humans
https://www.ted.com/talks/greg_gage_how_to_control _someone_else_s_arm_with_your_brain
https://www.ted.com/talks/greg_gage_how_to_control _someone_else_s_arm_with_your_brain
https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love _with_quasars_blazars_and_our_incredible_universe
https://www.ted.com/talks/jedidah_isler_how_i_fell_in_love _with_quasars_blazars_and_our_incredible_universe
https://www.ted.com/talks/nick_bostrom_what_happens _when_our_computers_get_smarter_than_we_are
https://www.ted.com/talks/nick_bostrom_what_happens _when_our_computers_get_smarter_than_we_are
https://www.ted.com/talks/pamela_ronald_the_case_for _engineering_our_food
https://www.ted.com/talks/pamela_ronald_the_case_for _engineering_our_food
https://www.ted.com/talks/miguel_nicolelis_brain_to_brain _communication_has_arrived_how_we_did_it
https://www.ted.com/talks/miguel_nicolelis_brain_to_brain _communication_has_arrived_how_we_did_it
https://www.ted.com/talks/jaap_de_roode_how_butterflies _self_medicate
https://www.ted.com/talks/jaap_de_roode_how_butterflies _self_medicate
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching _computers_to_understand_pictures
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching _computers_to_understand_pictures
https://www.ted.com/talks/tal_danino_we_can_use_bacteria _to_detect_cancer_and_maybe_treat_it
https://www.ted.com/talks/tal_danino_we_can_use_bacteria _to_detect_cancer_and_maybe_treat_it
https://www.ted.com/talks/sarah_bergbreiter_why_i_make _robots_the_size_of_a_grain_of_rice
https://www.ted.com/talks/sarah_bergbreiter_why_i_make _robots_the_size_of_a_grain_of_rice
https://www.ted.com/talks/rob_knight_how_our_microbes _make_us_who_we_are
https://www.ted.com/talks/rob_knight_how_our_microbes _make_us_who_we_are
https://www.ted.com/talks/anand_varma_a_thrilling_look _at_the_first_21_days_of_a_bee_s_life
https://www.ted.com/talks/anand_varma_a_thrilling_look _at_the_first_21_days_of_a_bee_s_life
https://www.ted.com/talks/abe_davis_new_video_technology_that_reveals_an_object_s_hidden_properties
https://www.ted.com/talks/abe_davis_new_video_technology_that_reveals_an_object_s_hidden_properties

Nombre del video IBM (%) | CMU Sphinx (%) | N° palabras | Ruido | Origen

mars 82.72 48.61 463 Nada | Francia
bill gates ebola 88.63 49.02 431 Nada | EE.UU.
3d printing 79.67 53.25 418 Nada | EE.UU.
comets 80.39 44.40 515 Nada | Holanda
virtual reality 85.23 43.99 352 Poco | EE.UU.
capitalism 83.82 55.26 445 Nada | EE.UU.
go to space 79.92 48.42 503 Nada | Bélgica
senses 90.52 65.78 464 Nada | EE.UU.
brain control 77.09 42.59 585 Poco | EE.UU.
quasars 68.99 45.24 416 Poco | EE.UU.
smart computers 79.30 46.59 430 Nada Suecia

engineering food 89.87 47.76 385 Nada | EE.UU.
brain communication 68.81 50.23 420 Nada Brasil

butterflies 80.84 50.18 574 Nada | EE.UU
computer vision 82.35 54.59 357 Nada China

bacterias 79.45 44.83 506 Nada | EE.UU.
micro robotics 86.36 55.68 572 Nada | EE.UU.
microbes 71.59 34.69 521 Poco | EE.UU.
bees 85.48 52.60 372 Nada | EE.UU.
hidden objects 94.29 69.79 473 Nada | EE.UU.
Media 81.77 50.18 460.1 - -

Tabla 5: Tasa de aciertos (%) entre los reconocedores
de voz CMU Sphinz e IBM.

