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La rayuela se juega con una piedrita que hay que empujar con la punta del zapato.
Ingredientes: una acera, una piedrita, un zapato, y un bello dibujo con tiza,

preferentemente de colores. En lo alto está el Cielo, abajo está la Tierra,
es muy dif́ıcil llegar con la piedrita al Cielo, casi siempre se calcula mal

y la piedra sale del dibujo. Poco a poco, sin embargo,
se va adquiriendo la habilidad necesaria para salvar las diferentes casillas

(rayuela caracol, rayuela rectangular, rayuela de fantaśıa, poco usada)
y un d́ıa se aprende a salir de la Tierra y remontar la piedrita hasta el Cielo,

hasta entrar en el Cielo, (Et tous nos amours, sollozó Emmanuèle boca abajo),
lo malo es que justamente a esa altura, cuando casi nadie ha aprendido

a remontar la piedrita hasta el Cielo, se acaba de golpe la infancia
y se cae en las novelas, en la angustia al divino cohete,

en la especulación de otro Cielo al que también hay que aprender a llegar.
Y porque se ha salido de la infancia (Je n’oublierai pas le temps des cérises,

pataleó Emmanuèle en el suelo) se olvida que para llegar al Cielo se necesitan,
como ingredientes, una piedrita y la punta de un zapato.

JULIO CORTÁZAR, Rayuela
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sábado y domingo improductivas.

15



16



Resumen

Tradicionalmente, la bioloǵıa ha sido una ciencia cualitativa. En contraste con
la f́ısica—dedicada principalmente a encontrar las leyes generales que gobiernan
nuestro universo—o la qúımica—preocupada por las propiedades fundamentales de
átomos y moléculas—, la bioloǵıa involucra el estudio de los seres vivos, cuya comple-
jidad intŕınseca convierte cualquier enfoque cuantitativo en una tarea complicada.
A pesar de ello, la vida tiene lugar dentro del marco de las leyes de la f́ısica [1].
Asimismo, las interacciones entre átomos y moléculas son básicas en bioloǵıa, lo
cual dota de relevancia a las leyes de la qúımica. De esta manera, la bioloǵıa de-
beŕıa poder comprenderse en términos de la f́ısica y la qúımica y, por tanto, de una
manera cuantitativa.

Este planteamiento es relativamente reciente, y está motivado principalmente
por la mejora en la comprensión de los sistemas biológicos y por el desarrollo de
novedosas técnicas experimentales. Asimismo, nuevas disciplinas cient́ıficas, tales
como la f́ısica no lineal y de sistemas complejos o la qúımica computacional han
contribuido a este enfoque cuantitativo de la bioloǵıa. Dicho cambio en el status
quo de la investigación en bioloǵıa han atráıdo a cient́ıficos de diverso origen a
trabajar en problemas comunes, lo que ha creado un nuevo campo intŕınsecamente
interdisciplinar, conocido como biof́ısica, o f́ısica biológica.

En la bioloǵıa molecular, la f́ısica y la qúımica cobran una relevancia particular.
Las moléculas biológicas son más complejas que aquellas de las que se suele ocupar
la qúımica. Asimismo, realizan sus funciones de manera individual—operando en
el ĺımite de las leyes de la termodinámica—, involucradas en una compleja red de
interacciones entre cada uno de los átomos de la propia molécula, aśı como con el
medio que las rodea y otras macromoléculas. Esto plantea una exigencia importante,
en la cual la estructura molecular, su comportamiento dinámico y sus interacciones
con el medio tienen un papel fundamental a la hora de determinar su función.

Los últimos años se ha producido un progreso muy significativo en esta dirección.
Gracias al desarrollo de técnicas sofisticadas de biof́ısica—desde la cristalograf́ıa
de rayos X o la Resonancia Magnética Nuclear, a la espectroscoṕıa de fuerzas en
moléculas individuales—, ha sido posible la determinación de estructuras con res-
olución atómica, o incluso la manipulación de moléculas de manera individual, lo
que ha permitido incluso investigar directamente su comportamiento in vivo.

La complejidad de los sistemas biológicos limita la importancia de las predic-
ciones teóricas. La biof́ısica computacional ocupa este lugar, y se convierte en un
método crucial a la hora de comprender procesos biológicos, predecir nuevos com-
portamientos o ayudar en la interpretación de resultados experimentales. De man-
era creciente, las herramientas computacionales cobran una particular relevancia en
bioloǵıa, abarcando desde las simulaciones de dinámica molecular o las redes de in-
teracciones en protéınas, al análisis de bases de datos masivas o la propagación de
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epidemias.
La biof́ısica computacional debe hacer frente a dos problemas fundamentales.

El primero es el desarrollo de un modelo riguroso para el sistema a estudiar. Esta
elección es el punto de partida de cualquier estudio computacional y debeŕıa ser lo
suficientemente preciso como para reproducir de manera fiable las propiedades que
queremos explorar. De lo contrario no seŕıa un modelo predictivo. Dado que los
procesos biológicos ocurren en un rango espacial y temporal muy amplio, el primer
paso es elegir el nivel adecuado de modelado. Esta elección depende normalmente
de la pregunta que queremos responder. Por ejemplo, algunas enzimas catalizan
reacciones red-ox mediante la transferencia de electrones entre ellas. En este caso,
los efectos cuánticos no son despreciables, lo que hace necesario tener en cuenta sus
contribuciones. Sin embargo, las correcciones cuánticas son en general despreciables
en la dinámica de procesos a escala molecular como, por ejemplo, cambios confor-
macionales en biomoléculas, interacción entre biomoléculas o plegado de protéınas.

A pesar de ello, la potencia computacional disponible establece un cuello de
botella que limita tanto el número de part́ıculas como el tiempo durante el que
vamos a ser capaces de simularlas. Por ejemplo, el estudio del plegamiento de
una protéına pequeña (unos 50 aminoácidos) con resolución atómica require la in-
tegración numérica de las ecuaciones de movimiento de unas 104 part́ıculas. Con
un paso de integración del orden de femtosegundos—tiempo caracteŕıstico de vi-
bración atómica—seŕıan necesarios más de 109 pasos de integración por part́ıcula
para obtener una trayectoria del orden de microsegundos, tiempo caracteŕıstico en el
que pliegan las protéınas más rápidas. Por tanto, a d́ıa de hoy es imposible simular
sistemas de mayor tamaño o procesos que ocurren a escalas temporales superiores

Para solventar esta limitación, la estrategia habitual es la disminución del nivel
de detalle de nuestro modelo, algo a lo que la f́ısica está bastante habituada. Del gran
número de grados de libertad que tiene un sistema molecular, probablemente sólo
unos pocos sean relevantes en el problema de estudio. Los modelos de tipo coarse-
grained (grano grueso) nacen con esta filosof́ıa. Promediando sobre algunos grados
de libertad originales, se mantiene un número más reducido de “súper-átomos” o
centros de interacción con los cuales describir nuestro sistema. Esto permite acceder
a escalas de longitud mayores, aśı como a tiempos más largos. La principal difi-
cultad de este enfoque es la elección de los grados de libertad relevantes en nuestro
problema. Otro problema es el planteamiento de una parametrización adecuada,
que deberá escalar de manera natural con el sistema original de nivel atómico. A
un nivel más grueso, existen modelos en la mesoescala o incluso en el continuo, que
requieren simplemente identificar las escalas temporales y espaciales caracteŕısticas
del proceso de interés. Idealmente, debeŕıa ser posible progresar de manera con-
tinua entre estos niveles de modelado, pasando desde los sistemas cuánticos a la
macroescala. No obstante, la posibilidad de realizar transiciones suaves entre cada
uno de estos saltos de modelo presenta una gran dificultad (ver Figura 1).

El segundo problema a considerar en la realización de simulaciones computa-
cionales es la transformación de los datos obtenidos en información relevante acerca
del sistema. En principio, las simulaciones proporcionan gran cantidad de datos
en bruto—por ejemplo una trayectoria larga de cada uno de los grados de lib-
ertad considerados—de los cuales no es posible obtener directamente información
comprensible acerca del problema que tratamos. Conforme aumenta la potencia
computacional, este problema es más relevante. Cada vez más investigadores se
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Figure 1: Diferentes escalas de modelado en biof́ısica: La elección de la escala de modelado
más apropiada depende de las escalas temporales y espaciales en las cuales ocurren los procesos a
modelar. Estos procesos pueden abarcar hasta cinco órdenes de magnitud.

dedican al desarrollo de métodos que permitan la configuración de una descripción
f́ısicamente significativa sobre el sistema que estudiamos.

En este contexto, el propósito principal de la presente Tesis Doctoral es el es-
tudio de tres problemas biológicos diferentes, poniendo énfasis en la metodoloǵıa
y el modelado. Tal y como manifiesta el t́ıtulo, las interacciones, las fuerzas y la
enerǵıa libre son los ingredientes comunes en este trabajo. Primero, las interac-
ciones moleculares no sólo contribuyen a la estabilidad de la estructura molecular,
sino también en cada proceso que ocurre en el interior de la célula. De la misma
manera, la aplicación de fuerzas a sistemas biológicos ha ganado recientemente una
gran relevancia en el campo de la biof́ısica. Problemas como la adhesión celular, el
movimiento molecular o la elasticidad muscular muestran la importancia intŕınseca
de las fuerzas a nivel molecular. Asimismo, las técnicas de molécula individual han
acentuado la importancia de emplear fuerzas mecánicas para inferir la estructura
molecular, sus propiedades dinámicas, o incluso su función.

Como último ingrediente, empleamos la enerǵıa libre como lengua común en la
que explicar los procesos moleculares. La enerǵıa libre permite describir la esta-
bilidad de un sistema en particular, ya que proporciona la probabilidad de que un
determinado estado se pueble o de que un proceso ocurra. Asimismo, puede describir
procesos cinéticos, ya que las transiciones entre estados se pueden comprender como
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saltos sobre barreras de enerǵıa libre. De esta manera, el conocido como paisaje de
enerǵıa libre de un sistema molecular proporciona toda la información significativa
acerca de un determinado sistema.

Esta Tesis Doctoral está estructurada en cuatro partes, incluyendo las conclu-
siones finales. La primera, segunda y tercera corresponden en un sentido amplio a
tres temas diferentes tratados a lo largo de su desarrollo.

La Parte I se centra en el análisis de dinámica de protéınas, enfatizando las
distintas descripciones que pueden usarse para comprender su paisaje de enerǵıa
libre. Comenzamos con el Caṕıtulo 1, que sirve de breve introducción en el problema
del plegado de protéına, y de cómo la dinámica molecular es una herramienta potente
para explorarlo. El Caṕıtulo 2 presenta los métodos que utilizaremos a lo largo de
la Parte I, aśı como en las siguientes. En particular, presentamos dos metodoloǵıas
diferentes para describir el paisaje de enerǵıa libre de un sistema molecular. El
primero plantea su representación por medio de un número pequeño de parámetros
de orden. El segundo lo transforma en una red cinética, donde las cuencas de enerǵıa
libre están definidas como estados con una cierta probabilidad de transición entre
ellas. El principal objetivo de esta Parte I es la comparación de ambos enfoques
para comprender un sistema molecular.

Para nuestro estudio, escogemos un modelo de protéına coarse-grained. Éste es
un sistema de relevancia biológica, con un comportamiento dinámico complejo, y
por su tamaño es fácil de tratar. El Caṕıtulo 3 revisa los modelos coarse-grained de
protéına, centrándose en el que usaremos en particular. Finalmente, los Caṕıtulos 4
y 5 muestran los resultados de nuestro estudio, donde la protéına modelo se somete
a una fuerza mecánica para forzar la transición de desnaturalización. El Caṕıtulo 4
se centra en diferentes descripciones de baja dimensión, con particular énfasis en la
importancia de escoger coordenadas de reacción adecuadas. Asimismo emplearemos
métodos de reducción dimensional como herramientas para encontrar parámetros de
orden adecuados. En el Caṕıtulo 5 proporcionaremos la descripción del sistema en
forma de red cinética, caracterizando su espacio conformacional de manera adecuada,
aśı como revelando sus rutas de desnaturalización.

La Parte II muestra el estudio de un modelo de DNA al nivel del par de bases.
El Caṕıtulo 6 comienza con una breve revisión sobre la molécula de DNA desde la
perspectiva biof́ısica. El Caṕıtulo 7 es una introducción al modelo mesoscópico que
emplearemos, el modelo de DNA de Peyrard-Bishop-Dauxois. El Caṕıtulo 8 muestra
el primer trabajo en este tema, donde modificamos el modelo original para incluir la
interacción con el solvente. En elCaṕıtulo 9 proponemos un modelo de interacción
protéına-DNA donde el modelo de Peyrard-Bishop-Dauxois sirve de modelo para la
molécula de DNA, y se incluye una part́ıcula que interacciona acoplada a las regiones
abiertas en el DNA. En el Caṕıtulo 10 profundizamos en este modelo, analizando
promotores de un organismo particular. Nuestro objetivo es la localización de posi-
bles sitios de unión protéına-DNA aplicando un método de análisis detallado sobre
simulaciones del modelo.

La parte III está dedicada a los experimentos de molécula individual. Presenta-
mos una colaboración experimental, analizando experimentos de molécula individual
para la disociación mecánica de complejos biológicos. Nuestro objetivo es propor-
cionar una visión adecuada del paisaje de enerǵıa libre que gobierna el proceso. El
Caṕıtulo 11 sirve de breve introducción a este tipo de técnicas, centrándonos en la
relevancia de aplicar fuerzas directamente a moléculas individuales. En el Caṕıtulo
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12 presentamos algunos métodos significativos que han sido propuestos para obtener
enerǵıas libres al analizar la respuesta a la fuerza de un determinado sistema. Éstos
pueden ser clasificados en dos grupos diferenciados. Unos proponen la obtención
de barreras de enerǵıa libre, mientras que los otros la obtención de magnitudes de
equilibrio a partir del análisis de procesos fuera del equilibrio.

El Caṕıtulo 13 muestra el análisis de experimentos por medio de un protocolo
cuidadoso que proponemos para comprender la disociación mecánica de complejos
biológicos. Este caṕıtulo incluye la descripción del sistema biológico que estudiamos,
el procedimiento que seguimos para analizar los experimentos, aśı como los resulta-
dos obtenidos. Sorprendentemente, nuestros resultados plantean una discrepancia
que nos motiva a proponer un nuevo perfil de enerǵıa libre para describir este pro-
ceso. Esta tarea se lleva a cabo en el Caṕıtulo 14, donde planteamos un modelo f́ısico
para este tipo de experimentos, basado en un nuevo perfil de disociación. Realizamos
simulaciones en este modelo para reproducir las trayectorias experimentales. Si se
aplica el mismo protocolo de análisis, somos capaces de recuperar las caracteŕısticas
del perfil original. Esto valida nuestro método, y nos permite llegar a conclusiones
significativas a cerca del proceso de disociación mecánica de compuestos biológicos.
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Summary

Traditionally, biology has been a qualitative science. In contrast to physics—primary
devoted to finding general rules that define our universe—or chemistry—concerned
with the fundamental properties of atoms and molecules—, biology involves the
study of living systems, with an intrinsic complexity which makes any quantitative
approach a complicated task. However, life takes place within the confines of the laws
of physics [1]. Also, interactions between atoms and molecules are basic processes
in biology, giving relevance to chemical laws. It follows then that biology should be
understood in terms of physics and chemistry, and so, described in a quantitative
way.

This approach is very recent, and it is motivated mainly by advances in our un-
derstanding of biological systems and the development of novel experimental tech-
niques. Also, the advent of new scientific disciplines, such as nonlinear and complex
system physics or computational chemistry, has contributed to the development of
quantitative biology. This recent breakthrough has attracted scientists from different
backgrounds to work on common biological problems, giving rise to an intrinsically
interdisciplinary field, which is generically known as biophysics or biological physics.

For molecular biology, the importance of physics and chemistry is particularly
emphasized. Biological molecules are considerably more complex than those species
usually studied in chemistry. Also, they operate at an individual level—in the border
of thermodynamic laws—, involved in a complex interplay between each atom within
the molecule itself, but also with the environment or other macromolecules. This
presents a serious challenge were the structure of the molecules, their dynamical
motions, and the complex networks of interactions play central roles in determining
their function.

Recent years have witnessed a significant progress in this direction. Boosted by
the development of sophisticated biophysical techniques—from X-ray crystallogra-
phy or Nuclear Magnetic Resonance to single-molecule force spectroscopy—, it has
been possible to determine molecular structure at an atomic resolution, or even to
probe molecules at an individual level, possibly monitoring directly their in vivo
function.

The complexity of biological systems gives a rather limited range of action to
theoretical predictions. Computational biophysics occupy this role, becoming a
crucial method to understand biological process, to predict new phenomenology
or to help in the interpretation of experimental data. Computational tools have
an increasing role for the study of an large number of problems, spanning from
the direct simulation of molecular dynamics, to networks of interacting proteins,
analysis of large data bases or epidemic spreading.

Computational biophysics face typically two different problems. The first one is
the development of an accurate model for the system we want to simulate. This is
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the input of our simulations, and must be able to reproduce faithfully its behavior
in order to provide a reliable source of information. Biological processes span over a
huge range of length and time scales. The first step is the choice of the appropriate
level of modeling, which usually hinges upon the particular question we want to an-
swer. For example, some enzymes catalyze redox reactions which involve the transfer
of electrons. Quantum effects are non-negligible here, so a proper description of such
process should account for these contributions. Nevertheless, quantum corrections
are usually meaningless when describing biological macromolecules, like for example
in conformational changes, ligand:receptor interaction or protein folding.

Nevertheless, the available computational power sets up a natural bottleneck
which limits how many particles and for how long can we simulate them. For exam-
ple, if we want to learn how does an small protein of ∼ 50 amino acids reaches its
folded conformation with atomic detail, we must integrate numerically the equations
of motion of ∼ 104 particles. With a time step in the order of fs—characteristic time
of atomic vibration—we should integrate over 109 times the equations of motion per
atom to achieve a trajectory of µs, characteristic time to observe a single folding
event for fast folding proteins. If we wish to study a larger system such the inter-
action of some drug with a lipid bilayer, or processes which occur on longer time
scales, an atomic resolution is hopeless.

The strategy upon this limitation is to decrease the level of detail of our model,
something to which physics is quite used to. Out of the thousands of degrees of
freedom involved in a molecular system, theres is likely a few significant ones for
the particular question we want to explore. Coarse-grained models born with this
philosophy, as they integrate out some degrees of freedom to leave out a small
number of “super-atoms” or interaction centers, with which the system is described.
This reduction allows us to access to larger length or longer time scales. Obviously,
the main difficulty is the choice of the relevant degrees of freedom of our problem
and the selection of an appropriate parametrization, which should scale properly
with the lower scale model. Above coarse-graining, we can choose models in the
mesoscale or even in the continuum simply by identifying which are the length
and time scales in which the properties of interest manifest. Ideally, it should be
possible to move continuously through the different modeling levels, from the very
tiny atomic quantum systems, to the macroscale, although a smooth transition
between each jump presents an additional challenging issue (see Fig. 2).

A second concern when dealing with computer simulation is to transform the
data into valuable knowledge about our system. In principle, our simulation renders
a large amount or “raw” data—like for example a very long time series of all the
involved degrees of freedom—from which it is not straightforward to meet a mean-
ingful answer for the question we are asking. As the computational power increases,
this issue becomes more and more relevant, and more researchers are devoted to the
development of methods which can yield a physically relevant picture of the system
subject to study.

In this context, the principal purpose of this Thesis is to tackle three different
biological problems, emphasizing the modeling and the methodical steps. As the
title reads, interactions, forces and free energies are the common ingredients of
this work. First, molecular interactions contribute, not just to the stability of the
structure of molecules, but also to every function inside the cell. Forces -meaning
external forces- have gained recently a lot of popularity in the field of biophysics. It
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Figure 2: Different modeling scales in biophysics: The choice of the most appropriate
modeling scales hinges upon the length and time scales at which the desired processes occur.
These processes span over five orders of magnitude.

is known that forces are ubiquitous in biology, participating in processes as diverse
as cellular adhesion, molecular motion or muscle elasticity. Nevertheless, the birth
of single-molecule techniques have stressed the importance of force as a probe to
inspect molecular structure, dynamics and function. As a last ingredient, free energy
is a common language for explaining molecular processes. Free energy differences
allow to describe the stability of a particular system, as it gives the probability of
a determinate state or process to occur. Also, it can be used to describe kinetic
processes by understanding transitions between states as hopping events over free
energy barriers. In this sense, the so called free energy landscape of a molecular
system provides all relevant information about the system and thus constitutes the
ultimate information we want to acquire.

This Thesis is structured in four parts, including the present introduction and
the final conclusions. The first, second and third parts correspond broadly to the
three different topics which have been treated within the last years.

Part I is devoted to the analysis of protein dynamics, focusing on different de-
scriptions that can be used to understand their free energy landscape. We start with
Chapter 1, which serves as a brief introduction into the problem of protein folding,
and how molecular simulations are a useful tool for understanding it. Chapter 2
presents the methods to be used through Part I and other parts of the Thesis. In
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particular, we present two different approaches for understanding the free energy
landscape of a molecular system. One focusses on its representation through a small
number of order parameters. The other transforms it into a kinetic network, where
the free energy basins are defined as states with a certain probability of transition
between them. The main objective of Part I is to compare the performance of both
approaches on a particular molecular system.

We choose a non-native coarse-grained protein model for such purpose. This
system has biological relevance, with a complex dynamic behavior, but it is easy to
simulate due to its small size. Chapter 3 focuses on coarse-grained protein models,
explaining in particular the one we employ. Finally, Chapters 4 and 5 show the
results of our study, where the model protein is subject to a mechanical force to
enhance the unfolding transition. We wonder which is the best way to characterize
this process, understanding which mechanism does the protein follows to transit
from the native to the unfolded structure. Chapter 4 focusses on different low
dimensional descriptions, emphasizing the importance of a correct choice of the
reaction coordinates. Also, we employ a systematic method for dimension reduction
as a useful tool to define meaningful order parameters. Chapter 5 gives the network
description of the system, where the conformational space is correctly described,
and the unfolding pathways unveiled.

Part II focuses on the study of the DNA model at the base-pair level. Chapter 6
starts as a brief overview of the DNA molecule from the perspective of a biophysicist.
Chapter 7 is an introduction to the mesoscopic model we use, the Peyrard-Bishop-
Dauxois DNA model. Chapter 8 is the first work on this topic, where the original
model is modified in order to include the interaction with the solvent when the
double-helix is disrupted and the base-pairs exposed to the solvent. In chapter 9 we
propose a protein-DNA interaction model where the DNA molecule is modeled with
Peyrard-Bishop-Dauxois model, including an interacting particle which couples to
open regions of the DNA. Chapter 10 makes a further study on this model, which
we use to analyze promoters from a particular organism in order to locate protein-
binding sites by applying a suitable analysis method on our model.

Part III is dedicated to probably the most popular experimental techniques
in biophysics, single-molecule experiments. Here we present a work in collabora-
tion with an experimental group, where we analyze single molecule experiments for
mechanical unbinding of biological complexes, in order to provide a correct vision
of the free energy landscape governing such process. Chapter 11 is a short intro-
duction on this sort of techniques, focusing on the relevance of applying forces to
individual molecules. Chapter 12 presents some reliable methods which have been
proposed for obtaining free energies by analyzing the force response of a particular
system. They can be classified in two different sets, ones devoted to the recovery of
free energy barriers, and the other obtaining equilibrium magnitudes by analyzing
a non-equilibrium process.

Chapter 13 presents the analysis of the experiments by means of a careful pro-
tocol we propose to understand mechanical unbinding of biological complexes. This
chapter includes a description of the biological system, the procedure we follow to
analyze the experiments and the results we obtain. Surprisingly, our findings lay out
a discrepancy which motivates us to propose a new free energy profile to describe
this process. This task is undertaken in Chapter 14, as we suggest a model for this
sort of experiments, based on the new unbinding profile. We perform simulations on
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the model to mimic the experimental trajectories. Applying the same analysis pro-
tocol, we can recover the characteristics of the target profile, validating our method
and allowing us to arrive to meaningful conclusions about the process of mechanical
unbinding of biological complexes.
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Part I

Understanding Molecular
Simulations: Of Low Dimensional
Representations and Markov State

Models
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It is going to be necessary that everything that happens
in a finite volume of space and time would have to be
analyzable with a finite number of logical operations.

The present theory of physics is not that way, apparently.
It allows space to go down into infinitesimal distances,

wavelengths to get infinitely great, terms to be summed in infinite order,
and so forth; and therefore,

if this proposition [that physics is computer-simulatable] is right,
physical law is wrong.

RICHARD P. FEYNMAN
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Chapter 1

Of Proteins, Protein Folding and
Free Energy Landscapes: A Brief
Overview

This section intends to be a general introduction into the biochemistry of proteins,
and the problem of protein folding. We give a quick overview on some tools and
theories biophysicists have proposed to deal with this problem, stressing the cur-
rent importance of molecular simulations. Finally, motivated by single molecule
experiments, we introduce briefly mechanical unfolding of proteins.

1.1 Proteins, a Brief Introduction into the Ma-
chinery of Life

Proteins are Linear Chains of Amino Acids

Proteins are macromolecules which play a central role in biology. They perform a
vast array of functions, from catalysis or molecular recognition, to transport or DNA
replication. From the biochemical point of view, they are linear chains of amino
acid residues. Nearly every known protein is built from just 20 different amino
acids, bound together through covalent bonds. Yet, they present a large variability
in size, function and complexity. Proteins arrange tridimensionally into functional
structures determined by their amino acid composition. However, they frequently
suffer post-transcriptional modification that may alter this final sequence, depending
on the environmental conditions. Additionally, some proteins have non-peptidic
groups attached to them -the so called cofactors, such as metal ions, NADP or some
vitamins. Even more, they usually form stable associations -protein complexes- in
order to perform a particular function.

In a deeper sight, amino acids are the building blocks of proteins. They share
common structural features. Particularly, the 20 standard amino acids which form
proteins are α-amino acids. They are organic compounds which have a carbon atom
(α-carbon) with a carboxylic acid (-COOH) and amine group (-NH2) attached to
it. Additionally, a side-chain specific to each amino acid determines the particular
properties of the molecule, such as size, solubility or electric charge. Amino acids
can be classified according to their lateral chains or R-groups into five groups (see
Fig. 1.1).
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Figure 1.1: The 20 amino acids found in proteins: Amino acids are ordered according to
their side chain (picture taken from [2]).

1. Hydrophobic side chain: These aminoacids have apolar side chains which
tend to aggregate due to hydrophobic interactions. They are Alanine (Ala,
A), Glycine (Gly, G), Isoleucine (Ile, I), Leucine (Leu, L), Methionine (Met,
M) and Valine (Val, V).

2. Aromatic side chain: They have aromatic groups in their lateral chains and
are also hydrophobic. They are Phenylalanine (Phe, F), Tryptophan (Trp, W)
and Tyrosine (Tyr, Y).

3. Polar Neutral side chain: These amino acids do not have an electric charge
but they have a net dipolar moment. In this regard they are hydrophilic and
highly soluble. They are Proline (Pro, P), Asparagine (Asn, N), Cysteine
(Cys, C), Glutamine (Gln, Q), Serine (Ser, S) and Threonine (Thr, T).

4. Negatively charged side chain (acidic): These amino acids have a net
negative charge at neutral pH. They are Aspartic acid (Asp, D) and Glutamic
acid (Glu, E).

5. Positively charged side chain (basic): These amino acids have a net
positive charge at neutral pH. They are Arginine (Arg, R), Histidine (His, H)
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and Lysine (Lys, K).

The Peptide Bond

The covalent bond between two amino acids is known as the peptide bond. The
formation of this bond is a condensation processes between the amino group of
one residue and the carboxyl group of another, yielding a water molecule and the
dipeptide molecule, see Fig. 1.2 (A). The peptide bond forms a rather restrained
molecule, where six atoms are constrained to lie in a plane, as nitrogen and carbon
atoms in the NH-CO unit are sp2 hybridized. Additionally, there is a certain freedom
of rotation about the Cα − CO, Cα − NH, hindered only by the steric interaction
between the nonbonded atoms.

These angles are usually labeled as ψ and φ respectively, see Fig. 1.2 (B). The
angle ω for the CO-NH bond has an almost fixed value of ω = 180o (planarity of the
bond). This is the trans configuration. The cis configuration ω = 0o is energetically
unfavorable because of the steric clash between the side chains of the amino acids.
For a trans peptide bond the distance Cα − Cα is of ≈ 3.8 Å.

Figure 1.2: Peptide bond formation and geometry of the peptide bond: Panel (A) shows
the condensation relation that can form the peptide bond between two amino acids. Panel (B)
shows the geometry of the peptide bond, with atoms α-C, β-C and N laying on the same plane.
Dihedral angles ψ and φ are defined. (Picture modified from [2])

Disulfide bonds are an additional kind of covalent bonds which appear in proteins,
forming between oxidized sulfur atoms of cysteine residues. Disulfide bridges have
crucial effects on the flexibility of proteins and on the stabilization of quaternary
structures.

A linear chain made up of several amino acids bonded by peptide bonds is a
polypeptidic chain. Amino acids belonging to a polypeptidic chain are usually re-
ferred to as residues.

Elements of Protein Structure

Proteins arrange tridimensionally in a particular structure, which determines its
function. The structure of a protein is described in four different levels, the primary,
secondary, tertiary and quaternary structure:

1. Primary structure: The primary structure of a protein is the linear sequence
of amino acids in the polypeptide chain. Due to the asymmetry of the peptide
bond, the polypeptide chain is directional. According to the free amine and
carboxylic acid groups, the two ends are referred to as the N-terminus and
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C-terminus, respectively. The unfolded chain has a net dipolar moment, as
the NH and CO groups act as hydrogen-bond donors and acceptors.

Figure 1.3: Elements of protein secondary structure, α helix and β sheets: Panel (A)
shows the basic structure of the α helix, with 3.6 residues per turn. Panel (B) shows the structure
of β sheets on their two possible arrangements, parallel and anti parallel. (Modified from [2]).

2. Secondary structure: The secondary structure is the local stable substruc-
tures which are recurrent in proteins. There are two main elements of sec-
ondary structure, namely the α-helix and the β-sheets.

(a) α-helix: The α-helix was predicted in 1951 by L. Pauling based upon geo-
metric considerations and the analysis of peptide bonds in small molecules,
being subsequently supported by X-ray diffraction patterns [3]. This
structure is formed by linking of NH hydrogen-bond donors and CO
hydrogen-bond acceptors, separated by regular elements in the amino
acid sequence, typically four residues ahead.
Most of the helices occurring in proteins are right-handed α-helices, with
3.6 residues per turn. This correspond sto a pitch of 5.4 Å or 1.5 Å per
residue (see Fig. 1.3 (A)). α-helices have backbone dihedral angles around
(φ, ψ) = (−60o,−45o). In some occasions, other helices might form. Left
handed helices are quite rare, while the 310 helix (H-bonds every three
residues) and π-helix (H-bond every 5 residues) are occasionally found.

(b) β-sheet: β-sheets are the other common element of secondary structure,
also based upon hydrogen bonding between the NH and CO groups.
Nevertheless, the H-bonds in these structures are less local, being the
donor and acceptor groups chemically separated by large distances along
the polypeptidic chain. β-sheets consist of β-strands—locally extended
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chains—connected laterally by H-bonds. The dihedral bonds are around
(φ, ψ) = (−140o, 135o)
There are two distinct ways in which β-strands can align themselves, the
parallel and antiparallel β-sheets. In an antiparallel β-sheet the successive
β-strands alternate directions so that the N-terminus of one strand is
adjacent to the C-terminus of the other. This arrangement has high inter-
strand stability, as the NH group of one peptide unit form a H-bond with
the CO of the other in a planar way, forming rings of ten atoms (see Fig.
1.3 (B)). The parallel β-sheet have all β-strands with the N-terminus
oriented in the same direction. The H-bonding between strands induces
a slight non-planarity in the pattern, reducing the stability. The dihedral
bonds are about (φ, ψ) = (−120o, 115o).

Most of the proteins can be described as series of α-helices and β-sheets con-
nected by loop regions, which can have different sizes and shapes. These loops
are often partially stabilized by polar interactions between residues. The quite
restricted variety of observed configurations in proteins leads to a rather small
range of allowed values for the dihedral angles (φ, ψ). A useful representation
is the so called Ramachandran plot (see Fig. 1.4), where the dihedral angles
are plotted against each other, finding a set of regions which represent the
“allowed” conformations. Additionally, Ramachandran plots are a useful and
intuitive way to understand the overall structure of a certain protein, given
that the secondary structure elements have well defined values on it.
At a structurally higher level, it is often recurrent to find certain combinations
of elements of secondary structure, which are called motifs or supersecondary
structure. Examples are helix-turn-helix motifs, or β-β hairpins, with two
antiparallel strands separated by a loop. β-α-β, Zinc fingers or Greek keys are
more complex motifs, often associated with particular functions.

Figure 1.4: General Ramachandran plot for proteins: Dihedral angles plotted for 100000
general amino acids types. (Lovell et al. 2003 Proteins 50:437)

37



Part I

3. Tertiary structure: The next level is the tertiary structure, the three-
dimensional arrangement of the whole protein. The tertiary structure is de-
fined by the spatial coordinates from each of the atoms integrating the protein.
Some proteins have more or less unstructured elements, which are hard to label
or have dynamical structures. The extreme case is that of intrinsically disor-
dered proteins, which lack of any fixed or ordered three-dimensional structure.

4. Quaternary structure: The highest level of protein structure is the quater-
nary, which refers to the arrangement of multiple polypeptidic units onto a
multi-subunit complex.

Determining Protein Structure

The determination of protein structure is one of the cornerstones of structural bi-
ology, and of many related disciplines. Unveiling the position of every atom of a
protein in the native state helps in the further comprehension of its function, al-
ways intimately ligated to the particular arrangement of the residues along the 3D
structure. Furthermore, a coordinate file is the seed for any molecular dynamics
simulation. Thus, protein structure determination is of capital importance for com-
putational biophysics.

Currently, there are several methods for predicting the structure of proteins and
most of them imply the combination of several experimental, statistical and compu-
tational techniques. Nevertheless, the two principal ones are X-ray diffraction and
Nuclear Magnetic Resonance (NMR), although single molecule fluorescence com-
bined with high-resolution microscopy are gaining importance in the last few years.

The concept of X-ray diffraction for protein structure determination is its use
in solid state physics, although some technicalities hinder the process. The first
problem is to produce the crystal of the subject protein, which is a craft task.
Highly hydrophobic proteins, such as membrane proteins, raise particularly hard
challenges, given that water cannot be used as a solvent. The second difficulty
comes with the interpretation of the diffraction patterns, far more complex than in
solid state physics, given the number of atoms present the unit cell. Fitting the
diffraction patterns to biologically meaningful structures requires often important
computational efforts.

NMR is an additional tool for determining protein structure, which has gained a
lot of popularity recently, specially with small proteins. NMR allows resolving struc-
tures in solution, while X-ray diffraction produces a frozen picture of the structure,
rather than the likely actual ensemble of native configurations. Study of resonance
from particular protons renders a high resolution map which can be deconvoluted to
yield the structure. This resolution decreases with large proteins due to the increase
of the coupling distance.

From a practical point of view, the most useful resource regarding protein struc-
ture is the Protein Data Bank (PBD, http://www.rcsb.org/), which is used as a
repository for resolved structures, becoming a crucial tool for scientists working in
the field.
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1.2 Proteins Fold: from Sequence to Structure
and from Structure to Function

Proteins perform a large variety of biological functions. Once the polypeptidic chain
has been synthesized in the ribosomes, the protein must fold or assemble into its
biologically functional state, the native state. The particular tridimensional arrange-
ment of the residues into the functional three-dimensional structure determines the
function of the protein. Departures from the native structure, misfolding can imply
severe problems.

The problem of how does a protein find its unique native structure is a long
debated one. It started with the set of experiments Anfinsen and coworkers per-
formed in the 60s [4]. They ansewered partially this question proving that, at least
for small globular proteins, the native structure is determined only by the amino
acid sequence. In other words, the primary structure determines the secondary and
tertiary ones. This postulate of molecular biology implies also that the native state
is unique, stable and has kinetic accessibility.

This picture has gained complexity, specially in larger proteins or some partic-
ular cases. Some proteins need assistance of other ones, called chaperones, to fold
properly, and they fail to reach this structure in in vitro experiments. Further-
more, proteins such as prions are an exception of Anfinsen’s dogma, as they remain
on stable conformations which differ from the native folding state. This misfolded
structures are cause of diseases such as the bovine spongiform encephalopathy or
Alzheimer disease, due to amyloid aggregation.

Levinthal’s Paradox and Folding Funnels

Anfinsen’s dogma [4] is associated with another concept pointed out by Levinthal
in 1969, Levinthal’s paradox [5]. He reflected on how did proteins explored its
conformational space to find the unique native structure in biological relevant times.
If a protein has r residues, and each of them can adopt n stable conformations, then
the system has nr local energy minima. Considering that the system sampled the
minima in the fastest possible way, for example the typical vibrational time scale
10−12s, then the time needed to explore the whole conformational space is huge
compared to experimental folding times. Even for modest values such as r = 100
and n = 2, one would need ∼ 1018s for a proper sampling. In a more detailed way,
one can say that the number of local minima on a potential energy surface scales
exponentially with the system size [6, 7].

The conclusion of this paradox is that proteins cannot sample randomly their
conformational space in order to reach the native conformation. Proteins speed
up their folding mechanism by the formation of local interactions which determine
folding mechanism of the peptide. These local structures serve as nucleation points
like, for example, the formation of stable secondary structure elements which guide
the folding pathways. Indeed, this kind of protein folding intermediates or par-
tially structured transition states have been detected experimentally. This folding
mechanism has been often referred to as funnel-like energy landscapes [8, 9].

The folding funnel hypothesis proposes a particular shape for the energy land-
scape of a protein. Here, the native state corresponds to the terminus of a collection
of convergent folding pathways that reach the target structure by decreasing system-
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Figure 1.5: Folding funnel hyphotesis: The folding process is represented as a search process
in a funneled landscape, where the depth represents the energetic stability and the width the
entropy. Starting from a random coiled conformation, the system moves to a molten globule state
with some secondary structure, to finally find the unique native minimum (taken from [2]).

atically the free energy. Folding funnels (Fig. 1.5) usually represent the energetic
stabilization of the structures as the depth of the well and the conformational en-
tropy as its width. The system starts as a random coiled structure, which is just
the polypeptidic chain as a random polymer. These states have large conforma-
tional entropy but are completely unstructured. The system evolves to the so-called
molten globule, which is a collapsed state with some native-like secondary struc-
ture content, decreasing the conformational entropy and increasing the energetic
stabilization. This region can contain some minima that act as kinetic traps, slow-
ing down the relaxation towards the native state. These partially folded structures
have been found in several studies [10]. Finally, the system optimizes the tertiary
structure interactions and reaches the unique energy minimum. This folding mech-
anism is intimately related with the so-called principle of minimum frustration [11],
which states that evolution has selected proteins in order to avoid mis-folded traps,
and non-native contacts, in order to optimize the searching process of the native
structure.
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Thermodynamics of Protein Folding

Protein structure is highly influenced by the environmental conditions. For example,
globular proteins, which exist in solution inside the cell, often contain a hydrophobic
core. Nonpolar side chains hide in this inner core, while polar or charged residues
locate on the surface, exposed to water molecules. Transmembrane proteins span
the lipid bilayer, and have a different structure. Nonpolar residues locate in the
region in contact with the lipid hydrophobic tails, while the “head” and “tail” of
the proteins, which are in contact with the inner and outer part of the cell, keep
hydrophilic residues.

In a simple thermodynamic scenario, protein folding is an equilibrium reaction
where the laws of equilibrium thermodynamics govern. This is a reversible transition
between two states F ↔ U . The folded protein should be stabilized by the free
energy ∆G0:

∆G0 = GN −GU = ∆H − T∆S, (1.1)

where ∆G0 < 0. The protein stability is an interplay between the enthalpic
and entropic contributions. Enthalpic contributions come mainly through inter-
molecular bonds—like the H-bonds, salt-bridges or the S-S bonds—and H-bonds
with surrounding water molecules. The entropic contribution comes from two main
sources, the conformational freedom of the protein structure, and the hydrophobic
interaction with the hydration water molecules. This interplay is very subtle and
the native structure of a protein marginally stable, as ∆G0 is of few kT at room
temperature.

In few words, one can illustrate the balance between entropy and enthalphy in the
following way. The unfolded state has a high degree of conformational entropy, being
a free flexible polymer which can adopt a high number of conformations, whereas
the native state has minimal conformational entropy. The enthalpy is larger in the
native state, as intermolecular interactions (contacts) form between residues (for
example the hydrogen bonds within a α-helix). The contribution of the bonds with
the water molecules in the solvent, usually cancels out, being approximately the
same in both states. The key contribution is the entropy of the hydration of water.
In the random coiled conformation the hydrophobic side chains are exposed to the
solvent, leading to a large penalty in entropy.

In this regard, the thermodynamic force which drives protein folding is the hy-
drophobic effect. This is the so-called hydrophobic collapse hypothesis. Water is a
relatively structured liquid, forming a local network of hydrogen bonds in an ice-
like fashion. When introducing a hydrophobic solute, water molecules respond by
further ordering around it, giving rise to a large negative entropy change. As the
hydrophobic solute cannot form hydrogen bonds with the first solvation shell of wa-
ter molecules, there are fewer favorable orientations for molecules in this shell than
in bulk. The burial of nonpolar residues increases the entropy of the solvent, pay-
ing the conformational entropy loss of the protein, and leading to an overall stable
structure.

41



Part I

1.3 Molecular Dynamics Simulations as a Tool for
Understanding Protein Folding

Unveiling the particular mechanism of protein folding is a hard problem to study
experimentally. Protein folding is known to be a sensitive process where a single
point mutation might alter the whole process. Furthermore, studying protein folding
with experimental techniques represents a serious challenge, given the heterogeneous
nature of an ensemble of proteins folding in an experiment. This provides a coarse
view, which unfortunately, lacks of any atomic resolution.

Therefore, simulating protein folding in a computer appears as a great opportu-
nity to gain insight into such problem. Simulations can shed light onto the precise
mechanism of protein folding with atomic detail, suggesting new hypothesis and new
experiments or novel interpretations.

1.3.1 Molecular Dynamics: Atomic Simulations and Force
Fields

Molecular dynamics imply the numerical integration of the equations of motion of
some particular N-body system, providing molecular trajectories.

Molecular dynamics have become an standard tool in molecular biophysics, and
in the particular problem of protein folding. The intrinsic complexity of the sys-
tem, involving several coupled degrees of freedom, make most theoretical predictions
worthless, and numerical approaches are necessary. Molecular dynamics usually face
three problems which are related to the three:

1. The model: Prior to simulating, one must define the equations of motion to
integrate, and thus the Hamiltonian which governs the system, the physical
model. It must appropriately give rise to predictions which agree with the
observed phenomenology.

2. The simulation: Molecular systems are often made of a huge number of
particles, and producing long-enough trajectories is challenging, even with the
current computational time and sampling tools.

3. The analysis: One must be able to obtain valuable information from the
large amount of data current molecular simulations produce.

Most common models for molecular simulations are atomic-detailed, where each
atom is taken as a classic interaction center, and the different interactions are
parametrized in order to produce reliable molecular dynamics trajectories. Atomic
simulations define a“box” where the molecule is located with the solvent, represented
as explicit water molecules or with some implicit model. Trajectories are produced
by integrating the Newton equations of motion for the N involved atoms.

This is a challenging problem from perspective of the computational power, as
many particles are involved, and the time step for the integration is that of atomic
vibrations, in order to provide a reliable scale. Brute force strategies, run extensive
simulations on supercomputers or dedicated systems, which currently allow to reach
ms scale, enough for describing the folding process of small fast-folding proteins
[13] (see Fig. 1.6). “Smarter” approaches rely on sampling effectively the huge
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Figure 1.6: Protein folding mechanism characterized by molecular simulations along
the last few years: The accesible folding times by simulation have increased over the last few
years, allowing to simulate the folding mechanism of proteins with folding times up to few µs.
Implicit solvent simulations increase greatly the simulation performance. (Picture taken from
[12]).

conformational space in order to provide a vision of the equilibrium ensemble without
running explicitly the kinetics (see Chapter 2). Additionally, implicit solvent models
and coarse-grained ones allow a great reduction of the number of particles, extending
the scales (see Chapter 3).

Force Fields and Molecular Dynamics Simulation Packages

Molecular dynamics simulations must render reliable trajectories to reproduce the
actual behavior of the studied molecule. The critical point is the definition of appro-
priate models for the interactions between the atoms in the molecules, the so-called
force field problem. Force fields provide potential shapes and parameters for every
atom in a system, and should be general and exportable to any system.

Usually, force fields distinguish between two kinds of interaction, the bonded and
unbonded terms. Bonded terms involve covalent bonds, which cannot be broken in
a classical molecular dynamics interaction. Nonbonded terms describe long-range
electrostatic interactions and van der Waals forces. The specific content of each
term depends on the particular force field, but usually the total energy is a sum of
different contributions which resemble the actual interactions within a molecule and
with the solvent.

Bonded interactions are usually a sum of three terms, the bond, a three-body
bending angle potential and a four-body dihedral interaction. The nonbonded con-
tribution is the sum of the electrostatic term and the van der Waals interaction. In
addition to the particular shape of the previous potentials, force fields must define
a set of parameters for every kind of atom, chemical bond, dihedral angle ... These
parameter sets are usually determined by empirical arguments, or in some cases
from first principles.
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Figure 1.7: Comparison of simulated and experimentally measured folding times: Cen-
tral line means total agreement, while outside lines the range of an order of magnitude agreement.
Predictions from molecular dynamics simulations are reasonable, given that experimental folding
times depend critically on several conditions, such as temperature, pH or salt content, (taken from
[12]).

Water molecules require a special remark, as they form the large majority of
the system atoms, having key consequences on the behavior of a biological macro-
molecule. Although water molecules are formed by three atoms, they can be modeled
in different ways in order to account properly for the polarization effects. In this
sense, there are models with increasing number of interaction sites (from two sites
up to five or six), creating virtual sites to account for charge distributions. Three
sites models such as TIP3P are often used for molecular simulations as they meet
the compromise between accuracy in the description and complexity. Other models
such as TIP4P, OPC or TIP5P can be applyed depending on the needs.