En la tabla |5 también podemos observar: el niimero de palabras reales que se pronuncian en

cada video (obtenido a partir de los subtitulos originales del video), la existencia o no de ruido
(Nada, Poco o Mucho) y el pafs de origen del ponente de la conferencia.
A partir de estos datos, se pone en el punto de mira los dos videos de la coleccién que han
conseguido unas tasas de aciertos por debajo de la media con la herramienta de IBM: quasars y
brain communication. La razén por la que el primer video tienes estos malos resultados es debido
a que en el video la voz de la ponente se escucha algo distorsionada con una ligera existencia
de ruido de fondo. Por otro lado, el segundo video tiene una tasa de aciertos por debajo de la
media debido a que el ponente de la conferencia es de origen brasilenio y en su charla utiliza
terminologia portuguesa y tiene un acento brasileno, lo que dificulta el reconocimiento de todas
las palabras de su charla.

25

5.1.2 Rendimiento

A continuacién se van a describir los resultados de las pruebas en relacién al rendimiento
mostrado (costes de computo). Para ello, utilizando los 20 videos seleccionados en la subseccién
anterior, se van a ejecutar las dos herramientas de reconocimiento de voz (IBM y CMU Sphinz)
para analizar el tiempo de procesado empleado por cada una de ellas. Las especificaciones del

™
procesador de la maquina utilizada son: Intel® Core 17-4700MQ CPU @ 2.40GHz z 8 y
8GB de RAM. Los resultados obtenidos se pueden observar en la figura[L1] que muestra el tiempo
en realizar el proceso de reconocimiento de voz para cada video y por cada herramienta.

400
350
300
250

200
—»— IEM
150 —— Sphinx

100

Tiempo de procesamiento (s)

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Video

Figura 11: Comparativa del tiempo de procesado entre las herramientas
de reconocimiento de IBM y Sphinz.

IBM (s) | CMU Sphinx (s)
T. de procesado medio | 143.37 280.01

Tabla 6: Tiempo de procesado medio (en segundos) entre
los reconocedores de voz IBM y CMU Sphinz.

En primer lugar, en la ﬁgura se puede apreciar que a lo largo de los veinte resultados (de los
veinte videos) para cada herramienta se muestra una tendencia similar entre ambas herramientas.
Como se puede observar en la tabla [0} la herramienta CMU Sphinz tarda de media 1.95 veces
maés tiempo en procesar el reconocimiento de voz de un audio, que la herramienta andloga de
IBM. Este hecho se puede apreciar también en la figura [I1] en la que la linea que representa
la herramienta CMU Sphinz tiene valores que, en general, doblan a los que tiene la linea que
representa a la herramienta de IBM.

Por otro lado, teniendo en cuenta que se ha explicado antes que en la coleccién de veinte videos,

26

tienen todos una duracién de tres minutos, los tiempos de procesado varian entre cada video.
Este hecho se debe a que, al margen de la duracién del video, cada video es la grabacién de una
charla distinta, con una estructura y caracteristicas distintas, esto quiere decir que cada video
tiene, como es légico, una afluencia de dialogos distinta, lo que provoca que aumente o disminuya
el tiempo de procesado segin la cantidad de didlogos presentes en el video.

Para demostrar que los fragmentos con poco o ningtin didlogo (silencios) requerfan menos tiempo
de procesado, se hizo una prueba con un fragmento de audio de 50 segundos de duracién el cual
se procesé con las dos herramientas de reconocimiento de voz (IBM y CMU Sphinz). Los
resultados fueron un tiempo de procesado entorno a los dos segundos en ambas herramientas,
tiempo empleado por las herramientas para inicializar el proceso de reconocimiento de voz. Por lo
tanto, se llegd a la conclusion de que los fragmentos con silencios o sin didlogos no son procesado
por ninguna de las dos herramientas. Esta afirmacién se puede observar nuevamente en la figura
comprobando que ambas herramientas tienen una tendencia de tiempo de procesado analoga.

Finalmente se ha seleccionado la herramienta de reconocimiento de voz de IBM debido a que,
como ya se ha visto en los resultados expuestos en esta seccién, tanto su tasa de aciertos como el
tiempo de procesamiento que ofrece es claramente mejor al de la otra alternativa (CMU Sphinz).

27

5.2 Estimacién de los costes de computo

Para la evaluacion del sistema de etiquetado se ha puesto en marcha el sistema con las her-

ramientas finales elegidas para cada etapa, que se pueden observar en la figura [2| y se ha in-
troducido en el sistema la colecciéon de videos utilizada en la seccién (de tres minutos de
duracién cada video). En este caso los videos han atravesado todo el sistema de etiquetado y se
han almacenado los tiempos de procesamiento de cada etapa y los tiempos de lectura y escritura
en los buffers.
Una vez procesada toda la coleccién de videos por el sistema de etiquetado, los tiempos de proce-
sado de cada etapa se pueden observar en la tabla |7} Viendo los resultados de la tabla se puede
observar que en la primera etapa (YoutubeDL) algunos valores sufren desviaciones importantes
sobre la media, esto es debido a que esta herramienta, al realizar la operacién de descarga de
videos, depende de la sobrecarga de la red y la conexién a Internet.