Currently, a large number of force fields have been developed, and they are
largely available in the most usual molecular simulation packages, such as GROMACS
[14], CHARMM [15] or NAMD [16]. It is now widely accepted that current force field are
sufficiently accurate for the quantitative prediction of a large number of biomolec-
ular problems, with some known limitations [17]. Figure 1.7 shows a comparison
between experimentally measured times for protein folding and the molecular dy-
namics prediction. The central line is perfect agreement, while the upper and lower
disagreement within an order of magnitude. Up-to-date possibilities agree in a sat-
isfactory way with the experimental phenomenology. It must be taken into account
that experimental folding times depend critically on conditions such as temperature,
pH or salt content.
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Open Challenges in Molecular Simulations

In the particular problem of protein folding, the combination of suitable models,
computational power and adequate analysis methods, has made possible to simulate
directly protein folding, at least for proteins with folding times between 10− 100µs.
Nevertheless, this has been possible only in the very last few years, opening an
exciting field which proposes an important number of challenges to be explored.

1. Longer Timescales: While up to date we are able to produce—with special
supercomputers such ANTON [13]—molecular trajectories up to few ms, many
biological processes occur in longer timescales. Particularly, most proteins fold
in times which are three orders of magnitude longer. This leaves obviously a
lot of space to explore. One strategy might be continuing developing super-
computers or highly parallelizable devices such as GPUs. Nevertheless, brute
force approaches might increase slightly current numbers, but not several or-
ders of magnitude. Effective sampling techniques, or multiscale models are
new strategies which rely less in computational power.

2. Larger systems: The folding mechanism of some proteins of less than 100
amino acids has been resolved by molecular dynamics. Nevertheless, this is
a rather limited size. Studying larger systems demands more computational
power or more effective sampling techniques. Mixed models or better coarse-
grained ones can also conduct promising advances.

3. Better analysis techniques: Extensively long simulations lead an exten-
sively large amount of data, which must be processed in order to extract valu-
able information. A lot of work is now being devoted on proposing rigorous
techniques to produce unbiased information about a large molecular trajectory
or set of trajectories. Constructing faithfully the free energy landscape of a
molecular system from the kinetic trajectories remains still as an open issue.

Particularly, in the field of protein folding, there are several unanswered ques-
tions which wait to be answered. When unveiling the unfolding mechanism of a
protein, the first question is if this mechanism is unique, or the system might fol-
low several pathways to reach the unique native state. Describing folding through
several pathways increase largely the complexity of the process, but also when fold-
ing occurs catalyzed by chaperones. This question is related with that of finding
metastable states in the unfolding mechanism. There is a common paradigm in pro-
tein folding which is that proteins fold in a two-state manner, by hopping between
two energetic basins separated by a barrier. Another way to rephrase this problem
is asking ourselves about the involved time scales. Experiments measure with large
time windows, compared to atomic resolution. Thus, two-state folding might be an
apparent process, and looking at smaller time scales might reveal existence of short-
lived metastable states which play a relevant role in defining the folding pathways.
Molecular simulations are optimal tools to explore this problem, given the intrinsic
atomic resolution, and a large number of analysis methods which allow looking into
this feature, as we will explore on Chapter 2.
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1.4 Mechanical Unfolding of Proteins: From Single-
Molecule Experiments to Steered Molecular
Dynamics

The study of proteins or molecules subject to mechanical external forces has recently
become a hot topic in protein science [18]. This is due to different reasons. First,
the advent of single molecule experiments (see Part III) has represented a revolution
in the area of experimental biophysics. It is possible to apply directly a force to an
individual molecule, in order to induce some sort of conformational change. These
techniques changed the experimental paradigm, moving away from typical biochem-
ical assays, which rely on ensemble average, and to sample directly the distribution
of some molecular property.

Inspired by these techniques, steered molecular dynamics forces a system to
evolve away from its initial equilibrium condition by fixing some group of atoms and
applying a mechanical force to some other group. This is interesting for different
reasons. One might wish just to study the behavior of a system when subject to
a mechanical force, maybe to compare with predictions from single-molecule tech-
niques. Also, forces help in gaining knowledge from the unbiased system. They
lower barriers, and the transitions between different states are accelerated. Remov-
ing the effect of the force in the dynamics, we achieve an effective sampling of the
conformational space of the system, allowing the system to surmount high barriers,
which involve slow time scales. This is the inspiration for popular methods such as
Umbrella Sampling [19].

Finally, the effect of forces to biomolecules is interesting for pure biological rea-
sons. Forces are ubiquitous in biology, and many systems are subject to mechanical
forces on their in vivo functions. Perhaps the most popular example is protein titin
[20]. Titin is a giant modular protein, that functions as a molecular spring and is
responsible for the passive elasticity of muscles (see Fig. 1.8). Titin is particularly
resistant to external forces, and it has been proved experimentally to unfold under
force and refold back when relaxed [21].

In this sense, the study of molecular unfolding of proteins is an interesting prob-
lem, which yields valuable knowledge about the mechanism by which proteins fold or
unfold. Nevertheless, the exact connection between the behavior of a protein under
a mechanical bias and its folding process in thermal equilibrium conditions, remains
still as an open problem. Mechanical (un)folding of proteins is a transition between
two states with low conformational entropy, so different from regular folding. Force
narrows the energy landscape in the pulling direction, forcing the system to react
in this direction. We will deal with this topic in a more extensive way in part III.
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Figure 1.8: Steered-molecular-dynamics simulation fully extending a six-titin polypro-
tein, with the individual domains unraveling one by one.: As in the experiments, each
domain unravels individually, showing the classic sawtooth pattern (taken from [20]).
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What Do We Do with all this
Data? Free Energy Methods for
Understanding Molecular
Simulations

This chapter offers a practical review on some analysis methods we employ through
next chapters. We present the free energy landscape formalism for understand-
ing molecular simulations and discuss some available approaches to represent it.
We start discussing the role of order parameters and reaction coordinates for low-
dimensional representations. We address also methods for reducing the dimension-
ality of molecular systems, namely Principal Component Analysis. Next, we review
the topic of Markov state models, discussing their approach for understanding free
energy landscapes and offering a practical vision for building them. Finally, we
emphasize the particular protocol we will follow.

2.1 Understanding Molecular Simulations
Molecular simulation is a valuable method for studying a large variety of molecular
processes, such as protein folding, ligand binding or enzyme-catalysis [22]. Applying
simulation to such problems appeals for many reasons. Unlike experiments, simu-
lations provide an atomic-resolution picture, crucial for understanding processes at
that scale. Furthermore, such problems are intrinsically complex, involving a large
number of coupled degrees of freedom, so theoretical models fail in describing them
with generality. This spatial and temporal high resolution allows to compute a large
number of observables, and thus to establish a direct connection with experiments.

Nevertheless, there are three main problems molecular simulations face:

1. Development of accurate models: Independently on wether we perform
a quantum-detailed, all-atom or coarse grained simulation, we must provide a
model based on physical assumptions, which will hopefully describe the actual
behavior of our system. In the case of atomic simulations, the interactions
between atoms are described in terms of empirical potentials which should
be correctly parametrized in a general way (force field). In coarse-grained
simulations, the modeling step is more critical, as they rely on ad hoc physical
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assumptions to decrease the complexity of the system (see Chapter 3). In
principle, at least for the problem of protein folding, current forcefields are
capable of reproducing results in agreement with experiments. Nevertheless,
more work remains to be done in the development of more accurate models.

2. The sampling problem: Molecular processes span over a large range of time
scales. For example, while some conformational changes might occur in few
nanoseconds, proteins fold from few µs to s. This requires trajectories of at
least few ms in order to provide reliable statistics of such process. In all atom
simulations, we integrate the classical mechanics equations with femtoseconds
timesteps of (10−15), requiring around ∼ 1012 timesteps for reaching such scale.
Given that a typical system size for a explicit solvent simulation can reaches
several thousands of atoms, the computational demand becomes tremendous.
In the last few years, different strategies have been developed to deal with
this limitation. The most straightforward one is brute force. The recent de-
velopment of effective software and hardware tools has increased dramatically
the range of accesible problems. Dedicated supercomputers such as ANTON
have allowed to unveil the folding process of several fast folding proteins [13],
reaching single trajectories of few milliseconds. The advent of GPUs, which
allow a highly effective parallelization, have boosted also the accessible simu-
lation times. In combination with methods such as Markov state models [12]
(see Section 2.5), it is now possible to estimate the equilibrium ensemble of
a system by simulating several short trajectories and combining them in an
adequate way [10].
Given that human mind goes faster than Moore’s law, several efficient sam-
pling techniques have been developed in the last years in order to simulate
equilibrium properties without reaching directly the involved timescales. The
underlying difficulty of the sampling problem is the existence of large free
energy barriers which must be overcome in order to sample effectively the con-
figurational space of the system. This determines a rare event and motivates
the development of different techniques to boost simulations or to sample ef-
ficiently the conformational space. For example, umbrella sampling [19] or
metadynamics [23] allow calculating free energy profiles that cannot be sam-
pled directly. Other methods such as Transition Path Sampling [24] estimate
the ensemble of transition paths between two pre-defined states.

3. Robust data analysis: Even if we are able to gather enough statistics to
sample effectively the equilibrium ensemble of the problem system, we still
need to transform all this (likely) huge amount of data into valuable scientific
knowledge. Molecular trajectories are extensive high-dimensional time series,
and they present a “Big Data Challenge”. Providing effective and efficient
analysis techniques might present a new limiting factor for the years to come
[12].

In this chapter, we focus on this last problem, presenting some of the advances
that have been developed recently in order to extract valuable information from
molecular simulations. Most of these techniques root in the idea of free energy
landscapes, a common framework in this area [25–27]. Nevertheless, there is no
agreement in which is the most adequate way to represent them. This gives rise to
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a large number of different proposals, usually hinging upon the particular question
we ask ourselves.

Some methods rely on low-dimensional representations of the free energy land-
scape. Processes like the unfolded-folded transition of a protein are ideally under-
stood as a one-dimensional phenomenon, were the system transits from one state to
the other. This simple vision requires identifying the appropriate coordinate, and
to integrate out all other “meaningless” degrees of freedom. Several techniques have
been developed to identify meaningful order parameters which capture the essence
of our system, allowing for a systematic dimensional reduction [28]. For instance,
Principal Component Analysis comes from the statistical analysis world, and it has
been very useful for understanding molecular simulations [29, 30].

Other methods do not rely on any—arbitrary or not—choice of order parameters
or collective variables and represent the free energy landscape as a kinetic network of
states with certain populations, and transition rates between them. This is usually
known as Markov state [12, 31, 32]. This vision provides a very intuitive way of
picturing the free energy landscape of our system. Nevertheless, it suffers from the
challenge of finding unbiased and systematic ways of defining such states.

2.2 Free Energy Landscapes
One of the most challenging problems current research in physics, chemistry or bi-
ology, providing an unbiased understanding of the static and dynamic behavior of
complex systems such as spin glasses, atomic clusters, or biological macromolecules.
The main difficulty lays on the large number of coupled degrees of freedom these
systems contain, and on the wide range of involved time scales at which they be-
have. Such systems involve typically several metastable states, responsible of very
slow dynamics. Thus, describing the relevant configurations, and specially their ki-
netic behavior presents a serious challenge from the theoretical, experimental and
computational perspective.

In this context, free energy landscapes have become a common term [25–27, 33].
Mathematically, if X is the conformational space of our system1—where typically
X = Rn, with n is the number of degrees of freedom of our system, being n = 3N if
we have N atoms in coordinate space—then the free energy landscape is a continuous
function F : X → R, which associates every physical conformation X ∈ X a free
energy value. The free energy landscape can be then understood as a hypersurface
in Rn+1, where hills and valleys represent maxima and minima of F . These minima
describe the metastable states, separated by free energy maxima, or free energy
barriers. If we were to know completely the free energy landscape of a particular
system, we would have all relevant information about it. Obviously, this approach
poses a number of problems. The first one is how to represent it, as normally n is
very large, so the hypersurface in Rn+1 does not constitute the best representation
if we wish to gain direct understanding. The second problem is how to sample
this free energy landscape. As mentioned, complex systems have large n and slow
timescales, so it might be unfeasible to tackle the problem with a direct sampling,
as some minima might act as kinetic traps which slow down the dynamics.

1In general, only the conformational part of the whole state space Ω is relevant for free energy
calculations.
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A remark should be done on the difference between free energy landscapes and
energy or potential free energy landscapes [6]. Mathematically, they are similar
representations of the conformational space of the system, where every physical state
has an assigned number, although it is different in each case. The potential energy
landscape is in encoded in the Hamiltonian of the system, while the free energy
landscape depends on the ensemble, and thus is temperature dependent. Thinking
of protein folding, the folded an unfolded structure represent both potential local
minima. Nevertheless, in a free energy landscape representation the temperature
would determine which is the stable structure. At high temperatures, the denatured
state constitutes the deepest free energy minima, while at low temperatures, the
native state is the stable configuration.

2.2.1 Of Low Dimensional Representations of the Free En-
ergy Landscape of the System

We start with a brief reminder of statistical mechanics. In the canonical ensemble,
the state of a system of N particles at temperature T is defined by the canonical
partition function

Z = 1
h3N

∫∫
e−H(p,q)/kTdpdq, (2.1)

where q are the 3N generalized coordinates of the system and p the conjugated
momenta. H(p,q) is the Hamiltonian of the system and h a normalization constant.
The probability π(p,q) of finding the system in a particular configuration of the
state space Ω, x(p,q) ∈ Ω is given by

π(p,q) = e−H(p,q)/kT∫∫
e−H(p,q)/kTdpdq

. (2.2)

This allows us for example to compute the ensemble average of a particular
observable 〈f〉 which is defined on state space Ω as

〈f〉 =
∫∫
fp,q)e−H(p,q)/kTdpdq∫∫

e−H(p,q)/kTdpdq
=
∫∫

f(p,q)π(p,q)dpdq. (2.3)

For example, the average energy 〈E〉 can be expressed as,

〈E〉 =
∫∫

E(p,q)π(p,q)dpdq = 1
Z

∫
EXe

−βEXdX = − 1
Z

∂

∂β
Z = −∂ logZ

∂β
,

(2.4)
where β = (kBT )−1. Now, the free energy of the system is tightly related with the
partition function, as:

F = −kBT logZ. (2.5)

This equation forms the fundamental connection between thermodynamics and
statistical mechanics in the canonical ensemble, meaning that knowing F is equiv-
alent to knowing Z, and thus, with F we have all the available information about
our system.
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Computing explicitly the partition function is unfeasible for most interesting
systems. Usually, it is enough to compute free energy differences, which is a tractable
problem, as it requires just to compute ensemble averages as in Eq. (2.3), which
are easier to evaluate. There are two different different problems when it comes
to calculate free energy differences. The first one is to determine the change in
free energy of a system as a function of a model parameter λ. In this case, the
Hamiltonian of the system depends on some external parameter λ which we can
control to induce transitions between two values λ = A and λ = B. Then, we have
two partition different functions ZA and ZB, and the free energy difference is

∆FAB = −kBT logZB/ZA. (2.6)

The second option is to compute differences of free energy between metastable
states within the same system. This is equivalent to know the relative value of the
free energy for a subset of particles in the state space Ω. It is convenient to express
this free energy as a function of a (or set) of coordinates R. This approach provides
an intuitive vision of the free energy of the system, subject to a proper choice of R.

We define a collective variable R(X) which is function of the conformations X
of the system 2

R(X) ≡ R(q) = R(q1, q2, · · · , q3N). (2.7)

This variable is a function of the positions of the system, for example the distance
between two groups of atoms, some torsional angle, or combinations of such kind
of quantities. All up to the imagination of the researcher. This coordinate restricts
the system to a hypersurface R(q) in phase space, so that the free energy FR, the
partition function ZR and the collective-variable probability pR, on this restricted
hypersurface are the magnitudes of interest.

The phase-space probability πR(p,q;R′) of finding the system at a particular
value of R′ of the collective variable R is

π(p,q;R′) = π(p,q)δ(R′ −R(q)). (2.8)

Then, the probability pR(R′) restricted to the R—which is the probability com-
puted along the collective variable R’—can be obtained by averaging out all remain-
ing degrees of freedom,

pR(R′) =
∫∫
e−H(p,q)/kBT δ(R′ −R(q))dpdq∫ ∫

e−H(p,q)/kBTdpdq
, (2.9)

and the restricted partition function,

ZR(R′) = 1
h3N

∫∫
e−H(p,q)/kBT δ(R′ −R(q))dpdq, (2.10)

so we can write

pR(R′) = ZR(R′)
Z

. (2.11)

The free energy along the collective variable R can be now calculated simply as:
2Recall that we define R in the conformational space X , not the full state space Ω. Usually

collective variables are defined over the conformations the system adopts, ruling out velocities.
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FR(R′) = −kBT logZR(R′) = −kBT log pR(R′)− kBT logZ. (2.12)

This quantity FR(R′) is a very relevant one in molecular simulations, and Eq.
(2.12) gives a practical form of calculate it. If R is a coordinate by which we can
properly describe the system3, FR(R′) is the magnitude by which we can understand
it. Through this projection we have free energy wells which represent stable config-
urations, and free energy barriers separating them. In practice, if we have a perfect
sampling of the configurational space X , computing FR(R′) is straightforward. We
just have to calculate the value of R for each configuration R1(X1), R2(X2), · · · ,
and calculate the probability of each value R along the simulation, obtaining pR(R′).
FR(R′) is recovered from expression (2.12) up to an insignificant constant. In most
cases, perfect sampling is not possible. A number of different techniques have been
proposed to estimate pR(R′), for example, biasing the system, which allows to de-
crease barriers and help the system jump over them in reasonable computational
times [19, 23, 33, 34].

In general, R does not have to be a single collective variable R ∈ R. For example,
it is often to compute two-dimensional representations of the free energy landscape,
along two different collective variables R and S. Then we have FR,S(R′, S ′), and all
the derivation above is easily applicable to the case.

Of Free Energy Profiles and Potentials of Mean Force

A plot of FR(R′) as a function of the collective variable R′ is usually termed as a
free energy profile, meaning the projection of the whole free energy landscape onto
a single coordinate. Nevertheless, the term Potential of Mean Force (PMF) is often
mentioned in these contexts, and both terms are used as synonyms, although they
do not mean strictly the same thing.

The PMF was introduce by Kirkwood in 1935 [35] and literally, is the aver-
age force one should perform to constraint our system at a particular value of R.
Equation (2.12) can be rewritten as:

FR(R′) = FR(∞) +
∫ R′

∞

dFR(R′′)
dR′′ dR′′, (2.13)

where −dFR(R′′)/dR′′ is the mean force needed to keep the system at R′′. In this
sense, both term are in most cases interchangeable. In practice, the estimation of
FR(R′) from a molecular simulation is called the free energy profile along coordinate
R.

Some methods bias the system to force it to sample different regions along R
which are highly inaccessible by direct dynamics. For example, an external force
can be used to constrain the system at a particular value of R, such as in Umbrella
Sampling [19]. In such cases, the recovered profile is usually called the PMF rather
than the free energy profile. Nevertheless, the particular relation between the PMF
and the free energy profile is subtle and rather technical. The underlying idea is
that by constraining our system with a force we are altering the actual the phase

3Typically, R determines a slow degree of freedom, representing motions of low frequency. In
this sense, all high frequencies are integrated out as they do not contain relevant information about
the system—they can correspond to simple atomic vibrations, or thermal fluctuations—and the
lower ones define the meaningful coordinates for a particular process.
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space mainly due to the contribution of the velocities. More details on this point
are specified on [36, 37].

Of Reaction Coordinates and Order Parameters

So far, we have carefully referred to R as a collective variable. In many cases, R is
called an order parameter or reaction coordinate, in a rather loose way. These two
concepts are not the same, although they are used frequently as synonyms through
the literature.

An order parameter indicates the degree of order in the system, or more generi-
cally, it is a variable chosen to describe changes in a system. In this context, order
parameters are collective variables used to describe transformations from the initial
state to a target one. The representation FR(R) along some order parameter R
describes transitions the system shows along the trajectory between some states,
which are represented as free energy minima in the profile FR(R).

An order parameter may, although does not have to, correspond to the path
along which the transformation takes place in nature. Then, we can call R to be a
reaction coordinate. In a simple two-state picture, a free energy profile along a reac-
tion coordinate is characterized by two free energy wells, representing the reactive
and product states, separated by a free energy barrier. If R is a good reaction co-
ordinate, this representation gives the real free energy barrier—the one from which
the rates can be computed—and its maximum coincides with the transition state of
the system. More details on this point are given in Section 2.3.

Finding proper reaction coordinates or order parameters is a difficult task, yet
a central one in free energy calculations [33]. The choice of order parameters might
have key consequences on the efficiency and accuracy of our free energy calculations.
Nevertheless, there is not a definite answer for the general question of how to make
the best (or at least an appropriate one) choice of an order parameter. In many
cases, the answer lies in our intuition about the system.

2.3 Reaction Coordinates in Molecular Dynamics
Simulations

Reaction Coordinates play a central role in understanding molecular processes, as
most of them can be described in terms of an effective reaction between an ensemble
of “reactant” states to “product” states. A clear example is protein folding, where
the reactant ensemble is the denatured state and the product the native one.

Finding an adequate reaction coordinate to describe the reaction dynamics ap-
pears as a major challenge. Reaction coordinates provide an intuitive understand-
ing about the overall behavior of the system. Also, they allow identifying properly
the initial and final states (reactants and products) of the reaction, helping in the
identification of possible intermediate states. Finally, as they monitor the reaction
pathway, the transition state and the free energy barrier are properly defined, and
so the transition rates, which are observables directly measurable in experiments.

The concept of transition state is an important one in this context. Transition
states are the ensemble of configurations between reactants and products. Consid-
ering overdamped diffusion along the reaction coordinate, the transition state is the
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maximum of the barrier, where the system has equal probability of falling to one or
the other side.

Intuitively, we expect from a good reaction coordinate a meaningful description
of the progress of a reaction. No significant detail of our system should be lost, given
that all all the dynamics is projected onto this single coordinate. Poor choices lead
to non-Markovian, long-time memory effects, whereas good reaction coordinates
are essentially Markovian [38, 39]. This implies that, knowing the value of the
reaction coordinate at a certain configuration, it is possible to predict the fate of the
trajectory initiated from there. If our bad projection is collapsing two dynamically
different states onto a same value, the Markovian condition is be fulfilled, as the
trajectory fate depends on at which state we start.

2.3.1 How Good is my Reaction Coordinate?
The identification of proper reaction coordinates is crucial to validate our under-
standing of the molecular system. A first strategy to “rate” our reaction coordinate
q is simple inspection, given than it should be able to distinguish properly the states
visited along the dynamics.

Nevertheless, there are systematic test which help us in rating a reaction coordi-
nate giving quantitative measures on the quality of q. We discuss here the Bayesian
relation test, as shown in [38, 39]. Nevertheless, additional tests have been proposed
[40].

Bayesian Test for Reaction Coordinates

Let us consider a molecular system with deterministic Newtonian or stochastic dy-
namics in the configurational space. First, we define transition paths as those tra-
jectory segments that exit from the reactant region A and reach the product region
B without crossing back to A and vice versa. For example, in the case of protein
folding, they correspond to those fragments of trajectory starting from the unfolded
ensemble and folding back without unfolding again, and the other way around.

Choosing the reaction coordinate q, we construct the probability distributions
peq(q)—which gives simply the probability for the system of being on a particular
value of q—and p(q|TP )— the distribution of probability of the transition paths on
q. The first distribution is calculated over the equilibrium ensemble, while the latter
over the transition path ensemble. These two probability distributions are related
to each other through a Bayesian expression for conditional probabilities [38, 39],

p(q|TP )p(TP ) = p(TP |q)peq(q), (2.14)

where p(TP ) is the fraction fraction of time the system spends on transition paths
and the new quantity p(TP |q) is the probability for the system of being on a tran-
sition path (TP), given that the system is in q.

For a good reaction coordinate, p(TP |q) should have a single and sharp peak,
where all the transition states are collapsed into a single value of q. In the diffusive
limit, this peak is equal to 0.5, the probability of, once in the transition state, go to
the product state, or back to the reactant one.

In practice, this gives an easy way to test reaction coordinates. The equilib-
rium distribution peq can be computed directly from long equilibrium distributions
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Figure 2.1: Bayesian test on the fraction of native contacts: The results for a Go model
(left) and an all-atom model (right) are compared. Q is a proper reaction coordinate given the
unimodal distribution shape of p(TP |Q), where the peak approaches to the diffusive limit, (taken
from [41]).

with multiple transitions, or estimated by some enhanced sampling method such
as umbrella sampling [19]. From this distribution, it is straightforward to identify
the reactants and produces states, and the transition paths, in order to compute
p(q|TP ). Also, one might apply transition-path sampling [24], if its not possible to
sample enough the TP ensemble.

2.3.2 Popular Reaction Coordinates in Molecular Simula-
tions

In many cases, intuition is the best guide to choose a proper reaction coordinate.
We review in this Section some of the most popular choices to describe molecular
systems.

Root Mean Square Displacement (RMSD)

The RMSD is one a very popular reaction coordinate in molecular dynamics [22, 42].
It is a measure of the average distance between the atoms (usually just the heavy or
the backbone atoms) of two superimposed proteins. In molecular simulation, this
usually means to use the native structure as the reference one, an calculating the
RMSD of every frame X with respect to it. Mathematically,

RMSD =

√√√√ 1
N

N∑
i=1

r2
ij, (2.15)

where rij is the distance between each of the N considered pairs, like the backbone
or α-carbon atoms. The structures we compare must be aligned and with the center
of mass subtracted, in order for the RMSD to be properly calculated.
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In protein dynamics, it is very useful for identifying conformational changes,
or to distinguish between the native and unfolded state. Nevertheless, big confor-
mational changes such as the latter, usually yield problems in the alignment step,
making the RMSD hard to be trusted. Also, it has often been claimed that different
conformational states can fall onto very similar RMSD values, for example when
a hinge motion takes place. Many criticism exists also on the RMSD to describe
nucleic acids, such as RNA [43].

Fraction of Native Contacts (Q)

Native contacts are a popular concept especially in protein simulation, although it
is also used for nucleic acids and other biomolecules. Starting with a protein in its
native structure, two atoms are said to be native contacts if they are closer than a
certain cutoff distance, usually around 7.0 Å. In practice, usually backbone or heavy
atoms are the only ones taken into account.

Native contacts have been often claimed to play a key role in the folding mech-
anism of a protein [11, 41, 44, 45], in relation with the“principle of minimal frustra-
tion”4. The evolution of native contacts Q along the dynamics is a common reaction
coordinate, specially in protein folding. In Gō-models—coarse grained protein mod-
els whose Hamiltonian is defined upon the native contacts map, see Chapter 3—Q
is the natural reaction coordinate. Nevertheless, it has been reported that Q is the
collective variable able to capture the transition states in all-atom protein folding
studies (see Fig. 2.1 and [41]).

In practice, there are several ways to define Q. After choosing which atoms
would be accounted for (for example the α-carbons or the backbone atoms), one
defines the native contact map matrix ∆0, which has element δij = 1, if atoms i
and j are closer than a certain threshold distance—usually 7.0 Å if we keep only the
α-carbons—and |i − j| > 3. Either other case is δij = 0. The number of native
contacts is Q0 = 1

2
∑
ij δij.

One option is to apply the same criterion to every frame of the simulation and
define Q as the fraction of native contacts which survives. This is, calculate matrix
∆ for every frame and compare it to ∆0, checking which fraction of native contacts
appear in both. An additional definition is suggested in [41],

Q(X) = 1
N

∑
(i,j)

1
1 + exp[β(rij(X)− λr0

ij)]
, (2.16)

where the sum runs over the N pairs of native contacts (i, j), rij(X) is the distance
between pairs i and j in frame X, r0

ij is the distance between i and j in the native
configuration, λ is parameter which accounts for fluctuations and β is an smoothing
parameter. This definition is a Fermi function and it allows a smoother calculation
that the previous proposal, which is equivalent to applying an step function. Suitable
parameters are β = 5.0 Å−1 and λ = 1.2.

4See Chapters 1 and 3 for further detail on this point and how it has motivated the development
of coarse-grained models.

58



Chapter 2

Geometrical Coordinates, the Radius of Gyration Rg and the End-to-End
Distance

The radius of gyration Rg is a popular magnitude in polymer physics, used to
describe the size of a polymer chain [46]. Thus, it can be used as a measure of a
protein size over a molecular simulation, and to describe conformational changes
which are related with significant changes in size, like it occurs in protein folding.
Mathematically, Rg is defined as:

R2
g = 1

N

N∑
i=1

(ri − 〈r〉)2 = 1
2N2

∑
ij

(ri − rj)2, (2.17)

where N is the number of atoms, or monomers, ri the vector position of the i-th
atom, and 〈r〉 their average positions. The first equation represents as the average
displacement of the atoms from the chain average position, and second as the average
of the square distances between pairs of atoms.

Polymer physics yields a number of analytical results on Rg which might be
useful in protein dynamics, specially at high temperatures, when the interactions
are ruled out, and the polypeptidic chain behaves as a free polymer. For example,
for an entropically governed polymer chain, Rg = 6−1/2

√
Nl, where N the number

of monomers and l the distance between monomers. This expression is useful to
locate the denatured state.

In some occasions, the distance between two atoms within a molecule is an
appropriate reaction coordinate. For example, chemical reactions depend on the
transference of an electron, and thus its position describes the progress of the reac-
tion. ligand:receptor binding or unbinding can also be monitored by studying the
distance between the center of mass of both molecules (see Part III).

For the particular case of molecules under an external force, the direction of the
pulling force becomes the natural reaction coordinate of the system. This is the case
of many single molecule techniques (see Part III), where one fixes one end of the
molecule and applies a force to the other. The end-to-end distance is defined as:

ξ = |r1 − rN |, (2.18)

where r1 and rN are the vectors positions of the first and last “particles” this is, the
entities to which we apply the force. In the so called steered molecular simulations,
this procedure is also a common one, allowing to gain insight about a molecule
behavior, as the force tilts its free energy landscape allowing the system to sample it
more effectively. Then we can subtract the effect of the force, and obtain information
about the unforced system (see Chapter 1).

Optimized Reaction Coordinates

Most popular reaction coordinates are based on our “intuition” about the system.
When this intuition fails, it is advisable to have some systematic technique to propose
proper reaction coordinates. Most of these approaches rely on “optimizing” some
definition of a reaction coordinate, in order to improve its quality based on some
criterion or test, such as the Bayesian test.

For example one might describe each configuration from a molecular simulation
through the contact matrix ∆ij, whose elements are 1 if rij is smaller than a certain
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cutoff distance and zero otherwise5. A reaction coordinate q can be the projection of
∆ij onto some matrix with arbitrary weights w̃, q = ∑

ij wij∆ij/2. The strategy is,
starting from a matrix with arbitrary weights, find the set of weights which optimizes
the “quality” of q, for example by applying the Bayesian criterion and looking for
the best p(TP |q) possible [38].

Along with the previous example of, several other techniques have been developed
[47, 48], employing reaction coordinates which have their obvious advantages, but
lack of a clear physical interpretation.

2.4 Reducing the Dimension of the System
Reducing the number of degrees of freedom from a large molecular system to a bunch
of meaningful order parameters is an appealing approach for a number or reasons.
Order parameters allow describing some transition or process in a simulation which
is not evident by simple observation of the trajectories or of some observable we
calculate. Also, they might be used to define an smaller but more meaningful con-
figurational space for future construction of a Markov state model, this is define a
proper metric for the definition of the states (see Section 2.5).

In this section, we review Principal Component Analysis (PCA), a widely em-
ployed method in the molecular dynamics community [29, 49].

2.4.1 Principal Component Analysis (PCA)
PCA is a statistical method that uses an orthogonal transformation to convert a set
of coordinates (possibly correlated) into a new set (called the principal components,
PCs) where the instantaneous correlations vanish. This transformation is defined
such that the first PC has the largest possible variance, and each succeeding compo-
nent has the highest possible variance, constraint to be orthogonal to the preceding
ones. The resulting vectors form an uncorrelated orthogonal basis set.

It is a popular method in statistics and has also been frequently used in the
Molecular Dynamics community to identify the linear subspaces where the largest-
amplitude motions occur, hoping to relate such motions with relevant transitions in
the system [29].

Let x be the vector of the N order parameters we used, for example the Cartesian
position of the atoms of our molecule. Then, the covariance matrix C̃ for x is defined
by the elements

cij = 〈xixj〉 − 〈xi〉〈xj〉. (2.19)
The elements of the covariance matrix are the covariances between elements i

and j if i 6= j and the autocovariances if i = j.
By diagonalizing the covariance matrix,

C̃vi = λ2
ivi, (2.20)

we obtain the set of eigenvectors vi and eigenvalues λi which coincide with the
autocovariances of the PCs λi = σ2. The eigenvectors are usually sorted according

5Recall that this definition is different from the fraction of native contacts as we do the config-
uration with the native structure.
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to the magnitude of λi. If Ṽ is the eigenvector matrix Ṽ = [v1, · · · ,vN ] and the
matrix of variances is Λ̃ = diag(λ1, · · · , λN), then the PCs are defined by projecting
x onto the principal eigenspaces:

qT = xT Ṽ . (2.21)

As the PCs are sorted according to their autocovariance λi, some threshold is
selected and those PCs with smaller autocovariance ignored. Thus, one keeps a
smaller range matrix Ṽ ′ ∈ RN×M , where M < N is the number of PCs we keep.
Used in this way, PCA is a way for dimension reduction, and thus the M dominant
PCs can be used as new order parameters.

The PCs themselves contain valuable information about the system. Each PC
is associated with characteristic “motions” of the system, which can be indentified
by analyzing carefully the eigenvectors. The PCs qi(t) can be used as to calculate
low-dimensional free energy surfaces along them. The first ones are associated with
large-amplitude motions, and would show multimodal distributions (with several
free energy wells) revealing states of the system and containing relevant information
about the dynamics. The last ones have unimodal distributions and are associated
with small-amplitude motions, likely the thermal fluctuations, so they do not provide
any relevant information about the system dynamics.

We use the PCs in these two ways, as a tool for finding order parameters which
contain meaningful information about the system and as a dimension reduction tool,
yielding a subspace which might be employed for building Markov state models.

2.5 Markov State Models: a Network Description
of the Configurational Space of our System.

Up to here, we have focused on understanding the free energy landscape through
low dimensional projections. this approach needs finding proper order parameters
which capture the essence of the system subject to study. This Section reviews
Markov state models. This methods represents the free energy landscape as a kinetic
network where the states are related to free energy basins. A rate matrix gives the
probability to jump between states, and thus is related to the free energy barriers.tes,
likely related to actual free energy basins, connected through a rate matrix.

2.5.1 What are Markov State Models?
Markov state models have become a popular and powerful way for analyzing and
understanding molecular simulations [10, 12, 31, 32, 50, 51]. A Markov model
is a network of conformational states and a transition probability matrix which
describes the probabilities of jumping from one state to another within some time
interval. Importantly, this network must be markovian for such time interval (from
now one the lag time). This means that the probability of the system to evolve to
a new state depends only on the present state and not on the past history. Also,
detailed balance must hold, in order to represent the microscopic reversibility, or
the equilibrium dynamics.

This picture allows to gain significant insight onto a molecule’s properties as it
gives a rather intuitive picture of their conformational space (the states and their
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stability), and the rates connecting them. They provide also a direct connection
with experimental measurements, being possible to project the dynamics onto some
observable which can be directly compared with a signal obtained from a measure
[10, 12, 52]. Additionally, they can be used as starting point for adaptive sampling
methods [12], helping in running efficient simulations.

Nonetheless, the critical step is the definition of the states themselves [31]. Ide-
ally, one should be able to arrive to a meaningful network of states which is easy
to understand, and where the states correspond to free energy basins, where the
boundaries between them are correctly identified. In Markov state models, these
states are defined by kinetic criteria rather than purely geometric ones. This allows
to fulfill the previous condition.

Geometric criteria are easier to meet, yet usually inadequate, as there are no
physical reasons for which the free energy barriers would correlate with the geometric
features of our system. For example, one could choose the fraction of native contacts
Q or the RMSD, and define the states according to some fine partitioning on them.
Likely, conformations with similar values of Q or the RMSD could be clustered onto
the same free energy basin, even though they are not alike (similar values of the
RMSD might answer to rather different conformations, like the pivoting of some
hinge). In turn, conformations very separated in this space might transit between
one another in fast times, and then should belong to the same basin.

The most common approach for building Markov state models is a two step
process, where one uses first geometric, then kinetic criteria. First, small volume
elements are defined according to some fine geometric criterion. They represent the
microstates of the system. This first network is typically be very large and hardly
understandable. Also, some groups of microstates show fast kinetic transitions be-
tween them (fast relaxing processes), while others follow slow kinetic relaxations.
This scale separation is relevant to lump the microstate network into kinetic relevant
clusters, associated to the free energy basins. They define the macrostates of the
system. and the boundaries between them correspond to the free energy barriers.

In the following sections, we review the basic aspects of Markov state modeling.
We start with a brief statement of Markov state model theory. We follow with
a practical summary regarding construction of Markov state models for molecular
systems, stressing the particular protocol we use in the present work.

2.5.2 Markov State Model Theory
We start by establishing the theoretical framework of Markov state models. The
basic ingredient is the transition probability matrix, which has a particular physical
interpretation, related with the dynamical model we use to understand our system
[12, 51].

Continuous Molecular Dynamics

Consider state space Ω, which contains all dynamical variables needed to describe
the instantaneous state of the system. For example, for a molecular simulation,
Ω contains the positions and velocities of all the atoms of the molecule and of
the surrounding bath particles. The state of the system at time t is characterized
by x(t) ∈ Ω. We consider a dynamical process which is continuous in space and
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can either be continuous (for theoretical treatments) or discrete (for computational
purposes) in time. The dynamical process x(t) satisfies some properties:

1. x(t) is a Markov process in Ω, this is, the instantaneous change of the system
is calculated based on x(t), without requiring previous history. This condition
is true in general for most practical purposes. For example, in an all-atom
simulation, as we are integrating the classical equations of motion, the trajec-
tories are Markovian by definition. The same applies to Langevin dynamics.
This might change if we look just on a subset of Ω (e.g. we take only the
coordinates of the molecule of interest, or part of it).

2. x(t) is ergodic, this is, the dynamical process is aperiodic and Ω has not
disconnected subsets that cannot be reached within one trajectory. So in
t → ∞, each point of Ω can be infinitely visited. This implies that any
running average of an observable f : Ω → Rd is given by a unique stationary
distribution π(x), so that for every initial state x,

lim
T→+∞

1
T

∫ T

0
dtf(x(t)) =

∫
Ω

dxf(x)π(x), (2.22)

so the fraction of time the system spends in any of its states during an in-
finitely long trajectory is given by the stationary density π(x) : Ω → R0+,
with

∫
Ω dxπ(x) = 1. This stationary density means that, if P (x,y; τ) is the

transition probability density between two points x,y ∈ Ω within interval time
τ , then,

π(y) =
∫

Ω
dxP (x,y; τ)π(x). (2.23)

This stationary density is unique, and in most relevant cases corresponds to
the associated thermodynamic ensemble. In molecular simulations at constant
temperature T , we have

π(x) = Z−1e−H(x)/kBT , (2.24)
with H(x) the Hamiltonian and Z =

∫
dxe−H/kBT the partition function.

3. x(t) is reversible, this is, the transition probability P (x,y; τ) fulfulls the de-
tailed balance condition

π(x)P (x,y; τ) = π(y)P (y,x; τ). (2.25)

Physically, this means that in equilibrium, the fraction of systems going from
x to y per unit time is the same as the fraction of systems from y to x.

These conditions do not place too demanding restrictions on our dynamics. In
practice, most stochastic thermostats are consistent with them.

Now, instead on focusing on the long time evolution of individual trajectories,
we focus on the evolution of an ensemble density. We start with an ensemble of
molecular systems at time t distributed in Ω with some probability density pt(x)
which is different from π(x). In a time interval of τ this density changes with the
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action of the transition probability density P (x,y; τ). This change from pt(x) to
pt+τ (x) can be described by the action of a continuous operator, the propagator
P(τ), defined as

pt+τ (y) = P(τ) ◦ pt(y) =
∫

Ω
dxP (x,y; τ)pt(x). (2.26)

As we apply the propagator P(τ) to the density pt(x) we obtain a modified
probability density, each time more similar to π(x). In infinite time, any initial
probability density becomes the π(x). An alternative but equivalent description can
be done in terms of the transfer operator T (τ), which has some properties that will
be useful later on [12, 51]. The difference is that T (τ) does not propagate probability
densities but functions ut(x), which differ from the probability densities by a factor
of the stationary density, this is pt(x) = π(x)ut(x). Thus

ut+τ (y) = T (τ) ◦ ut(y) = 1
π(y)

∫
Ω

dxP (x,y; τ)π(x)ut(x). (2.27)

These two operators have some important properties

1. Both P(τ) and T (τ) fulfill the Chapman-Kolmogorov equation

pt+nτ (x) = [P(τ)]n ◦ pt(x), (2.28)
ut+nτ (x) = [T (τ)]n ◦ ut(x), (2.29)

which means that they can be used to propagate to arbitrarily long times
t+ nτ .

2. P(τ) has eigenfunctions φi(x) and eigenvalues λi,

P(τ) ◦ φi(x) = λiφi(x), (2.30)

while T (τ) has eigenfunctions ψi(x) with the same eigenvalues λi

T (τ) ◦ ψi(x) = λiψi(x). (2.31)

If the dynamics are reversible, all λi are real and lie in the interval−1 ≤ λi ≥ 1.
Also, the two eigenfunctions are related by a factor of the stationary density
π(x)

φi(x) = π(x)ψi(x). (2.32)

3. The eigenfunction with the largest eigenvalue λ1 = 1 corresponds to the sta-
tionary distribution π(x)

P(τ) ◦ π(x) = π(x) = φ1(x), (2.33)

then the eigenfunction ψ1(x) is constant on all state space Ω as φ1(x) =
π(x)ψ1(x) = π(x).
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This calculation of the eigenspectrum of the operators T and P becomes an
important issue, as it allows us to decompose the dynamics into m slow dynamical
processes and the remaining fast ones. In this sense:

ut+nτ (x) = Tslow(nτ) ◦ ut(x) + Tfast(nτ) ◦ ut(x) (2.34)

=
m∑
i=1

λni 〈ut, ψi〉πψi(x) + Tfast(nτ) ◦ ut(x),

where 〈a, b〉 is the scalar product of function b onto a. This decomposition is phys-
ically relevant as Tslow contains the dominant process, while Tfast all fast processes
which are usually of little interest. The slow dynamics are a superposition of dy-
namical processes with an associated eigenfunction ψi or φi and an eigenvalue λi.
These processes decay with time, until just the first term λ1 = 1 remains, which
gives the stationary density φ1(x) = π(x). Other eigenfunctions correspond to pro-
cesses which decay with time, and are dynamical rearrangements which occur while
the ensemble relaxes to the equilibrium distribution. We can associate a physical
(measurable) timescale for each of these processes,

ti = − τ

log λi
, (2.35)

so we write

ut+nτ (x) ≈ 1 +
m∑
i=2

e−nτ/ti〈ut, ψ〉πψi(x), (2.36)

where we neglect all fast processes.

Discretization of State Space

Molecular simulations take place in a full continuous state space Ω, although with
discrete timestep. Nevertheless, by construction, Markov state models require a
discretization of the state space in order to obtain a tractable description of the dy-
namics. As already mentioned, Markov state models partition the state space into
discrete states and compute the transition matrix which models the jump processes
observed in the dynamics. In practice, this is not done by discretizing the propa-
gator, bur rather by discretizing the state space and estimating the corresponding
transfer operator from the simulation data we have.

We consider a discretization of the state space Ω into N sets Si. This process can
be a simple partition with sharp boundaries of the considered degrees of freedom, or
of some reduced amount, for example by applying a dimension reduction technique.
The stationary probability πi to be in set i is given by the full density,

πi =
∫

x∈Si

dxπ(x), (2.37)

where Si is the i-th partition of the state space so that S = {S1, · · · , SN} :
N⋃
i=1

Si = Ω.

The Markov state model is defined by a transition probability matrix T̃ (τ) ∈ RN×N ,
which is the discrete approximation of the transfer operator T . Physically, every
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element Tij is the time-stationary probability to find the system in set j at time
t+ τ given that at time t it was in set i.

Now, all derived theory an discussions done for the continuous case are equivalent
here with the current definitions. For example, if we have a column vector p(t) ∈ RN

giving the population of our sets Si at time t, we can compute the probabilities after
time τ as

pj(t+ τ) =
N∑
i=1

pi(t)Tij(τ), (2.38)

and the stationary probabilities of the discrete states πi

πT = πT T̃ (τ). (2.39)

In the same way, we can make an eigenvalue decomposition of matrix T̃ (τ) to
find the N associated dynamical processes, and describe the system with just the
m slow ones (according to some threshold criterion).

2.5.3 Practical Guide to Building Markov State Models
We give here a brief overview on some practical aspects regarding the building of
Markov state models from molecular trajectories, emphasizing the different steps
needed, and the requirements at each stage.

Defining the Microstates

The first step is to map the molecular trajectories onto a complex network, or graph,
the microstate network. We classify the conformations the system visits according
to some geometric criterium, in order to discretize effectively the conformational
space. This geometric partition (or distance metric) should be kinetically relevant,
this is, only conformations the system can jump between rapidly should be grouped
together. In principle, no optimal general choice exists, and several choices can be
made, depending on the particular problem [12, 53, 54].

The distance metric defines the conformational space to be discretized into in-
dividual bins. This metric should distinguish between rapidly interconverting con-
formations. Typically, it is useful to look for some meaningful order parameter or
collective variable as a direct partitioning of the coordinate space {r} would yield
to massive partitions. For example, the RMSD is often a reasonable choice for
studying conformational changes in proteins [10, 31]. Other option is to resort to
techniques for reducing the number of coordinates, such as PCA, and perform a fine
partitioning directly on them [49, 55].

The partitioning of the conformational space might be done directly (i.e. into
bins of equal volume) [32, 56] or by means of some clustering algorithm, such as
k-Centers Clustering or k-Medoids clustering (see ref. [12] for review on some meth-
ods). At this point, the dynamical trajectory is translated into a sequence of discrete
bins. The microstate network is defined by the transition count matrix Cij, which
counts the observed jumps between bins i and j, and the occupation vector πi, which
gives the weight of node i.
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In this sense, we represent a dynamical trajectory {r(t)}Ni=1 as a weighted and
directed complex network, where the nodes stand for conformational microstates,
and the links observed transitions between such microstates.

Estimating the Transition Matrix

The microstate network is defined by the transition probability matrix, which is
simply obtained from the transition count matrix Cij. We define the transition
probability matrix T̃ as,

Tij(τ) = Cij∑
k Cik

, (2.40)

where τ is the lag time of the model. Tij gives the probability of observing a
transition from state i to j in the unit time τ . This way of estimating the transition
matrix is the most straightforward one, and works well when we have a large amount
of data, ideally infinite. In practice, the estimation of the transition matrix might
suffer some problems, mainly due to finite sampling or imperfections in the definition
of the microstates.

The estimation of the transition matrix, requires choosing the way to count the
transitions, given the lag time. There are two main ways to do this. The direct
one is to look at independent transitions at the lag time τ . Assuming that the the
conformations are sampled at some regular interval ∆, where τ = n∆, for some
n ≥ 1, one can count transitions as σ(0) → σ(τ), σ(τ) → σ(2τ), and so on. This
approach is equivalent to considering τ the new sampling interval, instead of ∆, and
“throwing out” the rest of the data.

The sliding window approach seems more appropriate, as it avoids some im-
precisions the previous scheme might lead to. Here, one counts as σ(0) → σ(τ),
σ(∆)→ σ(∆ + τ), σ(2∆)→ σ(2∆ + τ), and so on.

Markovianity of the Model

Markov state models are expected to be Markovian in the chosen lag time interval.
In principle, the continuous simulated dynamics, is Markovian as any configuration
can be determined from previous one. Nevertheless, when discretizing the state
space, we are coarsening the it, so the model might be Markovian only at longer
time scales. We might have for example, long internal barriers into our states (if
they have been defined poorly) which would violate the Markov assumption.

In this regard it is useful to test this condition in order to choose an appropri-
ate lag time interval. Most tests lay on the validity of the Chapman-Kolmogorov
equation

T̃ (nτ) = T̃ (τ)n, (2.41)

being n the number of steps of length τ . This equation implies that taking n steps
in a model with lag time τ is equivalent as taking one step in model with lag time
of nτ .

A way to check this is to study the relaxation time scales of the system, which
are related with the eigenvalues of the transfer matrix, as discussed previously,
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ti = − τ

log λi
, (2.42)

where ti is the relaxation time and λi the i-th eigenvalue. Now, the relaxation times
for a Markov model with a lag time of nτ should be the same as those for a Markov
model with lag time τ ,

ti = − nτ

log λi,T (nτ)
= − nτ

log λni,T (τ)
= − −nτ

n log λi,T (τ)
= − τ

log λi,T (τ)
, (2.43)

where λi,T (τ) is an eigenvalue of T (τ). Examining a plot of the relaxation timescales
as a function of the lag time (see Fig. 2.3), their stabilization means that the models
starts to satisfy the Markov assumption. The appropriate lag time to choose, or
Markov time, is simply the smallest lag time that gives a Markov behavior.

Figure 2.2: Example of relaxation timescales as a function of the lag time: The proper
lag time is the minimum at which the system behaves markovian, in this case ≈ 2ns (picture taken
from ref. [12]).

Detailed Balance

Detail balance, or microscopic reversibility, must hold for any meaningful Markov
model. This implies that every time there is a transition from i to j, there should
be a compensating transition from j to i. Not fulfilling this condition would lead
to existence of sink or source states, that would avoid from representing the actual
behavior of the system in long time scales.

There are different reasons why a model could not satisfy detail balance. Limited
sampling is an obvious one is. Also it is not having true equilibrium sampling, or a
poor definition of the microstates. For example, if they have been visited just once
along the trajectory, they become source or sink states, and should be trimmed off
the model. Detailed balance can be enforced by symmetrizing the count matrix,

Ĉij(τ) = Cij + Cji
2 , (2.44)

where Ĉij is the estimate of reversible counts, while Cij of the actual transitions.
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Ergodicity

A valid Markov state model must be ergodic, which implies that the network must
be connected. Physically, it means that every state can be reached from any other
arbitrary state. Disconnected components can arise when the model is built from
various simulations starting at different conditions. When sampling is not enough,
they would mix, or overlap, leading to a lack ergodicity. This is a clear feature of
having poor sampling, and implies the necessity of collecting more data, or discarding
the disconnected components, keeping just the largest one.

Defining the Macrostates

There are a number of reasons for coarse-graining the microstate model into a model
made of larger macrostates. This final mesoscale model would be as quantitative
predictive as the original one, and far more compact. Typical microstates networks
are made of thousands of nodes, so it may be difficult to gain physical insight
from the system by inspecting directly this model. The microstates can have little
physical significance, so might have the transitions between them. Likely, there
would be fast time scales involved in transitions within some groups of nodes, while
slower timescales involved in more significant transitions between other groups. The
first group of nodes should be lumped together, as the slow time scales define the
metastable states of the free energy landscape.

When addressing this coarse-graining, two major problems should be faced. First
we have to determine which microstates should be merged together. Second, it must
be determined how many macrostates must be built. Several methods have been de-
veloped to answer these questions several methods have been developed. A popular
one is the Perron Cluster Cluster Analysis (PCCA), which uses the eigenspectrum
of a transition probability matrix to build the coarse-grained model [12, 57]. This
method is based on identifying the slow timescales as the dominant eigenvalues in
the spectrum of the transition probability matrix. This requires a clear gap between
fast and slow scales in the eigenvalues. Additional algorithms are based more or
less on this idea, such as PCCA+ -which improves the error propagation the simple
PCCA suffers-, SHC, BACE, and many others (see [12] for review). Through this
work we usea slightly different algorithm, proposed in [32, 56] and widely used by
us since then [55, 58, 59]. We define it in the following lines.

The Stochastic Steepest Descent (SSD) Algorithm

This algorithm por detecting basins of attraction is inspired in the deterministic
steepest descent algorithm for finding minima on a potential energy surface. The
Stochastic Steepest Descent (SSD) algorithm was designed for detecting basins of
attraction over a discretized free energy surface, as the microstate Markov state
model network is [32].

Intuitively, this algorithm clusters the nodes according the probability flux relax-
ation, and thus it is based on kinetic criteria according to the system. Starting from
a random state i, we concentrate the initial probability (πi(0) = δa, i, for i =
1, · · ·N), and allow the probability distribution to evolve in time, letting the Markov
chain to relax as π(τ) = T̃ π(0). Starting from node a, we relax through the maxi-
mum probability flux, moving to some node b, where we can concentrate again all
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the probability Pi(1) = δb,i. This process is iterated until we end up on a node to
which the probability flux leads. This is a minimum in the free energy landscape.
By repeating this process over the whole network, we end up with a set of pathways,
which drive the system to different minima. All nodes belonging to pathways leading
to the same free energy minimum are defined to be in the same basin of attraction,
and clustered within the same macrostate. In this way, we split the network onto a
set of macrostates or basins of attraction.

We can define the procedure in a more formal way. Let us start by defining the
auxiliary vector Ω = {ωi} which labels the nodes, such that i = 1, · · · , N .

1. We start with ωi = 0, · · · ∀i.

2. We select a random node l such that ωl = 0 (not previously labelled), and
place it as the first node in an auxiliary list L.

3. We chose among the neighboring nodes the one to which the maximum tran-
sition probability leads, Tlm = max{Tlj,∀j 6= l}, and we check that this node
m satisfies one of the following conditions:

(a) If Tlm > Tml and ωm = 0, then m was not previously visited and the step
l → m is a descending free energy pathway. Node m is added to the list
L and we go back to step (3), using m instead of l.

(b) If Tlm > Tml and ωm 6= 0, the the step l → m is descending but m was
already visited by the algorithm. It is allocated to all nodes in list L,
ωj = ωm, ∀j ∈ L, and we go back (2).

(c) If Tlm ≤ Tml, then the transition l→ m is not descending and we remove
it from the network until the algorithm is over. We go back to step (3)
unless 2D links for node l have been removed (where D is the dimension
of the state space that was used for building the network), l is labeled
as the local minimum of the net, and ωj = l for every node in the list
j ∈ L, so we go back to step (2). This restriction is associated with
the dimensionality D and prevents transitions from a local minimum to
any node on the same basin or to a node with less energy belonging to a
different basin.

The process is over when every node in the network has been labelled, meaning
that the algorithm has went through the whole network, splitting it into the individ-
ual basins of attraction (the labels we have been setting). The maximum descending
flux pathways have been defined, relating every node with some other node labelled
as local mimum. All nodes with this same label are kinetically related in the free
energy landscape of the system.

One of the most important features of the SSD algorithm is that it scales with
N logN , unlike most algorithms which scale with a power of the system size [32,
56].

Coarse-Graining the Microstate Network

After we have applied the SSD algorithm—or any other one—we can redefine a new
network, where the nodes and links will be built according to the coarse-grained
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metastable macrostates the algorithm has found. Given πi the population of mi-
crostate i, the population πα of macrostate α is simply,

πα =
∑
i∈α

πi, (2.45)

while the transition probability from microstate i to j, the transition probability
from macrostates α to β is

Tαβ =
∑
j∈β

∑
i∈α Tijπj∑

j∈α πj
. (2.46)

This definitions ensure a proper normalization and the satisfaction of the detailed
balance condition.

Given this final network, several thermodynamic and kinetic properties can be
computed in a rather straightforward way:

1. The difference of free energy from state α and β is simply ∆Fα = −kBT log πα/πβ.

2. The entropy of the macrostates can be computed from the distribution of
probability of the microstates belonging to it. Simply, Sα = −kB

∑
i∈α πi log πi.

3. The rate constant for the transition from basin α to β—assuming local equilibrium—
is simply kαβ = Tαβ/τ .

4. The average escape time of basin α to any other one is tα = τ/(1− Tαα).

Building Free Energy Disconnectiviy Graphs

Given the intrinsic multidimensionality of the molecular systems, disconnectivity
graphs are an appealing way of picturing the free energy landscape as represented
by the Markov state model network [6, 60]. They constitute a hierarchical represen-
tation of the relative free energy as derived from the transition probability matrix
in the network.

We start by defining a control parameter, namely the adimensional free energy
F/kBT , where Fi/kBT = log πw − log πi is the adimensional free energy of state
i relative to the weightiest one w. This parameter will be used as a threshold
for value for ranking the nodes in the network. Starting with its minimal value
(i = w), we increase it, letting new nodes, together with their links, to appear.
These nodes might appear linked to any of those which are already in the network,
or as disconnected components which would get connected at some value of this
threshold. This “top-down” procedure, allows as to produce a simple hierarchical
organization of the states in the network, helping in visualizing its relation.

2.5.4 Analysis Protocol to be Used
In this Section we describe the analysis protocol we employ in this Thesis. Obviously
it is not the only one, probably nor the optimal, but it has worked in a pretty solid
and robust way so far [55, 58, 59].
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Figure 2.3: Free energy dendrogram for protein pinWW: A funnel folding structure is
observed thanks to the disconnectivity graph representation, where no order parameter is needed
to project the dynamics. (Picture taken from [60]).

1. If Ω is the state space of the our whole system (for example the biomolecule and
surrounding bath particles if present), then x(t) denotes the state of the system
at time t. First step is to decide the subset of Ω which is of interest to us. For
example, if we are studying a coarse-grained protein model in implicit solvent,
probably it would be the whole system. For an all atom simulation, just the
molecule, or likely part of it, like the backbone or α-carbon coordinates.

2. Apply some method to reduce the number of coordinates, namely PCA. Just
the first few coordinates are kept. In order to decide the threshold, inspect
the accumulated sum of the eigenvalues of the PCA, and decide some cutoff,
usually to keep 70− 80% of the cumulant autocovariance. These small set of
coordinates become configurational space over which the Markov state model
will be built.

3. Build the microstate Markov network by discretizing the configurational space
into discrete bins. Then, build the count matrix by looking at the trajectory
and counting jumps from bin to bin. The residence probability of each bin can
be also calculated from the trajectory.

4. Check if the microstate model is meaningful, detail balance holds and it is
Markovian, given the chosen lag time.

5. Apply the SSD algorithm to the microstate network in order to define the
basins of attraction of the system, or free energy minima.
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6. Check the significance of the coarse-grained model, and use it at convenience
to analyze and understand the system subject to study.

2.5.5 Analysis of Markov State Models. Transition Path-
ways

A direct “look-and-see” approach to a Markov state model provides already a rele-
vant amount of information about our system. For example, it is possible to identify
directly the most relevant states in our system, as the occupation of the macrostates
itself reveals their stability. Also, rates between states might be identified just by
looking at the transition matrix, or we can compute some observable for the model
and compare with experimental results.

Particularly, the problem of finding the set of pathways connecting two subsets
of a network is very appealing, as it goes directly to the problem of protein folding.
Markov state models can help in gaining insight to questions such as: how does
an ensemble of denatured proteins find the unique native conformation? Is there a
hierarchical folding? Is there a unique folding pathway? How do the tertiary and
secondary structures form?

Formally, the problem is stated at follows. Let A and B be two subsets in the
state space, for example the denatured ensemble and the native ensemble, respec-
tively. All remaining states are labelled generically as intermediates I. Then, what
is the probability distribution of the trajectories leaving A and moving to B? Or,
what is the typical sequence of I states followed to transit from A to B? In the case
of protein folding, this is just the determination of the folding routes the protein
follows to reach the native state.

This generic question might be answered when a Markov state model is available
and we apply Transition Path Theroy (TPT) [10, 61, 62].

Discrete Transition Path Theory

In order to describe TPT it is necessary to introduce the essential ingredient, the
commitor probability q+

i . The commitor probability is the probability that, when
being at state i, the system would reach set B without passing back to set A. If
we think of protein folding, it is simply the probability of folding. All states in A
have q+

i = 0 and all states in B have q+
i = 1, by definition. For the states in I the

commitor probability increases gradually as states are “kinetically closer” to B. The
commitor probability is computed by solving the following system of equations:

−q+
i +

∑
k∈I

Tikq
+
k = −

∑
k∈B

Tik, for i ∈ I. (2.47)

The backward commitor probability q−i (probability of, being in state i going to
set A rather than B), for dynamics obeying detailed balance is simply

q−i = 1− q+
i . (2.48)

Now, given two states i and j, the probability flux between them is given by
πiTij, which is the absolute probability of finding the system at this transition.
We are now interested just in those transitions which move from A to B without
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crossing back to A. The part of the flux belonging to those trajectories is obtained
by multiplying the flux by the probability to come from A and move to B,

fij = πiq
−
i Tijq

+
i . (2.49)

This is not actually the quantity that interests us, as we want to remove any
contribution from recrossings or detours. For example, the system might jump
multiple times between i and j increasing the flux, and we want a single transition
per pathway. Thus, the net flux is:

f+
ij = max{0, fij − fji}. (2.50)

f+
ij defines the net flux and is a network of fluxes leaving states A and entering

states B. This is a flux-conserving network, as the input flux equals the output flux
for an intermediate state i, but for the source A and sink B. The total flux of the
transition A→ B is simply,

F =
∑
i∈A

∑
j /∈A

πiTijq
+
j =

∑
i/∈B

∑
j∈B

πiTij(1− q+
i ), (2.51)

which gives the expected number of transitions from A to B per unit time τ . From
this magnitude, the rate constant kAB can be calculated as,

kAB = F/

(
τ

N∑
i=1

πiq
−
i

)
, (2.52)

where m is the number of states. Obviously TPT is general for any network, so it
might be not just applied on the microstate network, but also on the macrostate
one, providing likely more convenient info.

Pathway Decomposition

The flux network obtained by TPT can be decomposed into individual pathways
from A to B. If detail balance holds, the flux can be completely decomposed into
pathways, with no cycles. A pathway decomposition consists merely in choosing a
pathway P1 and removing its flux f(P1) from the flux network. This process must be
then repeated until the total flux F has been substracted and the network is free of
pathways. This process is very useful as it provides a vision of the means by which
the system transits from A to B. The strongest pathway, this is the one carrying
maximum flux is of special importance, particularly if it has a flux comparable to
the total one. The most convenient strategy is usually to identify first this pathway
and remove it from the network, repeating this process from then on.
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Coarse-Grained Protein Models:
the BPN46 as a Particular
Non-Native Centric Model

This chapter aims to motivate the use of coarse-grained models for studying proteins
and other biomolecules. We review briefly some of the existing approaches to build
such models. Second, we present the protein model we use using extensively through
this Part, the BLN46 protein model. We define the model, simulation protocols,
characterizing it also from the thermodynamic and mechanical point of view.

3.1 Coarse-Grained Protein Models

3.1.1 Coarse-Grained Representations
Coarse-Grained models focus on the essential features of the particular system of
interest and average out the “unneccesary” details. This provides a smaller sys-
tem, significantly improving the efficiency in over three orders of magnitude, when
compared to atomistic models. In this regard, and despite the improvement in com-
putational tools in the last years, they have maintained a significant popularity,
specially in soft matter and biomolecular systems [63–65].

Considering a particular biological macromolecule, a coarse-grained model rep-
resents it asa set of interaction sites (or “superatoms”) that correspond to group
of atoms in the system. This process is the “coarse-grained mapping”, which cap-
tures the essential features of the original system while integrating out the irrelevant
details. This mapping should fulfill at least two conditions: 1) preserve the basic
features necessary for describing the phenomenon of interest, and the relevant slow,
large amplitude motions of the system; 2) eliminate sufficient detail in order to
provide a gain in computational efficiency, and filter out the high frequency, low
amplitude fluctuations, which provide little information about the global properties
of the system. Nevertheless there is little improvement in developing systematic
mappings which fulfill such conditions. In this regard, most CG models rely on the
physical or chemical “intuition” of the researcher.

For the particular case of proteins, one of the most popular ways to coarse
grain is to represent each amino acid by one or few sites. Often, each amino acid
is described as the α-carbon, keeping the backbone of the protein. This allows
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Figure 3.1: Mapping of an atomistic protein structure to a coarse-grained structure.
Here, the amino acids are represented as few particles, capturing the essence of the system. Addi-
tionally, atomistic model often employ explicit solvents, increasing hugely the number of particles.
This is usually eliminated in coarse-grained models, (picture taken from [63]).

to identify secondary structure elements in an unambiguous way, as the dihedral
angles in the Ramachandran plot can be mapped to new coarse-grained angles in
the α-carbon representation [66].

Ideally, it should be desirable to build coarse-grained protein models such that
they represent the whole phenomenology of proteins, but more that an order of
magnitude less particles. Unfortunately, this is not possible up to date, so alternative
strategies are considered, like relying on the native structure of the protein, or
classifying the amino acids into a small number of types based on properties such
as hydrophobicity. We review briefly these strategies in the next two Sections.

3.1.2 Native Structure-Based Models
The development of protein folding theory and simulations of coarse-grained models
have provided valuable information about the principles by which a protein folds
rapidly to its unique native state. One of the strongest assumptions is that only
native contacts play a significant role in the folding mechanism [11, 41, 44, 45], a
statement motivated by the “principle of minimal frustration” [11], already discussed
Chapter 1. This consideration is based on the supposition that the folding energy
landscape has been designed by evolution such that the energy is correlated as far
as possible with the nativeness of the structure, being misfolded traps or those ruled
by nonnative interactions reduced or eliminated.

Native structure-based coarse-grained models lay on this principle, and are built
or designed starting from the native structure, as seen in the Protein-Data-Bank.
The parametrization of the model, or the definition of the “allowed interactions” is
based on the concept of native contacts. Given the native coarse-grained represen-
tation r0, two residues are said to be native contacts if they are closer than a certain
threshold distance. Based on this criterion, the interaction between pairs will be
labelled as native or nonnative, independently of any physicochemical characteristic
of the residues. The potentials involved in the model are set such that the energy
is minimal for the native structure, stabilizing this structure.

Despite the apparent simplicity of the assumptions and the definition of the
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model, this sort of coarse-graining has been tremendously successful for studying
folding, fluctuations or interactions between proteins, also because of the computer
efficiency they allow [9, 41, 67]. The particular definition of the native interactions
allows different models. We focus on two kinds, network models and Gō (or native-
centric) models.

Network Models

Network models are perhaps the simplest approximations, as they represent the
protein as an elastic network based on the native configuration [68–72]. The in-
teractions between contacts are simply quadratic functions, either of the distances
between sites (Elastic Network Model, ENM [68]) or cartesian displacements of sites
(Gaussian Network Model, GNM [71]). This kind of model provide insight on the
elastic properties about the crystalized structure, particularly about the fluctuations
of each site, which can be correlated with experimental properties.

For the ENM model, given the native configuration r0 [68],

UENM(r|r0) = 1
2
∑
i<j

kij∆ij(r0)|rij − r0
ij|2, (3.1)

where rij and r0
ij are the distances between sites i and j in configuration r and

native configuration r0, respectively, while ∆ij(r0) is the matrix of native contacts,
being ∆ij = 1 if contacts i and j are native (closer than the a cutoff distance in the
native structure) and 0 otherwise.

The GNM potential is expressed as [71, 72]:

UGNM(r|r0) = 1
2
∑
i<j

kij∆ij(r0)|rij − r0
ij|2, (3.2)

where rij and r0
ij are the vector displacements from site i to site j in configurations

r and r0
ij, respectively.

Clearly, the folded structure corresponds to the minimum in both models. In the
case of the GNM model the the average fluctuations of each site and their covariance
can be analytically determined from Gaussian integrals. The ENM model cannot
be easily analyzed, but provides more realistic modes [70].

These network models represent usually each amino acid as a single site corre-
sponding to the α-carbon, and employ single spring constants for bonded atoms.
The only parameters involved in the model are the spring constant k and the cut-
off distance rc. These models reproduce reasonably experimental B-factors—which
are easily calculated redefining the contact matrix [73]. Extensive developments
have been produced for improving the model, including fitting of the constants [74],
distance-dependent constants [69], as well as modifications of the model to include
the possibility of breaking contacts. Dynamics are reproduced by simply integrating
the equations of motion with a Langevin thermostat (or any other).

Gō-Models

This sort of models are based on the assumption that nonbonded interactions in
the protein are ruled by the folded native structure, rather than by the character of
the residues. In this regard, the Hamiltonian minimizes the potential of the folded
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structure. Unlike network models, Gō-models include nonlinear potentials looking
for describing interactions or the folding mechanism [9, 67].

Based on this simple idea, there are several ways to build a Gō-model. A sim-
ple and popular one, is to represent each amino acid as its α-carbon. Then, the
nonbonded interactions between native contacts are represented as an attractive
Lennard-Jones potential (or similar), and those of nonnative contacts as a simple
repulsive excluded-volume potential. Bonds between adjacent residues in the back-
bone are modeled as stiff springs. Angle-dependent potentials, such as bending and
dihedral interactions, can also be included, as they are useful for maintaining the
preferred geometry of the peptide bonds.

In this way, we eliminate any energetic frustration, leaving a “funneled” land-
scape towards the native state [11]. This sort of models are useful for monitoring the
evolution of a protein from an unfolded structure to the native one. Additionally,
it has been often argued that they are able to reproduce successfully the folding
mechanism, as well as correlating the folding rates for small proteins [41, 44]. Due
to this, and also to the computer efficiency—reduced by several orders of magni-
tudes the number of particles to integrate, as N is the number of residues in the
molecule–they enjoy a remarkable popularity, which has even increased in the last
years.

3.1.3 Knowledge-Based Models

Native structure-based models work fairly well for the set of problems mentioned
before. Naturally, they are not the end of the story. One must define a Hamil-
tonian for each single protein, and obviously proteins with unknown structures, or
unstructured ones cannot be addressed by this approach. Also, the role of nonnative
contacts on protein dynamics remains still as an interesting question. For example,
misfolded structures could be driven by the formation of nonnative interactions,
which stabilize the system in a nonnative structure [64].

In this sense, a different approach is to build transferable models, which are
protein-independent potentials and work for modeling multiple proteins, for ideally
reaching some sort of general coarse-grained protein model (if possible).

There exist different strategies for developing such models. For example, these
potentials could be derived from the PDB statistics, this is, estimating the effective
interactions between pairs of amino acids based on the statistical frequency of finding
these contacts in the PDB data set [75]. Another strategy is to propose potentials
which are optimized on the basis of known structures which appear PDB, and choose
parameter sets such that α-helices or β-sheets become stable structures [76].

Although some advance has been made on these lines, the choice of potential
and parameter sets is still ad hoc, and thus the models are built according to the
system we wish to study.

Through this Part, we study in detail a protein model which falls onto this
category. On the one hand, it constitutes a useful test model for different analysis
techniques or explorations which can be hard to apply on atomic-detailed models
due to the sampling problem. Also, providing they resemble the behavior actual
proteins, they can be used for learning and gaining insight onto some of the structural
or kinetic properties which govern this biomolecules.
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3.2 The BPN46 Protein Model: Origin and De-
scription

In this section, we present the BPN46 model, that we study through Chapters 4
and 5, following reference [55]. This protein model, despite its apparent simplicity,
exhibits a rather rich behavior, becoming an ideal model to explore an analyze the
different free energy techniques we have been describing so far.

3.2.1 Description of the Model
The BPN46 model is a coarse-grained off-lattice protein model which was introduced
by Honeycutt-Thirumalai [77] and successively generalized by Berry et al to include
harmonic interaction between next-neighbor residues [78]. This model has been
widely studied through time, suffering different modifications, and being explored
both in the context of thermally driven unfolding and subject to mechanical forces
[79, 80]. It has 46 monomers which mimic the residues in a protein, in the α-
carbon positions. These monomers belong to three different categories, hydrophobic
(B), polar (P) and neutral (N). The residue sequence is given by 46 amino acids:
B9N3(PB)3N3B9N3(PB)5P .

This protein folds successfully into an stable four-strand β-barrel structure, stabi-
lized by the hydrophobic core formed by the interaction between the two hydrophobic
β strands which run parallel to each other and anti-parallel to the second and fourth
strands (see Fig. 3.2 (A)). We can number the β strands, being β1 the N-terminal
hydrophobic strand and β4 the C-terminal one. Numbering with the neutral turns T
with a similar criterion, the protein structure can be represented as β1T1β2T2β3T3β4.

The Hamiltonian of the system is defined by four different interaction terms:

1. Next-neighbor interaction: Harmonic springs sett the backbone of the
protein i

V1(ri, ri+1) = 1
2K

N−1∑
i=1

(ri,i+1 − r0)2, (3.3)

where N = 46 is the number of monomers, and, in adimensional units, K = 50
is the spring constant, and ri,i+1 the distance between neighbor residues i and
i+1, with r0 = 1 the equilibrium distance between residues. These parameters
set a very stiff spring, which maintains the distance between residues almost
constant.

2. Bending interaction: Three body angular potential, which accounts for the
energy associated to bond angles,

V2(θi) =
N−1∑
i+1

[A cos θi +B cos 2θi − V0] , (3.4)

where θi is the bending angle formed by residues i − 1, i and i + 1 and A =
−kθ cos θ0/ sin2 θ0, B = kθ/4 sin2 θ0 and V0 = A cos θ0+B cos 2θ0, with kθ = 20,
θ = 5π/12 rad. This potential term, corresponds, up to second order, to a
harmonic interaction term ∼ (θi − θ0)2/2.
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3. Dihedral interaction: Four body interaction, corresponding to the dihedral
angle potential

V3(φi, θi, θi+1) =
N−3∑
i=1

[Ci(1− S(θi)S(θi+1) cosφi) +Di(1− S(θi)S(θi+1) cos 3φi)] ,

(3.5)
where φi is the dihedral angle formed by the two planes defined by residues
(i− 2)-(i− 1)-(i) and (i− 1)-(i)-(i+ 1) respectively. The parameters choice is
Ci = 0 and Di = 0.2 if two or more of the residues in the planes are neutral,
and Ci = Di = 1.2 otherwise. The tappering function S(θi) = 1 − cos32 θi
is introduced to cure a problem of dihedral potentials, which appears when
θi = 0 or θi = π. When three residues lay on the same plane, it is impossible
to define the dihedral angle, which leads to a discontinuity in V3. The tappering
function does not introduce any extra minima in the potential, having little
influence in the dynamics.

This potential has three minima for φ = 0 (trans state) and φ = ±2π/3 (gauche
states), being mainly responsible for the formation of secondary structures (see
Fig. 3.2 (B)).

4. All-residue potential: A long range sequence dependent Lennard-Jones in-
teraction between every pair i and j of residues,

V4(rij) =
∑
ij

εij

(
1
r12
ij

− cij
r6
ij

)
, (3.6)

where rij is the Euclidean distance between residues residues i and j and the
parameters depend on the nature of the interacting residues, being attractive
between hydrophobic residues and repulsive otherwise. Particularly:

• cij = 0 and εij = 4 if i or j are neutral.

• cij = 1 and εij = 4 if i and j are hydrophobic.

• cij = −1 and εij = 8/3 otherwise.

Now, the Hamiltonian of the system, simply reads:

H =
N∑
i=1

pi
2

2m + V1(ri, ri+1) + V2(θi) + V3(φi, θi, θi+1) + V4(rij). (3.7)

Where m is the mass of each residue. In every moment we employ adimensional
units. Nevertheless, real units might be recovered. Our distance unit is the distance
between monomers, which can be taken to be that of α-carbons, thus r0 = 1 =
0.38nm. The energy units might estimated as those of an H-bond, so ε̃ = 1.7kT .
Now, mass units are taken as the average value for and amino acids, namely m =
3× 10−22kg.
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Figure 3.2: A) Representation of the native structure: The protein folds into a β barrel-
like structure. Hydrophobic residues are colored in grey, neutral in blue and hydrophilic in red. B)
Dihedral potential for the two cases: Red line shows potential for having at least two neutral
residues, and blue other wise. The three stable states (one trans, two gauche) are clearly shown.

3.2.2 Simulation Protocol
The model is studied by performing molecular dynamics simulations integrating the
Langevin equations of motion under different protocols [55]. For the equilibrium
canonical simulations at temperature T :

mr̈i = −γṙi −∇iVBPN + ηi, (3.8)

where γ is the friction coefficient (γ = 1 in adimensional units), VBPN the total
intramolecular potential discussed above, and ηi a Gaussian white noise, of zero
average and holding fluctuation-dissipation theorem 〈ηiηj〉 = 2kBTγδ(t− t′)δij.

The equations of motion are integrated with a second-order Runge-Kutta algo-
rithm [81], using a timestep of ∆t = 0.005. Our time units can be estimated as
τ ≈ 3ps.

For thermal simulations, we run the dynamics starting from the native configu-
ration, allowing the system to equilibrate for 106 timesteps, and running trayectories
of ∼ 109 timesteps. Usually, several trajectories from different initial conditions are
run in order to obtain a better sampling. The particular details will be specified
when convenient.

We are interested in the study of the system under the presence of external
forces, with the spirit of single molecule experiments (see part III). This force might
be applied in an in equilibrium or out-of-equilibrium protocol. In every case we
attach the first monomer to a fixed spring, while the last one to another spring,
responsible of setting the external force. The force is then applied in one direction,
namely the z direction.

The out-of-equilibrium protocol sets a constant loading rate to the system. This
is, the spring retracts at a constant velocity V , being the external force Fext =
k(x− V t), where k is the constant of the spring, here k = 30 in adimensional units
(see part III for discussion on the influence of this spring constant). This pulling
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protocol induces an increasing loading force which unfolds mechanically the protein,
being the pulling velocity V a critical parameter for the study of the system.

The equilibrium protocol uses the same set-up but setting a constant force, often
known as the force-clamp protocol. Here, the spring attached to the last monomer
is simply pulled a distance z0 so that Fext = kz0 is the desired force. This protocol
is equivalent to “tilting” the free energy landscape of the system in the direction of
the pulling force. This is the pulling mode we use in Chapters 4 and 5.

3.3 Thermodynamic Properties and Behavior Un-
der Force

The BLN46 protein exhibits three different transition temperatures, at is has been
reported [79, 80], the glassy temperature Tg, the folding temperature Tf and the
collapse or critical temperature Tc. The native configuration is degenerated, with
multiple alike configurations which are separated by large barriers [82]. The glassy
temperature Tg indicates the temperature below which the system can be trapped
in local minima of the potential, freezing in non-native conformations. The folding
temperature might be defined in different ways. For example, the temperature at
which the probability to visit the native configuration is 1/2. Finally, the critical
temperature Tc is the “proper” thermodynamic transition identified by the peak
in the heat capacity. It distinguishes between random coiled configurations and
collapsed or structured ones.

Figure 3.3: Heat capacity and fraction of native contacts as a function of temperature:
The critical temperature (separating folded configurations from random coiled ones) is identified
as the peak of the heat capacity, coinciding also with the temperature at which the fraction of
native contacts is 0.5.

Figure 3.3 shows the heat capacity and the fraction of native contacts as a func-
tion of temperature, allowing both magnitudes to identify the critical temperature
Tc = 0.51. As we show below, the protein exhibits a complex configurational space,
with many allowed metastable configurations. As temperature increases, the system
starts to populate other configurations rather than native-like ones. The decrease in
the fraction of native contacts reveals this feature. Over the transition temperature
it nearly drops to zero, revealing that the system is dominated by random coiled-like
conformations, as suggested by the peak in the heat capacity.
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We simulate the system in the presence of an external mechanical force. Figure
3.4 shows the average fraction of native contacts as a function of the constant pulling
force. The chosen temperature is T = 0.35, above the glassy temperature but below
the critical one. We see two types of transition in this curve. First, around F ≈ 0.5
there is a drop in the fraction of native contacts to Q ∼ 0.5, due to the population
of a metastable state (the half-stretched configuration) which we discuss further on.
The unfolding force is at FU = 1.1, when the system unfolds totally to Q ∼ 0.

Figure 3.4: Fraction of native contacts as a function of the pulling force: Two drops
are clearly seen, one at F ≈ 0.5 and other at F ≈ 1.1. The first one is due to the excitation of an
intermediate structure. The second one is the unfolding force FU .

Recall that in real units, the critical temperature is Tc ≈ 1.15kT (little bit above
room temperature) and the unfolding force FU ≈ 30pN , in the range of actual
unfolding forces for actual proteins (for not to mechanically stable ones, though).
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Chapter 4

Mechanical Unfolding of BPN46:
Reaction Coordinates and Free
Energy Profiles

In this chapter, we describe the mechanical unfolding of protein BPN46 employing
low dimensional representations of the free energy landscape. First, we explore two
reaction coordinates, the end-to-end distance ξ—the natural reaction coordinate due
to the presence of the external force—and the fraction of native contacts Q. We
employ the Bayesian test to rate their quality as reaction coordinates. Next, we
explore the use of PCA to find order parameter with which describe the system.
Finally, we build two-dimensional free energy surfaces with different combinations
of collective variables.

4.1 Motivation
The present and following chapters are related to studies of the equilibrium ensemble
of coarse-grained protein BPN46 under the presence of a constant mechanical force.
This protocol—known experimentally as the force-clamp set-up—allows equilibrium
transitions between different states by “tilting” the free energy landscape in the
direction of the pulling force [83, 84].

The main interest of the present and next Chapters is to explore the different
analysis alternatives we have discussed in Chapter 2. Particularly, we confront two
different frameworks to describe the free energy landscape of the system. First, the
use of low dimensional projections along different order parameters (present Chap-
ter). Second, a Markov state model description (Chapter 5). We focus on a proper
description of the conformational state and the unfolding mechanism, opposing the
both methods. These two chapters follow reference [55], with extended containts.

4.2 Simulation Protocol
The molecular dynamics trajectories we analyze in Chapters 4 and 5 are produced in
the following way. We integrate the Langevin equations of motion for the BPN46 pro-
tein in a force-clamp protocol (see Section 3.2.2), fixing monomer one and applying
a constant force to the last monomer. In this way, we run equilibrium simulations.
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The simulations are performed at a force of F = 0.8FU (applied in along the
z coordinate), and temperature of T = 0.55Tc, between the critical temperature
but above the glassy one. The chosen force optimizes the number of configurations
visited by the system, particularly the number of unfolding events. Larger forces
would tilt the landscape to the stretched configuration, hindering refolding events.
Lower forces would keep too large barriers towards the stretched configuration, which
would hardly be visited.

We run a total of six equilibrium trajectories of ∼ 3 ms long with a preheating
time of ∼ 3 µs. Configurations are stored every 1000 time steps, which is ∼ 15 ps.

4.3 One Dimensional Descriptions: the Free En-
ergy Landscape Along Different Reaction Co-
ordinates

We start describing the system through one-dimensional free energy profiles along
two different reaction coordinates, the end-to-end distance and the fraction of native
contacts. The first one is the natural reaction coordinate as the force imposes a
privileged direction, narrowing the landscape along the pulling coordinate. The
fraction of native contacts is widely used to describe protein folding, although our
model is not based on any native-centric assumption

4.3.1 The End-to-End Distance and the Fraction of Native
Contacts as Reaction Coordinates

Free Energy Profile Along the Fraction of Native Contacts and the End-
to-End Distance

Figure 4.1 shows the free energy profile along the end-to-end distance ξ and the
fraction of native contacts Q for a constant force F = 0.8FU . The profile along ξ
shows four clear minima that can be identified with four different configurations,
considering that each of the four β strands have a length of ξ ∼ 3 nm. Clearly,
the native configuration (N) has ξ ∼ 0 nm, as the extremal β strands are oriented
in the same direction. The fully stretched configuration (S) has ξ ∼ 12 nm, as the
protein is fully extended as an stretched polymer (ξ ≈ 0.38 × 46). In between,
we find two different intermediates. The aligned configuration (Al) has the second
strand (PB)4 bent, so the ends of the molecule are oriented in the pulling direction
and ξ ∼ 3 nm, the length of a β strand. The most stable configuration is the
Half-Stretched configuration (HS), where ξ ∼ 6 nm and the fourth (PB)5 strand is
unfolded, aligning both extremal strands in the direction of the pulling force.

These four states are also identified in the Q profile. State S has all contacts
broken, so Q ∼ 0. States HS and Al appear almost overlapped in the profile, with
Q ∼ 0.5 and Q ∼ 0.4 respectively. Finally the N configuration corresponds to the
well in Q ∼ 0.9.

The HS configuration is the most stable state, according to both profiles, and
the N configuration has similar stability. The stability of the HS is easy to under-
stand. First, this configuration allows to have both extremal strands oriented in
the direction of the pulling force. The energetic cost of separating the β4 strand is
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Figure 4.1: Free energy profile along the end-to-end distance and the fraction of native
contacts: Both profiles depict a similar scenario, with four main free energy wells which can be
associated to four different configurations, the native N, the stretched S and two intermediates,
the half-stretched HS and the Aligned Al states.

low, as the only involved interaction are between its hydrophobic residues and the
hydrophobic core. This configuration maintains intact this hydrophobic core, the
main responsible of the stability of the folded structure. The aligned configuration
is an alternative solution for aligning the ends in the direction of the force. The β2
strand is bent in the middle, keeping also the hydrophobic core, but breaking more
interactions than in the HS configuration.

Regarding the free energy barriers, the N and HS are separated by low barriers
of around 2kT . This implies that the transitions between both states would be
relatively fast. The S configuration is separated by a large free energy barrier of
∼ 7kT , so the waiting time to reach this configuration is expected to be large.

This conclusion is tested by simple inspection of a trajectory along the ξ coor-
dinate. Figure 4.2 shows a piece of 120 µs of trajectory where this scenario is clear.
In a time scale of ∼ 100 ns the system is involved in fast transitions between the N,
HS and Al states. Then, in a µs scale the system unfolds completely, visiting the S
configuration. This vision agrees with the free energy profile shown in 4.1.

The remaining question is to unveil the unfolding mechanism of the protein.
The free energy profiles in Fig. 4.1 suggest that the HS plays a relevant role as a
mechanical intermediate. Starting from the native state, the β4 strand unfolds as
a first step, to then surmount the free energy barrier of ∼ 7kT and reach the fully
unfolded state. Physically, this means to break the hydrophobic core, implying thus
a big energetic cost.

We highlight two particular unfolding pathways in Fig. 4.2. In the first path-
way, the system starts in the N configuration to jump to a state with ξ ∼ 7 nm,
which coincides with the HS state, and then hops to the S configuration, support-
ing the picture we proposed. Nevertheless, the second transition shows a different
mechanism, involving the visit of at least three different intermediates, first one
with ξ ∼ 3 nm (probably the Al configuration) then ξ ∼ 7 nm (probably the HS
configuration) and finally one unidentified at ξ ∼ 13 nm.

Figure 4.2 suggest a possible multiplicity of unfolding pathways. This feature can
never be described with a one-dimensional profile, as the projection onto any reaction
coordinate would be non-Markovian. This complexity is of particular interest for
the present system, as the pulling force constraints the free energy landscape along
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Figure 4.2: Snapshot of the trajectory along the end-to-end distance with two transi-
tion pathways highlighted: The trajectory shows two main events in the molecular trajectory.
The first one involves fast time scales, and is associated with transitions between the N, Al and
HS, within times of ∼ 1 ns. The second is the unfolding transition, which occurs at slow time scales
of ∼ 40− 50 µs. Highlight of two different unfolding pathways suggests that unfolding might occur
through more than a single reactive pathway, as different intermediates seem to be involved in the
process.

ξ, and still the system seems to evolve through other degrees of freedom.

Bayesian Test on ξ and Q

We apply the Bayesian test described in Section 2.3.1 to test the quality of Q and ξ as
reaction coordinates. We inspect the trajectories Q(t) and ξ(t) to identify transition
pathways, as those fragments of trajectory where the system leaves the native state
to go to the stretched state without any recrossing to the native state. The native
and stretched states are straightforward to define, just from the histograms showed
in Fig. 4.1. A total of nine transition paths are found, covering a fraction of
trajectory of p(TP ) = 0.024.
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Figure 4.3: Bayesian criterion to quantify the quality of ξ and Q as reaction coordi-
nates Left column shows the plots for ξ while the one in the right for Q. From top to bottom
we show, a fraction of trajectory involving some transition paths; density probability distribution
along the reaction coordinate (black) and free energy profile (red); density probability distribution
of the transition pathways; and probability of being on a transition pathway being at a value of
the reaction coordinate. Blue dashed lines indicate the N and S state (reactant and product state)
and the green dashed line the position of the transition state according to the Bayesian criterion.

Figure 4.3 shows the Bayesian test on Q and ξ in an analogous way as done in
[38]. Left panel shows results for ξ and right one for Q. From top to bottom we
show a fragment of trajectory with explicit transition paths; the density probability
distribution peq (black) and the free energy profile (red); the density probability
distribution along the TPs, p(q|TP ) (being q, ξ or Q) and the density probability
distribution p(TP |q) as given by Eq. (2.14).

The reactant (N) and product states (S) are identified (blue dashed lines) as
free energy wells or peq maxima. The TS (green dashed line) corresponds to the
maximum of p(TP |ξ) and p(TP |Q), appearing at ξ ≈ 11 nm and Q ≈ 0.1.
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Nevertheless, as mentioned in section 2.3.1, the indicative of a good reaction
coordinate q is a unimodal distribution p(TP |q) with a sharp single peak at qTS
close to the diffusive limit p(TP |q) ≈ 0.5. Otherwise, this implies the existence of
multiple TSs or overlapping of states at the same value of the reaction coordinate.

Figure 4.3 shows a multimodal representation for p(TP |ξ) with at least three
different peaks where the one at ξ ≈ 11 nm stands out, close to the diffusive limit.
This plot suggests that ξ does not provides a proper description of the system, even
though is the natural reaction coordinate. The multiple peaked structure implies the
presence of possible multi-transition states, and thus of multiple unfolding pathways.

The distribution p(TP |Q) shows a single sharp peak at Q = 0.1, close to the
diffusive limit 0.5. In this sense, the test ratifies it as a good reaction coordinate.
The TS is a structure with just the 10% of the native contacts. This is quite close
to the S configuration, so the test fails in describing how does the system reaches
the TS, as we can have overlapped pathways in the transition from N to the TS.
The most surprising feature is the the HS configuration seems to play no role in
the unfolding mechanism, in opposition from the intuition given by the free energy
profiles.

4.3.2 PCA as a Method to Find Order Parameters
In this section we employ PCA for two different purposes. First, the eigenvectors
contain information about which regions of the molecule have more important con-
tributions to the fluctuations. Second, PCA is a way to find a new set of coordinates
which can offer useful order parameters for describing the system. We build the free
energy profile along the first few PCs and compare to the ones in Section 4.3.1. We
do not refer to the PCs as reaction coordinates, given that no reaction occurs along
them. The term order parameter is more appropriate as they are useful collective
variables for monitoring the state of the system.

The i-th PC is defined as:

qi(t) = vi · (r(t)− 〈r〉). (4.1)

Here, subindex i stands for the PC eigenspace index, and PC eigenvector vi is a
3N component vector (where N = 46, the number of residues in our protein). r(t)
stands for the the 3N component time dependent trajectory of the protein, r(t) =
(x(1), y(1), z(1), x(2), · · · ), and 〈r〉 is the average structure of the protein calculated
along the trajectory.

Study of the Eigenvalue Distribution and Eigenvectors

We study the PC eigenvalues and eigenvectors to gain the information they contain.
As mentioned in Chapter 2, the eigenvalues are the autocovariances of the PCs λi =
σ2, which we order in decreasing value. Observation of the cumulant autocovariance
along the eigenvalue index provides a dimension reduction cutoff criterion. Typically,
keeping between the 80 − 90% of the total autocovariance is enough for a proper
description of the system. We define the cumulant autocovariance ζ as,

ζi =
∑i
j λj∑N
i λi

, (4.2)
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where N is the number of coordinates of the system. Panel (A) in Fig. 4.4 shows the
cumulant autocovariance as a function of the eigenvalue index i. The blue dashed
line shows that for three PCs we gather up to the 80% of the total autocovariance.
The three first eigenspaces are responsible for the majority of the fluctuations of the
systemm and the first PC already gathers more than 50% of the total.

For a more intuitive visualization, it is useful to calculate the contributions of
each monomer to the autocovariance, rather than of each coordinate. We define the
following magnitude:

δji = (vji )2 + (vj+1
i )2 + (vj+2

i )2, (4.3)

where vji is the j-th component of the i-th eigenvector. In this sense, δj1 accounts
for the magnitude of the contribution of monomer j to the first PC, and so on. In
our particular case, keeping just the z component should be enough, as most of the
motion occurs through this coordinate, given the direction of the force.

Figure 4.4: Cumulant autocovariance and eigenvector representation: Panel (A): Cu-
mulant autocovariance ζ as a function of the eigenvalue index. Largest part of the autocovariance
accumulates into the first few eigenvalues, with the first three ones gathering up to the 80% of the
total. Panel (B): δi quantities computed, where the regions which account for the largest part of
the fluctuations can be clearly seen. First component is due to motion in the extremal β4 strand,
while second and third due to movements in the neutral turns.

Panel (B) in Fig. 4.4 shows the quantities δi for the first three PC, revealing
in which regions of the protein do fluctuations concentrate. First PC accounts for
motions in the extremal β strands, mainly in the β4 strand, the one that unfolds
in the HS configuration. A description through the first PC should be enough for
differencing between the N, HS and S states, as they rely on large configurational
changes associated with the extremal β strands.

The contribution of the second PC accounts for movements in the neutral turns,
particularly in the T1 and T2. Interestingly, this component is separating the motion
associated with unfolding of the β strands, giving more subtle fluctuations which
are associated with arrangements in the neutral turns. Finally, the third component
focuses on the third neutral turn and part of the β4 strand. This accounts for
possible flexibility in this strand (as there is a minimum around monomer 40) and
the third T3 turn.
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Free Energy Profiles Along the Principal Components

We compute the PCs qi and study their suitability as order parameters. First, they
can be useful to understand the unfolding mechanism of protein BPN46 and compare
the conclusions with those derived from the reaction coordinate candidates ξ and Q.
Second, they can be used as input parameters for the discretization process prior to
a Markov state model building (see Chapter 5).