Video | YoutubeDL (s) | Jave (s) | IBM (s) | Jate (s) | Pybossa(s)
1 8.07 1.074 165.031 1.136 0.015
2 12.12 0.908 128.201 0.768 0.024
3 14.12 0.852 124.631 1.009 0.017
4 15.35 0.898 | 158.149 | 0.635 0.013
5 23.07 0.811 157.257 0.648 0.012
6 11.52 0.922 107.89 0.602 0.011
7 9.26 0.888 | 155.542 | 0.632 0.014
8 16.21 0.756 | 164.042 | 0.587 0.017
9 12.46 0.784 | 158.485 | 0.629 0.021
10 13.18 0.872 | 116.353 | 0.590 0.017
11 9.14 0.83 157.182 0.611 0.013
12 12.55 0.842 170.951 0.698 0.015
13 10.59 0.826 | 147.697 | 0.592 0.016
14 11.03 0.684 | 160.359 | 0.809 0.012
15 12.32 0.904 | 138.885 | 0.738 0.017
16 9.22 0.843 180.193 0.626 0.013
17 10.74 0.684 138.222 0.563 0.013
18 13.67 0.708 | 106.149 | 0.583 0.013
19 9.45 0.808 | 113.155 | 0.838 0.015
20 10.89 0.743 | 119.013 | 0.584 0.013

Media 12.25 0.831 143.369 | 0.694 0.015

Tabla 7: Tiempo de procesamiento para cada etapa del sistema de etiquetado para una
coleccién de veinte videos.

En la tabla|7|se puede apreciar los distintos valores de las medias del tiempo de procesamiento
de cada etapa. Viendo estos valores se puede determinar qué etapas son més o menos lentas, y
cuales suponen un cuello de botella para el sistema de etiquetado, ya que esta etapa mas lenta
penalizard en tiempo a todo el sistema por las dependencias de unas etapas con otras. La etapa
mas lenta es, como se puede observar en la tabla, la etapa de reconocimiento de voz de IBM.

28

La evolucién de estos costes de computo para videos de una duracién superior para cada etapa
se comportaria de la siguiente forma. La etapa de YoutubeDL tendria un comportamiento lineal
con respecto a la duracién del video dependiendo siempre del estado de la conexién a Internet.
Las etapas de Jave, IBM y Jate también tendrian un comportamiento lineal con respecto a
la duracién del video que entra al sistema de etiquetado, ya que cuanto mayor es la duracién
de los videos mayor cantidad de datos tiene que decodificar la herramienta Jave, mayor audio
tiene que reconocer la herramienta de IBM, y mayor cantidad de texto tiene que procesar la
herramienta Jate. Por dltimo la herramienta Pybossa siempre deberia tener un coste de computo
independiente de la duracién del video que entra al sistema de etiquetado, ya que su tarea es
crear una nueva tarea para la validaciéon de 20 términos clave.

Como se puede observar en la tabla no aparecen los resultados de la tltima etapa del sistema
Pisizde. Esto se debe a que al generar el grafo de conceptos relacionando los 20 términos clave
obtenidos en etapas anteriores no llega a finalizar, se queda bloquedado. Sin embargo, al generar
grafos de conceptos relacionando un menor nimero de términos si que llega a finalizar. Ajenos
al sistema de etiquetado, se ejecuto el script de pisizde por separado en una terminal sel sistema
operativo (distribucién Linuz) con 20 términos clave obtenidos del sistema de etiquetado para
comprobar si funcionaba estando fuera del sistema de etiquetado. El script finalizaba dando unos
costes de computo de 12 minutos para un video y 38 minutos para otro distinto y generando
correctamente los grafos de conceptos. Un ejemplo de grafo generado se puede visualizar en la

figura [T7] del anexo [B]

Para terminar con la evaluacién del sistema de etiquetado, los tiempos de lectura y escritura
de los buffers del sistema han dado resultados muy cercanos a cero (0.001 segundos). Estos
tiempos de lectura y escritura se han obtenido midiendo el tiempo empleado en leer y escribir
de la estructura FIFO interna del buffer. Dado que la lectura y escritura se realiza sobre objetos
tipo File de JAVA, estas lecturas y escrituras se realizan de forma tan rapida ya que solo se lee
y escribe la direccién de memoria donde se ha creado el objeto fichero (File) y por otro lado los
ficheros que se han utilizado en la prueba no han sido de gran tamano (no superior a 5MB).

29

6 Gestion del proyecto

En este apartado se va a describir la metodologia organizativa para la realizacién del trabajo
asi como los esfuerzos empleados para llevarlo a cabo.

6.1 Organizacion

La metodologia utilizada para realizar el proyecto ha sido un desarrollo en cascada. Esta
metodologia divide el desarrollo en distintas etapas ordenadas, de tal forma que cada etapa debe
esperar a la finalizacion de la etapa anterior. Las principales etapas han sido: planificacién,
analisis, diseno, implementacién, pruebas y memoria.

Al inicio del proyecto se hizo un planteamiento del problema y un posterior analisis de herramien-
tas o recursos a integrar en el proyecto. A continuacién se llevo a cabo una etapa de diseno de
la arquitectura del sistema y la implementacion de la misma. Finalmente se realizaron pruebas
de integracién (pruebas al conjunto de componentes del sistema) |A| y evaluacién del sistema y
por tltimo se llevé a cabo la redaccién de este documento.

Periédicamente se han realizado reuniones de control y gestion del proyecto para revisar los pro-
gresos y analizar resultados.

El desarrollo real del proyecto se puede observar en la figura[I3]donde se puede apreciar el desar-
rollo en cascada en un diagrama de Gantt. La planificacién inicial del proyecto se puede observar
en la figura[T2] Los motivos por los cuales derivé esta planificacion en el desarrollo que se puede
observar en la figura [L3] fueron: dificultades en la implementacién y falta de experiencia a la hora
de preveer esfuerzos en la realizacion de un proyecto de estas caracteristicas.

;3.: 2015

project

e | Begi.m| e January Fehruary March April Mary June
© Planteamiento 2/16/15 2/17/15 1l
o Analisis 2/19/15 3710715 |
© Disefio 3/4/15 3/27/15 |
@ Implementacion 3/9/15 5/1/15 [I
o Pruebas/Evaluacién 4/13/15 5/29/15]
@ Redaccion de la memoria 5/1/15 6/24/15 [

Figura 12: Diagrama de Gantt de la planificacién inicial del proyecto.

> —a
» - 2015
<, 4

project

— | nqim| e Januiary February March April May June ‘Ju\y ‘Augus‘l ‘Seplember
© Planteamiento 2/16/15 2/17/15 0
© Anlisis 2/19/15 3/16/15 | —
@ Disefio 3/18/15 3/20/15]
© Implementacién 3/23/15 714/15 []
© Pruebas/Evaluacién 7/2/15 8/10/15 | ——

Redaccién de la memoria 6/29/15 9/16/15 [

Figura 13: Diagrama de Gantt del desarrollo real del proyecto.

30

6.2 Esfuerzos

Para la finalizacion del trabajo se han llevado a cabo distintas fases y cada una de ellas han
supuesto unos esfuerzos u horas de dedicacién. En la tabla [§] se detallan los esfuerzos para cada
una de esas etapas.

Etapa Horas
Planteamiento 10
Anilisis 44.5
Diseno 12
Implementacién | 143.5
Pruebas 42.5
Evaluacion 28
Memoria 85
Total 365.5

Tabla 8: Relacién de las fases del proyecto y los esfuerzos dedicados.

31

7 Conclusiones y trabajo futuro

En este ultimo apartado se va a finalizar este documento con las conclusiones finales obtenidas
del proyecto y el trabajo futuro que se puede realizar a partir de este.

7.1 Conclusiones

Finalmente se ha alcanzado el objetivo principal: desarrollar un sistema de etiquetado de
videos de forma automatica, utilizando para ello el contenido presente en el audio de los videos.
Se ha realizado un anélisis previo del sistema para determinar posibles herramientas a utilizar.
Tras el andlisis realizado se han seleccionado las siguientes herramientas: YoutubeDL (Descarga
de video), Jave (Extraccién de audio), IBM - SpeechToText (Reconocimiento de voz), Jate (Ex-
traccion de términos clave), Pybossa (Validacién de términos clave) y Pisizde (Obtencién de
nuevo metadatos).