Studying the probability density—or the free energy profile—along each PC re-
veals states associated with large amplitude motion or fluctuations from the average
structure. Typically, the first PCs would have structured distributions, with mul-
tiple peaks revealing different states. The last PCs become gaussian distributions
about the average structure, accounting just for the symmetric thermal fluctuations,
so are to be discarded.

The interpretation of the PCs is non-intuitive, and they should be analyzed
jointly with the average structure and the PC eigenvectors. There are the following
three options for the overall behavior:

1. Null values of the PC: Peaks centered at qi = 0 indicate two possibilities.
The first one is no motion about the average structure, indicating the pres-
ence of the average structure itself. For example, the last PCs are gaussians
distributions about qi = 0, indicating thermal fluctuations about the average
structure. The second option is to have motions orthogonal to the associated
eigenvector vi. The former option is the most likely, as latter structures are
typically eliminated in the aligning process.

2. Positive values of the PC: These states indicate presence of motions which
are symmetric to the ones described by the eigenvector.

3. Negative values of the PC: These states indicate presence of motions which
are asymmetric to the ones described by the eigenvector.

Figure 4.5 shows the PMF along the first two PCs, with the associated probability
density distributions in the insets. As predicted earlier, the first PC gives a general
idea about the behavior of the system, in agreement with the profiles shown in Fig.
4.1. The second component gives a more detailed picture of the system, accounting
for motions associated with the turns.

The free energy profile along q1 shows three free energy wells. The first one has
a large negative value (q1 ≈ −50), the second one q1 ≈ −10 while the third one
q1 ≈ +20. This profile resembles the one along the end-to-end distance, and these
three states correspond to the S, HS and N configurations, respectively. This is
concluded by two reasons. First is the mere observation of the population of the
three states (see Inset in Fig. 4.5). Second, the first PC accounts for motions in the
extremal β4 strand, and the conformational changes among these three states are
associated with large changes in this strand. The average conformation is close to
the HS state, so free energy well at q1 ≈ −10 corresponds to the HS conformation.
State at q1 ≈ −50 is a large negative motion, so likely the S conformation. Finally,
state at q1 ≈ +20 corresponds to the N state, given an opposite sign motion of the
strands. Observation of the trajectory q1(t) compared to Q(t) or ξ(t) certify these
conclusions.

92



Chapter 4

Figure 4.5: Free energy profiles along the first and second PC: Free energy profile along
q1 and q2 and probability distribution (inset). The profile along the first PC reveals the three
major states already identified, while the one along the second a rugged landscape with probably
more states not found in the representations along ξ and Q.

The free energy profile along q2 is harder to interpret, but the free energy wells
should be associated with motions in the turns. Several free energy wells appear,
separated by low barriers, revealing a rugged landscape. This suggest that the
multiplicity of states could be larger than that found in the simple one-dimensional
profiles.

4.4 Two Dimensional Free Energy Landscapes
We show two dimensional free energy surfaces along different pairs of order param-
eters, namely ξ and Q, and the first two PCs. While one-dimensional projections
showed the basic features of the system, some states can be overlapped in this simple
projection. Two dimensional surfaces are useful for resolving possible overlappings
and providing a more complete vision of the free energy landscape.

Figure 4.6 shows the two-dimensional free energy surfaces along the fraction of
native contacts Q and the end-to-end distance ξ. The three major states N, HS
and S are identified as three free energy wells in the surface. The Al state appears
as another differentiated well, well resolved in with the ξ coordinate but not with
Q. Also, a different state with ξ ∼ 5 nm and Q ∼ 0.4 is revealed. Being a two di-
mensional surface, it offers a greater variability of pathways. While one dimensional
descriptions suggest HS as the natural intermediate—which is a plausible option,
given that one of the strands is unfolded—other low free energy routes are possible
here, for example following the Al configuration.

Figure 4.7 plots the free energy surface along the first two PCs. It is clear how
the PCs are better reaction coordinates than Q and ξ as up to eight distinct states
can be identified, as eight valleys in the free energy landscape. In an overall view,
the surface shows three major regions, in correspondence with the N, HS and S
states. Nevertheless, they have a rugged structure, with multiple free energy wells
inside. For example, the native region is divided in three different wells. Moreover
a set of two wells connects this native region with the stretched one, suggesting a
possible pathway not seen in the one dimensional profiles.

The dashed lines suggest two possible unfolding pathways. First, the system
would transit to the HS configuration to unfold completely later. Nevertheless,
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Figure 4.6: Two-dimensional PMF along Q and ξ: The three main states are clearly
identified (N, HS and S) as three wells in the bidimensional landscape. The Al configuration is
also found as a separate valley. Apparently, no new state state is recovered in this representation,
meaning that the one dimensional projections along these two respective coordinates were not
missing any information.

Figure 4.7: Two-dimensional PMF along the first two PCs (q1 and q2): The N, HS and S
configurations appear as three clear valleys in the landscape. Nevertheless, a number of additional
shallower wells suggest the presence of further configurations. Two possible unfolding pathways
are suggested. The first pathways crosses the HS region (as suggested by the one dimensional
profiles), following a high free-energy route. The second pathway moves directly from the native
states through a set of new states until it unfolds.

this pathway is forced to go through high free energy regions, so it should have
low probability. The second pathway seems more straightforward. The system
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would move directly from the native state to the stretched one by crossing two new
configurations connecting them. These regions have a higher population and lower
barriers, and thus, this pathway seems more likely. Remarkably, this is hard to find
in the Q− ξ representation.
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Mechanical Unfolding of BPN46:
Markov State Model and
Unfolding Pathways

In this chapter we employ a Markov state model description of the free energy
landscape of the system. In opposition to the approach of Chapter 4, this requires
no any prior knowledge about the system, or arbitrary definition. We proide a
clear picture of the configurational space of the system, allowing to identify all
relevant macrostates as free energy basins. Additionally, we apply TPT to unveil
the unfolding pathways. Finally we compare the results from both descriptions.

5.1 The Markov State Model of the System

5.1.1 Markov State Model Construction
We build a Markov State Model following the method described previously. PCA is
used in order to reduce the dimension of the system. We take the first three PCs as
our configurational space (keeping the 80% of the total autocovariance), which we
discretize to build the microstate network. We discretize each PC in 20 bins, so the
our configurational space is made of 8000 possible microstates.

The conformational Markov network is built by mapping the molecular dynamics
trajectories onto a complex network discretizing the trajectory according to the
defined bins. The conformational Markov network we obtain is made up of 1867
bins (23% of the possible microstates) which are connected through 23995 links,
including self-links. This is less than the 1% of the possible links. This is no cause
of surprise or concern for possible misconvergence of the network or lack of enough
statistics. Typically, the number of links of a converged network go with N lnN
[12], which is far satisfied here.

In order to build a more intuitive model of our system, we cluster the microstates
(nodes) onto macrostates by applying the Stochastic Steepest Descent algorithm
[32]. From this clustering criterion, we define the macrostate network, where each
new node represents the basins of attraction of the underlying free energy landscape
of the system. This smaller network is more significative from a physical point of
view and allows us to relate each node with conformations adopted by the system
through the simulation. We take the basin network as the equilibrium ensemble of
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our system.
The basin network is made up of 30 basin connected through 1290 edges. Those

basins with a population lower than the 0.001% of the trajectory (π < 10−5) are
subtracted from the network in order to avoid pathological or extremely rare states.
After this refinements, we keep 13 macrostates connected through 65 edges, including
auto links.

5.1.2 Study of the Eigenvalues and Eigenvectors of the Tran-
sition Matrix

As discussed in Chapter 2, the transition matrix is a discrete version of the transfer
operator of our dynamical model. Thus, the study of its eigespectrum provides
useful information about the kinetic processes of the system. We address directly
the spectrum of the coarse-grained transition matrix, considering that the state
space is composed of 13 macrostates. In such way we already rule out any fast
process (which are intra-basins transitions).

Figure 5.1: Eigenspectrum of the transition probability matrix and first three eigen-
vectors : Panel (A) shows the 13 eigenvalues for the coarse-grained transition probability matrix.
Largest eigenvalue is λ1 = 1, associated with the equilibrium distribution. Panel (B) and (C)
shows first three eigenvectors ψi and φi. φ1 shows the stationary distribution and the next ones
the following two slowest dynamical processes, associated with the transition to the stretch process
and transition to the half-stretched state.

Panel (A) in Fig. 5.1 shows the eigenvalue spectrum for the 13 × 13 transition
matrix. All 13 dynamical processes are slow processes (high eigenvalues), where
first eigenvalue λ1 = 1 corresponds to the equilibrium distribution. Panel (B) shows
the eigenfunctions ψi of transition matrix T̃ while panel (C) shows the eigenfuctions
weighted with the equilibrium distribution φi (see Chapter 2). We focus on the three
slowest dynamical processes.

The first eigenfunction recovers the equilibrium distribution (constant in the ψ1
representation and equal to π in the φ1 representation). We highlight four groups of
states which are clearly identified in next sections. State with index 1 corresponds to
the stretched state S shown in the one-dimensional descriptions. State 8 is the half-
stretched conformation HS while 12 and 13 correspond to native N conformations.
States 9 and 10 are intermediates Is, to be further discussed later.

Second eigenfunction accounts for the transition to the stretched state, which is
the slowest dynamical process, apart from the equilibrium relaxation. This agrees
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with the large barrier seen in the one-dimensional profiles. φ2 is associated with a
dynamical transition from HS state to S state, according to the observed signs. This
does not means that state HS jumps directly to state S, as this is weighted with
the equilibrium distribution, and the HS state has a large population. Actually, φ2
shows subsequent excitation of the intermediate low-populated states 2− 7.

The third eigenfunction accounts for transitions from the intermediate Is and
native states Ns to the HS configuration. It is associated with transitions from
native-like states to the HS basin, and thus to the second slowest transition, as
discussed in Chapter 4.

In this way, we see how the transition matrix is capturing the two main processes
in which the system is involved, transition to the stretched state, and transitions
from native-like configurations to the half-stretched configuration. This agrees with
our first vision of the system, as understood from the trajectories along the reaction
coordinates.

5.1.3 Description of the Markov State Model: Topology,
Macrostates and Involved Transitions

Figure 5.2 (upper) shows a pictured vision of the basin network with a significative
structure represented by each node (lower panel). The size of each bead (node) is
proportional to its occupation πi. The spatial arrangement of the nodes and links
has been calculated by applying a Force Atlas algorithm [85], where an artificial
dynamics is simulated in order to relax the network to an equilibrium arrangement.
Each link is considered to be a linear spring, while a certain repulsion is set between
nodes. The system is left to interact until an equilibrium configuration is reached.
Nodes which are kinetically close would appear near each other in the final arrange-
ment, while nodes which are far away (meaning that transitions between them are
unlikely), would appear separated in space. A modularity algorithm [86]1 is applied
in order to rank the nodes according to their modularity class. This is indicated in
their different colors, associated to five different modularity classes.

Lower panel shows a representative structure encoded in each of the nodes of the
network. Configurations N1 and N2 correspond to native-like structures. Despite
their structural similarity, they were not distinguished in the Q or ξ landscapes.
Interestingly they play a rather different role in the kinetic behavior of the system,
as we discuss later on. Particularly, macrostate N1 resembles more the actual native
structure, while N2 shows a higher flexibility in the T1 and T3 turns of the structure,
as it can be derived from the structures shown in Fig. 5.2. Both represent the native
ensemble of our conformational space.

Basin HS represents the half-stretched configuration. It is the most populated
state in the network, as could already be expected. The aligned configuration de-
termines another populated basin, which belongs to the same modularity class as
native state N2 but not to N1, meaning that it is kinetically closer to the former. The
stretched configuration S is far topologically from the native region. Remarkably,
8 intermediates, something not found when using Q or ξ as reaction coordinates.

1Modularity algorithms are a popular way to define communities in complex networks. The idea
is to perform a partition on a network measuring the density of links inside communities compared
to links between communities. Starting from some random choice, this quantity is optimized until
the best partition is found
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Figure 5.2: Basin Network and associated structures: Upper panel shows a representation
of the 13 basins with π > 10−5. The size of the nodes is proportional to its population πi.
Bidirectional arrows indicate allowed transitions, but the magnitude of Tij is not shown. Self-loops
are not drawn, being always present. Each basin is labelled according to the structure they encode.
Lower panel shows a representative structure for each of the basins. We identify two different native
configurations N1 and N2, the half-stretched configuration HS and the aligned configuration Al,
the stretched structure S and a total of eight low populated intermediates I1 − I8.

This can be due to its low population or because they were overlapped in differ-
ent regions of the profile. These intermediates seem to play a relevant role in the
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unfolding mechanism as they connect the Native Ensemble with the Stretched one.

Table 5.1: Description of the basins of attraction. Characterization of each of the
macrostates of the system in terms of their population πi, mean escape time 〈ts〉, mean frac-
tion of native contacts 〈Q〉, mean end-to-end distance 〈ξ〉, mean fraction of non-native contacts
〈fNN and committor probabilities from the native to the stretched ensemble q+

i .

,

# πi 〈ts〉 〈Q〉 〈ξ〉(nm) 〈fNN〉 q+
i

N1 0.15 559 0.85 0.8 0.13 0.0
N2 0.14 495 0.83 0.9 0.30 0.0
Al 0.14 272 0.40 2.6 0.60 1.4× 10−4

HS 0.44 2982 0.46 6.5 0.18 9.2× 10−4

I1 0.07 362 0.25 4.8 0.66 1.2× 10−3

I2 0.01 2586 0.35 6.8 0.40 0.12
I3 6.67× 10−5 120 0.12 9.0 0.23 0.29
I4 1.3× 10−4 198 0.11 10.1 0.54 0.34
I5 1.9× 10−5 64 0.10 9.6 0.60 0.51
I6 3.9× 10−4 163 0.14 8.55 0.30 0.53
I7 3.3× 10−4 176 0.13 9.35 0.50 0.58
I8 2.5× 10−5 56 0.09 10.5 0.70 0.71
S 0.06 75000 0.01 13.7 0.00 1

Table 10.1 shows different characteristics about each of the 13 macrostates of
the equilibrium ensemble of the system. πi stands for the population of each basin,
〈ts〉 is the mean escape time, 〈Q〉 the mean fraction of native contacts, 〈ξ〉 the
mean end-to-end distance, 〈fNN〉 the mean fraction of non-native contacts and q+

i

the forward committor probabilities from the native ensemble (N1 and N2) to the
stretched ensemble S. We have introduced here the magnitude fNN , which checks
how many of the contacts in each configuration are non-native, this is, do not appear
in the native contact map.
〈Q〉, 〈ξ〉 and 〈fNN〉 are the average values calculated from the marginal distri-

butions from the configurations adopted in each basin. In most cases, these average
values are not enough to characterize each state, as the marginal distributions are
not unimodal. The committor probabilities have been calculated by defining the
initial state as the native one and the final as the stretched one. This quantity
coincides with the probability of unfolding punf , and the backwards commitor prob-
ability q−i = 1− q+

i is the probability of folding pfold. Both quantities are necessary
when applying TPT in next section. The magnitude fNN is relevant as the model
is allows non-native contacts to form. Some structures might be stabilized by the
creation of interactions which did not appear in the native structure.

The native ensemble is a good example of this. Despite their overall structural
similarity, they play a rather different role in the kinetic behavior of the system.
In addition, they show a similar value of 〈Q〉 but state N2 is stabilized by a larger
number of non-native contacts. We can say that N1 is “more native” than N2, as
seen in the arrangement of the neutral turns. Even though they display a rather
similar stability (similar weights and escape times), N1 is surprisingly closer to
the Intermediate states. Indeed, it belongs to the same modularity class as I2,
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while N2 is kinetically closer to the HS configuration. If we compare the transition
times computed from the transition matrix Tij, (τN2→HS = 557ps and, τN1→HS =
13.5 × 106ps), state N1 is scarcely connected to the HS configurations, while N2
has a high probability of jumping to this state. Additionally, both native states
are separated by large barriers, as τN2→N1

= 14 × 103ps and τN1→N2
= 15 × 103ps.

Despite their structural similarity—which makes them undistinguishable from each
other by any structural based reaction coordinate—their role in the system dynamic
behavioris very different.

This is a first contradiction with respect to conclusions yielded by the one-
dimenional descriptions. While the main features of the equilibrium ensemble of
the system are correctly insinuated by both methods (the three major states, N,
HS, and S, the fast kinetics N ↔ HS and the slow kinetics N ↔ S), the role of
such states and the presence of additional relevant configuration is hidden in the
one-dimensional projections.

5.2 The Unfolding Pathways: Transition Path The-
ory

Markov state models allow to computethe pathways connecting two subsets of the
network in a rather straightforward way. This is possible thanks to TPT [10, 61,
62]. Particularly, we employ this method to unveil the actual unfolding mechanism
of our protein under the effect of a mechanical force.

We define the “reactant” subset A as the native ensemble, made up of basins N1
andN2 together, while the “product” subset B is determined by basin S. According to
this definition, we calculate the forward committor probabilities q+

i , already shown in
Table 10.1. From an intuitive point of view, q+

i can be interpreted as the probability,
being in state i, to unfold (moving to subset B) without folding back (going back to
subset A). By definition, q+

i is 0 for states N1 and N2 and 1 for state S. Then, the
states can be sorted accordingly to “how close” are they kinetically to the unfolded
state.

From the committor probabilities, the effective and net fluxes are calculated
and the flux network built, as explained in the methods section. Figure 5.3 shows
the net flux network, where the thickness of the arrows is proportional to the net
flux f+

ij . The total unfolding flux is F = 2.9 × 10−7 per lag time τ , meaning that
we expect an unfolding transition every 51.7 µs. Accordingly the rate constant is
kNS = 2.1×10−8ps−1, which means that, being in the native state, the system would
jump to the stretched state in an average time of 47.6 µs. The conclusions yielded
by both quantities are similar given that the probability to be close to the N state
is very high ∑N

i=1 πiq
−
i ≈ 1.

The flux network can be decomposed into the individual unfolding pathways. In
order to do so, the strongest pathway are identified and removed from the network.
This process is repeated until no path connects subsets A and B. In principle, for
large networks, this process is not trivial, nevertheless in our case it can be done by
hand, due to the limited size of our network.

We identify a total of 9 pathways leading from A to B. After decomposing the
network into these 9 paths, unconnected regions can be still observed. These regions
remain due to the presence of trap states, which in our case carry near the 20% of
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Figure 5.3: Unfolding flux for the model protein: The 13 configurations are arranged
vertically according to the value of the committor probabilites (not in scale). The arrows connecting
configurations represent the unfolding net flux, where the thickness of the arrows is proportional
to its magnitude. Numbers next to the arrows show the net flux in units of 10−9ps−1.

the total flux. We show in Fig. 5.4 the 6 more relevant pathways, carrying the 89%
of the total unfolding flux.

From these 9 pathways, 7 start from conformation N1, while just 2 from N2.
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Figure 5.4: Six main unfolding pathways: The six pathways carrying a larger fraction of the
total flux (up to a 89%) are shown here.

This is a remarkable fact, as N1 is closer to the native state, as discussed previously.
In addition, states I1 and I2 appear as the actual intermediates of the unfolding
mechanism, as by removing both states, the transition A → B becomes forbidden.
Out of the 9 pathways, 6 go through I2 and 3 through I1, defining two major
unfolding routes, one driven through state I1 and other through state I2.

5.3 Discussion
Through the present and previous chapter, we have analyzed and discussed the be-
havior of protein BPN46 under the presence of a mechanical bias. In particular, we
were interested in unveiling the unfolding mechanism. In order to do so, we have
employed two complementary approaches. First, a low dimensional representation
of the free energy landscape, the free energy profiles along two different reaction co-
ordinates and two-dimensional free energy surfaces. Second, a Markov state model,
which allowed us to obtained a detailed description of the configurational space of
the system, and to calculate the unfolding pathways. We discuss now the vision
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that each of the methods provided us, the common points, and the differences.
Finding reaction coordinates that allow to describe faithfully complex dynami-

cal process, is an appealing problem for a number of reasons. Currently, molecular
dynamics simulations produce a large amount of data, whose magnitude itself be-
comes a main difficulty when it comes to understand the process subject to study.
Hence, being able to describe the system through a one-dimensional description is a
natural worthwhile question. Ultimately, one could be able to represent a complex
system as a diffusive (overdamped Langevin ) process along this reaction coordinate
[41]. Since reaction coordinates constitute often the slow variables of a process, this
dynamical coarse-graining construction determines a simple description for rather
a complex system. Additionally, a free energy profile along a good reaction coordi-
nate, not just resolves the reactant and product state, but also the position of the
transition state and the height of the free energy barrier, and so the kinetics of the
reaction [38, 39].

In the present case, we have studied the mechanical unfolding of a protein. Hence,
the force sets a natural reaction coordinate through which the system evolves, the
pulling direction. The actual multi dimensional free energy landscape of the system
is collapsed onto this slow variable, as the additional degrees of freedom relax faster,
and contain little relevant information. This assumption is also taken in single
molecule force spectroscopy experiments (see Part III), as the pulling direction is
usually the only available observable. In this sense, it is useful to think in this terms,
in order to bridge the gap between experiments and molecular simulations.

The analysis of the low dimensional representations yielded some important con-
clusions. From the point of view of the identified states, the unfolding transition is
not a simple two state problem, as at least four relevant free energy minima were
identified, the native, and stretched states, and the two intermediates, the aligned
and half-stretched configurations. The latter one corresponds to be the most stable
configuration under the set conditions, as the extremal β strands were aligned in the
direction of the force and the hydrophobic core left intact. Kinetically, we observed
two different involved time scales, first fast transitions between the N , Al and HS
configurations, at a time scale of ∼ 100 ns, and then a slow time scale associated to
transitions to the S state, within times of few tenths of µs.

This latter observation is backed up by observing the free energy barriers, as
the first states where separated by low barriers of ∼ 2kT , while the stretched state
needed to surmount barriers of ∼ 7 − 8kT . Importantly, the HS configuration
defines as a likely mechanical intermediate. Nevertheless, a more careful analysis
of the trajectories, and the application of the Bayesian criterion suggested that
surprisingly ξ was not an appropriate reaction coordinate, and that Q was a more
appropriate one, with the TS located at Q ∼ 0.1, very close to the actual unfolded
structure.

In this sense, description of the system through the two reaction coordinate yields
a correct overall description of the states of the system, and also the two involved
kinetic scales. Nevertheless, it fails in giving an appropriate vision of the unfolding
mechanism, which occurs through more than a single reaction pathway.

The Markov state model description provides a correct vision of the configura-
tional space of the system and of the unfolding mechanism. Regarding the equilib-
rium ensemble, several features can be pointed out. In a coarse vision, the three
major states identified previously appear as well differentiated nodes, or set of nodes.
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Nevertheless, the actual conformational space has more free energy basins which play
different kinetic roles.

This is the case of the native ensemble. We identify two different native basins,
N1 and N2 with very similar values of ξ and Q, and thus overlapped in the free
energy profile. Nevertheless, their role is rather different. N2 is very connected to
the HS configuration and thus is responsible of the fast kinetic transitions between
these two macrostates. N1 and N2, despite their structural similarity, are indeed
separated by a large free energy barrier.

The HS configuration is ratified as the most populated configuration. Neverthe-
less its role in the unfolding mechanism is rather marginal. It appears just in one of
the found unfolding pathways, path P5, carrying the 7% of the total unfolding flux.
Being a quite stable conformation, it rarely unfolds completely, as the hydrophobic
core of the molecule is maintained.

The actual mechanical intermediates are states I1 and I2. They are hard to
identify in the representations along coordinates ξ or Q due to their low population,
which disguised them into the background. Additionally, I2 has similar ξ value
to HS and Al configuration, so both states would overlap in the one dimensional
description. Structurally, this state is symmetric to HS, as the β1 strand is unfolded
instead of β4. From the point of view of the stability of the system this is a big
difference, as the hydrophobic core is broken, which makes the protein unstable,
leading the unfolding mechanism.

The other major unfolding route includes state I1, similar to the HS state, as
both have the β4 strand unfolded. Nevertheless, in I1 the core adopts a compact
globular structure that is sustained by a large fraction of non-native interactions,
specially between the hydrophobic residues of strands β1 and β3. This configuration
drives a second unfolding route through states I4 and I8, also sustained by a large
fraction of non-native contacts. The possibility of forming non-native contacts is
responsible also of structure Al, which has a relevant stability (πi = 0.14), and a
60% of non-native interactions. This structure has a certain role in the unfolding
mechanism, allowing to reach intermediate I1 from native state N2), but participates
mainly in the fast dynamics between HS and the native set, as can be also directly
observed in Fig. 4.2.

Finally, we can try to connect the description with free energy profiles with the
Markov state model one. Markov state models provide an appropriate description of
the configurational space of a molecular system. Reaction coordinates do not intend
to do so, but rather to provide a direct comprehension about a reaction mechanism,
by appropriately picturing the reaction pathway, the position of the transition state
and the free energy barriers. Markov state models usually fail on this latter point, as
it is hard to locate the transition state within the network description or to obtain
free energy barriers. We were able, nevertheless, to estimate unfolding rates find-
ing that the unfolding reaction occurred every ∼ 50 µs. This seems an appropriate
answer on the problem, just by looking at a trajectory along a reaction coordinate,
where unfolding transitions are found to occur on this time scale. Also, the TS is
located at Q ≈ 0.1 and ξ ≈ 11 nm (although the test was not completely satisfac-
tory). These conformations correspond to states with a committor probability of
q+
i ≈ 0.5, which in our case are states I5, I6 and I7. In this sense, the TS can be

an imaginary surface along these three states in the network picture of the system.
Remarkably, the Q values for these three states are Q ≈ 0.1 while the end-to-end

106



Chapter 5

distance ξ ≈ 9 nm, considerably lower than the proposed one by the Bayesian cri-
terion. This means, that Q describes correctly the unfolding transition, although
many states are overlapped within the same Q values. This is a remarkable fea-
ture, given that the model does not considers any native-centric assumption, yet the
protein seems to be “designed” to have the native contacts as a primary source of
stability.
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Chapter 6

Brief Overview on the Molecule of
DNA

This Chapter is a short introduction on the molecule of DNA, both from the bio-
chemical and biophysical point of view. We focus the relation of the physical proper-
ties with the biological function. In particular, we stress the importance of transient
local openings—bubbles—on processes such as replication or transcription. These
aspects will be of importance for the work developed through the next Chapters.

6.1 Deoxyribonucleic Acid, the Book of Life

6.1.1 What is DNA?
Life depends on the ability of cells to store, retrieve and translate the genetic in-
structions required to make and maintain a living organism. This information must
be passed on from a cell to its daughters in a faithful way. Also, it must be accessible
for the machinery of cells to be “read”, in order to perform the different functions
there codified.

The Deoxyribonucleic acid (DNA) is the molecule responsible of this, as it carries
most of the genetic information stored in all known living beings and some viruses [2,
87]. Chemically, it is a nucleic acid, which together with proteins and carbohydrates
are the main macromolecules essential for life.

DNA was identified as the likely carrier of the genetic information in the 1940s.
Nevertheless, the best known milestone regarding DNA is the famous paper from
1953 by Watson and Crick—actually a total of five classic papers—which described
and presented evidence for the double helix structure [88–92]. Watson and Crick
proposed that DNA was composed of two entangled biopolymers with helical struc-
ture coiled round a common axis. These two strands were held together by the
hydrogen bonds formed by the bases, which followed an specific pairing. The key
aspect in this discovery is that with the structure came a mechanism for copying this
information. This relation of structure-function is a common feature in biological
molecules, as, for example, with proteins (see part II).

In a very simple picture (which has proven to be rather an exception) DNA
constitutes a linear sequence of “instructions” called genes, having each of them the
necessary information for synthesizing a protein, which is in charge of performing
one particular task. A gene is divided in two parts, the first one, the promoter, regu-
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Figure 6.1: Xray diagrams as published by Watson and Crick: (Left) Proposed structure.
(Second from the left) X-ray diffraction photograph and (3rd from the left) diffraction pattern from
Wilkins, Stokes and Wilson [89]. (Right)X-ray diagram of structure B from Franklin and Gosling.

lates the expression of such protein. The second one, the coding region, contains the
information necessary to synthesize the protein. This information is read by a pro-
tein (the RNA polymerase) which synthesizes an intermediate RNA molecule. This
molecule is ultimately employed by the cell machinery—namely the ribosome—to
synthesize the protein from the amino acid sequence encoded in the RNA molecule.
This picture is often referred to as the Central dogma of molecular biology, first
proposed by Crick in 1956, which gives the first plausible picture of the information
flow in biology [93].

This simple proposal is now known to have a higher complexity. First, infor-
mation can flow in different directions rather than the simple DNA→RNA→ pro-
tein, appearing transfers from RNA→DNA or DNA→ protein. Second, the DNA
molecule is far from being a linear sequence of genes. They can be overlapped, run in
different directions, and there exist also a large fraction of “junk” DNA which does
not code any protein, but seems to have a rather relevant role in genetic regulation
[94]. Additionally, DNA does not have all the available information of the cell as,
for example, post transcriptional modifications play a relevant role by “editing” the
amino acid sequences and affecting the final protein function. These exceptions be-
come more significant as we increase the complexity of the organism. In this sense,
the simpler picture described above can be thought to be approximately true for
simple living systems, such as prokaryotes.

6.1.2 Chemistry and Structure of the DNA Molecule
Chemistry of the DNA Molecule

At the lowest level, DNA is a polymer made up of repeating units, which are called
nucleotides. These nucleotides are the monomers of all nucleic acids, and are com-
posed of three different molecules, a nitrogenous base, a five-carbon sugar and a
phosphate group (see panel (A) Fig. 6.2). The phosphate and sugar residues form
the backbone of each DNA strand. Particularly, the sugar is a 2-deoxyribose, and
they are joined together by phosphate groups that form phosphodiester bonds be-
tween the third and fifth carbon atoms of contiguous sugar rings. This gives the
strand a directionality (3’ to 5’ or 5’ to 3’). The two strands within a DNA molecule
run in opposite directions, and thus are antiparallel (see Fig. 6.2).

The nitrogenous bases, (also called nucleobase or base to shorten) are kept inside
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the double helix. The bases from each strand keep the helix together by establishing
a series of hydrogen bonds, and they arrange in a perpendicular way, like steps
on a ladder. In DNA, there are four possible bases, adenine (purine, A), thymine
(pyrimidine, T), guanine (purine, G) and cytosine (pyrimidine, C). Pyrimidines only
pair with purines, doing so in a particular way. Adenine just pairs thymine through
two hydrogen bonds while guanine pairs cytosine through three hydrogen bonds.
This is the so-called Watson and Crick pairing. The particular four-letter sequence
of bases through the DNA molecule encodes the genetic information.

Figure 6.2: DNA structure: Panel (A) shows the DNA chemical structure, identifying the four
bases, plus the deoxyribose and phospate in the backbone. Panel (B) shows the structure of the
B-DNA, highlighting the involved distances, helix turn and the major and minor groove. (Picture
modified from Madeleine Price Ball, Wikicommons), and [2] )

Interactions within the DNA Molecule

Into the DNA molecule, there exist many interactions which are responsible for its
particular double helix structure. In few words, we can consider two major sources
for the stabilization of the double helix.
• Hydrogen bonds between nucleotides: In the Watson and Crick pair-

ing (A-T, C-G) the two strands of the DNA molecule are held together by
the hydrogen bonds formed by the complementary nucleotides. In this case
Adenine and Thymine form two hydrogen bonds, while Guanine and Cytosine
form three (see Fig. 6.2). This is a weak interaction, compared to covalent
bonding. For example, a typical O-H· · · O bond has a length of 2.75 Å and
an energy of ∼ 5kBT [95].

• Base-stacking interaction: This interaction is more complex, and comes
mainly from the overlap of the π electrons of the bases, and also from the hy-
drophobic interactions. The conjugated π bonds of the nucleotide bases align
perpendicular to the axis of the DNA molecule, minimizing the interaction
with the solvation shell. This imposes a well defined distance between the
axis of the molecule, and gives rise to the high rigidity of the DNA along this
axis. Nevertheless, bases can be pulled out the stack by sliding on each other,
perpendicular to the axis [95].
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The DNA Double Helix and Alternative Structures

The most abundant DNA form (that proposed by Watson and Crick) is the so called
B-DNA. This structure has a 2.37 nm diameter and the double helix is right-handed,
turning completely its axis every 10.4-10.5 base pairs in solution (see panel (B) Fig.
6.2). As the backbone of the molecule runs in the helical structure, it leaves “void”
spaces in between, called the grooves (see Fig. 6.2 (B)). There are two kinds of
grooves depending on their size, as the strands are not symmetrically located with
respect to each other. The major groove is 2.2 nm wide, while the minor groove is
1.2nm wide. This spaces are quite important for proteins to access the information
encoded in the bases, and they bind usually though the major groove.

Additionally to B-DNA other structures can be found for DNA, namely A-DNA
and Z-DNA. A-DNA appears commonly under dehydration conditions, and it has a
biological function. It is also right-handed but with a more compact structure than
B-DNA (11 bases per turn), which causes the bases to tilt inside the structure. Z-
DNA is more different, as it is left-handed, with a repeating structure every two base-
pairs. It has also some biological function but its structure is far more unfavorable.
As additional structures, we can name DNA-quadruplexes, local arrangements which
form in the telomeres (ending regions of chromosomes), and are thought to help in
protecting the DNA ends.

Organization of the DNA Molecule

DNA is a very long macromolecule–about 3 mm in the E.coli bacterium, which has
itself a length of 2 µm. In the case of eukaryotic cells, where the DNA is longer and
is packed inside the nuclei, it forms a complex structure made by the DNA itself,
proteins and RNA. This is the chromatin. The chromatin does not pack the DNA
exclusively, but has a number of function related to facilitate mitoses, prevent DNA
damage or control the replication.

The chromatin is hierarchically organized into a number of substructures, where
one of the key elements are the histones, which compact the DNA. Histones are a
family of proteins which are able to interact with the DNA molecule by different
means—mainly hydrogen bonds and salt bridges between basic amino acids and the
negatively charged phosphate groups in the DNA—so that DNA is able to wrap
around them.

Starting from the bare DNA helix, the first structural level (see Fig. 6.3) is
the nucleosome, which is also the repeating element in the chromatin. This is
a segment of DNA wounded around eight histone protein cores. Repetitions of
this entity separated by fragments of DNA form the “Beads-on-a-String” picture,
where the DNA molecule is wounded around histone molecules (beads), separated
by unwounded segments.

This structure coils into the 30 nm fibre or filament when the histone H1 is added
(see Fig. 6.3). The exact details of this structure are still not completely known.
The next level is a special conformational arrangement with the aid of some scaffold
proteins, to ultimately form the chromosomes, the highest level structure, which
appears during cell division.
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Figure 6.3: Major chromatin structures: DNA is compacted in a highly hierarchical structure
called chromatin. Chromatin is a combination of the DNA molecule and several proteins, which
help in organizing the long molecule and prepare it for different cellular processes, (taken from
Felsenfeld and Groudine, Nature 2003)

6.2 DNA Function
The DNA molecule has a twofold mission. First, it has to store this information un-
changed through subsequent cell divisions, second to have this information accessible
to the cell machinery.

Thus, DNA is involved in two major molecular processes associated with the
mentioned functions, replication—the process by which a copy of the molecule is
synthetized—; and transcription—the first step of gene expression, which a partic-
ular segment is copied into RNA.

6.2.1 Replication
During replication, two DNA molecules are produced from a mother molecule. Each
of the two strands of the mother DNA is conserved and serves as template for the
daughter molecules, so it is a semiconservative replication. This process is the basis
of the genetic inheritance.
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DNA replication occurs thanks to a large number of proteins and enzymes which
are responsible of unwinding the DNA molecule, stabilizing the replication bubble,
reading or synthesizing the daughter strand, among other functions (see Fig. 6.4).
The enzymes responsible of the replication itself are the DNA polymerases. They
cannot initiate the synthesis of new strands on their own, but can extend DNA or
RNA strands paired with a template one. In this sense, an RNA primer is needed to
initiate replication. Also, the DNA polymerase can just move in 5’ to 3’ direction,
creating an asymmetry of the two strands (leading and lagging strand, see Fig. 6.4).
The replication mechanism is thus slightly different for the two template strands.

Figure 6.4: Picture of the replication process: The replication fork and with the leading and
lagging strands are depicted, highlighting the difference the replication direction for each of them.
Also, some of the involved proteins are sketched. (Picture by Mariana Ruiz, Wikipediacommons)

The replication starts with the initiation process which implies the formation of a
protein complex which unwinds the DNA molecule, opening the replication bubble.
Several proteins are involved here, responsible of binding to a specific DNA site and
opening it. The elongation is the replication process itself, where the DNA poly-
merase has the enzymatic activity and synthesizes the DNA by adding nucleotides
complementary to the template strand. On the one hand, the synthesis of the
leading strand is continuous. Starting with the RNA primer, the DNA polymerase
simply ads complementary nucleotides in a sequential way. On the other hand, the
lagging strand is replicated in discontinuous way, by adding the so called Okazaki
fragments, which must be ligated to form the new strand, requiring a veryprecise
coordination of the cell machinery. Many other proteins take part in the process, as
helicases which unwind the DNA or the topoisomerases, which release the strain.

6.2.2 Transcription
The transcription is the first step by which the information stored in the DNA is
read and translated into proteins. In a nutshell, the whole process of gene expression
is done in two steps. First DNA is read and copied into mRNA. Then, this mRNA
is read by the ribosome and translated into the final protein. Obviously the actual
process is quite more complex, and it involves the participation of several proteins
and complexes.
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Before reviewing briefly the process by which DNA is copied into RNA, let us
look at the basic structure of a gene, in other words, how is the information written
along the DNA sequence.

Simple Vision of a Gene Structure

In a simple picture, a gene is made of three different regions, the initiation, the
coding and the termination region. The first one is the promoter, and is the region
where the transcription starts. The coding region contains the sequence that would
be transcribed to mRNA, while the latter indicates the end of the gene and thus the
detaching of the transcription machinery.

The promoter is a sequence of around 100 base-pairs long in prokaryotes where
the RNA polymerase binds to start transcription. It contains the Trascription-
Starting site, where the sequence that would be transcribed to mRNA starts, and
thus from where the transcription bubble forms. By convention, the DNA base
pairs that correspond to the beginning of the RNA transcription are given positive
numbers, and those preceding the Transcription-Start site negative numbers. Thus,
the Transcription-Start site is labelled as +1, and promoters usually span from −70
to +30, approximately.

The function of promoters is not just to indicate the initiation of a gene, but also
to promote transcription. Additional proteins, called transcription factors, bind to
promoters at specific sites to facilitate binding of the RNA polymerase. Also, some
transcription factors might activate or repress the synthesis of the particular gene
by binding to specific sites. The particular features change a lot from prokaryotes
to eukaryotes or even from organism to organism. Most bacteria promoters reveal
the importance of sites −35 and −10 for binding of factors that recruit the RNA
polymerase [2]. Many archaea and eukaryotes show another regulatory element
known as TATA box, which is responsible of binding of the TATA-binding protein,
which unwinds the DNA at this site. The TATA box has a typical sequence 5’-
TATAAA-3’ or variant, and is usually located between −25 to −35 position. Due to
the AT rich content, this site is particularly weak, so the double-helix breaks with
more ease, facilitating the role of the TATA-binding protein [96].

The Transcription Process

The transcription process is simpler than the replication, provided just one of the
strands is “read” (see Fig. 6.5). As anticipated before, the RNA polymerase is
responsible of synthesizing an RNA molecule complementary to the DNA sequence
of the gene. A transient transcription bubble must be formed—of around 15 base
pairs—that allows the enzyme to access to the base pair sequence. The DNA is read
in the 3’-5’ direction, and the RNA produced in 3’-5’. The RNA polymerase needs
no primer, unlike the DNA polymerase.

6.3 Biophysical Properties of the DNA Molecule
The DNA molecule is a very long and thin polymer, made up of two entangled
chains, DNA has a large number of interesting properties related with the shape it
adopts in three dimensions, with the possibility of breaking locally the double helix
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Figure 6.5: Picture of the transcription process: The RNA polymerase is responsible of
reading the DNA sequence and to synthesize the mRNA. A transcription bubble must be formed,
in order for the enzyme to access the information (taken from Molecular Biology, 2012).

structure, and with its behavior under the presence of an external force. This latter
feature has won popularity since the advent of single molecule techniques.

6.3.1 Twisting and Curving DNA
Although DNA molecules by themselves are already quite interesting objects for
the biophysical study, the actual in vivo functions can only be understood with the
action of a huge number of proteins which interact with DNA to perform every
function in which it is involved. Twisting and curving are two actions of the DNA
molecule which are directly related with its biological functions, and particularly
with protein interaction.

Bubble Formation

Twisting, or to be more precise, untwisting is a feature of primary interest and it is
directly related with the double helix formation. This action of the DNA molecule
was already suggested in the brief discussion about replication and transcription,
and it involves the local unwinding of the double helix to form a bubble of un-
paired bases, exposed to the solvent, and thus to the cell machinery. These bubbles
form in replication and transcription processes, where the DNA or RNA polymerase
bind to the bubble, reading the sequence and synthesizing the corresponding match
molecule. These bubbles are typically around 15-20 bases—the energetic cost of
breaking the double helix and expose the bases to water is very high—and they
travel along the DNA molecule at a relatively high speed (around 100 bases per
second) [95].
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The DNA double helix structure implies that, in order to form a bubble, either
the traveling protein screws around DNA, or DNA screws around itself. It is cur-
rently known that the polymerase is kind of stationary, while it is the DNA which
screws [95]. Bubbles can form spontaneously, but are also stabilized by a large
number of proteins which help in unwinding the double helix, release the stress
and maintain the bubble over significant times in order to perform the pertinent
biological process.

The DNA sequence is non homogeneous, and thus, the local physical properties
change from site to site. They are not randomly distributed, and as a general rule,
we known that nature makes the double helix openings to start at energetically weak
places, where the separation between the two strands is likelier to begin [95]. The
hydrogen bonding between the two strands and base stacking are the main sources of
stability. Some pairs are known to be weaker than others, particularly A-T pairs have
two hydrogen bonds, and so large stretches of these pairs form weak sites, where
DNA would open with higher probability. These prototypic weak sequences are
something like ‘TATATATA’ or ‘TAATAATAA’, which appear in promoter sequences
and are known to have a key role for in transcriptional processes [95, 97, 98] .

DNA Denaturation

The extreme case of untwisting of the DNA molecule is a bubble which spans over
the whole chain, separating the two strands completely. This is a phenomenon called
denaturation, as the DNA molecule is loosing its structure, becoming two random
coiled polymers. Denaturation can be caused by a number of elements, and one
of them is temperature. Thermal denaturation or DNA melting is the process by
which the two DNA strands separate due to heating.

This process is interesting from a physical point of view, as it involves a phase
transition in a one-dimensional system, the DNA chain. This transition can be
monitored experimentally, as the exposition of the base-pairs involve an increase of
the UV light absorbance at 260 nm [99, 100]. Experiments on artificial homopoly-
mers show a sharp increase in the UV absorbance, certifying that DNA melting is
a genuine phase transition [99–101].

The denaturation process starts with few local bubbles that soon would become
more frequent, often fusing to each other. Finally a unique denaturating bubble
would span over the whole chain, separating fully both strands. In some way this
can be thought as a nucleation process (see Fig. 6.6).

Curving

DNA is a rather stiff polymer, with a persistence length of about 50 nm, which
means that it is a rigid rod for about 150 base pairs. Sometimes, DNA must curve
around proteins -like histones to form the nucleosome. This costs obviously some
energy, given that we have to stretch the outer part of the polymer. As DNA is made
of discrete steps, this requires base pairs to roll a certain angle in order to adopt
a curved conformation. As this carries an energetic cost, it is obviously sequence
dependent.

Particularly, A-A/T-T sequences curve more easily, compared C/G rich ones [95].
We can expect again to find them in a large number of situations when DNA requires
such conformation. Easy example is that of the nucleosome, where stretches of DNA
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Figure 6.6: Denaturation of the DNA molecule: Panel (A): The melting of the DNA is
driven by the formation of bubbles, which merge, and ultimately span the whole molecule. Panel
(B) The denaturation of the DNA molecule can be observed experimentally with UV absorption,
suggesting a phase transition, given the sharp rise in the absorbance (Picture modified from [100],
adapted from [99]).

curve around the histones, separated by uncurved stretches. Other popular examples
are binding of repressors or Zinc fingers, which are able to recognize particular
sequences of DNA.

6.3.2 Topology of DNA
By topology of polymers, we refer generally to properties such as linking o entangle-
ment which are invariant under smooth geometrical deformations. These properties
are related to what is known as DNA supercoiling, important feature for many
biological processes.

In the relaxed B form, DNA has 10.4 to 10.5 base pairs per helical step. Never-
theless, this arrangement changes in many situations, when the DNA must add or
subtract twists, this is to wound or to unwound DNA. This imposes a strain which,
would lead to adoption of new shapes, such a figure-eight, in the case of closed chains
(see Fig. 6.7). This is known as DNA supercoiling.

Mathematically, one can describe DNA supercoiling by the linking number Lk,
the number of crosses a single strand makes across the other. For a closed circular
chromosome, this number cannot be altered without breaking the strands. The
linking number can be written as the sum of the Twist Tw (number of twists or
turns of the double helix) and the Writhe Wr (number of coils or writhes the strand
does, see Fig. 6.7). This means that for a closed chain, changes in one imply changes
in the other Lk = Tw +Wr [95, 102].

Unwinding of the DNA as in bubble formation, implies a change in Tw, and is
forces the DNA molecule to adopt some supercoiling in order to change Tw. In
vivo, the DNA molecule might change its Lk in order to relax the stress, specially
in special situation during the replication and transcription processes, where the
excessive stress the bubble creates could stop the enzymatic activity of RNA or
DNA polymerase. This is possible due to a set of proteins known as topoisomerases,
which perform topological changes in the DNA molecule by cutting the phosphate
backbone, and changing the linking number [95, 103].
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Figure 6.7: Graphic example of supercoiling on closed DNA molecules: First molecule
is an open relaxed circle with Lk = 0. Remaining four ones, have same Lk but in different
configurations, according to the interchange between Wr and Tw (Picture taken from [95]).
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Peyrard Bishop Dauxois Model:
DNA at the Mesoscale

In this chapter, we introduce and review the basic aspects of the so-called Peyrard-
Bishop-Dauxois model. This DNA-model at the mesoscopic level starts with very
simple assumptions, yet is able to reproduce some properties of the molecule at the
base-pair level, namely the melting transition, and also bubble formation. We start
defining the model as it was first conceived. Next, we focus on the practical issues,
stressing its simulation to reproduce equilibrium and dynamic properties.