Se ha conseguido desarrollar una aplicacién web que permita a usuarios, sin necesidad de
conocimientos del sistema, utilizar el sistema de etiquetado, pudiendo etiquetar grandes colec-
ciones de videos.

Se ha desplegado y desarrollado otra aplicaciéon web con el objetivo de que los usuarios puedan
validar los resultados obtenidos por el sistema de etiquetado y asi detectar posibles videos con
etiquetas que no corresponden a su contenido.

Se ha llevado a cabo una evaluacién del sistema a partir de pruebas de integracion de todas los
componentes que intervienen en el sistema de etiquetado.

Los problemas detectados durante el transcurso del desarrollo del proyecto han sido relacionados
con la herramienta Pisizde. Al principio el servidor remoto no contestaba a las peticiones ya
que se debia a un cambio en el nombre de la direcciéon utilizada. Por otro lado, al integrar la
herramienta al sistema, no llegaba a finalizar con éxito al pasarle un conjunto de 20 términos
clave para generar los grafos de conceptos.

Por otro lado, con este proyecto se han asentado conocimientos relacionados con la ingenieria
del software y las tecnologias web. También se ha logrado adquirir experiencia al embarcarse en
un proyecto de esta magnitud.

7.2 Trabajo futuro

Algunas de las opciones para dar continuidad al trabajo desarrollado son las que se exponen
a continuacion:

- Almacenar toda la informacién referente y disponible de los videos procesados (términos
clave, titulo, descripcién, fecha, etc) en ficheros XML (eXtensible Markup Language) para
una mejor representacién y posterior procesamiento. Al procesar grandes colecciones de
videos se obtendria una coleccién de ficheros XML con la que poder gestionar y procesar
toda esa informacién. La idea principal que se propone es conseguir tener toda esta in-
formacién relacionada (o enlazada) para poder llevar a cabo un buscador semdntico de la
coleccién de videos procesados por el sistema de etiquetado.

- Completar las tareas de validacién generadas por el sistema de etiquetado a partir de todos
los videos procesados por dicho sistema.

32

- Utilizar los resultados generados por el sistema de etiquetado por herramientas de apren-
dizaje electrénico (e-learning). Utilizar el sistema de etiquetado para procesar videos de
las plataformas de e-learning para ofrecer a sus usuarios mejor informacién referente al
contenido de los recursos multimedia que disponga la plataforma.

33

Anexos

A Prueba de integracion

En este anexo se va a describir el proceso llevado a cabo para realizar una prueba de integracién
del sistema de etiquetado.

Para comenzar la prueba el usuario debera acceder a la interfaz web que permite interactuar
con el sistema de etiquetado. Esta interfaz web permite al usuario enviar los videos que quiere
etiquetar al sistema de etiquetado indicando su URL. Como se puede observar en la figura
la interfaz web tiene dos opciones para enviar las URLs de los videos. Por un lado, se permite
enviar una tnica URL de un unico video (1) y por otro lado, se permite enviar al sistema de
etiquetado un fichero de texto (2) que contenga un listado de las URLs de una coleccién de
videos.

Video Annotation - Mozilla Firefox

Video Annotation

localhost:8080] v

Video Annotation

1) Procesamiento de una URL:

© ®

« Descargar resultados

Process

2) Procesamiento de varias URLs mediante fichero de texto:

@

Seleccionar archivo | Ningun archivo seleccionado

Process

Figura 14: Opciones presentas en la interfaz web del sistema de etiquetado.

Para la primera opcién se puede elegir si visualizar los resultados (las etiquetas generadas) en
la propia interfaz al finalizar o descargar los resultados en un fichero comprimido (.ZIP) como se
puede ver en la figura[15| (1).

34

I = video annotation < N

€ C f [localhost:8080/TFGWebProject/
Video Annotation
1) Procesamiento de una URL:

https:/iwww.youtube.com/watch?v=Az6yh0KxFVQ # Descargar resultados

2) Procesamiento de varias URLs mediante fichero de texto:

Seleccionar archivo | Ningun archivo seleccionado

L results.zip

Figura 15: Descarga de los resultados a través de la interfaz web del sistema de etiquetado.

Internamente, una vez se han enviado los videos, el sistema de etiquetado empieza a procesar
lo videos y los datos van pasando por las distintas etapas. En la figura [16|se puede observar un
ejemplo de ejecucién y de los eventos que ocurren dentro del sistema de etiquetado. Una vez
finaliza la ejecucion de toda la peticion de videos se contesta al usuario envidndoles los resultados.

35

[*. Problems @ Javadoc <" Search [& Declaration |E Console 2 |22 call Hierarchy -2 Call Hierarchy

VideoLabelling [Java Application] fusr/lib/jvm/java-7-openjdk-amdé4/bin/java (24/09/2015 16:54:25)
[Jave] Starting conversion ...

[Jave] Time elapsed: ©.851 sec.

[IBMWS] Loading Audio: senses 3min IBM ...

[IBMWS] T2 - Starting recognizer ...

[IBMWS] T1 - Starting recognizer ...

[IBMWS] T2 - Done work ...

[IBMWS] T1 - Done work ...

[IBMWS] Time elapsed: 121.17 sec.

[Jate] Loading Transcribed Audio: senses 3min IBM ...
[Jate] Starting Jate ...

Thu Sep 24 16:56:28 CEST 2015 loading exception data for lemmatiser...
Thu Sep 24 16:56:29 CEST 2015 loading done

[Jate] Time elapsed: 4.288 sec.

[Pybossa] Starting ...

[Adega] Starting ...

[Pybossa] Time elapsed: 0.001 sec.

Figura 16: Sucesion de eventos en la ejecucion interna del sistema de etiquetado.

36

B Grafo generado por la herramienta Pisixzde

En este anexo se van a mostrar dos ejemplos de grafos generados por la herramienta Pisizde
a partir de los términos clave generados por el sistema de etiquetado para dos videos. Se van
a mostrar los grafos de dos términos distintos, siendo cada término perteneciente a un video
distinto. Como los grafos estan definidos como ficheros XML se va a hacer uso de una her-
ramienta externa llamada Gephi [23] para la visualizacién de los mismos. Los grafos generados
por esta herramienta presentan nodos y aristas. Los nodos representan cada uno de los conceptos
recuperados, mientras que las aristas entre ellos representan las relaciones existentes.

En primer lugar se va a mostrar el grafo que pertenece al término Byte del video mars de la
coleccién de videos utilizada en este documento. El grafo se puede ver en la figura[I7] junto a los
datos de cada nodo que se pueden observar en la figura [18] que muestra una tabla de los datos
del grafo.

@

Figura 17: Grafo de conceptos del término clave Byte del video mars.

37

(Nodes J(Id __ J[Label|name |shortname
0 |0 |O |http://dbpedia.org/resource/Category:Numeral_systems ‘http://dbpedia.org/resource/Category:NumeraL_systems
1 1 1 MNumeral systems@en MNurmeral systems@en
3 3 3 htep://dbpedia.org/resource/Byte http:/{dbpedia.org/resource/Byte
4 4 4 http://dbpedia.orgfrescurce/Category:Data_unit http:/fdbpedia.org/resource/Category.Data_unit
5 5 5 Data unit@en Data unit@en
3 [6 http://dbpedia.org/resource/Category: Computer_data http://dbpedia.org/resource/Category: Computer_data
7 7 7 Computer data@en Computer data@en
3 8 8 http://dbpedia.orgfresource/Category. Computer_memory http://dbpedia.org/resource/Category. Computer_memory
9 9 9 http://dbpedia.org/resource/Category: Type_systems http:/{dbpedia.org/resource/Category Type_systems
10 10 10 Type systems@en Type systemsi@en
11 11 11 http://dbpedia.orgfresocurce/Category:Data_types http:/{dbpedia.orgfresource/Category:Data_types
12 12 12 Datatypes@en Datatypes@en
13 13 13 http://dbpedia.orgfresource/Category: Primitive_types http://dbpedia.org/resource/Category. Primitive_types
14 14 14 http://dbpedia.org/resource/Category: Units_of_information http:/{dbpedia.org/resource/Category.Units_of_infarmation

Como se puede ver en el grafo y en la tabla de datos, el término clave Byte se encuentra en
el nodo 3 y esta relacionado con términos o conceptos como Computer memory (8), Data (4) y

Figura 18: Tabla con los datos del grafo del término Byte del video mars.

Binary prefix (2).