7.1 Modeling DNA, Different Questions, Differ-
ent Levels

The molecule of DNA exhibits a large number of properties and behaviors which
span over a wide spatial and temporal range. Proposing a mathematical model to
reproduce some experimentally observed properties implies first the choice of the
appropriate level of description. In the present case, it covers over six orders of
magnitude in length, from the atomic level, to the chromosome arrangement.

For example, if we wish to study the properties of DNA as a polymer, a continu-
ous model, such as the Worm-Like-Chain model, would serve well. This is contrained
to a micrometer scale, where the actual structure of the DNA is meaningless, and ef-
fects such as the separation of the double strand are not incorporated. On the other
extreme, all-atom descriptions appear as the highest resolution choice, incorporating
every degree of freedom (neglecting quantum effects) so, the full complexity of the
system is taken into account. The real limitation comes from the computation time,
which currently makes it unfeasible to simulate sizes over few tenths of base pairs,
within times larger than hundreds of ns [104]. If we are, for example, interested in
studying bubble dynamics, which have a typical size of 10-20 base pairs and last for
several µs [95], this is not practical. In addition, a physical property such as the
melting transition, which is a cooperative effect and would need hundreds of base
pairs, could also not be tackled with such a fine level of description.

At the intermediate level, there exist other options, such as coarse-graining or
mesoscopic models, where some microscopic description is maintained, while many
degrees of freedom are integrated out. Coarse-grained models typically gather sev-
eral atoms up, leaving “effective atoms”, which decrease the detail but also the
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number of particles [63, 64]. Mesoscopic models move to higher levels, and are usu-
ally based on some physical assumption on the system which tackles directly the
problem subject to study. These options allow naturally for larger scales and longer
simulation times. For example, in the case of DNA this would allow describing
properties at an intermediate level, such as bubble formation or the melting tran-
sition. This choice has obviously an straightforward flaw, which is the election of
the relevant degrees of freedom and the right parametrization of the model. Often,
fitting to the experimental phenomenology is a satisfactory verification.

The scale of DNA in which we are interested is that of the base pair. This
element is a key characteristic of the DNA molecule, as it is the entity that encodes
the information. Such level is the appropriate one to understand a large number of
interesting properties which are representative of the DNA, such as transcription or
replication. In addition, the melting transition can be also tackled under such level
consideration.

The simplest proposal at this point is the one-dimensional Ising model [105].
Here, the degrees of freedom of the system are represented as the discrete states
of each base pairs, equal to 0 if the base is closed and 1 if it is open. This choice
has the obvious advantage of its simplicity, as we can use the well-known toolkit
of statistical mechanics to undertake the problem. Unfortunately, it suffers from
some drawbacks, namely the estimation of the parameters involved in the problem
which cannot be predicted from the known phenomenology (such as the coupling
between the base pairs) or its two-state status, which clearly restricts greatly the
actual picture of the system.

These kind of toy models have been used as a simple approach to study the
thermal denaturation [105], an interesting phenomenon from the theoretical point
of view, as a phase transition takes place in a one-dimensional system. Defining
a model with bigger predictive ability, requires a more sophisticated formulation.
The Peyrard-Bishop-Dauxois model sits somewhere in between, keeping that statis-
tical mechanics model spirit, yet proposing a more realistic and meaningful way to
approach to the DNA molecule.

7.2 The Peyrard-Bishop-Dauxois Model: a Sim-
ple Model for DNA at the Base-Pair Level

The Peyrard-Bishop-Dauxois model (PBD from now on), keeping the same degree
of freedom (the base pair state), takes on the next step in complexity and represents
it with a continuous variable yi, the base pair opening, in other words, how much
does the i-th base pairs departs from its equilibrium position.

Originally the PB model [106], it was born as an analytical model able to predict
the DNA melting transition, explaining also its driving effect. Soon, in its extension
to the PBD model, it incorporated the nonlinear character of the current model,
enhancing the cooperativity of the system. This modification allowed to reproduce
more faithfully the melting transition, particularly the denaturation rate or width
of the transition [107, 108].

The PBD model has also been used to explore the dynamical properties of the
DNA molecules, showing its ability to reproduce the formation of bubbles in the
DNA chain, feature driven mostly by the nonlinear character of the mode. The
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main interest here is the study of heterogeneous biological sequences, which carry
the genetic information. The correlation between bubble formation and the existence
of biologically relevant sites was soon proposed. This latter point is probably the
most controversial one, with some works claiming this direct relationship, while
others preferring to remaining cautious (see references [109–113] ).

7.2.1 Description of the PBD Model
The PBD model is a DNA model at the base-pair level, where the only degree of
freedom is the stretching yi of the i-th base pair. The value yi = 0 corresponds to a
closed base-pair. Positive values indicate increasing opening of the base-pairs, as in
DNA denaturation. The variable yi can also take negative values corresponding to
a compression of the linking bonds from its equilibrium position. Negative values
are forbidden by steric hindrance.

Figure 7.1: Schematic picture of the PBD model. The whole complexity of the DNA
molecule is reduced to a single degree of freedom per base pair, the base pair opening yi. The
Hamiltonian is reduced to two interaction terms, the stacking potential W (yi, yi+1) and the inter
base pair potential V (y). (Picture taken from [100]).

A schematic view of the model is depicted in Fig. 7.1, and is defined by the
Hamiltonian

H =
N∑
i=1

[
p2
i

2m + V (yi) +W (yi, yi+1)
]
, (7.1)

where i is the index labeling each base pair of an N base-pair chain, pi = mdyi/dt
and m its reduced mass.

In this equation we identify two energy potential terms which account for the
main sources of stability described in previous chapter: V (yi) describes the interac-
tion between the two bases defining a base-pair, and it is an intra base-pair potential
term, while W (yi, yi+1) describes the interaction between adjacent bases along the
DNA chain, setting an inter base-pair interaction. W (yi, yi+1) is often termed as the
stacking potential (as it represents the staking interaction in the molecule).

The potential V (yi) is modeled with a standard expression for chemical bonds.
Physically it accounts for the interaction between the two nucleotides from a base
pair. Coarsely, this interaction are the hydrogen bonds formed to keep the two
chains together, two in the case of A-T pair and three in the case of C-G pairs.
In this sense, the sequence content has been introduced generally in this potential
term. Nevertheless, being a mean force potential potential, it integrates multiple
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contributions in an effective way, such as electrostatic repulsion of the phosphate
groups, the solvent effect, the solution ions screening or entropic effects. The original
PBD model considers a Morse potential for this interaction,

V (y) = D(e−αy − 1)2, (7.2)

where D is the dissociation energy of a base-pair (V (0) = 0 and V (∞) = D) and α

sets the amplitude of the potential well (V ′′(0) ≡ κV = 2Dα2, being ωV =
√
κV /m)

the fundamental frequency of the equilibrium state y = 0). Qualitatively, this
term has the appropriate shape, an strong repulsive part for y < 0—accounting
for steric hindrance—, a minimum well at y = 0 and a flat region for large y as
the force between the base-pairs vanishes allowing for a complete dissociation. This
expression is the original one of PBD model, nevertheless, in subsequent revisions,
some modifications have been introduced [114–116] (see Chapter 8).

The potential W (yi, yi+1) accounts for the stacking interaction, of key impor-
tance for the DNA molecule stability. It has different physical origins. First, the
sugar-phosphate strand sets a rather rigid polymeric structure connecting the bases.
Pulling a base pair apart from its bond tends to pull all the neighbors due to this
connection, and thus an energetic cost. Second, the direct interaction between the
base-pair plateaux, due to an overlap of the π-electron orbitals of the organic rings
making up the bases.

The original PB model considered a harmonic potential for this contribution.
This is a good approximation if the staking interaction is strong enough to keep yi
close to yi+1 at all times, which is not true for DNA. Nevertheless, this approach is
convenient as it allows for an analytical study of the model. Years later, the expres-
sion was modified to include a nonlinear term, which enhanced the cooperativism
of the model. This is a desirable effect as it helps in reproducing more faithfully the
melting transition, particularly sharpening it. In this sense, the nonlinearity of the
model becomes a key aspect of its performance. The stacking potential takes the
following expression [107, 108]:

W (yi, yi+1) = 1
2K

[
1 + ρe−δ(yi+yi+1)

]
(yi − yi+1)2. (7.3)

This potential shape sets a position dependent coupling constant, setting a hard
spring of constant K(1 + ρ) for small openings, and a softer spring of constant K
for large openings. The parameter ρ sets the intensity of this nonlinear interaction,
while δ the length scale for this behavior.

7.2.2 Parameter Choice
In mesoscopic models, the critical step is the choice of the parameter set. As the
Hamiltonian of the system includes effective potentials, one cannot derive the pa-
rameters from first principles, as it shall be done in an atomic level or even coarse-
graining. Typically, the proposed strategy combines two considerations. First, the
parameters must remain in a physically reasonable interval, given the energy and
length scales of the given problem. Second, on tunes them in order to reproduce
successfully the properties we are modeling given the experimental evidence. In our
case this is the melting transition temperatures of different sequences, but also an
appropriate shape of this transition, as well as the formation of transient bubbles
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of proper length and lifetimes. In addition, the model must be robust upon the
parameter set, this is, slight changes in the parameters must not produce dramatic
changes in the model output.

A suitable choice is that of Campa and Giasanti in their work of 1998 [117].
There, experimental tests on some short DNA chains were made, melting them and
comparing the melting profiles with the prediction of PBD model. This allowed
a proper tuning of the set of parameters, namely: K = 0.025eV/Å2, ρ = 3, δ =
0.35Å−1, DAT = 0.05eV , DCG = 0.075eV , αAT = 4.2Å−1 and αCG = 6.9Å−1.

Nevertheless, along this work, we modify the original model in different aspects,
so a slight retuning of the parameter set will be done.

7.2.3 Adimensionalization of the Equations
Although previous definition of the parameters of the model sets a link between
it and experimental evidence, dimensionless quantities are often employed, both
for theoretical calculations and numerical simulations. This helps in reducing the
number of parameters involved in the model, as well as setting a more confortable
definition of the involved units. We define a dimensionless stretch of the base pairs
Y = αATy, and we measure the energy units with the depth DAT of the Morse
potential for A-T pairs. The dimensionless Hamiltonian is H′ = H/DAT , which
defines the quantity S = K/DATα

2
AT , and the dimensionless time τ =

√
DATα2/mt.

The adimensional Hamiltonian is:

H′ =
∑
i

1
2P

2
i + 1

2S(Yi − Yi−1)2 + (e−Yi − 1)2, (7.4)

where Pi = dYi/dτ . Now there is a single parameter involved, S.

7.3 Simulating the PBD Model
Most of the progress on the PBD model has been made simulating numerically the
equations of motion of the model. This allows to deal with the intrinsic nonlinearities
of the model, but also to study heterogeneous sequences, impossible to be tackled
with any analytical approach.

In order to simulate numerically the model, one must consider thermal fluctua-
tions, which are rather important at the scale of behavior we are in. In order to do
so, many approaches exist. For instance, Monte-Carlo simulations are an efficient
strategy to compute ensemble averages, like, for example, to reproduce the melting
transition. Dynamical properties such as bubble formation (in which we are inter-
ested) cannot be undertaken via Monte Carlo methods, and thus, real dynamics
should be simulated.

7.3.1 Dynamics of the PBD Model: Integrating the Langevin
Equations of Motion

Through this work, we simulate the dynamical behavior of the PBD model by inte-
grating numerically the Langevin equations of motion For our system, we have:
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m
d2yi
dt2

= −mγdyi
dt
−∇E + ηi(t), (7.5)

where yi is the coordinate of each base pair, m its mass, E = V + W the
potentials acting on the system, γ the effective damping of the system and ηi(t) the
random noise force, of zero average (white noise) 〈ηi(t)〉 = 0 and correlation given
by 〈ηi(t)ηk(t′)〉 = 2mγkBTδikδ(t − t′), where T is the temperature of the thermal
bath. The integration of these set of equations can be done via several algorithms.
Particularly, we will use an stochastic fourth-order Runge-Kutta algorithm [81].

7.3.2 Observables to Characterize the Melting Transition
In order to characterize the melting transition, we compute different observables
based on the thermodynamic properties of the system, and also on the particular
arrangement of the base pairs. For instance, the average energy 〈u〉 and the heat
capacity Cv are defined as:

〈u〉 = 1
Nts

N,ts∑
n,t

[W (yn, yn−1 + V (yn)], (7.6)

Cv = 1
kT 2

(
〈u2〉 − 〈u〉2

)
, (7.7)

where N is the total number of base pairs to study and ts the total simulation time.
Additional topological magnitudes as the mean displacement 〈y〉 are useful, as we
expect a sudden rise of the average opening, once the melting transition is overcome.
We define 〈y〉 as:

〈y〉 = 1
N

N∑
n

〈yn〉; where 〈yn〉 = 1
Nts

N,ts∑
n,t

yn(t). (7.8)

Additionally, the fraction of open chain P , can be calculated from the probability
that the n-th base-pair is opened Pn(yth), by defining a threshold yth over which a
base-pair is defined to be open. Thus,

P = 1
N

1
ts

n=N∑
n

ts∑
t

Θ(yn(t)− yth), (7.9)

where Θ(x) is the Heaviside step function, such that Θ(x) = 0 for x < 0 and
Θ(x) = 1 for x ≥ 0. At low temperatures we expect P = 0, as the chain is closed on
average. At increasing values, it would start to take higher values, reaching P = 1
above the melting transition.

7.3.3 Observables to Study Bubble Dynamics
The formation of bubbles is another interesting feature. Particularly, we are inter-
ested in computing which regions are more likely to be open along the simulated
trajectories. For this regard we calculate the average opening of the chain:

〈yn〉 = 1
Nts

N,ts∑
n,t

yn(t), (7.10)
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and also the probability that a base pair opens:

Pn(yth) = 1
ts

ts∑
t

Θ(yn(t)− yth). (7.11)

These two quantities provide rather similar information. Those regions where
bubbles form more easily should show peaks in the 〈yn〉 and 〈Pn〉 profiles.

7.3.4 Principal Components Analysis
PCA is also a useful tool for understanding the PBD model [58, 59, 116]. First, the
study of the eigenvector spectrum as a function of temperature gives us information
about the melting transition, as we study in Chapter 8. Also, direct inspection of
the eigenvectors helps us finding more flexible regions in the sequences, as those
which experience large amplitude motions. Finally, we also use PCA as a dimension
reduction tool, in order to build Markov state models, as done in Part I.

Briefly, we remember the basic features of PCA (see Chapter 2 for further de-
tails). Mathematically, it is based on building the correlation matrix. If our system
is described by a set of N coordinates yi, then the correlation matrix:

Cij = 〈yiyj〉 − 〈yi〉〈yj〉. (7.12)
Diagonalizing this matrix, we obtain an ordered set of eigenvalues (λ1 > λ2 >

· · · , λN), with their associated eigenvectors (v1,v2, · · · ,vN). λi is a measure of the
amount of fluctuations corresponding to coordinate given by vi. In this sense, by
keeping just the first few PC, we describe faithfully the system in what regards to
fluctuations from the average behavior.

Here, it is useful to define the “principal frequencies” associated to each eigen-
value λi,

ωi =
√
kT

λi
. (7.13)

This definition is analogous to normal modes. If our system is restricted to a lin-
ear (harmonic) behavior, PCA coincides with normal mode analysis. For example,
this happens for low temperatures, where the principal frequencies coincide with
the normal mode frequencies. In this sense, it is hard to say if the defined principal
frequencies can be associated to actual physical frequencies of the system. Never-
theless, they are a useful tool for characterizing the melting transition of the DNA
molecule.
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Chapter 8

PBD Model with a Solvation
Barrier: Towards a more Faithful
Description of the Melting
Transition and Bubble Dynamics

This chapter aims to present and explain a modification in the PBD model proposed
in [116]. We introduce a potential barrier in the on-site potential in order to account
for the solvent effects. Studying the melting transition, we observe a more faithful
recreation, as the transition is narrowed. Regarding bubble dynamics, bubbles last
longer, in agreement with the expected order of magnitude. We use the modified
model in homogeneous sequences and on P5 promoter sequence. Additionally, we
use PCA to characterize the melting transition.

8.1 Motivation

In this Chapter, we present a modification of the PBD model which allows for a more
faithful description of the melting transition and the bubble dynamics [116]. The
inclusion of a solvation barrier in the original Hamiltonian of the model leads to a
narrower melting transition, from the equilibrium perspective. From the dynamical
point of view, it allows longer-lasting bubbles, and thus to a more reliable description
of the phenomenology.

We analyze both properties, discussing the importance of this barrier. The effect
of the different parameters of the model is also discussed. In addition, we employ
Principal Component Analysis as a powerful tool for understanding our system.
This technique allows to characterize the melting transition, with reminiscences to
normal mode analysis. In heterogeneous sequences (biological ones), PCA provides
a effective mechanism for identifying “softer” regions of the sequence, understood
as those where bubbles form with higher probability. The relation of these regions
with biologically relevant ones (as Transcription Starting Sites, or binding sites
for different regulation factors) is a controversial topic, as mentioned before. We
concentrate on a viral promoter P5, which has already been studied within the
context of the PBD model [109, 118].
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8.2 The Introduction of a Solvation Barrier
The introduction of a solvation barrier in the inter base-pair potential is a successful
improvement of the PBD model [114, 116, 119]. This barrier answers to the necessity
of including entropic and enthalpic effects in the effective Hamiltonian of the system.
As a single base pair flips out of the stack it should lower the effective potential
due to the entropy gain. In the same sense, in order to reclose this base pair, an
entropic barrier should be surmounted. For a correct dynamical description of the
open states, this entropic barrier should be included in the effective potential V (y).
Besides this effect, this barrier should contain also pure enthalpic contributions due
to the hydrogen bonds it would form with the solvent, which have to be broken upon
reclosing [114, 115]. The existence of this barrier has been reported in free energy
calculations derived from all-atom simulations of DNA [120].

Mathematically, this barrier should appear just after the equilibrium well, avoid-
ing any effect on the original shape of the potential. Intuitive control of its height
and position would also be advisable. Hence, we choose a gaussian barrier term,
simply added up to the original Morse potential [116].

V (y) = D(e−αy − 1)2 +Ge−(y−y0)2/b, (8.1)
where G controls the height of the barrier, y0 its position and b its width. Regarding
the original parameters, a qualitative and quantitative reasonable election is G =
3D, y0 = 2/α and b = 1/2α2. We show in Fig. 8.1 a plot of this potential for the
A-T and C-G pairs.

Figure 8.1: Intra base-pair potential with (solid line) and without (dashed lines)
salvation barrier for A-T (black) and C-G base pairs (red). The potential parameters has
been set according to reported melting temperatures of homogeneous sequences.

We use the modified PBD model to study the melting phase transition and bubble
dynamics. Both features are to be analyzed first on a uniform chain (i.e. A-T or
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C-G homogenous chain), to be later applied on real heterogeneous sequences. This
first study, although has little biological relevance, allows some analytical treatment
and is also useful for tuning the parameter set. This choice is done by comparing
the melting temperatures with experimental values.

8.3 The Homogeneous Sequence

8.3.1 Choosing the Parameters of the model: Fitting the
Phase Transition on Uniform Sequences

As mentioned in Chapter 8, the set of parameters proposed by Campa and Giasanti
in [117] is an appropriate one for the original PBD model. We modify the original
model, so the parameter set must be retuned, in order to keep the same features.
In order to determine the new parameter set, we compare melting temperatures
for homogeneous sequences of A-T and C-G chains, which have a reported to be
TATm ≈ 310 K and TCGm = 350 K [121]. Nevertheless, one should be aware that,
in general, the melting temperature depends on the length of the sequence, base
composition, topological structure and salt concentrations, so these values are merely
orientative.

In our case for the model with no barrier, we had DAT = 0.043 eV, αAT = 4 Å−1,
for the on-site potential, while K = 0.03 eV/Å, δ = 0.8 Å−1, ρ = 3 for the stacking
potential. When we introduce the on-site barrier, the transition temperatures are
shifted, and thus the energy units must be rescaled. In this case, D = 0.0519 eV,
G = 3D, y0 = 2/α and b = 1/2α2. As mentioned earlier, the sequence is set on the
on-site potential, even though some recent studies prefer to do so in the stacking
constants [121]. In our case the energy and length units are rescaled by a 1.5 factor,
DCG = 1.5DAT , αCG = 1.5αAT .

Figure 8.2: Average energy versus temperature for A-T and C-G homogeneous se-
quences with and without solvation barrier: Left panel shows results for and A-T chain of
220 base-pairs and right panel for a C-G chain of equal length. Black points show the curve for
the original model with no barrier, while red poins. for the model with barrier. The effect of the
barrier is a sharpening of the fase transition.

Figure 8.2 shows the average energy 〈u〉 as a function of temperature for AT
(left) and CG (right) homogeneous sequences. The original model (black) and the
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one with barrier (red) have been simulated with the parameter sets mentioned be-
fore. At high temperature, the behavior is that of a free gaussian polymer chain,
with constant K. A remarkable feature is how the barrier narrows the melting tran-
sition, an effect which can be expected to occur when ρ is increased. In order to
defined systematically the melting temperature, we use the following computational
criterium. We define two temperatures, T2, defined as the onset of the linear be-
havior in 〈u(T )〉, indicating that the chain is completely melted. T1 estimates the
beginning of the transition, and is defined as 〈y(T1)〉 = y0, when the chain is on av-
erage on the barrier position. The transition width is thus defined as ∆T = T2− T1
and the melting temperature Tm = ∆T/2.

Figure 8.3: Dependence of the melting temperature and the width of the transition
as a function of the stacking constant K: The effect of ρ and the barrier is insignificant on
the melting temperature. Nevertheless, they have a dramatic effect on the width of the transition,
decreasing greatly as we increase ρ or set the solvation barrier.

At this point, we discuss briefly the effect of different parameters on the melting
transition and dynamical behavior of the system. For the purely harmonic PB model
the transition temperature can be analytically computed as Tm = 2

√
2KD/akB

[100]. Nevertheless, numerical studies should be carried out for the current model
if we want to arrive to equivalent conclusions. As already mentioned D, the Morse
potential dissociation energy, affects directly on the value of Tm (higher D leads
to higher Tm). The effect of the stacking parameters and ρ on the transition tem-
perature Tm and width ∆T are plotted in Fig. 8.3. A first conclusion is that the
non-linear coupling parameter ρ and the presence or absence of barrier do not affect
significantly the value of Tm. The transition width ∆T is affected by both effects,
as increasing ρ dramatically decreases this width, something also observed for the
model with barrier, as already discussed. In this sense, a suitable melting tem-
perature and transition width is obtained at high K values and moderate ρ. Too
high ρ values, even narrowing the transition and thus reproducing more faithfully
the melting phenomenology, produce too narrow bubbles that are unphysical [122].
With respect to the solvation barrier, its presence makes the bubbles last longer, and
thus the complete separation of the strands is facilitated, decreasing the transition
temperature. This effect is counter balanced by the increase in D.
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8.3.2 PCA of the Phase Transition
PCA provides a powerful method for analyzing the DNA melting phase transition.
As already mentioned, if our Hamiltonian involves just harmonic potentials, PCA
is equivalent to normal mode analysis. For a uniform chain at low temperatures,
the PDB model coincides with a linear chain of particles oscillating in a harmonic
potential of frequency ω2 = 2Dα2/m and coupled by springs of constant K(1 + ρ).
Thus, its dispersion relation reads as:

Figure 8.4: PC frequencies spectrum at different temperatures. Left: PC frequencies
spectrum at very low (green) and very high (red) temperatures. Solid lines are the analytical
approximation (Eqs. (8.2) and (8.3)). Right: PC frequencies spectrum at different temperatures
between 120 and 330 K. The transition can be identified as the softest mode drops to zero. In both
cases, frequency units are (D/m)1/2α = 5.15× 1012sec−1.

mω2 ≈ 2Dα2 + 2K(1 + ρ)[1− cos(πn/N)]. (8.2)

The principal frequencies correspond to the dispersion relation, while the prin-
cipal eigenvectors to the normal modes of a linear chain of the mentioned features.

At high temperatures, the interbase potential is irrelevant and the PBD reduces
to a free gaussian chain with coupling given by K:

mω2 ≈ 2K[1− cos(πn/N)]. (8.3)

Figure 8.4 (left) shows the principal frequencies plotted with the two analytical
expressions, showing an excellent agreement. The intermediate behavior cannot be
reproduced analytically. As temperature increases, the nonlinear excitation becomes
more important, leading to larger fluctuations which are associated with larger PC
eigenvalues, or the lower principal frequencies. Figure 8.4 (right) shows the principal
frequencies for different temperatures. Remarkably, as we approach to the transition
temperature (Tm = 310K for the A-T chain) a soft mode goes to zero.

The evolution of this mode with the temperature can be used to analyze the
melting transition. Figure 8.5 plots this mode as a function of temperature in
logarithmic scale. The curve can be fitted using a critical behavior function ω ∝
(Tm − T )ν , with Tm = 307K and ν = 2.2. The value of Tm is very close to the
transition temperature. The dynamic exponent cannot be related to any known
family of models.
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Figure 8.5: Temperature dependence of the lowest PC frequency. Fitting to critical
behavior function ω ∝ (Tm − T )ν we obtain Tm = 307K and ν = 2.2 (solid line). Tm shows great
agreement with reported melting temperature, while the critical exponent cannot be ascribed to
any known family of models..

8.3.3 Bubble Formation

As discussed through Chapter 8, bubbles have a key importance for the biological
role of the DNA molecule, and their occurrence in particular sites along the DNA
sequence seems to be related with the binding of some proteins. In this regard, PBD
model can be used to understand the local dynamic proteins of the DNA molecule
at the base-pair level. As the inclusion of the solvation barrier affects importantly to
these properties (longer-lasting bubbles and less frequent) it seems an appropriate
modification in order to reproduce bubble dynamics and ultimately to relate it with
biological features.

Figure 8.6 compares two molecular dynamics trajectories without (upper) and
with (lower) barrier. Each panel is made up of three different representations. The
upper figure represents the whole trajectory with the base-pair opening yn plotted
in grey scale (white closed and black open). The two other figures show time and
position snapshots.

The effect of the solvation barrier on the strand dynamics is clearly demonstrated
here. At a given time, the opening profiles are quite similar, meaning that the bubble
length (which spans around ∼ 15 − 20 base pairs in agreement with the biological
sizes ) is not greatly affected by the inclusion of the barrier. The dynamic profiles
are drastically different. Without barrier, base-pair openings correspond to large
amplitude oscillations along the Morse potential, where an easy closing is favored.
Thus, bubbles are easily formed, but also easily closed. With barrier, the kinetics
is controlled by the presence of two different equilibrium states, separated by the
salvation barrier. Upon closing, the energy barrier must be overcome and thus
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Figure 8.6: Typical simulation trajectories for a homogeneous AT sequence without
barrier (upper panel) and with barrier (lower panel). The yn coordinate is plotted in
gray scale from white (closed) to black (open). Smaller figures correspond respectively to a time
slice (left) and trajectory of a single base-pair (right). The salvation barrier reduces the bubble
frequency although it stabilizes them, once they open. Trajectory time is 200ns and yn is given in
units of α−1 = 0.25Å.

bubbles live longer.
This bubble lifetime approaches better to experimental values, reported to be

of few tenths of ns [95]. This longer-lasting openings are necessary to drive protein
binding upon transcription, replication or regulation processes. Nevertheless, from
a computational perspective, this behavior requires longer simulations in order to
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gather up the necessary statistics, as bubbles become a rare event.
At this point it is worth to make a commentary regarding the effect of the ρ

parameter on the chain dynamics behavior. As discussed already, ρ affects the
cooperatively of the model leading to a narrower transition, similar to the effect
of the inclusion of a salvation barrier. Nevertheless, large values of ρ lead to long-
living bubbles but extremely narrow (around one or two base-pairs, see [122]). In this
sense, our choice of ρ = 3 including a salvation barrier is good enough for obtaining
longer-lasting bubbles but wide enough for reproducing the known phenomenology.

8.4 The P5 Promoter Sequence
Several works have explored the possible link between the formation of these bubble
openings and the presence of specific binding sites of regulatory proteins in DNA
sequences. For instance, the RNA polymerase binds to the so-called Transcription
Starting Site (TSS from now on) located at position +1 in the promoter region
prior transcribing the coding region. Additionally, different transcription sites bind
to specific sites on the promoter region regulating the transcription process. This
process is rather complex and varies from one organisms to another, or even from
gene to gene.

Figure 8.7: PC frequencies spectrum at different temperatures between 210 and
420 K. Two bands are identified at low temperatures, corresponding to CG and AT base pairs.
Frequency units are (D/m)1/2α = 5.15× 1012sec−1.

It has often been argued, that local physical properties of the DNA molecule,
related with the formation of spontaneous bubbles, are highly correlated with the
binding of proteins such as Transcription factors [123–125]. In this sense, the PBD
model can be as a useful tool for analyzing promoter sequences, subject to its cor-
rect reproduction of the bubble dynamics behavior of the DNA molecule at the
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desired level. Particularly, some studies show the correlation between sites with
high propensity to form bubbles in the PBD model context, and the position of
protein binding sites [59, 97, 126–129] This topic is further discussed in Chapters 9
and 10.

In this section, we analyze a fragment of the adenoassociated viral P5 promoter
(P5), widely studied in different works [109, 118]. This promoter is known to con-
tain two main sites exhibiting frequent bubble openings within the context of the
PBD model, namely the TSS (+1) and an A-T rich region between -40 and -35,
corresponding to the binding site of the transcription factor Ying Yang 1 [118].

We run Langevin simulations at different temperatures on the sequence of the P5
promoter is given by the 69 bp: 5’-GTGCCCATTTAGGGTATATATGGCCGAGTG
AGCGAGCAGGATCTCCATTTTGACCGCAAATTTGAACG-3’. In order to iso-
late this sequence and avoid finite size effects, we add a base-pair clamp of 10 C-G
at each of the ends of the promoter, creating “hard” boundary conditions. The first
and last base pairs are forced to remain closed in order to avoid a complete opening
of the chain.

Figure 8.8: Opening probability (upper) and first three eigenvectors (lower) for se-
quence P5. Two clear opening regions with each two different bubbles are clearly identified. Both
are settled at biologically relevant spots in the P5 sequence, namely the TSS and the -35 box.

The interest of our work here is twofold. First, we use PCA to analyze the melt-
ing transition of this heterogeneous sequence and compare it with the behavior of the
homogeneous sequence. Second, we study the behavior of the chain at a fixed tem-
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perature, bellow the melting transition, in order to identify those sites with larger
nonlinear fluctuations (bubbles) and relate them with the known regulatory sites.
We use PCA as a valuable tool for such goal. Whereas forhomogeneous sequences
PCA show the normal modes of a chain of oscillators (including nonlinear contribu-
tions), in heterogeneous sequences, the eigenvectors show localized contributions at
specific sites in the sequence where large amplitude motions are more significant.

Figure 8.7 shows the PC frequency spectrum for different temperatures. This
observable is used to identify the phase transition. We observe also some features
which distinguish this profile from the one in the homogeneous case (Fig. 8.4). At
low temperatures, two bands are identified. The higher one corresponds to the CG
base pairs, while the lower one to the AT base pairs. At intermediate temperatures,
this gap begins to disappear, as CG pairs surrounded by AT pairs are more likely
to open.

Close to the transition (T ≈ 345K in this case), several modes detach to low
frequencies. These modes correspond to localized regions in the sequence contribut-
ing greatly to the fluctuations of the system, and they can be related with zones
with high probability of opening. Figure 8.8 shows the opening probability profile
(upper) and the first three eigenvectors (ordered according to the eigenvalues) at
T = 290K, where these features are clearly depicted. We identify two major re-
gions In the probability profile which show each two different peaks with a larger
probability of opening compared to the average behavior. These sites correspond
respectively to two different regulatory regions, the TSS located at site +1 and the
-35 site, binding site of the Ying Yang 1 factor [118].

The first three eigenvectors validate this picture, with an excellent correlation
with the probability profile. Each eigenvector shows a highly localized contribution—
spanning around 10 base pairs—to the fluctuations of the system. The first and
third one show decorrelated contributions in the -35 region while the second one
contributes in the +1 to +15 regions. The PCA vision can be useful also to find
correlation between global movements of our system. For example, if we focus on
the first eigenvectors, the largest contribution is clearly centered around the -25 base
pair, but a smaller peak appears also in the +15 region. This means that fluctu-
ations in both sites are slightly correlated in a positive way. On the contrary, the
third eigenvector shows negative correlations between the two bubbles that might
be formed in the -35 region. This correlations might be of great interest, as mod-
ification (mutations) in one of them, could interfere with the behavior showed by
other one.

Figure 8.9 plots a typical trajectory on the P5 promoter. Opposite to the case of
the uniform chain, where bubbles formed at arbitrary positions along the sequence,
here they form mainly at the sites identified by the PC eigenvectors. We are working
at T = 0.85Tm and, as the transition is quite sharp, we observe few openings and
thus long simulation runs are needed to gather enough statistics. Nevertheless, PC
analysis gives good account of the fluctuating regions even though opening are rare
events.
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Figure 8.9: Trajectory of the P5 promoter at T = 290K. Bubbles form mainly around
the two biologically relevant regions, already identified by PCA. The simulation time shown is of
400ns.
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A Model for Protein-DNA
Interaction at the Base-Pair Level:
Analyzing Promoter Sequences
with a Mesoscopic Model

In this chapter we introduce a model for protein-DNA interaction [58]. The DNA
is represented with the PBD model, and the protein is introduced as a new degree
of freedom, which interacts with the chain coupling to open regions. We apply the
model to three different promoter sequences, two of them with high RNA production
levels (strong promoter), and the other with low production levels (weak promoter).
We locate and quantify the binding sites by employing a suitable analysis model,
based on Markov state models. These binding sites are correlated with biological
relevant regions in the promoters we analyze. By employing a suitable analysis
method based on a Markov state model description of the system, Additionally, we
distinguish between the strong and weak promoters by analyzing the structure of
the free energy landscape of the system.

9.1 Motivation for Developing the Model
The complexity of genetic regulation is very high, and to date it is far from being
understood at a molecular level. There is a large number of proteins involved which
play different roles, and this changes from organism to organism. In this sense, to
propose a general mechanism for protein-DNA interaction seems rather a utopia.
Additionally, the classical biochemical picture of “protein A recognizes site B, and
binds to it” is a naive consideration, especially if we account for the crowded and
noise-ruled environment where molecular biological processes take place.

Here, we focus on a particular process, with no intention of generality. It has
often been reported, that some DNA-interacting proteins couple to the physical
properties of the DNA sequence, particularly to bubbles [123–125]. For example,
RNA polymerase binds to the so-called Transcription-Starting-Site (TSS) where the
transcription bubble starts. Other regulatory sites, such as the TATA box, are
known be locally “weak”, and thus easier to open and unwound [96]. Here, we
explore this aspect, based on the concept that some proteins bind to particular
regions in the DNA sequence where bubbles form spontaneously with more facility.
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In other words, the presence of regions more likely to be opened are correlated with
some protein binding sites, and thus this dynamics have a key role on regulatory
processes.

Starting with PBD model, we move a step further and propose a model at the
mesoscopic level for the one-dimensional diffusion searching process of a generic reg-
ulatory protein1 [130, 131]. This protein slides along the DNA molecule interacting
stronger with open regions in the chain. In turn, it also helps to break the base-pair
bonds, opening bubbles, and stabilizing open ones. By analyzing the combined dy-
namics of the DNA base-pairs and the particle, we can identify the most prominent
states the system populates, where the particle bounds to a particular site where a
bubble is formed and stabilized. These states will be correlated with already known
biological relevant sites, namely protein-binding sites.

We can interpret this model in an additional way. The generic particle we intro-
duce can be seen as a sounding line which runs along the DNA sequence, detecting
“softer” sites, which likely can be considered as potential protein-binding sites. This
proposal is similar to flexibility maps that are measured with Scanning Probe Mi-
croscope on surfaces or even biological molecules [132].

We propose a suitable analysis method which allows to define systematically
the states the system occupies through the dynamics and quantify them from an
statistical point of view. We are able to compare the importance of such states in the
dynamics, and to relate them with the “strength” of the binding sites, in terms of
RNA production [133]. This procedure cannot be applied directly on simulations of
the PBD model alone, as bubbles are rare excitations of the ground state, where all
base-pairs are closed. The introduction of the diffusing particle changes dramatically
the free energy landscape of the system, allowing for a richer behavior and further
biological consequences.

9.2 Description of the Model
Our model is made up of two ingredients, the DNA chain and the interacting protein.
A schematic picture of it can be seen in Fig. 9.1. The DNA chain is described by
the modified PBD model presented in Chapter 8, while the interacting protein is
modeled as a generic particle undergoing a one-dimensional diffusion along the chain.
This particle is coupled to the chain’s opening profile in the sense that it interacts
more strongly with open base pairs. In turn, the presence of the particle also affects
the dynamics of the DNA base-pairs, as it tends to open the chain. The model
proposes thus a two fold effect. Softer regions of the DNA sequence are more likely
to be visited by the protein, which also helps in opening them and stabilizing the
bubbles.

Briefly, the DNA chain is described by the PBD hamiltonian H
DNA

= ∑N
i=1[ p2

n

2m +
V (yn)+W (yn, yn−1)], where W (yn, yn−1) is the stacking potential given by Eq. (7.3)
of previous chapter, and V (yn) the on-site Morse plus barrier potential given by Eq.

1The most accepted mechanism for location of targets in a three-dimensional diffusive envi-
ronment is a combination of one-dimensional diffusion stages along the DNA chain, and three-
dimensional jumps which allow to reach new regions chemically far. This is the process known as
facilitated diffusion. Indeed, most of the time is spent in the one-dimensional stage, being the time
involved in the three dimensional jumps almost negligible. In this sense, it is reasonable to focus
on the former process.

146



Chapter 9

Figure 9.1: Schematic picture of the protein-DNA interacting model: The protein or
generic particle (big green ball) diffuses along the DNA chain (represented as small balls with
springs), interacting with it trough potential term Vp. This interaction increases with the base-
pair separation yn, in such way that the protein couples to bubbles. In turn, the base-pairs are
also affected by the protein dynamics, as it also pulls them out of the equilibrium position, helping
in opening bubbles and stabilizing them, once open.

(8.1).
Now, the interacting protein is represented by a Brownian particle (see Fig. 9.1)

moving through a one-dimensional space with coordinateXp and interacting with the
DNA chain through a phenomenological potential which depends on the coordinate
Xp and the instantaneous opening profile given by {yi(t)}Ni=1. The Hamiltonian for
the particle reads:

HP =
p2
p

2mp

+ V
int

(Xp, {yi}), (9.1)

where suffix p stands for protein. Mathematically, we set the following interacting
potential:

V
int

(Xp, {yi}) = − B√
πσ2

∑
i

tanh(γyi)e−(Xp−ia)2/σ2
. (9.2)

This expression is simply a sum of gaussian wells centered at each base pair,
which are separated a distance of a in the coordinate Xp (units along this degree of
freedom are arbitrary). Each well has a maximum interacting amplitude of B, where
σ is the spatial range of such interaction. The interaction amplitude depends on the
state of the i− th base pair, with a tanh(γyi) term. This functional form is chosen
so that the interaction amplitude is linear with yi at low openings, and saturates
when yi ∼ γ−1, in order to avoid and indefinitely opening and thus self-trapping of
the protein. With this interaction term, the particle tries to open the chain in a
length range of σ and with an intensity proportional to the opening profile.

The system can be interpreted as a particle diffusing through a classical field
which depends on the instantaneous configuration of the DNA chain {yi(t)}Ni=1. In
this sense, bubbles create wells in the profile and thus, the particle would tends to
dwell at these regions. Figure 9.2 illustrates this by plotting an arbitrary average
configuration of a DNA sequence within our model, and the potential profile V

int

created by such profile. Nevertheless, we should remark that the particle itself
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is affecting the configuration of the DNA strands, and thus the potential profile
through which it is moving changes with time.

Figure 9.2: Average configuration of a DNA sequence and associated field created by
the interacting protein: Upper panel shows an average configuration of a DNA sequence and
lower panel the instantaneous profile Vint(Xp) calculated for such configuration {yn}Ni .

The diffusing protein is a larger entity than the individual base pairs, so we
set a higher damping and mass, ηp = 1014s−1 and mp = 7000 Da, in the order of
magnitude of DNA-binding proteins [134]. The intensity of the interaction is chosen
as B = 20kBT , providing local interactions of the order of the Morse potential
dissociation energy at each base pair. With γ = 0.8 Å−1 the potential saturates
at y = 1.25 Å, which is the position over the on-site barrier. The new degree of
freedom Xp has arbitrary units, as a is the base-pair separation along a chain, so
meaningless for our purpose here. We set a = 1 and σ = 3, providing an interaction
range which spans over 5-6 base pairs. With these interaction parameters, and due
to the cooperativity of the model, we observe bubbles of around 15-20 base pairs,
which is a typical value for the processes we want to model here [135].

9.3 Simulation Details
The dynamics of the model are defined by the Langevin equations for the base pairs
and the particle. For the n-th base pair of the chain, we have

m
∂2yn
∂t2

+mη
∂yn
∂t

= −∂[W (yn, yn−1) +W (yn−1, yn)]
∂yn

− ∂V

∂yn
− ∂Vint

∂yn
+ ξn(t), (9.3)

where η stands for the damping and ξn for the white thermal noise, so 〈ξn(t)〉 = 0
and 〈ξn(t)ξk(t′)〉 = 2mηkBTδnkδ(t− t′) hold.

The protein moves following
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mp
∂2Xp

∂t2
+mpηp

Xp

∂t
= −∂Vint

∂Xp

+ ξp(t), (9.4)

where ηp stands for the particle damping and ξp for white thermal noise. Analogous
fluctuation-dissipation relations stand here.

We integrate numerically previous equations following a fourth order stochastic
Runge-Kutta algorithm [81], obtaining a set of N + 1 molecular trajectories, for the
N base pairs and the particle. Each of the sequences is simulated in five different
realizations for 40 µs, using a time step of 10 fs and a 1 µs preheating time. These
numbers are in agreement with the typical one-dimensional diffusing times for the
kind of processes studied here [134]. The simulation temperature is T = 290K.

The protein diffuses along the DNA chain with periodic boundary conditions,
while we set fixed boundary conditions to the DNA chain, adding a base pair clamp
of 10 CGs at the ends of the sequence of study to create “hard” boundary conditions,
as discussed in [58, 116].

Figure 9.3: Trajectory of the N base-pairs of a DNA sequence in white (closed)-
black (open) code, with superimposed trajectory of the interacting protein (red): The
dynamics of the DNA base-pairs depends on the position of the particle. In the absence of particle,
they show regular dynamics with transient openings. The particle influences greatly this behavior,
opening and stabilizing the bubbles, which last for at least two orders of magnitude more. The
dynamics of the particle can be described a jumps between different regions where it dwells for a
while, opening a long-lasting bubble.

Figure 9.3 shows an example of a trajectory simulated with our model. The base
pairs are pictured in a white (closed)-black (open) scale. The particle trajectory
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is plotted in red. The particle diffuses along the whole sequence, jumping between
different regions where bubbles open. Its presence helps in stabilizing these bubbles,
which last considerably longer compared to the PBD model alone (see Chapter 9
or compare with Fig. 8.9). We observe how the dynamics of the base pairs affect
strongly the protein dynamics, and the other way around.

9.4 Analysis: Brief Reminder about Markov State
Models

We take advantage of Markov state models to analyze the joint trajectories of the
N base-pairs plus the particle, and identify systematically states the system visit,
and be able to get quantitative information about them. The analysis procedure
is quite similar to the one described and discussed in Part I, nevertheless, we are
less detailed about the Markov state model validity, focusing on the direct output
this technique yields to us. We describe briefly the analysis procedure in the next
section. More details about Markov state models can be found in Chapter 2.

9.4.1 Description of the Analysis Protocol
The main steps of the analysis protocol here are: i) Calculate PCs of the chain
trajectory to reduce the dimensionality of the system. ii) Calculation of the Confor-
mational Markov Network by discretizing the chosen number of reduced trajectories.
iii) Definition of the basins of attraction by clustering the Markov Network with the
Stochastic Steepest Descent Algorithm. iv) Build the disconnectivity graphs (or
dendrogram) to visualize the free energy landscape. Briefly, we describe each of the
steps.

1. Obtention of the reduced trajectories
First, we apply PCA just to the N base-pairs trajectories (omitting the par-
ticle) in order to reduce the dimensionality of our system. We project the
trajectories yi(t) onto the principal eigenscapeces in order to define the PCs
qi(t),

qi(t) = vi · (y(t)− 〈y〉), (9.5)

where y(t) is the time dependent trajectory written as a vector, 〈y〉 the average
position of the base pairs as a vector, and vi the i-th principal eigenvector.
We describe our system by keeping just the first five PCs. With the restriction
to this subspace, we account for the 75% of the total autocovariance of the
system. This is plotted in Fig. 9.4 where the cumulative fluctuation rate
ζi (or the cumulative trace of the correlation matrix) is plotted, defined as,
ζi = ∑i

j λi/ tr C̃, where λi are the eigenvalues of the correlation matrix C̃.

2. The Conformational Markov Network: Next step is to map the trajecto-
ries onto a complex network. We calculate the microstate Markov network by
discretizing out conformational space into bins for a particular lag time ∆t or
sampling time. The configurational space is defined by the five first PCs plus
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Figure 9.4: Cumulant autocovariance for the N base-pair trajectories: The first five
eigenspaces gather up to the 70% of the total fluctuations of the system.

the trajectory of the particle. We discretize the five PCs into 20 bins of equal
volume and the trajectory of the particle into N bins, corresponding to the
domain of each base-pair. This defines a microstate space with a maximum
of 205 ×N ∼ 108 microstates. Next, we map the continuous trajectories into
the “bin” trajectory, in order to calculate the transition matrix Tij and the
occupation vector πi.

3. Stochastic Steepest Descent: obtaining the Basins of Attraction We
cluster the microstate network to define the macrostate network. We use the
Stochastic Steepes Descent Algorithm (SSD) [32, 56] for this purpose, finding
the basins of attraction in the microstate network (see Chapter 2).

4. Free Energy Landscape as a free energy dendrogram We represent the
Free Energy Landscape as a hierarchical tree diagram, or dendrogram [6]. This
representation is built according to the weights and links among basins (see
Chapter 2).
The dendrogram representation provides a qualitative and quantitative hier-
archical organization of the basins in terms of free energy and the barriers that
separate them in the free energy landscape. Here, we can use them to under-
stand how do the different states in the sequence organize and characterize
them from a quantitative point of view, according to different thermodynamic
quantities which might be calculated in an straightforward way, thanks to this
representation.