El segundo ejemplo que se presenta es el término Animal del video senses. En la figura [I9] se
puede ver el grafo que conforman todos los conceptos relacionados de alguna manera con este

término. Mientras que en la figura [20| se pueden apreciar los datos de cada nodo del grafo.

38

Figura 19: Grafo de conceptos del término clave Animal del video senses.

En este caso podemos ver como del nodo 32 (el concepto Animal) salen un gran ndmero de
aristas que representan relaciones con otros nodos o conceptos, como por ejemplo el nodo 33 que
representa el concepto Zoology.

39

NO _||_|C| _||_|_EI.._J|_F'IEFT'IE Il

24

24

24

Animal genetics@en

25

25

25

http://dbpedia.org/resource/Category. Animal_metabolism

26

26

26

Animal metabolism@en

27

27

27

http://dbpedia.org/resource/Category.Animal_proteins

28

23

28

Animal proteins@en

29

29

29

http://dbpedia.org/resource/Category;Branches_of biology

30

30

30

Branches of biology@en

31

33

31

33

31

33

http://dbpedia.org/resource/Category: Animals

http://dbpedia.org/resource/Category.Zoology

34

34

34

http://dbpedia.org/resource/Category.Animal_monuments

35

35

35

Animal monuments@en

36

36

36

http://dbpedia.org/resource/Category:Animals_with_only

37

37

37

Animals with only bwo limbs@en

38

38

38

http://dbpedia.org/resource/Category. Carnivorous_animals

39

39

39

Carnivorous animals@en

40

40

40

http://dbpedia.org/resource/Category.Shelters_built_or us

41

41

41

Shelters built or used by animals@en

42

42

42

http://dbpedia.org/resource/Category:Wayward_animals

43

43

43

Wayward animals@en

44

44

44

http://dbpedia.org/resource/Category.Animals_by location

45

45

45

Animals by location@en

46

46

46

http://dbpedia.org/resource/Category.Animal_products

47

47

47

Animal products@en

48

43

48

http://dbpedia.org/resource/Category.Animals_in_media

49

49

49

Animals in media@en

50

50

50

http://dbpedia.org/resource/Category.Animals_that can_ch

51

51

51

Animals that can change color@en

52

52

52

http://dbpedia.org/resource/Category.Blind_animals

53

53

53

Blind animals@en

Figura 20: Tabla con los datos del grafo del término Animal del video senses.

40

Bibliografia

[1]

[11]

[12]

Guia Breve de la Web Semdantica - W3C (World Wide Web Consortium) [en linea).
Disponible en: http://www.w3c.es/Divulgacion/GuiasBreves/WebSemantica [Consulta:
Agosto 2015]

Lunaweb Ltd. ClipConverter [en linea]. Disponible en: http://www.clipconverter.cc/
es/| [Consulta: Septiembre 2015]

Diego Uscanga. aTube Catcher [en linea]. Disponible en: http://www.atube.me/video/
[Consulta: Septiembre 2015]

Alexey Kuznetsov. VGET - GitHub [en linea]. Disponible en: https://github.com/axet/
vget| [Consulta: Agosto 2015]

Ricardo Garcia. Youtube-dl - GitHub [en linea]. Disponible en: https://github.com/rg3/
youtube-dl [Consulta: Agosto 2015]

Carlo Pelliccia. JAVE - Java Audio Video Encoder [en linea]. Disponible en: http://www.
sauronsoftware.it/projects/jave/index.php [Consulta: Agosto 2015]

Crowd-Sourced Community. FFmpeg. [en linea]. Disponible en: https://ffmpeg.org/
[Consulta: Agosto 2015]

ConnectSolutions, LLC. Xuggler [en linea]. Disponible en: http://www.xuggle.com/
xuggler| [Consulta: Agosto 2015]

Alphabet Inc. Google Speech API [en linea]. Disponible en: https://www.google.com/
speech-api/v2/recognize [Consulta: Agosto 2015]

CMU Sphinz. [en linea]. Disponible en: http://cmusphinx.sourceforge.net/ [Consulta:
Agosto 2015]

IBM - Wikipedia, la enciclopedia libre. [en linea]. Disponible en: https://es.wikipedia.
org/wiki/IBM [Consulta: Septiembre 2015]

IBM Corp. IBM Speech to text. [en lineal. Disponible en: http://www.ibm.com/
smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html [Consulta:
Agosto 2015