9.4.2 Characterizing the Configurational Space
We translate the trajectories (or set of trajectories) on a network of basins of attrac-
tion which represent the macrostates of our system. Our initial goal is to provide
a solid tool for analyzing promoter sequences in order to find possible binding sites
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of DNA-interacting proteins. Each identified macrostate corresponds to a partic-
ular configuration of the N base pairs and a position of the particle along the
chain. Likely binding sites should correspond to bubbles at concrete regions, with
the particle bound there. Our analysis method provides, not only a way to define
systematically such states, but also the possibility of characterizing them.

A certain macrostate α is defined by its weight πα = ∑
i πi, where i ∈ α are all

nodes from the microstate network belonging to basin α. This weight represents its
population in the network, and thus can be related to its relevance from a biological
point of view. In the same way, we define the entropy of each basin as Sα/kBT =
−∑i πi log πi, with i ∈ α. Intuitively, the entropy of a state means how “wide” the
free energy basin is. For example, macrostates made of few very weighty microstates,
would lead to low values of Sα, and thus narrow free energy wells, while those made
of lots of microstates with lower weight would yield to large entropies, meaning wide
wells, even if πα is the same in both cases.

At this point, we make a distinction between two different categories of states,
specific and nonspecific states. Specific configurations represent stages in the dy-
namics, when the particle is bound to a concrete region in the sequence which is
open. On the contrary, nonspecific states represent those intermediary stages where
the particle diffuses along the sequence without binding to any particular site. Con-
sidering the one-dimensional searching process of a particular protein along the
DNA strand, these two categories resemble the two different phases in the searching
process.

In our context, we define as specific states those basins with a weight πα ≥ 10−3,
while nonspecific states correspond to the remaining low-populated states. In this
sense we define a nonspecific basin by clustering all states with πα < 10−3. Its weight
is πNS = ∑

α πα, where α : πα < 10−3. This nonspecific basin is employed as a
reference state for defining our quantitative description of the strength of the basins,
defined as the free energy difference with this state ∆F/kBT = − log(πα/πNS).
In addition, the value of πNS is used as a measure of the strength of a particular
promoter, as high values of πNS mean that the particle spends a significant fraction
of the trajectory dwelling along the chain without binding to particular sites, and
thus, the present binding sites are weak.

9.5 Results

We analyze three different promoter sequences of different organisms. Two of them—
the already studied P5 viral promoter [136] and the human collagen type I α2 pro-
moter [126]—, correspond to the so-called strong promoters, while the other one—
lac operon regulatory region [137]—is a weak promoter. This distinction between
strong and weak promoters is related with the level of expression in mRNA, in the
sense that strong promoters show higher levels, and their sequences are closer to the
consensus sequence [133, 138].

We seek for structural differences in the free energy landscape of the promoters,
as interpreted with our analysis method. Specific binding sites should appear as
more populated (lower free energy) in the strong promoters than in the weak one.
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9.5.1 Control Sequence: Study of a Random Sequence
As a preliminary step, it is worth analyzing a sequence with no biological content as
a “control” case. For this purpose we use a random sequence obtained by shuffling
the base pairs of the P5 promoter sequence we employ later for our study. This
randomization of the sequence removes any biological information contained initially
in the sequence, while keeping the A-T/C-G content.

Figure 9.5 plots the three typical representations we will employ for our analysis.
From left to right, we have i) the average position of the base pairs and the first
two PCA eigenvectors; ii) the free energy dendrogram; iii) the weight distribution
of the basin network. First, the opening profile provides little information, as the
chain shows relatively large bubble spanning almost the whole chain. The PCA
eigenvectors support this vision as they look similar to a homogeneous sequence,
providing a delocalized contribution to the fluctuations of the system.

Figure 9.5: Analysis of the random sequence: Left panel shows the average opening profile of
the chain and the first two eigenvectors. Clearly no structure is seen. Central panel shows the free
energy dendrogram, where no prevalent states appear, as the weight is rather distributed through
the nodes. Right panel shows the distribution of the weights of the basins and the cumulant
weight, where a large number of basins share a significant amount of population. Compared to
real sequences, we will see how the features are totally different.

The basin network has 8388 basins (we can compare this size with the ones of the
promoter sequences shown later on), and with a structure which differs to the ones
we find for biological sequences. The “background” or nonspecific basins suppose a
6% of the total network weight, while it can be seen that quite a large number of
basins retain a significant fraction of the trajectory. This means that the network
structure is quite distributed onto a lot of states, which have in turn a low free
energy with respect to the nonspecific state. In this sense, basins identified by our
algorithm on a random sequence correspond to very “weak” binding sites.

This random sequence could be conceived as the “weakest” promoter, provided
that it lacks of any biological information. When comparing the structure found
for each of the promoters analyzed in this chapter, the differences will be clearly
identified.

9.5.2 Analysis of Three Promoter Sequences
We show the results for the three studied promoter sequences, the strong promoters
viral P5 (given by the 69-bp sequence shown in [116, 118]) and human collagen type
I α2 chain (given by the 80-bp sequence shown in [126]) and the weak promoter lac
operon regulatory region, given by the 129-bp sequence taken from [137].
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Figure 9.6 shows a detail of the low energy region of the free energy dendrograms
for the three promoters (upper panel). Lower panel shows a representation of the
physical state of different relevant basins identified by our method. These states are
related to excitations in biologically relevant regions such as the TSS or the TATA
box.

Figure 9.6: Free energy dendrograms and representative states for the three studied
sequences: Upper three graphs show the free energy dendrograms for the collagen, P5 and Lac
sequences, and lower three ones the most relevant states, as highlighted in the landscapes. We
can see that in any case they correspond to bubbles in a particular spot in the sequence, with the
particle located on it. Also, the topology of the dendrograms is rather different comparing P5 and
Collagen promoters with Lac one.

For the collagen sequence, state A, the most populated one, corresponds to the
TSS, showing a large bubble around base pair +1, and with the particle located
there. States B and C are linked to excitations in other regions such as the TATA
box at −35 position (state B). These states match those reported previously in [126].

In the same way, P5 sequence shows two major groups of states, each with two
different particular states (A-D and B-C), in coincidence with the findings showed
in Chapter 8. State C corresponds to the TSS , while state A to the -35 regions.
Lac operon promoter identifies the TSS as basin C, with another state (B) close to
it. Nevertheless, the overall behavior of this promoter differs from the first two, as
we shall discuss later.

The free energy dendrograms show a radically different structure when comparing
the P5 and collagen promoters with the lac operon one. The collagen dendrogram
is structured into three main branches, associated with the three physical states
depicted in Fig. 9.6. The P5 dendrogram shows an analogous structure, with two
main branches, one of them divided in two more, corresponding to states B and
C, which are kinetically close (barrier of ∼ 2kBT separating them). The remaining
states correspond to very similar configurations, where the conformation of the base
pairs or the position of the particle differs slightly.

The dendrogram from the lac promoter is arranged into a completely different
fashion. While the two strong promoters showed few prominent basins (∼ 10 −
20) and a large number of low populated ones (not shown in the dendrograms),
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the weight in the lac promoter is more distributed, with several basins showing
intermediate occupancies. In this sense, the free energy dendrogram is made up of
several basins with similar weights.

In order to visualize this difference more clearly, Fig. 9.7 shows the basin weight
distribution (red bars, ordered from major to minor) and the cumulate weight (blue
line). Remarkably, in the collagen sequence, few basins (25 our of 1661) accumulate
99.4% of the network’s weight. The P5 network shows a similar structure, with few
basins (23 out of 529) accounting for most 99.4% of the information in the dynamics.
These basins are the specific ones we defined previously, and are the ones plotted
in the dendrograms of Fig. 9.6. Lac promoter shows the more distributed structure
we anticipated with the free energy dendrogram, with 88 specific basins accounting
for the 96.9% of the trajectory, showing a distribution which is closer to that of the
random sequence.

Figure 9.7: Basin occupancy and cumulant occupancy for the three analyzed se-
quences : The weight distribution of the free energy basins in the three sequences is rather
different. Collagen and P5 sequences gather the majority of the trajectory in few basins, and
the gap is clear. Lac promoter has a wider weight distribution, where more basins share similar
weights.

The biological differences between the two kinds of promoters are elucidated by
simply checking the structure of the networks obtained by applying our analysis
method. Both strong promoters show a small fraction of basins which gather most
of the trajectory. These basins correspond to physical states with a significative
occupancy along the dynamics. On the contrary, in the lac promoter, several states
coexist with relatively similar weights (around 20 states with weight between 10−1−
10−2 and over 60 with weight between 10−2− 10−3). This difference in the behavior
is clearly seen in the way the cumulative function saturates.

To finish, we characterize quantitatively the three promoters by computing phys-
ical quantities regarding the highlighted states in each case. The three employed
magnitudes are the weight, entropy and free energy difference with respect to the
nonspecific state (named as NS), all defined previously. The free energy difference
can be intuitively understood as the “depth” of the state (picturing a hill-valley
imaginary representation of the free energy landscape), while the entropy the width
of the valley (state).

The difference between the strong promoters and the weak one is numerically
shown here. In the three cases the TSS and the TATA box are found as one of
the most prominent basins in the network, revealing a relationship between the
states populated by our model and the biologically active sites of the sequence.
Nevertheless, the free energy differences comparing the strong and weak promoters
are off by a factor three (∼ 3kBT for strong ones while ∼ 1kBT for the weak one).
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Table 9.1: Statistical properties for the three studied promoters: The TSSs
are identified, together with additional biologically relevant states. Their population
is shown, together with the entropy and the free energy difference with respect to
the non-specific state.

Promoter State Pα S/kB −∆F/kBT
A (TSS) 0.169 1.365 3.305

B (TATA) 0.157 0.1380 3.232
Collagen C 0.086 0.652 2.519

NS 0.006 0.085 0.000
A ( TATA) 0.135 1.051 3.130

B 0.107 0.913 2.898
P5 C (TSS) 0.086 0.684 2.681

D 0.059 0.494 2.301
NS 0.006 0.027 0.000

A (TATA) 0.115 0.970 1.311
B 0.095 0.891 1.120

lac C (TSS) 0.090 0.775 1.066
D 0.038 0.373 0.204
NS 0.031 0.390 0.000

These numbers qualitatively match the distinction between strong and weak pro-
moters in terms of RNA production. Considering our particle as a DNA-interacting
protein, P5 and collagen promoters show “stronger” binding sites in what regards to
the found free energy difference. In addition, the fraction of nonspecific trajectory
is much higher in the lac promoter, revealing that specific interactions are scarcer
and weaker. This results are in good agreement with the literature, as they account
successfully for the energy ratios between weak and strong promoters [138]. Unfortu-
nately we cannot compare directly free energy values of bound proteins considering
our model.

9.6 Discussion
To conclude, we state briefly some of the achievements we consider important for
the model we have described and used through the present chapter. The proposed
model can be understood in a two fold manner. First, it is a protein-DNA interaction
model, where the protein diffuses one-dimensionally along the DNA chain, and is
coupled to the bubbles that form in the sequence. In this regard, we do not claim any
generality in our proposal. The model intends to gain insight on the one-dimensional
searching stage of DNA-interacting proteins, and on the class of proteins which are
influenced by local openings in the DNA double helix. For example, this could serve
well for the RNA polymerase and some transcription factors such as the TATA-box
binding protein Obviously the actual mechanism of protein-DNA binding is much
more complex and many other effects could be taken into account.

On the other hand, this model, together with the analysis procedure, can be un-
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derstood as a physical method for analyzing DNA sequences—particularly promoters—
in order to identify potential binding sites and also to provide quantitative infor-
mation about them. We have proved how this latter application successfully differ-
entiates between strong and weak promoters, as the free energy landscapes of both
kinds of sequences are structurally different in the context of our model. Clearly,
our model and method does not intend to compete with high-throughput methods
for identifying TSSs or binding sites, based on bioinformatics algorithms. These
sort of techniques are way more efficient but generally rely on statistical and data
mining tools, laking of a clear physical or biochemical inspiration. Our mode,l on
the contrary, focuses on the ability to yield valuable physical information about the
sites, which can be qualitatively compared with experimental data. Chapter 10 goes
in more depth on this point.
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Analysis of Cyanobacterial
Promoters: Finding and
Characterizing the TSS

This Chapter presents a careful analysis of nine cyanobacterial promoters from An-
abaena PCC 7120 with the model and method presented in previous Chapter, as
published in [59] We focus on the identification of the TSS, where the RNA poly-
merase binds prior to start the transcription. We identify and give quantitative
information about the TSSs of the nine analyzed promoters. Furthermore, some
of the chosen promoters have more than a single TSS, which allows a comparison
between the strength of such sites.

10.1 Motivation: Why Cyanobacterial Promot-
ers?

In previous Chapter we probed the protein-DNA model on three promoters already
studied through PBD model. In this Chapter we take a step forward and analyze
extensively nine promoter sequences from the same organism in order to validate the
model and method. In particular, we choose nine promoters from Cyanobacterium
Anabaena PCC 7120, and restrict our discussion to the location of the TSSs. We
work with a simple prokaryote organism, as they show simple regulatory interactions,
so the assumptions of the model are more appropriate. Also, we restrain our analysis
to the TSSs of the chosen promoters. The binding site of the RNA polymerase is a
common feature of any promoter, and this protein must form a bubble in the DNA
molecule in order to read and transcribe its genetic meaning to RNA. Particularly,
many studies suggest the relationship between this site and the propensity to form
bubbles [97, 121, 126, 127] or even by studying flexibility profiles of DNA sequences
[98].

Cyanobacteria are the only prokaryotes able to perform oxygenic photosynthesis,
being key contributors to CO2 fixation. Their interest resides in the ability of some
strains to fix atmospheric nitrogen or to form harmful blooms by toxigenic species,
among other properties [139]. This ecological relevance adds to their interest as a
model for the study of multicellularity in prokaryotes [140], and as potential sources
for novel drugs derived from their secondary metabolites [141].

159



Part II

The genome of Anabaena PCC 7120 contains 7,211,789 base pairs and 6,223 genes
organized in a 6,413,771 base pair chromosome and 6 plasmids [142]. Anabaena
PCC 7120 has been used for long time as a model for the study of prokaryotic
cell differentiation and nitrogen fixation [143]. More recently, the experimental
definition of a genome wide map of TSSs of Anabaena together with the analysis
of transcriptome variations resulting from the adaptation to nitrogen stress have
provided a holistic picture of this complex process [144].

We consider this system as a suitable one to probe our method, particularly
due to its solid characterization and the wide body of knowledge it exists about it.
The nine promoter sequences we have chosen for this study meet some requirements
focussed in improving the amount of information we can extract from them. Par-
ticularly, four of these promoter exhibit multiple TSSs within the same promoter
sequences. This feature allows us for a direct comparison between the strength of
these sites within a same sequence, and thus to extract useful conclusions which
might be compared with the existing knowledge about them.

10.2 Methods
We employ the same simulation and analysis protocol as in Chapter 9. See Sections
9.3 and 9.4 for further details.

10.3 Results
We analyze nine promoter sequences from cyanobacterium Anabaena PCC 7120
[59], which exhibit different regulatory features. All nine promoters have been well
characterized from a biochemical perspective. Moreover, four of them have more
than a single TSS. These features allow to a direct comparison between our findings
and the experimental evidence.

10.3.1 Analysis of Complete Genes
Most works concerning the PBD model limit themselves to the study of short pro-
moter sequences. In principle, this can be justified with various reasons. First,
promoters span typically up to few hundreds of base pairs, which is the typical size
over which the PBD model makes sense. Second, they are the regulatory regions in
genes, and thus would seem to show a richer behavior in what regards to physical
properties. Nevertheless, it would be advisable to check how do coding regions be-
have when compared to promoters, in order to compare their properties within the
context of this model, justifying thus the restriction to promoter sequences alone.

In order to cover this gap, we simulate as a preliminary step three complete genes
from Anabaena PCC 7120. We use for simplicity the PBD model alone, without the
inclusion of the interacting particle. Our aim is to check which regions from the
whole gene tend to form bubbles with more ease, showing large amplitude motions.
The results allow us to compare the occurrence and intensities of the fluctuations
detected in the promoter and coding regions, respectively, validating our further
analysis, which will be restricted to the promoter regions.
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Figure 10.1: Fourth first eigenvectors calculated for three different complete genes:
The promoter region—with the TSS highlighted—and the codifying region are pointed out. Most
of the large amplitude motions appear localized in the promoter region, meaning that bubbles tend
to form mostly there. This feature manifests the different mechanical behavior of the promoter
and codifying regions, suggesting its key role in the DNA-protein interaction.

We simulate three complete genes, alr0600, hanA and alr3762, with the same
upward structure of promoter + coding region. Figure 10.1 shows the first three
PCA eigenvectors, with the promoter and coding regions highlighted. As discussed
in previous chapters, very localized eigenvectors indicate strong fluctuations in the
region of maximal amplitude. In the three cases, the first eigenvector is delocal-
ized, with an almost constant profile which accounts for the overall fluctuations of
the whole chain. The second, third and fourth ones show highly localized, large
amplitude contributions, which indeed tend to concentrate in the promoter region,
whereas the coding region shows little large amplitude modes.

This behavior means that, when considering the specific contributions to the
overall fluctuations from the whole gene sequences, the largest part comes from the
promoter regions. In other words, bubbles open more easily in this part of the
sequence, while the codifying region remains on average closed. This fact supports
the vision that physical properties of the DNA sequence might play a role within the
whole gene, and the influence of the dynamic behavior with DNA-protein interaction
problems. In this sense, this observation backs up the idea that some binding sites
in promoter sequences can be characterized as regions where bubbles form easily,
enhancing protein interactions.

10.3.2 TSS Finding and Base-Pair Opening
We analyze nine promoter sequences from cyanobacterium Anabaena PCC7120, of
suitable length for the model and analysis method, between 100 and 300 base pairs.
Five of these promoters have a single characterized TSS (alr0750, argC, conR, furA
and nifB), while the remaining four exhibit multiple TSSs (furB, ntcA, petF and
petH ) [145–152].

Figure 10.2 shows the base pair opening profile for each promoter sequence, with
the TSSs highlighted (upper panels), and the particle trajectory histogram (lower
panels). In any case, a peak appears close to each TSS, meaning that bubbles form
with high probability in these regions, while the particle dwells frequently at these
sites. While these sites are spots which tend to open more easily, the particle is
attracted to them, stabilizing the bubbles.

We highlight the fact that the opening probability is not strictly related with
the A-T content of the local sequence. Although long stretches of A-T base pairs
form “soft” regions where bubbles will form with a very high probability, this simple
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Figure 10.2: DNA opening versus protein position: Base pair mean opening (upper panels)
and particle occupation histogram (lower panels) calculated for each of the nine promoters we study
in this work. The horizontal axis represents the base positions counted from the coding starting
point ATG (+1). We use this criterion to label the binding sites of the simulated promoters. The
experimentally identified TSSs are shaded in yellow with the exact location marked with a solid
bar. In every case, a clear peak appears around these sites, meaning that they are “softer” regions,
and thus, bubbles form more likely. This fact supports their key role in the regulatory processes.
This openings are not just related with the raw A-T content in the chain. The total A-T content
of Anabaena PCC 7120 genome is around 58%. The A-T content of each analyzed sequence is:
alr0750 (61%); argC (64%); nifB (68%); conR (57%); furA (66%); furB (65%); petH (62%); petF
(63%); ntcA (65%).

fact does not necessarily applies. The total A-T content of each sequence is written
in the caption of Fig. 10.2. The interplay between the sequence and the dynamics
is complex, mainly due to the nonlinear coupling between the base pairs. The
long-range cooperativity of the model and the disorder of the sequence reveled in
its heterogeneity affects both the equilibrium and kinetic properties of the DNA
molecule, as it has been pointed out in previous studies [97, 121, 126].

In addition to the peaks centered on the TSSs, each sequence shows additional
regions which open easily. Indeed, many of these peaks correspond to typical regula-
tion sites for bacterial organisms, such as the −10 or the −35 regions. Although we
focus our conclusions merely on the TSSs, these other regions appear as candidates
for possible binding sites of other TFs, which are known to be influenced by the
local properties of the DNA molecule [121, 126].
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10.3.3 Free Energy Landscape Analysis
In this Section we apply the Markov state model-based analysis method, in order
to provide a significative vision of the Free Energy Landscape of the system. This
allows us to define systematically the relevant states visited in the dynamics and
to calculate quantitative information about them. In Section 10.3.2, we checked
how regions with larger average opening and where the particle dwelled with higher
probability correlated with the positions of the TSSs. Nonetheless, we studied that
in a qualitative way, as we were not able to infer quantitative information from the
opening profiles of the promoters. We are interested in giving measures about the
strength of the TSSs in the promoter sequences, in particular to make comparisons
in those with more than a single TSS.

We present together the data extracted from the simulation and analysis method
in Table 10.1. For each sequence, we have selected the TSSs—previously identified
through biochemical assays—and some prominent other states which appear in the
analysis. They are characterized by the weight, free energy difference with respect to
the non-specific state and the entropy. These magnitudes were already presented and
defined in Chapter 9. Most populated states determine the most stable states, giving
rise to high free energy differences. The entropy informs us about the multiplicity
of such macrostates, as low entropies mean few very populated basins, while high
entropies, a composition of many low populated microstates. Physically, we can
relate this quantity to how localized are the states, or the overall width of the
bubble.

To illustrate the free energy landscape of the system, we represent it as a dis-
connectivity graph or free energy dedrogram. Figure 10.3 shows them for the nine
analyzed promoters For the sake of clarity, focus on the high population region, not
showing the high energy states corresponding to non-specific basin (πα < 10−3).

Intuitively, the vertical arrangement of the states in the dendrogram informs
about their stability, while the hierarchical arrangement about the barriers needed
to jump over them. In this sense, we represent, not only of the population of each
state, but also about their dynamic relation.

In order to make a proper definition of the physical macrostates, we coarse-grain
the basins networks, gathering those macrostates separated by barriers lower than
kBT , as they can be considered to be kinetically very close, with low transition
times. Indeed, employing a larger lag time would likely merge them together. We
highlight with a color circle states associated with a excitation in the TSS, showing
their relative weight and a graphical representation of the state they represent. Such
states are typically a large bubble located in the TSS with the particle (black ball)
located on top.

These nine promoters have been chosen in order to make the most of our model,
keeping in mind its limitations. The genome of Anabaena PCC 7120 is well-known,
and the positions of the TSSs have been defined under different metabolic conditions
[153]. Remarkably, these TSSs coincide with relevant states in the dynamics of the
model, which are described as heavy free energy basins. Of particular relevance
for discussion, are the promoters which exhibit more than a single TSSs within
the same promoter sequence, as they allow for a relative comparison between the
different found sites [146, 147, 150, 151, 154–156].

ntcA promoter is perhaps of remarkable relevance. In its 230 base-pair sequence,
it shows three different TSSs of different nature [157], as seen clearly in Fig. 10.2,
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Table 10.1: Thermo-statistical properties of studied promoters: Occupancy
probabilities and thermo-statistical magnitudes of the TSS and other relevant sites
of the promoter sequences. NS stands for nonspecific sites defined in the discussion
section. As already stated, each site is labelled starting from the ATG position on
the gene (+1)

Sequence State πi ∆F [kT ] S/k
alr0705 TSS (-64) 0.219 1.42 0.77

+28 0.288 1.66 0.85
NS 0.0545 – –

argC TSS (-19) 0.220 2.10 0.70
+50 0.329 2.50 0.59
NS 0.027 - -

nifB TSS (-221) 0.315 3.47 0.39
-270 0.444 3.81 0.86
NS 0.010 - -

conR TSS (-101) 0.151 1.97 0.58
-30 0.349 2.80 0.91
NS 0.021 - -

furA TSS (-27) 0.449 3.45 1.35
-87 0.39 3.32 1.16
NS 0.014 - -

furB TSS1 (-83) 0.302 2.39 0.86
TSS2 (-60) 0.276 2.30 0.79

-10 0.149 1.68 0.28
NS 0.028 - -

petH TSS1 (-188) 0.199 3.01 0.74
TSS2 (-63) 0.117 2.48 0.33

-220 0.166 2.83 0.40
NS 0.010 - -

petF TSS1 (-93) 0.198 3.03 0.58
TSS2 (-31) 0.268 3.33 0.67

+1 0.101 2.35 0.33
NS 0.010 - -

ntcA TSS1 (-180) 0.098 0.96 0.029
TSS2 (-136) 0.205 1.69 0.73
TSS3 (-39) 0.292 2.05 0.85

NS 0.038 - -

where three large bubbles stand at the indicated positions. Table 10.1 agrees also
on this point, as the three TSSs show large stability, although the particular values
for each of them is rather different. We can relate this feature with the occurrence
and behavior of the three TSSs experimentally determined [157, 158]. First, TSS2,
at position −136, produces a constitutive transcript regardless of the culture condi-
tions, while TSS1. at position −180 is only used in the absence of nitrogen. Finally,
TSS3, position −49, is also active under all conditions, but is highly induced under
nitrogen deprivation. Table 10.1 displays a remarkably low free energy value for
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Figure 10.3: Free energy dendrograms for the nine analyzed promoters: Basins of
attraction corresponding to the TSSs are highlighted.Their weight is indicated in the plot together
with a representation of the physical state they represent, typically the particle located in a certain
site where a bubble opens. In every case they are a low free energy branch on the disconnectivity
graph.

TSS1, indication that its stability in the overall dynamics is rather limited. This
suggests that its expression might be enhanced under more restrictive conditions.
On the other hand, TSS2 and TSS3 appear as strong binding sites, covering both a
large fraction of the total dynamics. These values are in good agreement with the
ntcA transcription level at these sites under the correspondent conditions of nitrogen
availability.

On the other hand, furB, petF and petH show also consistent results. The
TSSs of the three promoters are clearly identified, coinciding with the experimental
positions [149, 152, 153]. Determination of TSSs for furB promoter using the primer
extension technique unravels two TSSs at positions −83 and −60 from the ATG,
both with similar intensities [149]. Our analysis is in good concordance with such
conclusions, as we find two major macrostates with similar weight (0.28 and 0.30),
representing each of these TSSs. The resulting profiles for promoters petF and
petH display also several relevant macrostates. Primer extension assays revealed
a single TSS for the petF gene located at 100 bp upstream the translation start
site. More recently, high throughput analysis showed two TSSs for petF at -93 and
-31, which is in better agreement with our prediction. Transcription of petH, which
encodes ferredoxin-NADP+ reductase, takes place from a constitutive promoter at
−188 base-pairs from the ATC and a NtcA activated promoter, at −63 position.
According to the proposed model, both TSSs are found as relevant macrostates in
the free energy landscape of our model, although not as high peaks in Fig. 10.2.
Indeed, the constitutive TSS at −188 exhibits a higher probability than the non-
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constitutive one (see Table 10.1), indicating that the model is consistent with the
experimental observations.

Regarding the remaining five promoters, high peaks are found around their single
TSS, coinciding with the most—or one of the most—populated macrostrates, as
defined. The case of conR is perhaps the one where the model shows a worse
agreement with the phenomenology, as a significantly more relevant state appears
in the dynamics. The experimental conditions under which the TSSs have been
determined must also be taken into account. Usually, measures are done under
standard culture conditions or under nitrogen deprivation, and thus, the existence of
additional TSSs under different conditions, which are imposible to account explicitly
with the current version of the model, cannot be discarded. In addition, it must
be noted that the model is not considering particularly the DNA-RNA polymerase
interaction, but the influence of DNA bubble formation on protein binding. In such
sense, we remark that additional binding sites for other proteins influenced by the
mechanical conformation of the DNA molecule might also be accounted here.

10.4 Discussion and Conclusions
Through this chapter, we have shown an application of the protein-DNA interaction
model, employing it to analyze nine promoter sequences from a particular organism,
Anabaena PCC7120 [59]. We focus on the TSSs, binding site of RNA polymerase,
based on the hypothesis that such proteins couple their binding to DNA bubble
dynamics. Applying a suitable analysis method, presented in Chapter 9, we rep-
resent the free energy landscape of the promoter sequences, as interpreted within
the context of our model. Thanks to this tool, we define in an unbiased way the
relevant macrostates of the system and relate them with biologically relevant sites,
namely the TSSs, represented as bubbles in the DNA chain at these positions, and
the particle bound in the region.

Upon genome analysis and TSSs detection, high-throughput approaches, such
as proteomics, are commonly used, resulting in an enormous amount of data in a
relatively short period of time. However, analysis of raw data to end up in genome
annotation or TSSs mapping is a demanding, time-consuming task, necessary for
taking advantage of this information that may delay a more detailed analysis of
specific issues. Among the large variety of these methods, [159, 160], a great amount
of valuable information is obtained, resulting in highly efficient analysis of genome
that, nonetheless, generally lacks a a base on the physical mechanism of protein-DNA
interaction. Our model and analysis method adopt a different strategy, not willing to
compete in time performance with statistical-based techniques, but allowing a deeper
understanding on the driving processes of protein binding. As a consequence of that,
we have been able, not only to identify the TSSs, but also to characterize them in
terms of physical magnitudes, allowing valuable discussions about the strength of
each site.

Besides finding the TSSs in our free energy analysis, out method identifies addi-
tional relevant regions of the promoters that have not been experimentally probed
yet. For example, we can mention the cases of promoters furA, conR or nifB (see
Fig. 10.2 or Table 10.1), where very populated macrostates appear aside from the
already discussed TSSs. We do not exclude the possibility of false positives, but
these macrostates, given the general character of our model, may be related with
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unknown regulatory regions. In this sense, our results suggest further experiments to
search possible new relevant activity regions. Additional TSSs can appear if studied
under different culture conditions, revealing the complexity of transcriptome profiles
even in the case of simple organisms such as bacteria. Moreover, due to the general
features in which our model is rooted, some macrostates identified with our method
might indicate the existence of binding sites for further regulatory proteins which
participate in transcriptome processes of Anabaena PCC 7120.

To conclude, we have chosen a particular prokaryotic organism such as An-
abaena PCC7120 to probe our numerical method. This is done for different reasons.
First, it is a well studied and controlled organism, allowing to contrast our results
with experimental knowledge. Also, being a prokaryote, exhibits simpler regulatory
mechanism, allowing our simple approach to work with more likelihood. Neverthe-
less, this model and method might be applied to the study of promoter sequences in
many other organisms. Being the identification of protein binding sites in promoter
sequences a key problem to understand and control regulation in biochemical and
biotechnological processes, our method appears as a powerful complementary tool
in this scientific endeavor.
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Analysis of Force Spectroscopy
Experiments and Simulations:
from Forces to Free Energies
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Be always drunken. Nothing else matters: that is the only question.
If you would not feel the horrible burden of Time weighing on your shoulders

and crushing you to the earth, be drunken continually.
Drunken with what? With wine, with poetry, or with virtue, as you will. But be drunken.

And if sometimes, on the stairs of a palace, or on the green side of a ditch,
or in the dreary solitude of your own room, you should awaken

and the drunkenness be half or wholly slipped away from you,
ask of the wind, or of the wave, or of the star, or of the bird,
or of the clock, of whatever flies, or sighs, or rocks, or sings,

or speaks, ask what hour it is; and the wind, wave, star,
bird, clock, will answer you: ”It is the hour to be drunken!
Be drunken, if you would not be martyred slaves of Time;

be drunken continually! With wine, with poetry, or with virtue, as you will.

CHARLES BAUDELAIRE, Enivrez-vous (Paris Spleen, 1864)
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Single-Molecule Techniques and
Single-Molecule Force
Spectroscopy

This chapter serves as a succinct review of single-molecule techniques, in particular
of force-spectroscopy methods, where individual molecules are probed by applying
forces in the pN range. Also, we discuss briefly the three main force spectroscopy
techniques highlighting their operation range and some achievements attained in the
last few years.

11.1 Introduction: Single Molecule Experiments
Single-molecule methods involve the manipulation of individual molecule in order
to study their properties. This opens a new and exciting field, which is directly con-
trasted to conventional experimental measurements. The main difference between
single-molecule and traditional biochemical assays is the kind of average done when
measuring a some molecular property. Single-molecule methods allow to sample
directly the distribution of an observable. This allows, for example, the identifica-
tion of rare subpopulations, to monitore directly the kinetic pathways or the or to
recognize molecular intermediates. All this information is typically hidden in bulk
experiments, which rely on ensemble averages done over populations of thermody-
namical size N ∼ 1023

Since the burst of single-molecule techniques, not much more than 20 years
ago, they soon gained a lot of popularity in many areas of science, from biology to
chemistry, physics or material science. On the one hand, they open a new field which
allows to investigate in new properties not possible to measure in the past. Also,
they motivated the birth of many new theoretical developments, which were now
possible to test directly in the lab. We focus on the application of these techniques
to biomolecular systems.

Single-molecule methods are currently central tools for biological physics re-
search. They offer a complementary and totally new approach to test molecular
processes. Inside the cell, biomolecular processes occur at an individual scale, where
thermal fluctuations are very significant, and molecular motion is fundamental to
life. Thanks to single molecule-techniques, processes such as transport of cargo
through the cell [161, 162], muscle contraction [163] or cell motility [164] have been
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monitored at an individual level.
Also, the reduction of the observation scale increases the importance of statistical

fluctuations. Their relative magnitude goes with 1/
√
N and thus it is meaningless in

thermodynamic populations, but not with individual molecules. This opens a new
and exciting field with new properties which in many cases seem to defy the laws of
thermodynamics. The extension of the thermodynamic laws to small systems (see
Chapter 14 and [165]) involves the necessity of new theoretical approaches that can
now be probed thanks to these techniques.

Up to date, a large number of different single-molecule manipulation techniques
have appeared, spanning six orders of magnitude in length (10−10 to 10−4 m) and
force (10−14 to 10−8 N). These methods can be divided in two broad classes. In the
first class fall those techniques which track molecular motion by labelling molecules
without applying significant external forces. Single-Molecule fluorescence techniques
or Fluorescence Resonance Energy Transfer (FRET) [166, 167] are examples of this
class. The second class is devoted to the study of individual molecules through the
application of external mechanical loads. Here fall methods such as optical tweezers,
magnetic tweezers or Atomic Force Microscope (AFM) [168–170]. We focus on this
latter group.

11.2 Single-Molecule Force Spectroscopy
Force plays a fundamental role in many biological processes. Biological motion—
from cellular motility, to transport of cargo or DNA replication—is driven by forces
at the molecular scale. These forces are in the range of few pN , given the charac-
teristic molecular size and the magnitude of thermal fluctuations ≈ 4kBT .

In particular, many biological molecules have a well defined mechanical function.
For example, they might have a certain mechanical stability, opposing a resistance
to unfold under an external load. Giant protein titin is perhaps one of the most
popular examples. Titin is the protein responsible for the passive elasticity in the
skeletal and cardiac muscle sarcomere, and presents a huge resistance upon force
[171]. Fibronectin and tenascin are components of the extracelllar matrix, and must
extend and contract to facilitate certain cellular functions, such as cell migration or
adhesion [172]. Other examples demonstrate the importance of learning about the
unfolding of macromolecules under force. For example, some nucleic acid structures
must break to permit translocation by enzymes such as RNA or DNA polymerases
or by RNA helicases. Similarly, some proteins perform an enzymatic activity based
on unfolding of molecules, like proteasomes [173, 174] or chaperonines [175, 176],
which consume chemical energy to actively unfold or fold proteins.

Additionally, the application of forces to biomolecular systems allows to gain
insight about their energy landscape. Force affects the thermodynamics and kinetics
of reactions and transitions, perturbing the topology of the original landscape. The
heights of the free energy barriers are changed and so is the relativity stability of
the minima, enhancing transitions which would not occur in the absence of force.
By applying suitable analysis techniques, information about the original landscape
can be recovered from the output of the perturbed system.

In this regard, the application of external forces to individual molecules is an ap-
pealing approach. Application of external forces to individual molecules determines
an interesting approach to probe molecular proceses. They enhance molecular tran-
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sitions, but also monitor processes which involve molecular motion, such as translo-
cation of polymers, or tasks performed by molecular motors. In general, techniques
which employ an external force to probe a molecule are known as single-molecule
force spectroscopy or Dynamic force spectroscopy (DFS from now on). The overall
set-up of DFS experiments is very similar. Given the molecule or molecular system
we wish to study, one end is attached to a surface in order to immobilize it while
the free end is attached to a probe, through which force is applied. This attachment
and immobilization are important parts of the set-up, as they should be ideally able
to support infinite loads (at least higher than the applied forces) and should not
affect the properties of the probed molecule.

There are four different DFS modalities, attending to the way in which force is
applied: (a) constant force, where a constant load is exerted and the fluctuations
in the extension recorded; (b) constant position, the probe is held at a constant
position and we measure fluctuations in the molecular extension and force; (c) force
ramp or force extension, where the probe is moved at constant velocity so the force
is ramped, measuring the relation between force and extension and (d) force jump,
where the force is changed abruptly between different values, recording the molecular
extension. In the first two cases, we keep the system in equilibrium, and fluctua-
tions are measured. In the other two cases, a non-equilibrium transition forces the
molecule to stretch. The natural reaction coordinate in every case is the molecular
extension, which changes in the direction of the pulling force.

The probe that applies the force has different origins, like an optical or magnetic
trap or an AFM cantilever. Because of the scale at which we operate, thermal
fluctuations impose fundamental limits in the length, force and time resolution of
the experiment. In any case, the force is exerted through a linear spring of stiffness
κ, determined by the stiffness of the probe alone, or the combination with some
molecular linker.

These techniques rely on a proper determination of the force and the extension of
the molecule. The precision and accuracy of these measurements depend critically
on the ability to measure the position of the probe, and thus on the resolution of the
experiment. The thermal environment and the sampling techniques are the limiting
resolution sources. The spatial resolution is given by

δx =
√
kBT

κ
, (11.1)

where δx gives the magnitude of the fluctuations in position. Thus, the force
resolution is δF =

√
κkBT . In practice, the resolution is enhanced by filtering the

position data, which is only sampled at frequencies below the characteristic viscous
damping frequency for the molecular motion. In general, maximal resolution is
achieved by minimizing the hydrodynamic drag on the probe [168, 169].

To apply the force in a controlled way, the load must first be calibrated. There
are different approaches to this, usually relying on the Brownian motion of the probe.
The stiffness κ is determined through the equipartition theorem or by analyzing the
thermal spectrum [177]. Also, the response of the probe to a known force (like the
viscous drag) can be measured. This stiffness depends on the particular experimental
technique, which affects the force resolution and also its applicability range. In next
sections we review briefly the three main DFS techniques. Table 11.1 gathers some
properties of the three most popular DFS techniques. More detailed revisions can
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Table 11.1: Comparison of DFS techniques (adapted from [168–170])

Feature Optical Tweezers Magnetic Tweezers AFM
Spatial resolution (nm) 0.1-2 5-10 0.5-1
Temporal resolution (s) 10−4 10−1 − 10−2 10−3

Stiffness (pN/nm) 0.005-1 10−3 − 10−6 10− 104

Force range (pN) 0.1-100 10−3 − 102 10− 104

Displacement range(µm) 0.1− 105 5− 104 0.5− 104

be consulted in [168, 169].

11.2.1 Optical Tweezers

Optical tweezers rely on the creation of optical traps due to the pressure of light
radiation on small objects (beads) made of polystyrene, latex or silica. When we
illuminate a bead by a laser beam, two forces appear: one is proportional to the
gradient of the intensity of light, while the other is the scattering force due to the
light reflected on the bead surface. When both forces are equilibrated, an optical
trap is formed. This trap is an harmonic well to a very good approximation, so the
forces acting on the bead follow Hooke’s law F = −κx, where κ is the stiffness of
the trap and x the distance of the bead to the center of the trap.

The molecule we study is attached from one end to the bead, while the other
is fixed to a surface or to another bead in a second optical trap (see Fig. 11.1).
The force can be modulated by adjusting the intensity of the light or altering the
position of the bead with respect to the trap center. The extension of the molecule
is monitored using a CCD video camera relying on the interference between light
scattered by the bead and the unscattered light light. The force can be held constant
by employing a feedback loop which clamps it. Usually, infrared light is used to trap
the molecule in order to avoid damaging of the molecule, as biomolecules are nearly
transparent in this region of the spectrum.

Optical tweezers are probably the most versatile single-molecule techniques. The
can exert forces up to 100 pN with resolution of 0.1 pN. The stiffness of the optical
traps is lower than in other methods, 0.01 − 1 pN/nm, which allows the control of
such low forces.

The versatility of optical tweezers has allowed a vast array of measurements. For
example, molecular motors have been widely studied through this technique, allow-
ing direct observation of kinesins along fixed microtubules [162], transcription of
RNA polymerase [178] or translocation mechanisms. Additionally, optical trapping
showed the ability of viral packaging motors under large external loads [179]. Other
class of studies involve the study of the mechanical properties of biomolecules. In
particular, unfolding of RNA and DNA hairpins have been widely studied, due to
the low forces optical tweezers allow to apply [180]. Measures of the mechanical
unfolding of hairpin loops have allowed unveiling details of the folding free energy
landscape [84, 180–182]. Proteins are also subject to this kind of DFS studies with
optical tweezers [183–185].
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Figure 11.1: Sketch of an optical tweezers experiment with three different assays: An
optical trap is created by focusing two laser beams. The bead is trapped by it and the molecule
attached to it. Force is recorded by measuring the displacement of the bead from the center of the
trap. We show three different assays, case (a) shows the surface-based assay, (b) dumbbell-based
assay using one optical trap and a micropipette and (c) dumbbell-based assay with two optical
traps (picture taken from [168])

11.2.2 Magnetic Tweezers

Magnetic tweezers have a similar philosophy to optical tweezers, but here molecules
are manipulated through magnetic forces by attaching them to small superparam-
agnetic beads (see Fig. 11.2). The bead experiences a force which is proportional to
the magnetic field gradient, which is approximately constant, given the scale separa-
tion between the molecular movements and the characteristic length of the field. In
this sense, magnetic tweezers are intrinsically force-clamped, which is an advantage,
given that electronic force-clamp have time resolution limits. The molecules are
held between a magnetic bead and a glass surface. They can be pulled by moving
the stage that supports the magnets, changing the magnetic field. The position of
the beads is tracked from interference measures between unscattered light and the
scattered light from the bead.

Magnetic tweezers have several advantages. The first one is their sensitivity,
which allows tracking very low forces, from 10−2 to 10 pN, where the maximum force
depends on the size of the bead. This is due to the very low stiffness of the traps,
which is around κ ≈ 10−4pN/nm. Also, they allow to twist molecules by rotating
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Figure 11.2: Sketch of a magnetic tweezers set-up: A superparamagnetic bead is trapped
by an inhomogeneous magnetic field which applies a load to a single molecule. Control of the field
can apply force and also torque (taken from [168])

the magnets, this is, to apply torque. As magnetic beads act as dipoles, they have
a preferred orientation within the magnetic field. Additionally they allow a large
parallelization, so several beads can be trapped and monitored simultaneously.

Magnetic tweezers have been extensively employed to investigate the properties
of DNA molecule under torque [186, 187], or the mechanism of proteins such as
topoisomerases [188, 189]. Also, their intrinsic stability, allows to perform very long
force-clamp measurements, recording extensively long equilibrium trajectories for
unfolding-refolding of proteins [190].

11.2.3 Atomic Force Microscope (AFM)
The AFM is perhaps the most familiar of the three techniques, given the very
straightforward concept in which it is based. The AFM is a version of the scanning
prove microscope, which allows to map a surface at sub-nanometer resolution. It is a
very useful technique for imaging, but it also allows the measurement of interaction
forces with pN resolution. Here, instead of sampling a particular surface, the AFM
moves vertically, perpendicular to the plane.

The AFM uses a cantilever to apply force to a single molecule bound by one
end to it and by its other end to a surface, which is typically moveable (see Fig.
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11.3). This cantilever is in practice a linear spring, with a relatively high stiffness of
10− 100 pN/nm. By monitoring the deflection of the cantilever with the reflection
of a laser beam, the force can be recovered by simply applying Hooke’s law. Force is
modulated with precision by moving the surface employing piezoelectric actuators.
This surface can be retracted at a constant velocity, or in a force-clamp mode, where
a feedback loop moves it to set constant deflection (force) in the cantilever. The
displacement is also monitored by the piezo-stage.

Figure 11.3: Sketch of an AFM experiment: A cantilever applies a mechanical force on a
molecule of interest which is attached to a tip. The motion is recorded by recording the deflection
of the cantilever. The force can be modulated by adjusting the position of the sample with a
piezoelectric in the surface (taken from [168]).

In many cases, the molecule is attached to the cantilever tip by nonspecific ad-
sorption, placing the tip in contact with the molecule and applying a large force
“pushing” the molecule. This attachment can withstand typically large forces of
100− 1000 pN but they are rather unknown and have an uncontrolled geometry. In
this regard, many specific attachments have been developed, by modifying chemi-
cally the molecule and functionalizing the tips. For example, biotin-avidin bonds
are widely used to hold the molecules. Other strategies can involve gold functional-
ization (useful when cysteine residues appear in the molecule) or more sophisticated
techniques [191].

AFM has been applied with large success for studying unfolding of proteins
[192–194], by measuring changes in the extension of the molecules as they denature.
Protein titin is probably one of the most studied specimens, given their particular
tandem structure and their high resistance to external loads [171, 195]. This has
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allowed to unveil properties about their folding landscape, and also to reconstruct
its role in muscle elasticity. Proteins which do not have a tandem-like structure may
be studied also by forming recombinant chimeras between the proteins of interest,
isolating them between tandem-like repeats which serve as molecular handles [196–
198]. The particular sawtooth patterns in such studies serve as a valuable fingerprint
which ensures the validity of the individual measures.
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Free Energy Recovery from
Single-Molecule Experiments

This chapter aims to offer a review on two different theoretical frameworks which
have proved their usefulness for analyzing force spectroscopy single molecule exper-
iments. In particular, both methods focus on recovering free energy magnitudes
from the force-response of an individual molecular system. On the one hand, force
spectroscopy theory is concerned about kinetic properties, as it proposes expressions
to estimate free energy barriers from escapes on one-dimensional profiles subject to
a mechanical force. On the other hand, Jarzysnki equality determines one of the
paradigms of the so called thermodynamics of small systems, which allows to com-
pute equilibrium free energies by analyzing the non-equilibrium fluctuations of a
system subject to an external perturbation.

12.1 Introduction
The evaluation of single molecule pulling experiments defines an important chal-
lenge. Molecular systems are intrinsically stochastic and far from the thermody-
namic limit. Therefore, thermal fluctuations play a relevant role, and out-of-the-
average rare events are significant. Furthermore, transitions under an external load
are usually irreversible, occurring far away from equilibrium. The revolution of single
molecule techniques has brought itself the necessity of developing new tools to deal
with small out-of-equilibrium systems, or to recover properties from an unperturbed
system by analyzing the perturbed response.