IBM Corp. IBM Watson Developer Cloud. [en linea]. Disponible en: http://www.ibm.com/
smarterplanet/us/en/ibmwatson/developercloud/| [Consulta: Agosto 2015]

List of speech recognition software - Wikipedia, la enciclopedia libre [en linea]. Disponible
en: https://en.wikipedia.org/wiki/List_of_speech_recognition_software [Con-
sulta: Agosto 2015]

Ziqi Zhang. JATE - Java Automatic Term Extraction [en linea]. Disponible en: http:
//code.google.com/p/jatetoolkit/ [Consulta: Agosto 2015]

Daniel Lombrana. Pybossa [en linea]. Disponible en: http://pybossa.com/| [Consulta:
Agosto 2015]

M. Lama, J. C. Vidal, E. Otero-Garcia, A. Bugarin, S. Barro, "Semantic linking of learning
object repositories to dbpedia”, Educational Technology & Society, vol. 15 (4) (2012), paginas
47-61.

41

http://www.w3c.es/Divulgacion/GuiasBreves/WebSemantica
http://www.clipconverter.cc/es/
http://www.clipconverter.cc/es/
http://www.atube.me/video/
https://github.com/axet/vget
https://github.com/axet/vget
https://github.com/rg3/youtube-dl
https://github.com/rg3/youtube-dl
http://www.sauronsoftware.it/projects/jave/index.php
http://www.sauronsoftware.it/projects/jave/index.php
https://ffmpeg.org/
http://www.xuggle.com/xuggler
http://www.xuggle.com/xuggler
https://www.google.com/speech-api/v2/recognize
https://www.google.com/speech-api/v2/recognize
http://cmusphinx.sourceforge.net/
https://es.wikipedia.org/wiki/IBM
https://es.wikipedia.org/wiki/IBM
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/speech-to-text.html
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/developercloud/
https://en.wikipedia.org/wiki/List_of_speech_recognition_software
http://code.google.com/p/jatetoolkit/
http://code.google.com/p/jatetoolkit/
http://pybossa.com/

[18] Crowd-Sourced Community. DBpedia [en linea]. Disponible en: http://wiki.dbpedia.
org/| [Consulta: Agosto 2015]

[19] Crowd-Sourced Community. Wikipedia, la enciclopedia libre [en linea]. Disponible en:
https://wuw.wikipedia.org/| [Consulta: Septiembre 2015]

[20] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad and Michael Stal.
Pattern-oriented Software Architecture: A System of Patterns (VOLUME 1) (pp. 53-70).
New York, NY, USA: John Wiley & Sons, Inc, 1996.

[21] TED [en linea]. Disponible en: https://www.ted.com/talks [Consulta: Septiembre 2015]

[22] Chromim-dev [en linea]. Disponible en: https://groups.google.com/a/chromium.org/
forum/#!forum/chromium-dev [Consulta: Septiembre 2015]

[23] Crowd-Sourced Community. Gephi - makes graphs handy [en linea]. Disponible en: http:
//gephi.github.io/ [Consulta: Septiembre 2015]

42

http://wiki.dbpedia.org/
http://wiki.dbpedia.org/
https://www.wikipedia.org/
https://www.ted.com/talks
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-dev
https://groups.google.com/a/chromium.org/forum/#!forum/chromium-dev
http://gephi.github.io/
http://gephi.github.io/

	Índice de figuras
	Índice de tablas
	Introducción
	Motivación y contexto
	Problema a resolver y objetivos de alto nivel
	Estructura de la memoria

	Análisis
	Objetivos más concretos y requisitos
	Requisitos funcionales
	Requisitos no funcionales
	Análisis de herramientas
	Descarga de vídeo
	Extraer el audio
	Reconocimiento de voz
	Extracción de términos clave
	Validación de términos clave
	Obtención de metadatos

	Diseño
	Entorno del sistema
	Diseño del sistema de etiquetado
	Diseño del sistema de validación de términos

	Implementación
	Implementación del patrón
	Implementación de los buffers
	Implementación de las etapas

	Evaluación
	Evaluación intermedia
	Calidad
	Rendimiento

	Estimación de los costes de computo

	Gestión del proyecto
	Organización
	Esfuerzos

	Conclusiones y trabajo futuro
	Conclusiones
	Trabajo futuro

	Anexos
	Prueba de integración
	Grafo generado por la herramienta Pisixde
	Bibliografía