Usually, the problem is formulated in the following way. The molecular system
is represented as a one-dimensional free energy profile along the pulling direction,
which should be be a proper reaction coordinate [18] (although this is is not always
the case [199, 200]). This choice is often determined by the experimental limitations,
which allow to measure just changes in the molecular extension. The external force
perturbs the system, effectively tilting the free energy profile. The perturbation is
applied through a pulling device, usually the experimental probe (AFM cantilever
or Optical Tweezers trap, for instance), connected in series with some molecular
linker such as a polymer or some DNA handles. We consider here two main pro-
tocols (although they are not the only ones [84]) according to the way we perturb
the system, namely (a) the constant-force mode, where fluctuations in extension
are recorded as the load is held constant, (b) the constant-rate mode, where the
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molecular extension is recorded as the force is ramped by moving the pulling device
at constant velocity. The first case records equilibrium fluctuations, while the later
is an out of equilibrium process.

In principle, the unperturbed free energy profile is the target information we
wish to obtain. The output from the experiments is typically the force response
of the system, namely a waiting time or escape rate (in constant force mode) or a
force-extension curve (in constant-rate mode). Reconstructing the whole free energy
profile of the molecular system is an extremely challenging problem, which depends
critically on the resolution of the experiment and also on the particular molecular
system [84].

Nevertheless, we can divide this broad problem into two more specific questions,
which are the determination of the kinetic and of the thermodynamic properties of
the system. The first question relies on the problem of jump over a free energy bar-
rier, intimately linked to Kramers reaction-rate theory [201], but with the difference
that here the free energy profile changes dynamically due to the action of the force.
In the second problem, we wish to obtain equilibrium information about a system,
by subjecting it to a nonequilibrium transition [33, 202].

We review here two different theoretical frameworks which focus on answering the
two previous problems. In the first case, starting from Kramers theory, we consider
how to recover the original free energy barrier (kinetic properties) from the distri-
bution of rupture forces [203, 204]. In the second case, we review nonequilibrium
free energy methods, specially Jaryznki equality, which is able to relate nonequi-
librium work measurements with equilibrium free energy differences between two
states [205].

12.2 Kramers Theory
The problem of thermal escape from metastable states is ubiquitous in many scien-
tific areas, from electrical transport theory, to diffusion in solids or chemical kinetics.
In 1940 Kramers contributed in this field by proposing an expression for the thermal
escape of a Brownian particle from a metastable well [206].

Kramers defines the problem as a brownian particle in a one dimensional profile.
The particle is confined in a potential well and must must surmount an energetic
barrier in order to reach another, more stable, well (see Fig. 12.1). If the tempera-
ture is low—compared with the barrier height—the particle spends most of the time
in the potential minimum, so reaching the top of the barrier is a rare event. Once
there, it can fall back to the original minimum or reach the target state.

This kind of situations are very common as, for example, it occurs in chemical
reactions from a reactant state A to the product state C, by surmounting a energetic
barrier where the transition state B is located along some reaction coordinate X.
It is also a fundamental problem in biophysics, for example considering an unfolded
protein which reaches the folded state in a two-state picture.

Kramers problem takes some assumptions. The equilibration time τeq within one
minimum—this is, the time after which an ensemble of systems has the Maxwell-
Boltzmann equilibrium distribution corresponding to an infinite barrier—must be
much smaller than the escape time τes from state A to state C. Also, both time scales
must be much larger than the fast degrees of freedom, not considered explicitly in
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Figure 12.1: Schematic bistable potential to illustrate Kramers problem: Metastable
states are A and C with characteristic frequencies ωA and ωC respectively. Relative energy differ-
ence is ∆U0. The energetic barrier that separates both states is ∆U and is characterized by a top
frequency of ωB .

the model. In turn, this assumption can be written in terms of the energetic scales
as

kBT � ∆U < ∆U0, (12.1)

where ∆U is the height of the barrier from well A and ∆U0 the energy difference
between states C and A, ∆U0 = UC − UA (see Fig. 12.1).

Another set of competing time scales are related with the coupling to the thermal
bath. The damping γ (of inverse time units) determines this scale. If the particle
is confined in one of the two wells, it performs oscillations along states A or C with
typical frequencies given by

ωA =
√
U ′′(xA)
m

; ωC =
√
U ′′(xC)
m

, (12.2)

where m is the mass of the particle and U ′′(xA) is the second derivative of the energy
profile around xA, and same for xC . When the particle has an energy larger than the
barrier, there is a time scale for the exchange between kinetic and potential energy
during the barrier crossing, given by

ωB = ωC =
√
U ′′(xC)
m

. (12.3)

This allows us to distinguish between two regimes according to the friction γ,

1. Strong friction γ � ωB.

2. Weak friction γ � ωB.

In the high friction limit, Kramers proved that the transition rate from A to C
can be written as [206]
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kAC = ωA
γ

ωB
2π e

−∆U/kBT . (12.4)

While in the moderate-to-strong friction limit, this expression is corrected as:

kAC = 1
ωB

−γ2 +
√
γ2

4 + ω2
b

 ωA
2π e

−∆U/kBT . (12.5)

This theory serves as a theoretical starting point for analyzing force spectroscopy
experiments, as in such problem a molecular transition occurs between two states
separated by some free energy barrier.

Mean First Passage Time

Another important concept for problems of thermal activation is the Mean-First-
Passage-Times (MFPT). This term is tightly related to Kramers problems and tries
to answer how long does it take a random walker to reach a given target point. In
other words, we have an ensemble of dynamic systems at some point (or state) A
and we want to know what is the mean time 〈t〉 needed to reach a point B where
they are absorbed. In the overdamped limit, considering the the system is subject
to a potential U(x), the MFPT can be exactly computed as [201]:

〈t〉 = mγ

kBT

∫ B

A
dyeU(y)/kBT

∫ y

−∞
dze−U(z)/kBT . (12.6)

There is a large body of literature studying the relation between Kramers rate
and MFPTs. Usually it is considered that [201, 207]

k = 1
〈t〉

(12.7)

12.3 Force Spectroscopy Theory
We focus here on a problem of particular interest for analyzing single-molecule ex-
periments, where we apply a pulling force to induce a molecular transition. One of
the goals to understand such problem is to extract reliable information about the
kinetics of the process in the absence of external forces.

Physically, the formulation of the problem is similar to that of Kramers. The
molecular transition is modeled as a thermal escape event over a free-energy barrier.
The difference is that the thermally activated escape is done over a free energy
barrier that is perturbed by an external force.

We assume that the molecule moves on a free energy profile along the pulling
direction x, which comes from the combination of the original profile U0(x) and the
influence of an external force F , exerted by a pulling device of effective stiffness
κ (see Fig. 12.2). Usually, this spring is considered to be soft compared to the
“molecular stiffness”—effective stiffness of the initial equilibrium well. We discuss
about this point later on.

The combined free energy profile for the whole system is U(x) = U0(x) + VP (x),
where Vp(x) is the potential due to the pulling device. In a constant force mode,
up to first approximation, Vp(x) = −Fx, where F the applied force. In a constant

184



Chapter 12

rate mode, assuming the soft spring approximation, Vp(x) ≈ −κV tx, where V is the
pulling velocity, so similarly U(x) = U0(x)−F (t)x, being F (t) a force which increases
with time, tilting the original profile. This profile is assumed to have a single well at
x = 0 and a barrier of height ∆G† at x = x†. The external force F makes the barrier
decrease, so ∆U(F ). In the constant force model, F is constant, so the combined
free energy profile U(x) is static. In such case the output of the experiment is the
waiting time for the system to escape. In the constant rate mode, the pulling device
moves at a constant velocity, so the force changes with time dF/dt = κV . Here,
the output of the experiment is the rupture force. In any case, the escape process
is stochastic, so we obtain a force dependent escape time distribution p(t;F ) and a
velocity-dependent rupture force distribution p(F ;V ).

Now, the question we want to answer is, how can we obtain the free energy
barrier—or the kinetic rates—at zero force from the rupture time or force distribu-
tions?

Figure 12.2: Schematic picture for the force-spectroscopy problem: In the absence of
force, the particle is confined in a one dimensional profile, with one equilibrium well and a single
barrier of height ∆G† at x† and an intrinsic rate constant k0, which are the three magnitudes to
determine. The external force tilts the profile, decreasing the barrier height ∆U(F ).

Bell-Evans Phenomenological Theory

One of the first attempts to deal with force spectroscopy problems comes with
Bell’s pioneering work [208] and the subsequent extension by Evans [209]. At a
first approximation, rate of rupture k(F ) scales with the exponential of the force
F . According to this, in the constant pulling rate mode, the mean rupture force
grows proportionally to the logarithm of the pulling speed [203, 210]. Particularly,
the expressions for both cases :

k(F ) = k0e
Fx†/kBT (12.8)

f ∗ = kBT

x†
log x†rf

k0kBT
, (12.9)
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where f ∗ is the most probable rupture force, and rf = df/dt the loading rate of
the experiment. This model is known as the phenomenological model or Bell-Evans
formula. It is widely used to extract the intrinsic rate coefficient k0 and the position
of the transition state x†. Nevertheless, the derivation assumes that the transition
state x† does not change with the force and that the barrier ∆G† decreases linearly
with the force. These assumptions are not true for most shapes of the free energy
profile, so Bell-Evans is only applicable under certain conditions, such as mechani-
cally brittle molecules or when the applied tension is sufficiently small not to shift
the position of the transition state x†.

Dudko-Hummer-Szabo Theory

Some years ago, Hummer and Szabo [211] and Dudko et. al. [212] proposed almost
simultaneously an expression that related the pulling velocity with the average rup-
ture force, allowing to recover not only k0 and x†, but also the height of the free
energy barrier ∆G†. In the first case [211], by applying Kramers theory to a parabolic
cusp potential tilted by an external force, they showed that for intermediate pulling
speeds 〈F 〉 ∼ (log V )1/2. In the second case [212] combination of Kramers theory
with certain scaling laws obtained by Garg [213] predicted that 〈F 〉 ∼ (log V )2/3.

These two theories disagreed on the results but also on the physical approach.
Years later, this discrepancy was resolved in a joint work [204] where a common
framework was set and a unified formalism proposed for recovering k0, x† and ∆G†.
There, a general dependence was obtained 〈F 〉 ∼ (log V )ν , where ν was a parameter
which depends on the shape of the free energy profile, being ν = 2/3 for a linear-
cubic profile, and ν = 1/2 for a parabolic-cusp one. Additionally, values ν = 1 or
∆G† →∞ for any ν recovered Bell-Evans expression.

In particular, for a constant force protocol,

k(F ) = k0

(
1− νFx†kBT

∆G†

)1/ν−1

exp
{

∆G†
kBT

[1− (1− νFx† kBT∆G† )
1/ν ]

}
, (12.10)

and the average rupture force at constant pulling velocity

〈f〉 = ∆G†
νx†

{
1−

[
kBT

∆G† log k0e
∆G†/kBT+γ

x†κV

]}
, (12.11)

where γ = 0.577... is the Euler-Mascheroni constant. This formalism considers
some assumptions, namely a soft spring pulling device, high barriers—in order to
apply Kramers theory—and high forces.

This formalism seems rather model-dependent, as a particular analytical shape
for the underlying molecular free energy-profile is assumed. Nevertheless, it is less
model-dependent that it appears, because under sufficiently high forces, any analyt-
ical profile can be well represented by a linear-cubic potential [204].

Effect of the Pulling Device

Up to here, we have not discussed about the effects of the device we use to perturb
the free energy profile. Nevertheless, in practice, is a relevant point given that single
molecule techniques use effective springs of different stiffnesses to probe molecules
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(see Chapter 11, and Table 11.1). Also, in many cases polymer handles are used as
linkers, setting a complex pulling device whose effective stiffness changes with the
pulling force.

We focus in the constant pulling rate mode (or force-extension mode) where the
spring is pulled at constant velocity V . In constant force mode (or force-clamp
protocol) the role of the spring is limited, given that a constant force is maintained,
so it just affects in its fluctuations. The combined free energy profile for a harmonic
pulling device is:

U(x, t) = U0(x) + 1
2κ(V t− x)2. (12.12)

With the soft spring approximation, the harmonic potential written as U(x, t) ≈
U0 − κV tx, so that the perturbing force is 〈F (t)〉 = κV t. As derived in [214] for an
arbitrary spring stiffness one should write

〈F (t)〉 = κV t/χ ≡ F (t), (12.13)
where χ > 1 is χ = 1 + κ/KU , being KU the effective stiffness of the free energy
profile at the equilibrium well, approximated as U0(x) ≈ KUx

2/2. In this sense,
χ measures the departure from the soft spring approximating, recovering Dudko-
Hummer-Szabo theory when κ� KU , as χ = 1.

Then, for an arbitrary stiffness [214]

〈F 〉 ≈ ∆G†
νx†

χ

{
1−

[
1− kBT

∆G†χ3 log(1 + e−γ/qX)
]}

, (12.14)

where γ is the Euler-Mascheroni constant, q ≈ e−κ(x†)2/2kBT and X = k0kBT/κV x
†.

This expression introduces a fourth parameter, χ. Although κ is known, KU is
difficult to estimate, so χ is another parameter to fit, which can be used as a criterion
for checking if the soft-spring approximation is enough or not.

In many practical cases one does not pull with a regular linear spring, but rather
with an arrange of molecular linkers and springs, which determine a complex pulling
device, whose stiffness changes as we pull. For example, if we have a polymer linker
and we pull with an AFM cantilever, the effective stiffness is dominated by one
part or the other depending on the instantaneous pulling force. For low forces, the
stiffness of the polymer is very low, so the effective stiffness of the pulling device
is ruled by the polymer. At higher forces, the stiffness of the polymer changes
dramatically to very high values, becoming the linear spring the dominating part,
given the series connection.

Further details on the influence of complex pulling devices can be seen in [215].
Nevertheless, for our practical case, the soft-spring approximation is enough, as we
discuss and check in the analysis of experiments and simulations (Chapter 13).

12.4 Non-Equilibrium Methods for Equilibrium
Free Energy Calculations

In this Section, we review how we can use nonequilibrium methods to calculate
equilibrium free energies. This might seem a contradictory statement at first, but as
shown by Jarzynski in the late 90s [205, 216], nonequilibrium perturbations can be
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used to obtain free energies in a formally exact way. Jazysnki identity is not just an
expression of theoretical interest, but provides a quantitative basis for the analysis
of experiments where single molecules are manipulated mechanically.

12.4.1 Thermodynamics of Small Systems
Before dealing formally into nonequilibrium relations, it is worth to devote some
words to the field in which these contributions are set. In this section, we deal
with systems which are driven away from an initial state of thermal equilibrium.
In principle, these results are valid a general way, but they are mainly relevant for
microscopic systems. This broad field is often referred to as Thermodynamics of
small systems [165].

Here, the central question is how to apply, or until which extent are applica-
ble, the well known laws of thermodynamics, originally formulated for macroscopic
systems. While one is able to understand well systems such as steam engines, the be-
havior of microscopic but equivalent systems, such as molecular machines, presents
a challenge. The main difference here is that the ∼ 1023 involved degrees of freedom
basically rule out any possible deviations from the mean behavior. Nevertheless, in
smaller systems, which have a characteristic energy scale of ∼ kBT , the statistical
fluctuations become more prominent, so thermal fluctuations become an active in-
gredient which leads to rather unexpected properties. A first effect of this scale, is
that thermodynamical laws, which are known as equalities, must be rewritten as
inequalities or in terms of distributions [202, 217].

There are several examples for this kind of systems, such as magnetic domains
in ferromagnets, atomic clusters, or biological macromolecules, like molecular mo-
tors, which operate away from equilibrium and dissipate energy continuously. De-
spite their inherent scientific interest, until the early 90s no experimental method
was available to investigate the properties of small systems. The advent of single
molecule techniques was a natural boost for this field, allowing an increasing interest
and fast development [218].

The field of thermodynamics of small systems is very broad, and itinvolves several
topics [219]. For our purpose here, we are interested in exploring the relationship
between the work performed and the free energy changes in nonequilibrium thermo-
dynamic processes. In order to begin with that, it is useful to start with a simple
and intuitive example, to define some basic concepts and understand the role of
fluctuations at such scale.

Thermodynamics Example: Stretching a Rubber Band

We start with an ordinary rubber band, attached to a fixed wall from one end and
the other to an ideal spring [202]. We denote with z the length of the rubber band
while λ is the distance from the wall to the end of the spring. Importantly, λ is a
degree of freedom we can control directly by moving the end of the spring. λ is thus
a work parameter or control parameter, in opposition to z.

We can subject the system to a nonequilibrium process, starting from a well
defined thermal equilibrium state, with the control parameter at some initial fixed
value λ = A. The rubber band is now stretched by changing the control parameter
to λ = B > A. If we do so very rapidly, the rubber band heats up, being driven
away from equilibrium with the surrounding air, the thermal enviroment, and we
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perform work W on the system. Through this nonequilibrium transition from one
state A to another B, we carry out an irreversible process.

The second law of thermodynamics states that the work we have performed on
the system is greater or equal to the change in free energy ∆F between the two
equilibrium states A and B,

W ≥ ∆F = FB − FA. (12.15)

If we would have changed λ from A to B very slowly, in a quasistatic way, the
equality W = ∆F would hold, as the process would have been reversible.

Now, instead of having a rubber band, we consider a biomolecule, such as a
DNA hairpin, and the spring is an optical trap or AFM cantilever [220]. Our thermal
environment is now an aqueous solution at room temperature. The difference is that
the thermal fluctuations are of the relevant energy scale, unlike what happens with
a macroscopic rubber band. We start at a value λ = A and stretch our biomolecule
to λ = B following some nonequilibrium protocol, allowing the system to relax back
to equilibrium in the final state.

If we perform this experiment several times following the same protocol, the
work performed in each trajectory is different due to the statistical fluctuations of
the thermal bath. Then, we have to understand the laws of thermodynamics in an
statistical way. Instead of having a work value performed on the system, we have
some work distribution p(W ), which depicts the distribution of work values observed
over many realizations of our nonequilibrium protocol. Equation (12.15) should be
reinterpreted as,

〈W 〉 ≥ ∆F, (12.16)

but there would be a significant spread of work values around this average. This
statistical reformulation of the second law of thermodynamics, allows single realiza-
tions for which Wi < ∆F . This events are apparent “violations of the second law”,
although there is actually no such violation, as we are not in a thermodynamic sys-
tem. In such events, random thermal fluctuations interfere constructively in order
to facilitate the process, or to “exert work” on the system. Such events are ac-
tually quite relevant for determining equilibrium free energies from nonequilibrium
trajectories.

12.4.2 Jarzysnki Equality
Jazynski introduced his now famous nonequilibrium work relation, the Jarzynski
equality, in 1997, proving a novel treatment of dissipative processes in nonequilib-
rium systems [205, 216]. Jarzysnki equality provides a practical way to compute
free energy differences, and has now been proven with success in many experimental
and computational systems [220, 221]. Jarzysnki equality states that,

e−∆F/kBT = 〈e−W/kBT 〉. (12.17)

where ∆F is the free energy difference between two equilibrium states and W is the
work performed over a nonequilibrium protocol through such states.

Equation (12.17) deserves further explanation in order to a correct applicability.
In the same fashion as with the toy example given in previous section, Jarzynski
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equality considers a system kept in contact with a thermal bath at temperature T ,
and takes a control parameter λ which controls the equilibrium state. For example
this parameter might be the the pulling distance of a biomolecular polymer (not its
extension, which would be an stochastic coordinate). The nonequilibrium transition
starts at some fixed value λ = A where the system is in thermal equilibrium. The
nonequilibrium protocol or path λ(t) is a transition from λ = A to λ = B, where
∆F = FB − FA is the difference in free energy between such states, and the work
performed over such transition as:

W =
∫ λ=B

λ=A
dW =

∫ λ=B

λ=A
Fdλ. (12.18)

The average 〈· · · 〉 in Eq. (12.17) is the ensemble average over nonequilibrium
trajectories on the fixed protocol. It is a combination of an ensemble average over
initial conditions, chosen according to the equilibrium Boltzmann probability in state
λ = A, and a path average over individual realizations. If we had deterministic
dynamics, only a single trajectory exists for any given initial condition, but for
stochastic dynamics, as in small systems, the path average is over realizations of
noise. Recall that we do not need the final state λ = B to be in thermal equilibrium,
as no work is performed on the relaxation to equilibrium

Jarzynski equality is often rewritten as 〈e−D/kBT 〉 = 1, where D = 〈W 〉 −∆F is
the work dissipated along the given trajectory. Due to Jensen equality 〈e−x〉 ≥ e−〈x〉,
second law 〈W 〉 ≥ ∆G immediately follows from Eq. 12.17. As mentioned before,
Jarzynski equality only holds if there exists nonequilibrium trajectories whereD ≤ 0,
the “violations of the second law”. These trajectories ensure that the microscopic
equations of motion are time-reversal [33].

12.4.3 Forward and Reverse Processes: Crooks Fluctuation
Theorem

Equation (12.17) considers nonequilibrium processes where λ is changed from A to
B, being thus a forward process. In the same way, we can perform the reverse
process, where λ is varied from B to A. This reverse protocol is the time reversal of
the one used in the forward process. The whole cycle starts from the equilibrated
state λ = A, then a transition to B, let the system reequilibrate and move it back
to λ = A. We can denote now WF the work performed on the forward process and
WR on the reverse one. For a thermodynamic system, the work performed through
the complete cycle λ : A→ B → A, satisfies,

WF +WR > 0, (12.19)
which is essentially a “no free lunch theorem”, ruling out perpetual motion machine,
which allows to extract net energy from the thermal environment. For a microscopic
system, this inequality is as

〈W 〉F + 〈W 〉R > 0, (12.20)
where the ensembles averages are over the forward pF (W ) and backwards pR(W )
distributions respectively. This is, on average we have “no free lunch”, but occasion-
ally, we might recover work for some cycles. The distributions satisfy a symmetry
relation as proved by Crooks [222]:
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pF (+W )
pR(−W ) = e(W−∆F )/kBT . (12.21)

Figure 12.3: Examples of forward and reverse distributions satisfying Crooks rela-
tion: The reverse distribution is given by the forward distribution multiplied by a monotonically
increasing function of W . Both distributions intersect at ∆F .

This result is closely related to various fluctuation theorems derived for entropy
production in out-of-equilibrium systems [223]. Equation (12.21) has a number
of implications. First, it tells us a way to compute the forward distribution by
multiplying the reverse one by a monotonically increasing function of W . This
implies that the mean of pF (W ) is located to the right of the mean of pR(−W ),
which is what Eq. (12.20) says. Moreover, Eq. (12.21) implies that the forward
and reverse distributions intersect at W = ∆F . Finally, we can recover Jarzysnki
equality as a corollary or Eq. (12.21), by multiplying both sides by pR(−W )e−W/kBT

and integrating over all values of W .

12.4.4 Computing Equilibrium Free Energies from Nonequi-
librium Work Measurements: Practical Issues

In practice, the work distribution is sampled with a limited number of realizations.
In such way, although Jarzysnki equality is exact, we compute the Jarzynski esti-
mator:

∆FJ = −kBT log 1
N

N∑
i=1

e−Wi/kBT , (12.22)

where N is the number of nonequilibrium realizations available to sample the work
distribution. We define the bias of our estimator as BN = ∆FJ − ∆F , where ∆F
is the target free energy difference as obtained from infinite sampling. The bias is
a statistical measure of the systematic error due to finite sampling, and Jarzynksi
equality provides an unbiased estimator, this is BN → 0 for N →∞. Nevertheless,
this does not mean that the free energy value can be easily obtained from it. One of
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the biggest challenges in using Jarzynski equality is the exponential average, which
suffers from poor convergence.

If the work distribution is broad with respect to kBT , only a few trajectories
at the low work tail contribute significantly to the weighted average, while the
remaining events have and exponentially small weight. In physical terms, when
the transformation is conducted rapidly, most trajectories do not sample relevant
regions of phase space, resulting in broadened work distributions that reflects an
increasing relevance of dissipation.

The errors associated to finite sampling in the Jarzysnki estimator, have been a
matter of interest since the advent of the technique [224]. For example, it is now
known that Jarzysnki bias starts at B1 = 〈D〉 and decreases monotonically as N
increases, approaching to zero in the limit of infinite sampling [225]. Also, some
work distributions allow a direct analytic treatment and thus an exact derivation of
the bias. Gaussian work distributions are of particular interest, as they appear in
the near-equilibrium regime, when the change λ : A→ B is done sufficiently slowly,
but can appear under different situations [226]. Here,

∆F = 〈W 〉 − σ2/2kBT, (12.23)
where σ2 is the variance of the work distribution.

When the reverse process is available, one can combine forward and reverse
trajectories to compute an optimal free energy estimator. Starting from Crooks
relation (Eq. (12.21), we can rewrite it as an average

∫
f(W ; ∆F )e−W/kBTpF (W )dW =

∫
f(W ; ∆F )e−∆F/kBTpR(W )dW, (12.24)

by multiplying both sides by an arbitrary function f(W ; ∆F ). This equation be-
comes an implicit equation for ∆F . As Bennet proved, the function that minimizes
the average squared error of the estimated free energy is f = [e−(W−∆F )/kBT/Nf +
1/NR]−1 where NF and NR are the number of forward and backward realizations
[227]. This result can be also obtained by using a maximum-likelihood approach
[228]. Then, the value ∆F satisfies the relation

NF∑
i=1

1
1 + NF

NR
exp[(Wi −∆F )/kBT ]

=
NR∑
j=1

1
1 + NR

NF
exp[−(Wj −∆F )/kBT ]

. (12.25)

This is now known as Bennet free energy estimator and it can be understood
as the maximum likelihood estimator of the free energy given a set of forward and
reverse non-equilibrium work mesurements, starting from Crooks fluctuation the-
orem [228]. It is the minimum variance estimator of all asymptotically unbiased
estimators.
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Experimental Analysis of DFS
Experiments on Mechanical
Unbinding of FNR:Fd and
FNR:Fld

This chapter focuses on the experimental analysis developed in [229]. We propose
an analysis method for extracting meaningful free energy magnitudes from DFS
experiments for the unbinding of biological complexes. The method is applied to
the unbinding of two protein:protein complexes via AFM experiments. We present
in this Chapter the analysis procedure and its application to the particular biological
complexes. In order to get a full understanding of the results, we need to propose a
new shape for the free energy profile governing the process. This task in undertaken
in next chapter.

13.1 Motivation
In the work developed in the present and next chapters we present a detailed anal-
ysis and discussion of DFS experiments for mechanical dissociation of biological
complexes [229]. Here, a protein:protein or protein:ligand complex is forced to dis-
sociate by applying a mechanical bias through some single-molecule technique.

Our principal objective is to obtain meaningful physical insight about the studied
complexes. In particular, we focus on recovering information about the free energy
landscape governing the process by analyzing the force response of the system. This
is possible thanks to the two theoretical frameworks reviewed in Chapter 12.

In principle, a combined application of both theoretical frameworks would pro-
vide a global picture of the kinetic and equilibrium characteristics of the system,
given the joint recovery of the the free energy barrier ∆G† and the dissociation free
energy ∆G0. Nevertheless, in order to understand properly these magnitudes, they
should fit together within a suitable shape of the underlying free energy profile.

A bare analysis of the DFS experiments for the two protein:protein complexes
renders ∆G† and ∆G0 values which are hard to understand with the conventional
shapes for the free energy profile. As we discuss through this Chapter, this finding
is not unique for our two particular complexes, but it seems rather ubiquitous in
biological complexes. This motivates us to propose a new shape for the free en-
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ergy profile governing this kind of processes which satisfies the discrepancy we meet.
Based on this profile, a phenomenological model for mechanical unbinding of bio-
logical complexes is proposed, which helps us to validate the vision of our system
and the analysis protocol.

In this regard, we organize these two Chapters as follows. We devote the present
Chapter to the analysis of the experiments. The biological system is properly in-
troduced and so is the experimental set-up. Next, we review carefully our analysis
procedure, involving first the identification of curves with an unbinding events, and
the physical interpretation of the experimental output. Next, we apply it to the
experiments, rendering values for ∆G† and ∆G0, discussing the problem we find.
Chapter 16 focuses on the proposal of a physical model to understand the experi-
ments, including a new free energy profile to govern the mechanical unbinding events.
We analyze numerical simulations on this model by means of the same protocol we
followed with the experiments, validating its robustness. Finally, the joint results
are discussed in the frame of this free energy profile, whose implications are central
for the success of the analysis protocol, matching also the biological consequences
on the complexes.

13.2 The Biological System

13.2.1 Force spectroscopy Experiments on Biological Com-
plexes

The particular biophysical problem is mechanical unbinding of biological complexes
with DFS experiments. They are formed by the association of two molecules, typi-
cally some ligand or small protein docked in the binding pocket of a larger one. This
large protein is immobilized in a substrate, while the pulling device is functionalized
with the other one. An unbinding experiment has two well differentiated stages (see
Section 13.4). First, both molecules are approached to form the stable complex.
Then, they are pulled from each other, producing the mechanical dissociation.

In principle, the process of mechanical unbinding is governed by a free energy
landscape represented along the pulling direction, the reaction coordinate of the pro-
cess. The initial state is the bound complex, and the final one the unbound complex,
characterized by an absence of interaction. In this sense, the system is characterized
by two energy magnitudes, a free energy barrier ∆G†—which controls the kinetic
properties—and the dissociation free energy ∆G0—free energy difference between
the unbound and bound complex, which controls the thermodynamic behavior. In
principle these are the magnitudes we aim to recover by measuring rupture forces
through DFS experiments.

Mechanical unbinding experiments contrast with mechanical unfolding of bio-
molecules (nucleic acids or proteins) in a basic feature. When pulling a biomolecule,
the information about the folding landscape of proteins or RNA/DNA hairpins is
obtained by forcing a transition between the folded structure and a fully stretched
structure [18, 84]. The main difference is that in mechanical unfolding experiments
there is always an underlying stretching of a polymer which affects the final state.
In mechanical dissociation experiments once the complex is unbound the interaction
is lost.
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In other words, mechanical unfolding is a completely different process from
thermally-driven unfolding or through any other denaturant. This is because the
final state has a low entropy, as we are stretching the molecule. In thermal de-
naturation, the unfolded configuration is an ensemble of random coiled molecules,
with large conformational entropy. In this sense, a direct comparison between the
mechanical unfolding landscape and the thermal unfolding landscape is a hard issue.

Bridging the Gap between Single Molecule and Bulk Experiments

In mechanical unbinding events, the initial state is the bound state, and the final
state is the unbound state, the same as for thermal spontaneous dissociation. For
example, in a Isothermal Tritiation Calorimetry (ITC) experiment [230], species
A is kept on a cell, while molecule B is injected. Complexes AB form, and the
interchanged heat can be analyzed to obtain the binding free energy ∆GC = GB −
GU , where GB stands for the bound complex and GU for the unbound one. If the
complex is stable, ∆GC < 0.

In a DFS experiment, our initial state would be characterized by GB and the
final by GU , so the free energy difference between both states is ∆G0 = ∆GU −
∆GB = −∆GC , which should coincide with the calorimetry value given that it is an
equilibrium value, and thus independent of the path employed.

The only difference between both experimental procedures comes from the con-
formational entropy contribution of the thethering [18]. While in calorimetry exper-
iments the molecules involved have complete conformational freedom, in the DFS
experiments the complexes are restrained. In this sense we could argue ∆G0 −
(−∆GC) = Sc, where Sc is some conformational entropy contribution. Neverthe-
less, if we attend to the involved degrees of freedom in every case, this should not
be larger that 1kBT , so not too significative. This implies that, if we are able to
recover ∆G0 through DFS measurements, the obtained value would be comparable
to those obtained from thermodynamic bulk assays.

13.2.2 FNR:Fd and FNR:Fld two Binding Partners for a
Common Substrate

The systems we study herein consist of the complex form by the flavoenzyme
ferredoxin-NADP+ reductase (FNR; being NADP+ the nicotinamide adenine dinu-
cleotide phosphate), which contains a flavin adenine dinucleotide (FAD) group and
its two different binding partners, ferredoxin (Fd) with a [2Fe-2S] cluster, and flavo-
doxin (Fld), with a flavin mononucleotide (FMN) group, from the cyanobacterium
Anabaena PCC7119 [231]. Two Fd or Fld molecules interact sequentially with FNR
for the step-wise transfer of two electrons. Finally, reduced FAD from FNR is used
to convert NADP+ into NADPH. Both the enzyme and its redox partner form a
transient complex to transfer electrons in the photosynthetic electron-transfer chain.

This redox system is of particular interest as two proteins of different nature (Fd
and Fld) interact at the same site of FNR [232]. In this sense, it has been revealed
that this system can be considered as a paradigm for investigating which are the
key issues determining the complex formation and the electron transfer process [230,
231, 233].

The choice of these two protein:protein complexes for our study is of particular
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interest, due to the common features both share, and also the differences. First,
both complexes show a similar thermodynamic affinity [230], meaning that their
dissociation free energy ∆G0 is rather similar. Nevertheless, they are known to
display different interaction mechanisms [230, 231, 233–237], given their biological
role. In particular, Fld replaces Fd under iron deficient conditions [230, 234], which
is able to bind to the same site of the enzyme, but in a more non-specific and
promiscuous manner. This less strongly and durably bond is known to decrease the
efficiency in transferring electrons. The difference in size of the interacting surfaces
and of the key residues involved in the complex stabilization should lead to a different
kinetic behavior under the presence of an external load.

In this sense, they determine a remarkable model for our purpose, which is to
recover jointly the kinetic and thermodynamic properties of the complexes. We
should be able to distinguish the differences in the kinetic behavior, while obtaining
similar thermodynamic properties.

13.3 Experimental Set-Up
We analyze DFS experiments realized by Dr. Carlos Marcuello and Dra. An-
abel Garćıa Lostao [238, 239] for mechanical unbinding of the two protein:protein
complexes FNR:Fd and FNR:Fld. Experiments were carried out using the force
spectroscopy mode in a Cervantes Fullmode SPM system (Nanotec Electrónica S.L.
Spain), in the Advanced Microscopy Laboratory (LMA, INA). Figure 13.1 shows
a schematic representation of the experimental set up. The involved elements, the
protein:protein complex, a PEG polymer linker and the AFM cantilever, which is
responsible of exerting the pulling force.

Figure 13.1: Schematic picture of the experimental set up for DFS unbinding ex-
periments: FNR molecules are immobilized and oriented in a mica surface. AFM cantilever is
functionalized with PEG polymer linkers and Fld/Fd proteins.

FNR molecules were labelled, separated and immobilized on mica surfaces, as
described previously [240]. Maleimide-terminated flexible polyethylene glycol (PEG)
linker silicon nitride AFM cantilevers with nominal spring constant of 20pN/nm
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(Novascan Technologies Inc, Ames, USA) were used. PEG polymer has a nominal
stretched length of 20nm (PEG MW 3400) and persistence length of 0.37nm. 42M
thiolated-Fld/Fd, labeled and purified as reported in [238, 240] were incubated on the
maleimide-PEG-cantilevers in PBS, EDTA, pH 7.0 for 1 hour and washed extensively
with the same buffer. Labelling and subsequent immobilization steps were performed
to orient the interaction surfaces of both proteins one towards each other, which
optimizes the recognition ability and the collection of successful unbinding events in
DFS scans.

We register several hundred force-distance cycles for Fd and Fld-cantilever/FNR-
mica approaches at different loading rates, ranging between 2− 80× 103pN/s. The
protocol for selecting the appropriate unbinding force-curves is detailed in Section
13.4. Negative control experiments were also carried out by blocking the available
FNR sites by incubating the samples with 0.70nM Fld. This is further detailed in
[238, 240] and Section 13.4.

13.4 Analyzing DFS Experiments
We carry out DFS-AFM experiments in the force-extension modality. In this sense,
the output of the experiments is a force versus extension curve which should contain
information about the studied complex. Nevertheless, single-molecule experiments
have typically a low success rate. This is, most of the individual experiments fail
in achieving an unbinding event. Thus, those curves were an unbinding event is
identified must first be selected, in order not to introduce false data into our final
analysis. This should be done following some careful criterion, where unbinding
events are identified through some fingerprint they lay out.

Force-Extension Curves

A complete force-extension curve is a cycle made up of two different stages, the
approach and the retraction. First, the AFM tip coated with one of the molecules
approaches at constant speed towards the substrate. Second, the tip is retracted at
the same velocity to reach the initial position1.

Figure 13.2 shows an sketch of a complete force-extension cycle. The cycle starts
at point A, with the functionalized tip far enough from the substrate so that no
interaction is measured. Then the tip approaches to the substrate, until is close
enough so that the two molecules can interact. This occurs at point (B), where the
cantilever deflects towards the sample. Through this step, the two molecules can
interact, providing that the orientation is adequate. From (B) to (C) the pushing of
the tip is maintained, and a higher deflection measured, due to the repulsion forces
from substrate and tip. The pushing stops at a certain contact foce Fc, low enough
to avoid damage of the sample.

In the second stage of the cycle, the tip is retracted from the sample at some
constant velocity V . During the retraction, adhesion forces are measured as a hys-
teresis in the curve, from (D) to (E). At some point the spring force is higher than
the interaction forces, and the cantilever pulls off sharply, going back to the original
position (F). This jump from (E) to (F) provides the measure of the unbinding force.

1As explained in Chapter 11, the surface is actually what is retracted thanks to a piezoelectric
actuator, not the tip
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Figure 13.2: Sketch of a complete aproach-retraction curve for a ligand:receptor rup-
ture experiment: The approach stage comprises a phase with no interaction (from (A) to (B)),
and then the contact phase (B) to (C). In the retraction stage, once the contact region is overcome
((C) to (D)), the unbinding event occurs in the (D) to (E) to (F) phase, where a force response
takes place until the jump-off ((E) from (F)) indicates that the complex has been mechanically
unbound. (Picture taken from [241]).

In principle, this approach-retraction process does not necessarily forms a suc-
cessful bond between the two biomolecules, and nonspecific interaction between the
tip and the substrate can occur. These kind of events do not carry any significant
information about the biological system and must be ruled out of the final analysis.
In next section we review the practical way we employ to identify specific rupture
events.

Selecting Curves with Specific Events

Every approach-retraction trajectory can give rise to different curves, hinging upon
the kind of molecular interaction which has occurred. Nevertheless, only those
containing a binding-unbinding event between the two molecules of interest have
physical relevance. In this way, it is useful to classify the possible curves that may
arise, in order to have clear criterion to select the curves.

Figure 13.3 shows six possible real AFM curves showing different cases which
might be observed. Curve 1 shows no detectable event, as the approach and retrac-
tion curves are totally superimposed. Obviously it should be discarded. Curve 2
shows a jump-off event but due to some non-specific interaction of the tip with the
surface. This can be identified in the slope of the curve, which remains the same
during the retraction in the contact region. It contains no biological information, so
is also to be discarded.

Curves 3 and 4 are examples of specific events. The slope of the curves changes in
the retraction process. This means that, when retraction starts, the system becomes
stretched. Particularly, the influence of the linker polymer is observed, as a WLC-
model should be adequately superimposed to the part of the curve in the contact
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Figure 13.3: Examples of possible individual curves in DFS-AFM experiments: Curves
(1) and (2) are to be discarded, as (1) shows no interaction and (2) a non-specific interaction with
the surface. Curves (3) and (4) show single specific events, while (5) and (6) specific multievents.
Nevertheless, curve (6) should be also discarded as it is difficult to identify the actual unbinding
events. (Picture taken from [241]).

region. This is typically taken as the fingerprint of the specific event curve. Now,
the rupture force is taken as the jump-off force in the retraction curve.

Finally, curves 5 and 6 shows examples of several specific ruptures. This is due
to a variety of reasons. The AFM cantilevers are not functionalized with a single
polymer linker and protein, but rather several [242]. In this sense, more than a
single rupture event can occur at once, giving rise to a multipeaked curve. This
is observed in curve 5. Curve 6 must be discarded, as several specific-nonspecific
events are superimposed. As a common strategy, if there is doubt it is always better
to discard the curve.

The rate of success in single-molecule experiments is usually very low, specially
when random strategies are used. For improving the success rate functionalization
and orientation efforts are taken, allowing to reach success levels of over the 50%
[238, 240] (see Fig. 13.4).
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Obtention of Rupture Force Distributions

We build rupture force histograms analyzing the subsets of curves with clear specific
unbinding events. Typically (see Fig. 13.4, left), these histograms have long tails
in the high force region. This is due to multievents, which overestimate the rupture
forces. It is often assumed [241], that two rupture events result in a rupture force
double to the single event and so on. In this sense, a possible strategy is to deconvo-
lute the experimental distribution into individual distributions accounting for single,
double, triple... events. This is usually done by fitting to successive gaussians, such
that 〈f〉2 = 2〈f〉1, (where the subindex indicates the number of expected rupture
events). Nevertheless, we think that this not an optimal strategy, given that the
theoretical distributions are not gaussian functions, not with Dudko-Hummer-Szabo
theory, nor with Bell-Evans [203, 204]. The analysis protocol we propose (see Sec-
tion 13.5) is largely unaffected by such multievents, as we prefer to take the most
probable rupture force (peak of the distribution) rather that the average value cal-
culated from the individual gaussian distributions. This reduces largely the error,
as seen when comparing [229] and [238]. Also, the position of such maximum is
minimally influenced by the underlying multievents distributions.

Figure 13.4: Rupture force histogram and binding success for different experimental
strategies]: (Left) The rupture force histogram is built prior selection of the curves containing
specific events. Inset shows a possible identification of multievents, not optimal in our opinion.
Rupture force histogram under blocking conditions is compared, with a clear decrease in the specific
events rate. (taken from [241]) (Right) Clearly functionalization strategies are a key element in
DFS experiments (taken from [238]).

Usually, in order to validate the experimental protocol, blocking experiments
are performed. Here, the ligand is not only in the functionalized tips, but also
previously diluted in the solvent cell, so that some complexes should be already
be formed, prior to the DFS experiments. This should results in a greatly smaller
chance of unbinding events, and thus force distributions with reduced occurrence,
as seen in Fig. 13.4.
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13.5 Analysis Protocol: Free Energy Barriers and
Dissociation Free Energies from Force Mea-
surements

We propose a joint analysis protocol to recover the free energy magnitudes ∆G†
and ∆G0 from DFS experiments. We extract both values in an independent way by
combining two theoretical approaches, described in Chapter 14.

Extracting the free energy barrier

Force-spectroscopy theory, allows estimating the escape barrier and the position of
the transition state from the dependence of the average -or most probable- rupture
force as a function of the loading rate (see Section 14.3). As developed by Dudko
et. al. [204]

f ∗(rf ) = ∆G†
νx†

[
1−

(
− kBT∆G† log rfx

†

k0kBT

)ν]
. (13.1)

Here f ∗ is the most probable rupture force, and rf = V κ is the loading rate,
where V is the pulling velocity and κ the effective spring constant of the pulling
device, while ∆G† is the free energy barrier height, x† the position of the transition
state (maximum of the barrier) and k0 the intrinsic rate constant, all in the absence
of force.

Parameter ν determines the particular shape of the profile. With ν = 1 we
recover Bell-Evans expression [203]. Expression Eq. (13.1) was originally developed
for two particular cases [204], ν = 1/2 and ν = 2/3 which assume respectively a
parabolic cusp potential and a cubic potential. Years later, the generality of Eq.
(13.1) was proved for any polynomial potential of order n with ν = (n− 1)/n [243].
Nevertheless, we assume here the cubic approach, as any analytical potential can
be approximated by a cubic potential when expanded around the inflection point in
the vicinity of the escape force [204].

We highlight the fact that equation Eq. (13.1) expresses the dependence of
the typical or most probable rupture force with the pulling rate, in opposition to Eq.
(12.11) in Section 12.3, which expressed the dependence of the average rupture force.
As the shape of the rupture force distribution is known, it is easy to change from
one expression to the other. We prefer to work with the mode of the distribution
rather than the average, as explained in Section 13.4.

Calculating Equilibrium Free Energy Differences

The dissociation free energy ∆G0, difference in free energy between the bound and
unbound states, is an equilibrium magnitude. This allows us to use Jarzysnki equal-
ity to estimate it from non-equilibrium work measurements, which is the case of
constant-rate trajectories. Given a number of N pulling trajectories, we calculate
the Jarzysnki estimator ∆G0

J of the actual dissociation free energy ∆G0 as

∆G0
J = −kBT log 1

N

N∑
i=1

e−Wi/kBT , (13.2)
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where Wi is the non-equilibrium work performed over the i-th unbinding trajectory.
As stressed in previous chapters, Jarzynsnki equality requires a proper definition of
the non-equilibrium protocol we are following. We must have some control parameter
λ to switch the Hamiltonian of the system from an initial equilibrium state λ = A
to another defined one λ = B. The work W performed on the system is the integral
along the λ curve.

In our case the non-equilibrium protocol is properly defined, as we have the
control parameter λ = V t which we switch from λ = 0 (at t=0) to some λ† where
the system is unbound. In our particular case, the final value of λ† is not critical as
long as the rupture event have taken place. Dragging the unbound molecule would
not contribute significantly to the work but for the dragging force Fd = γV , which
is not significant. Also, it must be stressed that the work is properly defined when
integrating the force-extension curve as a function of the control parameter λ rather
than the stochastic variable γ [244]. This is a common mistake which might lead to
misestimations of the actual free energies [245].

In our case, given a rupture trace f(λ), the work is calculated as

Wi =
∫ λ†

0
f(λ)dλ =

∫ γ†

0
W

W LC
dγ + 1

2
(f †)2

κ
, (13.3)

where F
W LC

is the force-extension curve of a Worm-Like-Chain (WLC) model2, κ the
spring constant of the AFM, λ is the control parameter (position of the cantilever),
and γ the distance to the tip of the cantilever (see Section 14.1 and Fig. 14.2 for a
more careful definition of these coordinates). This expression is computed easily by
considering the change of variables from λ to γ, λ = γ + f/κ (assuming negligible
change in the molecular coordinate xp) and equilibrium at the tip of the AFM.
Equation (13.3) is equivalent to the work accumulated by the whole pulling device
over the unbinding process, polymer linker and linear spring together.

In principle, Jarzynski equality is exact, and thus independent of the pulling
rate. Nevertheless, we have already discussed about the poor convergence problems
the exponential average causes. At very fast pulling rates, we are very far away
from equilibrium so a very large number of experiments would be necessary to get a
reasonable estimate3. In this regard, we calculate ∆G0

J as a function of the pulling
rate, expecting convergence to ∆G0 as the rate decreases.

Recall that Eq. (13.3) depends only on the rupture force f †, as γ† is determined
by the WLC model expression by numerical inversion. This gives a very robust way
to estimate ∆G0

J , as we do not rely on the shape of the rupture force curve, but just
on the peak. Given a rupture force distribution p(f ∗), we map it directly to a work
distribution p(W ) by applying Eq. (13.3) and calculate the Jarzynski estimator
∆G0

J(rf ) as

∆G0
J(rf ) = −kBT log

∫
p(W )e−W/kBTdW ≈ −kBT log

N∑
i=1

e−Wi/kBTp(Wi)∆W,

(13.4)
2The Worm-Like-Chain model is one of the most used models for polymers. Its force-extension

curve is FLp/kBT = 0.25 (1− x/L)−2 + x/L− 0.25, where Lp is the persistence length and L the
contour length of the polymer.

3The necessary number of experiments for convergence N scales with eD, where D is the
dissipated work D = 〈W 〉 −∆G [246]
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given a histogram representation of the distribution built by N bins.

13.6 Results
We analyze DFS measurements for mechanical dissociation of protein:protein com-
plexes formed by flavoenzyme Ferredoxin-NADP+ reductase (FNR) with Ferredoxin
(Fd) and Flavodoxin (Fld) from cyanobacterium Anabaena PCC7119. For each load-
ing rate, the individual curves are analyzed, selecting those with a clear unbinding
event following the criteria explained in Section 13.4. We build rate dependent force
histograms p(f †|rf ). These histograms are analyzed with the protocol explained in
Section 13.5 to calculate the free energy magnitudes ∆G0 and ∆G†.

Free energy barriers for FNR:Fd and FNR:Fld complexes

From each rupture force distribution, we define the most probable rupture force f ∗
as the bin with largest accumulated number of events f ∗ : max p(f †) We plot f ∗ as
a function of rf and fit it to Eq. (13.1), obtaining ∆G†, x† and k0.

Figure 13.5: Typical rupture force f∗ as a function of the pulling rate rf : Solid lines are
minimum square fits to Eq. (13.1), showing excellent agreement. Inset shows two rupture force
distributions for different rates.

Figure 13.5 shows the typical rupture force f ∗ as a function of the loading rate
rf for protein:protein complexes FNR:Fd and FNR:Fld. Solid curves are the best
fit obtained by minimum squares to Eq. (13.5). Inset shows two examples of rup-
ture force distributions, for different pulling rates. The agreement of the fitting is
excellent4, yielding, for FNR:Fd: ∆G† = 6.85 ± 0.47kBT , x† = 0.46 ± 0.02nm
and k0 = (8.60 ± 0.45) × 10−3s−1; while for FNR:Fld: ∆G† = 4.85 ± 0.40kBT ,
x† = 0.56± 0.03nm and k0 = (1.10± 0.06)× 10−2s−1.

This is the first time that kinetic unbinding properties are measured for these
complexes, so they cannot be compared to any known result. As we already men-
tioned, that thermodynamical properties for both complexes are rather similar,

4χ2 = 1.2 for FNR:Fd and χ2 = 1.3 for FNR:Fld
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having similar stability. Nevertheless, we have seen how the free energy barriers
are rather different. This is already evident by simple inspection of Fig. 13.5, as
FNR:Fld needs lower forces to unbind than its partner FNR:Fd. Also, the free en-
ergy barriers seem to locate at a very close distance, x† ≈ 5 Å. We go back to this
point on Chapter 14, when discussing the results within a suitable free energy profile
shape.

Obtention of the Dissociation Free Energy

We calculate the rate dependent work distributions p(W |rf ) from each rupture force
distribution p(f †). We apply Jarzynski equality to each work distribution, obtaining
a rate dependent Jarzynski estimator ∆G0

J .

Figure 13.6: Jarzinski estimator as a function of the inverse rate: As the pulling rate
decreases, the estimator converges to the calorimetry determined free energies (dashed lines). Inset
shows two work distributions for different pulling rates.

Figure 13.6 shows Jarzynski estimator plotted as a function of the inverse rate
1/rf , where the error bars are calculated with Jackknife resampling method [247].
Inset shows the work distributions for two particular pulling rate values. Dashed
lines are the binding free energies obtained from calorimetry experiments for each
of the complexes (∆G0

F NR:F d
= 13.5kBT and ∆G0

F NR:F ld
= 12.8kBT ) [230]. Plotting

against 1/rf is due to visualization reasons, as convergence is observed in a more
clear way.

We check how the estimator ∆G0
J converges as we decrease the pulling rate to

a particular value, very close to the calorimetry free energy difference. At high
pulling rates, the bias BJ = ∆G0 − ∆G0

J is large because experiments are driven
very far away from equilibrium. As we have around 100 − 200 samples per rate,
convergence is poor at high rates. As we approach to equilibrium, for pulling rates
rf ∼ 3−20×103pN/s, the bias tends to zero, so the Jarzynski estimator ∆G0

J gives
the expected calorimetry value.

This last fact is a remarkable one, given that we are comparing results obtained
by analyzing single molecule experiments, with results from bulk experiments. The
conditions of both experiments are very different, not just because the size of the
populations involved in the measures, but also because of the pathways taken. Here
we check the stability (free energy difference) of the complexes by applying an ex-
ternal mechanical force, while in calorimetry, this is measured thermally.

204



Chapter 13

Table 13.1: Free energy barrier height ∆G†, position x† and dissociation free energy
∆G0 for some biomolecular complexes: Typically ∆G0 > ∆G† can be observed. (a), (b), (c)
and (e) are presented in Refs. [243] , [249] ,[250] and [251] respectively. (d) are obtained after an
analysis of data given in [251] (seeSI). (f) is obtained in this work and (g) in [230].

Complex ∆G†[kBT] x† [nm] ∆G0[kBT]
Biotin:streptavidin 13.56a 0.55a 30.9b

Biotin:avidin 11.74a 0.49a 33.7c
LFA-1:ICAM1 8.57d 0.17d 15.5e
LFA-2:ICAM2 7.55d 0.40d 14.3e

FNR:Fld 4.85f 0.56f 12.8g
FNR:Fd 6.86f 0.46f 13.5g

Figure 13.6 shows an apparent bias of B ≈ 3−4kBT , so Jarzynski estimator does
not converge exactly to the calorimetry value, but rather to an slightly higher one.
There are two different contributions which explain this discrepancy. First, the con-
formational entropy contribution, as argued earlier, answers for an overestimation
of around 1kBT . The second source is the polymer linker we use in the experiment.
The PEG is known to adopt a helical conformation, which unwinds when applying
a pulling force [248]. This work work is performed against the system and it is not
inverted in unbinding the complex. This difference is known to be of 3kBT [245,
248], value which is approximately equal to the bias we observe.

Nevertheless, this contribution cannot be observed directly in the AFM individ-
ual traces. We cannot determine thus if it applies to every single curve, or just to
a fraction of them, so it is difficult to estimate the exact magnitude of the effect
it would have in the estimation of the ∆G0

J . We prefer to remain cautious at that
point, given that the results are satisfactory within error bars.

13.7 Discussion: Relation between Dissociation
Free Energies and Free Energy Barriers in
Mechanical Unbinding of Biological Complexes

We have calculated in previous section the free energy barrier ∆G† and the dissoci-
ation free energy ∆G0 for two different protein:protein complexes. Remarkably, the
dissociation free energy values matches in both cases the calorimetry free energies.
Nevertheless, the results we obtained are somewhat paradoxical, given that we have
in both cases ∆G† < ∆G0. This surprising feature implies that the obtained free
energy values cannot be understood within a conventional molecular profile. This
picture considers that the particle is initially in a free energy well, and escapes by
surmounting a barrier of height ∆G†, relaxing back to the unbound state, at ∆G0,
being ∆G† > ∆G0.

We have searched in the literature for analogous information for different biolog-
ical complexes, finding that this is rather a common feature of such kind systems.
Table 13.1 shows the values of the free energy barrier and dissociation free energy for
a total of six different biological complexes, including the ones we determined here.
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The condition ∆G† < ∆G0 is not a particular feature of our system, but appears
as a common one for biological complexes of different nature. For example, bi-
otin:streptavidin or biotin:avidin are protein:ligand complexes, while LFA-1:ICAM1
and LFA-2:ICAM2 are protein:protein complexes, as are FNR:Fld or FNR:Fd.

This finding implies that mechanical unbinding of biological complexes cannot
be understood through usual molecular profiles, something which motivates us to
propose a new free energy profile shape for governing such systems. This new shape
has a twofold purpose. First to provide a suitable framework for understanding the
magnitudes in Table 13.1. Second, to serve as basis for a phenomenological model
for mechanical unbinding of biological complexes, where we can prove our analysis
protocol in order to back up its validity. Indeed, we discuss how the particular
shape of the free energy profile is tightly linked with the performance of the analysis
procedure we proposed above.

206



Chapter 14

Phenomenological Model for
Mechanical Unbinding of
Biological Complexes: from Forces
to Free Energies

This Chapter focuses on the numerical simulations done in reference [229], in com-
plementarity to the work exposed in Chapter 13. We propose a suitable free energy
profile for the mechanical dissociation of biological complexes, where the obtained
values for ∆G† and ∆G0 can be properly understood. Additionally, this profile
serves as basis for a model to understand DFS experiments on biological complexes.
Tuning the physical values of ∆G† and ∆G0, we perform numerical experiments,
which allow us to apply the same analysis protocol to the simulated curves, and
recover the free energy magnitudes we chose. This serves us to further validate
the analysis procedure and prove its validity. Indeed, the particular shape of the
free energy profile turns to have key consequences on the success of our analysis
procedure.

14.1 Mesoscopic Model for Mechanical Unbind-
ing of Biological Complexes

We propose a physical model for force-driven unbinding of biological complexes via
force spectroscopy experiments. Considering the set-up for this sort of experiments,
our model is made up of two ingredients, a phenomenological potential to represent
the biological complex and the pulling device. The election of the potential profile is
a central decision in the process, at it must accomplish the condition ∆G† < ∆G0,
which characterizes unbinding of biological complexes.

Phenomenological Potential for Mechanical Unbinding of Biological Com-
plexes

The ligand:receptor complex is represented as a brownian particle subject to a one-
dimensional potential, which is the free energy profile of the system along the pulling
coordinate. This profile must have some characteristics in order to reproduce faith-
fully the phenomenology of such systems:
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1. An Equilibrium well accounting for the bound state.

2. A Free energy barrier ∆G† at x† to represent the kinetic properties of the
system.

3. The Unbound state as a flat region (no interaction), with a free energy differ-
ence with respect to the bound state of ∆G0 (dissociation free energy).

4. The free energy barrier and dissociation free energy must hold ∆G† < ∆G0.

We choose a particular shape for such potential which fulfills the four conditions
stated before. Figure 14.1 shows a plot of the free energy profile. Mathematically,
we choose the following equation:

G(xp) = D(1− e−axp)2 + Ue−(xp−x†)2/b + F0[1 + tanhw(xp − s)], (14.1)

where xp is the molecular coordinate. This profile reproduces the three relevant
regions in the unbinding process. The first term is a Morse potential which accounts
for the equilibrium bound state at xp = 0. The second term is a gaussian barrier of
height ∆G† ≈ D+U , width b and placed at xp = x†. The third term is tanh function
which originates a second slope which leads to the unbound flat state ∆G0 = 2F0+D
within a characteristic length of 1/w + s.

Figure 14.1: Free energy profile for mechanical unbinding of biological complexes:
The profile is characterized by three regions, first an equilibrium well, accounting for the bound
complex, second a steep free energy barrier of height ∆G†, finally a smooth slope leading to the
unbound state at ∆G0.

There is an interplay between two different slopes or barriers which appear at
two different length scales, the first slope (free energy barrier ∆G† at x†) has a
characteristic length defined by b1/2, while the latter is controlled by 1/w. The
central feature of our free energy profile proposal is the first brittle slope of height
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∆G† and a second smooth slope which leads to the unbound state. The choice of
the particular analytical expression and the exact set of parameters are not crucial
for the performance of the potential, as long as this condition is maintained.

Considering the experimental results obtained in Chapter 13 protein:protein com-
plexes FNR:Fd and FNR:Fld, we propose a suitable parameter set which defines a
potential with a barrier of height ∆G† = 7.7kBT at x† = 0.5nm, and a disso-
ciation free energy of ∆G0 = 14.7kBT . We choose D = 12pNnm, a = 3nm−1,
U = 24pNnm, x† = 0.5nm, b = 0.03nm−2, F0 = 24pNnm, w = 0.75nm−1 and
s = 4nm. This is the parameter set employed for Fig. 14.1.

Modeling the Pulling Device

The pulling device in our experimental set up consists on two different parts, the
polymer linker and the AFM cantilever. This is modeled as a nonlinear spring
(polymer model) connected in series with a linear spring (AFM cantilever). The
polymer is modeled with a Worm-Like-Chain model, whose force-extension response
is given by the expression:

FWLC(X) = kBT

LP

[
1
4

(
1− X

L0

)−2
− 1

4 + X

L0

]
, (14.2)

where P is the persistence length of the polymer, L0 its contour length and X the
extension. For the PEG polymer employed in the experiments, values are L0 =
20 nm and LP = 0.37 nm. We connect the polymer in series with a linear spring
of stiffness κ = 20 pN/nm, considering equilibrium at the contact point, so that
the force at the polymer is equal to the one at the spring. This assumption is
convenient as prevents us from considering the tip of the cantilever as an additional
“particle” in our model—which would force us to give a mass, a damping and other
parameters hard to evaluate—and is supported by the scale separation between
both systems [215]. The effective stiffness of the whole pulling device is Keff =
(k

W LC
(F )−1 + κ−1), where k

W LC
(F ) is the force-dependent stiffness of the WLC

model k
W LC

(F ) = dF
W LC

/dX. At low forces, the stiffness of the polymer dominates,
as the stiffness is very low for low extension 1. As force increases, k

W LC
increases,

and κ becomes the dominating stiffness of the system.

Physical Model for Mechanical Unbinding of Biological Complexes

The complete model is just a combination of the potential profile and the model
for the pulling device. Pulling experiments are run by retracting the linear spring
at a constant velocity, so the polymer applies an increasing force to the brownian
particle in the profile. Effectively, this is equivalent to tilting the potential, so the
particle is finally able to escape by thermal activation. The distribution of escape
forces depends on the pulling velocity, in the same way the experiments did.

Figure 14.2 shows an schematic picture of the experimental set-up and our equiv-
alent model. It is important to notice the three different length coordinates we intro-
duce. Considering the bound state as the reference point, λ is the control parameter,
and accounts for the relative position of the cantilever or linear spring. This is the
coordinate we change directly, as λ = V t. Coordinate γ is an stochastic variable, as

1In particular, for the WLC model, at low extension κ
W LC

≈ 3kBT/LPL0 ≈ 1.6 pN/nm
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Figure 14.2: Free energy profile for mechanical unbinding of biological complexes: The
model is determined by two components. The molecular complex is defined by a one-dimensional
free energy profile. The pulling device is modeled as a WLC model in series with a linear spring.
Unbinding trajectories are simulating by moving the spring at constant velocity until the particle
escapes to the unbound region.

it accounts for the position of the tip of the cantilever, or the linking point between
the polymer and linear spring. Finally, xp is the molecular coordinate, setting the
position of the brownian particle in the free energy profile. Thus, the extension
of the WLC is X = γ − xp, and the force equilibrium condition is equivalent to
F

W LC
(γ−xp) = κ(γ−V t). Additionally, γ and λ are related by λ = γ− f/κ, where

f is the force at the tip of the cantilever. This expression neglects the contribution
of xp which is a reasonable assumption, given that xp ≈ 0 during the majority of
the escaping trajectory.

Simulation Details

Numerical simulations are run in order to mimic the experimental traces. We inte-
grate the Langevin equation of motion for the molecular coordinate xp on a prefixed
protocol. The Langevin equation is,

mẍp = −ηẋp −∇G(xp) + F
W LC

(γ − xp) + ξ(t), (14.3)

where m is the mass of the brownian particle (reduced mass of the biological com-
plex), η the viscous damping and ξ(t) the thermal white noise as usual. The stochas-
tic equation is integrated by a Runge-Kutta stochastic fourth order algorithm [81]
with a force extension protocol. For each particular experiment at pulling velocity
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V , we start at the equilibrium position, where xp = 0 and λ = 0, increasing pa-
rameter λ = V t until λ = 40 nm to ensure that the rupture event has taken place,
as the polymer length is L0 = 20 nm. For each time step, the force term in equa-
tion Eq. (14.3) is calculated by numerical inversion of the equilibrium condition
F

W LC
(γ − xp) = κ(γ − λ), given a value of λ. We run a total of 10000 realizations

for each pulling velocity.

Figure 14.3: Rupture f −γ curve as obtained from numerical integration of the model
(left) and as measured in the experiments (right): The similarity between the experimental
measurements and the numerical calculations is complete. In the f − γ representation, force rises
with a WLC model (blue solid line) until the rupture force f† is reached. Then the system relaxes
with the stiffness κ (red solid line).

Figure 14.3 shows a comparison between a simulated rupture f − γ curve (left)
and an experimental one (right). Clearly, numerical simulations on the proposed
model are able to reproduce faithfully the observed phenomenology. The different
regions in the f − γ representation are clear. First, the force increases following a
WLC model of L0 = 20 nm and P = 0.37 nm (blue solid line in Fig. 14.3). Then
a discontinuity occurs when the system escapes (mechanical unbinding event) at
f = f †. Then the system relaxes following a linear relation of slope κ (red solid line
in Fig 14.3). The area inside (dashed light blue area) is the total work performed
on the system.

The units of our simulation are the following. We use pN units for force, nm
units for length, m for the mass unit, and time unit of (m · nm/pN)1/2. Simulations
are carried out at room temperature T = 4.1pNnm = kBT . The damping in the
normalized time units is η = 10, so we work effectively in the overdamp regime.

14.2 Results on the Numerical Simulations of the
Mesoscopic Model

We run numerical simulations on the physical model for mechanical unbinding, set-
ting a free energy profile of known barrier ∆G† and dissociation free energy ∆G0.
We apply the same analysis protocol described in Section 13.5 to recover both values
in order to prove the validity of the analysis procedure and the suitability of the
proposed shape for the free energy profile.

We simulate the numerical experiments by integrating the Langevin equation
of motion for a potential profile with ∆G† = 7.7kBT , ∆G0 = 14.7kBT and x† =
0.5nm. These values reproduce approximately those found for the protein:protein
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complex FNR:Fd, and are realized with the parameter set shown in previous section.
We choose pulling rates so that the most probable rupture forces span over the
experimental range f ∗ ∼ 20− 100pN. We run 104 realizations for each pulling rate,
saving in each case the rupture force f † as the highest force the system reaches. We
build force histograms p(f †|rf ) and calculate f ∗ as the mode of the distribution.
Force histograms are mapped into the work histograms using Eq. (13.3), in order
to apply Jarzynski equality for computing the equilibrium free energy difference.

Recovering the Free Energy Barrier

Figure 14.4 shows the most probable unbinding force as a function of the pulling rate.
Black square points are the mode of the rupture force distributions, and the error
bars the width of the bins employed to build the histograms. Inset shows two rupture
force histograms at two different pulling rates. Red solid line is best least square fit
to Eq. (13.1), from which we obtain ∆G† = 7.28 ± 0.20kBT , x† = 0.35 ± 0.08nm
and k0 = 10.88 ± 0.12t−1, where t is the adimensional time units. The agreement
between the fitting protocol and the simulated data is excellent, as the free energy
barrier is recover with great accuracy, so is the position of the transition state.

Figure 14.4: Typical rupture force as a function of the pulling rate for the numerical
simulations: Numerical data is fitted to Eq. (13.1) showing excellent agreement, and recovering
successfully the free energy barrier. Inset shows the two rupture force distributions.

Equation (13.1) assumes an escape over a cubic barrier, pulling done with a soft
linear spring. Our model is more complex, as the shape of the free energy profile is
rather specific, and we pull with a WLC polymer in series with a linear spring, this
is, an overall non-linear spring.

The soft spring assumption considers that κU � κP , being κU the effective spring
constant from the potential profile, calculated from the curvature at the equilibrium
well, and κP the effective constant of the pulling device. In our particular case,
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κV ≈ 2Da2 ≈ 216pN/nm, while κP depends on the force. At low pulling forces, the
WCL model dominates, and κP ≈ 1.6pN/nm and the soft spring approximation is
satisfied. As we increase the force, the stiffness of the WLC rises greatly, but then,
being connected in series, the stiffness of the cantilever dominates, and κP ≈ κ =
20pN/nm, so the soft spring approximation applies also.

Figure 14.5: Dependence of the height of the free energy barrier with the pulling force
for a cubic potential and for our free energy profile: The dependence for both profiles is
very similar in the unbinding region (green dashed area), justifying using Eq. (13.1) with ν = 2/3.

Regarding the cubic potential approximation, any analytic potential with a bar-
rier, can be approximated as a cubic potential about the inflection point, in the
vicinity of the escaping event. We justify this fact for our potential in the range
of forces in which the experiments are performed. Figure 14.5 shows the depen-
dence of the heigh of free energy barrier as a function of the applied force. The
parameters are those for the barrier employed in this analysis. Red solid line is
the dependence for a cubic potential, which can be computed analytically [207], as
∆G†(f) = ∆G†0(1− f/fc)3/2, where ∆G†0 is the free energy barrier in the absence of
force, and fc is the critical force, defined as the force at which the barrier vanishes
∆G†(fc) = 0. For a cubic potential this is exactly fc = ∆G†/(νx†), where ν = 3/2
[207].

Black solid curve shows the dependence of the free energy barrier height with the
force for the potential profile defined by Eq. (14.1). The curve has been computed
numerically, as the dependence is not analytical. The critical force is fc ≈ 130pN ,
which gives an effective ν = 0.483, quite close to the behavior of a quadratic poten-
tial. The green dashed shows range of forces over which the unbinding takes place.
Both dependences are quite similar in the range, explaining why fitting to a cubic
potential is a reasonable choice in the physical range of pulling forces.
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Recovering the Dissociation Free Energy

Figure 14.6 shows the Jarzynski estimator ∆G0
J as a function of the inverse of the

pulling rate, where the error bars were calculated with Jackknife resampling method.
Blue solid line indicates the unbinding free energy set in the model ∆G0 = 14.7kBT .
Clearly, the estimator captures this value, converging as the pulling rate decreases.
The convergence is much better than in the experimental case, as we are averaging
over 104 realization, compared to the 102 experimental curves used.

Figure 14.6: Jarzynksi estimator as a function of the inverse of the pulling rate for
the numerical simulations on the phenomenological model : Jarzynski estimator converges
successfully to ∆G0 (blue dashed line). Inset shows two work distributions for different pulling
rates.

Inset shows two work distributions, with the dissociation free energy ∆G0 value
indicated as a vertical blue dashed line. Quasistatic pulling would lead to p(W ) =
δ(W −∆G0). As we pull out of equilibrium, 〈W 〉 > ∆G0, although for some events
W < ∆G0, which allow Jarzynski estimator to converge. These events occur in the
low force tail, and have key consequences in the performance of the analysis method,
as we discuss in Section 14.3.

Validation of the Analysis Method

We have applied the analysis protocol on a single parameter set, in order to build a
free energy profile with ∆G† and ∆G0 similar to the biological values found in for
the protein:protein complexes we studied. For the sake of consistency, we probe the
analysis protocol on the physical model using four different parameter sets.

Figure 14.7 shows the profiles for each of the four chosen parameter sets. We
choose them to have four different ∆G0 values, but just two different free energy
barriers ∆G†. This choice guaranties that the joint obtention of both free energy
magnitudes from the same data is completely independent.
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Figure 14.7: Free energy profiles for the four data sets employed: We choose the param-
eters to have four different values of ∆G0 and only two different free energy barriers ∆G†. This
election allows us to prove that our analysis protocol is able to obtain both free energy magnitudes
from the same data in an independent way.

We plot in Fig. 14.8 (left) the typical rupture forces versus the pulling rate for
each of the four parameter sets. Clearly, the curves from sets A-B and C-D are
respectively superimposed, as they have the same barrier height. The four data sets
fit perfectly to Eq. (13.1). Actual barriers and obtained ones are shown in Table
14.1.

Figure 14.8: Typical rupture force as a function of the pulling rate (left) and Jarzyn-
ski estimator for the four data sets (right): Force-rate curves for sets A-B and C-D are
respectively superimposed, having both the same free energy barrier. Jarzynski estimator ∆G0

J

converges successfully to the value ∆G0 in the potentials employed (dashed lines).

Figure 14.8 (right) shows the Jarzynski estimator ∆G0
J as a function of the

inverse of the pulling rate r−1
f . Dashed lines indicate the value ∆G0 for each of

215



Part III

the four parameter sets. The estimator converges in the four cases, revealing that
Jarzynski equality is able to recover successfully the dissociation free energy.

Table 14.1: Free energy magnitudes ∆G0 and ∆G† set for each parameter set and
estimation according to our analysis protocol ∆G0

J from Jarzynski equality and fitted
∆G†f .

Parameter Set ∆G0(kBT ) ∆G†(kBT ) ∆G0
J(kBT ) ∆G†f (kBT )

A 14.6 7.7 13.93± 0.5 7.3± 0.3
B 20.5 7.7 20.28± 1.0 6.7± 0.5
C 27.3 14.1 24.55± 0.3 13.2± 0.6
D 32.2 14.1 32.66± 1.56 12.5± 0.4

Table 14.1 gathers ∆G† and ∆G0 as set in the four profiles, together with the
estimations obtained through our analysis protocol. ∆G0

J is the average of the last
three values shown in Fig. 14.8 for each parameter set.

14.3 Discussion
In this work, developed through Chapters 15 and 16, we have shown that, by em-
ploying a suitable analysis protocol, DFS experiments can be used to obtain both
the kinetic and thermodynamic properties of ligand:receptor complexes [229]. Our
analysis method relies on a free energy profile which models the mechanical unbind-
ing process. The shape of the profile is motivated by an apparent paradox we find
in the analysis of our experiments, which also seems to be ubiquitous for mechani-
cal unbinding of biological complexes (see Table 13.1). The condition ∆G† < ∆G0

is not satisfied by a conventional molecular potential, such as a Lennard Jones or
Morse potential.

We propose a free energy profile which satisfies such condition. This profile is
characterized by two regions, a steep slope—accounting for the free energy barrier—
and a smooth slope—leading to the unbound state. The interplay between this two
slopes is of central importance for the performance of our analysis method, but is
also motivated by the biological and physical characteristics of the process we are
modeling, as we shall discuss in this section.

Implications of the Free Energy Profile on the Analysis Protocol

The analysis protocol we propose requires the distribution of rupture forces as only
input for computing two different magnitudes. We calculate the work from the force
by Eq. (13.3), so the integration of the force-extension curve is not necessary. In this
sense, it might be surprising how two independent magnitudes are recovered from
a single experimental output, the peak of the rupture force curve. The underlying
reason is the shape of the free energy profile and the information from the force
distributions in which each of the two analysis techniques rely.

The free energy profile is characterized by the scale separation between a short
range steep barrier and a second smooth slope (or barrier). In the DFS experiments,
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Figure 14.9: Effect of the pulling force on the free energy profile: The force tilts the
profile, and the second slope vanishes at low forces, so that it becomes effectively a single barrier
profile.

the bias exerted by the pulling force tilts the profile with a −fxp term, where f
increases with time. Figure 14.9 shows the effect of an increasing force on our
potential profile. The second smooth barrier vanishes at small pulling forces, while
the steep one does not. In this sense, for the typical escape forces (over 30 pN), the
system hops over a single barrier profile, which is completely equivalent to one where
the second region does not exist. Nevertheless, with low probability, the system hops
at very low forces, and thus surmounts the second barrier. In this sense, the majority
of rupture events carry information just about the first barrier, while those in the
low force tail have information about the second slope. This fact is shown in the
force distributions in the inset of Fig. 14.5, where a second distribution seems to be
superimposed in the low force region.

Our analysis method takes advantage of this uncoupling between ∆G† and ∆G0,
which can be obtained independently by applying Eq. (13.1) and Jarzysnki equality
to the rupture force distributions. Equation (13.1) accounts just for the mode of
the distribution, this is the average contributions. Thus, for the usual pulling rate
range, we are recovering the first steep barrier.

Jarzynski equality performs an exponential average of the work distributions,
enhancing events in the low force tail. Thus, those low-force escapes weight more
in the calculation of the Jarzysnki estimator than average events, reason why we
recover ∆G0 successfully.

Certainly, our free energy profile can be understood as a two barrier profile, where
both barriers have different length scales. In this sense, we should be able to recover
∆G0 with Eq. (13.1) at some point. If we pulled very slowly, so that the average
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rupture forces are very low (f ∗ ∼ 10), we should be able to do so, as the typical
events would be jumps over the two slopes. Nevertheless, this pulling ranges are
extremely low, and thus experimentally unfeasible, due to the force resolution of the
AFM. In this sense, our analysis protocol takes advantage also of the practicalities
of DFS experiments.

Implications of the Free Energy Profile on the Physical Process of Me-
chanical Unbinding of Biological Complexes

The two uncoupled regions are also motivated by the physical process of mechan-
ical unbinding, answering to different steps in the process. Figure 14.10 shows a
schematic picture of the different steps in the mechanical unbinding process along
the free energy profile.

Figure 14.10: Schematic view for the physical interpretation of the proposed free
energy profile for mechanical dissociation of biological complexes.: We can distinguish
different interaction regions upon the mechanical dissociation process. First, the steep inner barrier
must be overcome, involving the rupture of the short-range molecular bonds between the interacting
surfaces. Then, the first water molecules access the interface region degreasing the free energy of
the system. In order to dissociate completely the system, the molecules must be separated within
few nanometers, solvating completely the intermolecular space and overcoming the electrostatic
interactions and the dipolar moment coupling of the two proteins.

The first steep barrier reflects the local short-ranged molecular interactions be-
tween the interface residues which keep the complex in the bound state, like hy-
drogen bonds or salt bridges. This barrier is located at few Å from the equilibrium
state, distance over which the system cannot be unbound. Over the barrier, the first
water molecules enter the intermolecular region, solvating partially the interacting
surfaces. This is an energetically favorable process, so the free energy profile lowers
(see Fig. 14.10).
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The second region accounts for the complete dissociation between both molecules,
and thus spans over few nanometers. This interaction region is originated by long-
range non-specific interactions between the molecules, like electrostatic, or the cou-
pling between the dipolar moments of the molecule. This is modeled as the smooth
slope which leads to the plateau where the interaction vanishes. In this sense, the
first barrier has a specific origin, caused by the particular interactions between the
residues in the intermolecular surfaces. The second barrier is originated by effects at
a larger scale, not on the particular details of the molecules, but on their behavior
as a “whole”.

Mechanical Unbinding of FNR:Fd and FNR:Fld: Discussion about their
Free Energy Profile

We have obtained for first time the unbinding free energy barrier and dissocia-
tion free energy for protein:protein complexes FNR:Fd and FNR:Fld from single
molecule force spectroscopy measurements. The obtained magnitudes are correctly
understood within the free energy profile shape we propose to govern such process.
Additionally the results match previous knowledge about the complexes, providing
also novel information, in particular about their kinetic properties.

The studied protein:protein complexes are of particular interest for our motiva-
tion here, as both Fd and Fld are common binding partners of flavoenzyme FNR,
docking to the same binding site. FNR catalyzes the transfer of two electrons to
reduce NADP+ to NADPH from two independent Fd molecules, while in some algae
and cyanobacteria, Fld replaces Fd under iron-deficient conditions [230, 234]. While
both share similar binding affinities [230], they are known to display different inter-
action mechanisms [230, 231, 233, 235, 236], due mainly to the difference in size of
the interacting surfaces and the residues involved in the complex stabilization.

Our analysis of the DFS experiments is able to recover the thermodynamic fea-
tures of both complexes, reflected in moderate affinities which are very similar in
both cases ∆G0 ≈ 13kBT . The unbinding free energies calculated through Jarzysnki
equality agree respectively within error bars with the calorimetric binding free energy
reported in [230]. Remarkably, this behavior is similar in both complexes, despite we
find significant differences in their kinetic behavior. The rupture forces are different
in both cases, so the free energy barrier heights contrast considerably (∆G† ≈ 7kBT
for FNR:Fd and ∆G† ≈ 5kBT for FNR:Fld). These differences are attributed to
the particular features concerning the formation of each complex. Showing a larger
interacting interface, Fd binding to FNR is more specific, with salt bridges between
certain key positive residues on the FNR surface and acidic residues on Fd [233,
235–237], which would contribute in addition to other non-specific interactions such
as hydrogen bonds or the hydrophobic effect.

On the contrary, kinetic analysis of side-directed mutants and docking studies on
FNR:Fld suggest that Fld can adopt multiple orientations on the FNR surface, and
that charged residues are not involved in crucial specific interactions [231, 233, 236].
In this sense, these features agree with our findings. Upon complex rupture, specific
short range-interactions contribute decisively to the FNR:Fd interaction, reflected in
a higher free energy barrier when compared to FNR:Fld, whose binding mechanism
is mainly due to the hydrophobic effect. Thus, larger forces are needed to unbind the
former complex. Nevertheless, non-specific interactions, which contribute mainly to
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the second barrier in the profile, are very similar in both cases, given the overall
shape of the molecules, so the ∆G0 values are virtually alike for both complexes.
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Conclusions and Future Work
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We chase misprinted lies
We face the path of time

And yet I fight
And yet I fight

This battle all alone
No one to cry to

No place to call home
My gift of self is raped

My privacy is raked
And yet I find
And yet I find

Repeating in my head
If I can’t be my own

I’d feel better dead

ALICE IN CHAINS, Nutshell
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Concluding Remarks

Molecular simulations provide a powerful way of understanding biological systems.
They provide high resolution information, which allows to capture in a detailed way
both the thermodynamic and kinetic properties of the system of interest. This allows
to study problems of high relevance, such as protein folding, allosteric regulation
or even drug discovery. Even more, it is possible to make a direct connection to
experimental data, which helps in interpreting the results or in suggesting new
experimental routes.

Nevertheless, in order to fully realize their potential, we must two meet two
requirements. First, we need a meaningful model of our biological system, which
is serves as the input of our simulation. This model should be able to make a
direct connection with the real system, in order to render accurate results and allow
to make predictions. Second, we require of methods that can provide knowledge
and make a quantitative connection between the output of our simulations and the
experimental data.

The present Thesis belongs to this field, dealing with three different problems
where modeling biomolecular processes and employing suitable analysis methods
are the overarching elements. In particular, the work we presented, has in free
energy calculations a common guiding thread, providing it as a valuable tool for
understanding the static and dynamic properties of biological molecules.

In the next lines, we summarize the most relevant achievements of the Thesis.
More detailed discussions on the results are found in the pertinent Chapters.

Part I

In this part we have analyzed the unfolding mechanism of a model protein under
the presence of an external force. This computational study is inspired in force
clamp single molecule experiments, where a molecule is probed by being subject
to a mechanical force. We apply two complementary analysis methods in order
to understand its configurational space and to unveil the unfolding pathway(s).
First we describe the system by low-dimensional representations of the free energy
landscape along relevant order parameters. Second, we describe the system with a
Markov state model. This study allows us to arrive to some conclusions.

• We calculate the one dimensional profiles along two suitable reaction coordi-
nates, the end-to-end distance ξ and the fraction of native contacts Q. The
first coordinates is motivated by the topology of the system. As we apply a
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mechanical force along the pulling direction, this degree of freedom becomes
naturally the slowest one, and the reaction coordinate of the system. Indeed,
this is the coordinate employed experimentally to describe molecules under
the presence of force. The fraction of native contacts has been proved to work
successfully to characterize proteins, even when no native-centric assumption
is taken. These two profiles agree in their overall description of the system.
We identify four major metastable states, the native, the stretched, and two
intermediates, an aligned and a half-stretched conformation. These two states
are energetically favorable, as the protein aligns its ends in the direction of the
pulling force. The half-stretched conformation is the most stable state under
the present conditions. Even more, it seems to be the mechanical intermediate
the system uses to transition to the fully stretched (unfolded) conformation.

• We apply the Bayesian test to evaluate the quality of ξ and Q as reaction
coordinates. Surprisingly, ξ results in a poor choice, given the multi-peaked
structure of the Transition-Path Ensemble, which suggest that the projection
is non-Markovian. Q reveals itself as a better reaction coordinate, locating the
transition state at a very low value of Q. This prevents us to meet any relevant
conclusion about the actual conformational space, nor about the unfolding
mechanism.

• We use PCA as a tool for finding relevant order parameters. The first PC
describes the system in a quite similar way to ξ and Q, meaning that the
largest amplitude motions are related with transitions among the native, half-
stretched and stretched states. The second PC provides a more detailed vision
of the system, with several transitions between states separated by low energy
barriers. This suggests that the actual conformational space of this system
could be more complex, being several different states projected onto similar Q
and ξ values.

• We build a Markov state model of the system. After applying an appropriate
analysis protocol, we describe the equilibrium ensemble of the system as a
network made up of 13 different macrostates. In a coarse way, the structure
agrees with previous findings, as the network is divided into three different
regions, a native, stretched and half-stretched. Nevertheless, it provides a
more accurate vision of the system, characterized by the different points:

1. There are two time scales involved. One is related with transitions be-
tween the native and half-stretched states within times of ∼ 100 ns. The
second one implies the unfolding transition, which occurs within longer
time scales of ∼ 10 µs.

2. The native state is actually made of two different states which are sep-
arated by a large barrier and have a very different kinetic role. One is
related to fast transitions to the half-stretched state, while the other to
transitions to different intermediates, promoting the unfolding transition.

3. There are two proper intermediate states which connect the native en-
semble with the stretched ensemble. Physically they are related with a
disruption of the hydrophobic core of the protein.
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• Applying Transition Path Theory allows to reveal the unfolding pathways of
the system. The unfolding transition does not occur through a single well de-
fined route, but rather through an ensemble of Transition Pathways. Coarsely,
there are two main routes, driven by the two intermediates previously men-
tioned.

• Surprisingly, the half-stretched configuration plays little role in the unfolding
mechanism, as just a little fraction of the unfolding flux passes through it.

In few words, this part serves us to probe some of the current state-of-art methods
for understanding molecular simulations. Low dimensional representations provide
an overall correct description, where the main strength is its simplicity and the in-
tuitive picture they provide. Markov state models are more sophisticated analysis
methods, able to represent multidimensional free energy landscapes in an under-
standable way. They allow to identify easily the stability of each state, and also the
transition rates between free energy basins. Also, they allow a straightforward calcu-
lation of the pathways connecting two subsets of states, and thus of the (un)folding
mechanism.

Given the multiplicity of unfolding pathways and the overlapping of conforma-
tional states, one-dimensional descriptions failed to explain correctly our system.
In this sense, the Markov state model description appear as the most meaningful
source of information. This is a surprising feature given that we chose a remarkably
simple system, not just given the protein model, but also due to the presence of
the pulling force, which set a natural reaction coordinate for the system to evolve
through. Election of more sophisticated reaction coordinates, probably by some
optimization mechanism, would surely yield a better free energy profile, where the
states of the system would be better represented. Nevertheless, the multiplicity
of unfolding pathways seem an incompatible ingredient with any one-dimensional
representation.

The one-dimensional descriptions are not able to explain correctly our system,
given the multiplicity of unfolding pathways and the overlapping of confomational
states. Hence, Markov state models present a more meaningful vision, which cap-
tures the complexity of the unfolding mechanism. Given the presence of an external
force, which simplifies the dynamics of the system, this is a surprising fact. Election
of more sophisticated reaction coordinates, probably by some optimization mecha-
nism, would probably yield better free energy profiles, where the states of the system
would be better represented. Nevertheless, the multiplicity of unfolding pathways
seem an incompatible ingredient with any one-dimensional representation.

Part II

In this part we have studied Peyrard-Bishop-Daouxois DNA model in three different
applications. We can enumerate the main achievements in the following way.

1. We modify the PBD model in order to incorporate a barrier in the on-site
potential which accounts for the solvent effects. This barrier has allowed to
improve the performance of the model in two different ways. First, the melting
transition is closer to the experimentally observed one. We achieve a sharper
denaturation, as the barrier increases the cooperativity of the model. Second,
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the dynamics of bubble formation becomes also more realistic. Bubbles last
longer and have a more appropriate size, in agreement with the experimental
observations. Additionally, we use PCA to characterize the melting transition
in a novel way. The dependence of the PCA eigenvalues with temperature
allows to identify the transition a mode which drops to zero.

2. We modify the PBD model to include a diffusing particle -or generic protein-
which interacts with DNA bubbles. This model is inspired in the protein-DNA
interaction mechanism, by which some proteins couple to physical properties
of the DNA molecule. We probe the model on three different promoter se-
quences, which were previously studied with PBD model. Two of the sequences
are strong promoters and the other a weak promoter, in terms of RNA expres-
sion. The performance of the model is satisfactory, as the particle couples
to the bubble dynamics, which achieves longer bubbles in better agreement
with biological time scales. For these three promoter sequences, the most rel-
evant states correlate with openings at significant biological sites, such as the
transcription starting site of binding sites of different transcription factors.
Additionally, we are able to find relevant differences between the structure of
the free energy landscape of the strong and weak promoters. Strong promoters
show few states which attract the majority of the dynamics, characterized as
deep free energy basins. The weak promoter has a more distributed structure,
with several states of intermediate population.

3. We apply the model and the analysis method we proposed previously to nine
promoter sequences from a particular organism, cyanobacterium Anabaena
PCC7120. The relevance of this study is that such promoters were never stud-
ied before in the context of PBD model. We focus on the identification of
the transcription starting sites. Additionally, some of the these promoters dis-
play more than a single transcription starting site. In this sense, our method
can be used to give a quantitative comparison between them, and likely cor-
relate it with the biological knowledge about the system. Our analysis gives
meaningful information about the nine promoters, identifying in every case the
transcription starting sites as a prominent state in the dynamics. The relative
importance of these sites in promoters with several transcription starting sites
correlates with their biological performance. The model identifies further sites
as likely binding sites for transcription factors which in some cases agree with
typical binding sites in prokaryotes, such as the −10 or −35 site.

This work exploits one of the most controversial issues regarding the PBD model,
the relation between bubble formation and protein binding sites in promoter se-
quences. Our study moves forward as it includes the active ingredient in this pro-
cess, which is the diffusing protein. In the first work we choose promoters which
were already analyzed in a similar context, so being able to find relevant binding
site is not quite an achievement. However, thanks to the improvement of the model
and the analysis method we are able to characterize these sites and also the overall
free energy landscape of the system. In the case of the cyanobacterial promoters,
we apply a physical model for the first time, with successful results. Taking this
model and method as a way to analyze promoter sequences, we can conclude that
for the studied promoters, the TSS is identified as a region which opens with more
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probability, and were the particle has a larger probability to bind. The occurrence
of this state seems to be also related to the biological “strength” of the promoter.
Obviously we do not mean in any case that bubble formation drives protein binding,
but our studies show a certain correlation between both processes.

Part III

In this part we present a collaboration with experimentalists, in which we analyze
DFS-AFM experiments for mechanical unbinding of two protein:protein complexes.
Our purpose is to recover the free energy barrier and the dissociation free energy.
Additionally, we propose a model for such process, which allows us to perform
numerical simulations to reproduce experimental data and apply the same analysis
procedure. The main achievements in this work are the following:

• We have proposed a systematic and robust method for extracting indepen-
dently the free energy barrier and the dissociation free energy from DFS exper-
iments. We extract meaningful values for both magnitudes where, remarkably,
the dissociation free energy matches the calorimetric value in both complexes.

• We find a discrepancy that free energy barriers are lower than dissociation free
energies. This is a problematic feature which cannot be understood with con-
ventional molecular potentials. This problem is a recurrent one for unbinding
of biological complexes, as we find several ones with the similar discrepancy.

• We propose a new free energy profile that accomplishes such discrepancy. The
free energy profile is characterized by two decoupled regions, a first steep one
and a second smooth one.

• Simulations on a phenomenological model based on this free energy profile are
able to reproduce the experimental data. Application of the same analysis
procedure on the simulations recover successfully the free energy magnitudes.

The central idea of this work is that the mechanical unbinding process of biolog-
ical complexes is governed by a free energy profile characterized by two regions with
separated scales. The first one is very brittle and rules over the average rupture
trajectory. The second is smooth and dominates on low force escapes, explaining
the success of the analysis method we present. From a phenomenological point of
view, this first region is associated with short range specific interactions, while the
latter answers for nonspecific interaction between both molecules.

Future Perspectives

The work developed through the Thesis leaves naturally many open topics which
suggest new lines for future research. We can enumerate these perspectives also
related to each of the three topics.
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Part I

The methodology presented here is of wide application, not exclusively to the field
of molecular simulation. A natural extension is the study of different systems with
similar techniques. A possible topic is the analysis of protein folding for different
kinds of systems using all-atom simulations. In particular, an interesting issue re-
gards the comparison between the topology of Markov networks for those proteins
which fold in a two-state manner and downhill folding proteins, which fold in the
absence of barrier. The differences in their one-dimensional profile are well known,
but the global structure of their free energy landscape remains unexplored.

Regarding the particular protein model we explored, we just studied the mechan-
ical unfolding mechanism. We find here a complex behavior, where the apparent
mechanical intermediate played a had little role in the unfolding mechanism. An
interesting issue is the connection between the mechanical and the thermal unfold-
ing. Single-molecule techniques manipulate molecules by modifying its actual free
energy landscape. In this sense, the behavior under force could have little relevance
regarding the in vivo one. A direct project would be the simulation of the thermal
denaturation for the same protein model and an analogous analysis, yielding a com-
parison between both landscapes. This would allow us to seek for common features,
such as the presence of the half-stretched conformation, and its role in the unfolding
mechanism.

Part II

PBD model has been extensively studied by different researchers and for different
purposes. Our work here presents a valuable tool for analyzing promoter sequences
which relies, not on its performance, but rather on its physical insight and the ability
to quantify possible binding sites. Naturally, an open issue is the application of the
model and analysis method to further promoter sequences, particularly to those
well characterize from a biological point of view in order to validate the possible
predictions they might render.

The protein-DNA model we proposed consideres a generic protein which interacts
with bubbles in the DNA sequence. This model could be as an inspiration for
further DNA-interacting proteins which operate at a similar scales. One of the best
candidates are helicases, which use the energy of ATP to open a bubble along the
DNA molecule. The main ingredient that should be added to our model is the
inclusion of the asymmetry in displacement of the protein. This should be related
to some energy consumption, transforming the model into a mixed molecular motor
one. Sequence effects on the velocity of the motor and its efficiency would be easy to
test with this proposal. Currently we are developing this project, aiming to achieve
concluding results in the short term.

Part III

We have presented an analysis method and model which should be general for un-
binding of biological complexes. In this sense, testing it with any similar system
appears is a direct application. This could not jut validate the method and the rel-
evance of the free energy profile, but also to check if this discrepancy is ubiquitous
and holds the physical origin we claim.
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Another way to test to our proposals is to reconstruct the unfolding profile by
means of molecular dynamics simulations. The reconstruction of such profiles is
currently a rather straightforward task, given the available enhanced sampling tech-
niques and their efficiency in their implementation in many software packages. An
atomic detailed description of this process could provide us great insight about the
actual unbinding mechanism, finding the actual origin of these two decoupled re-
gions, if they exist. Additionally, this constitutes an interesting connection between
the molecular simulations and the experimental data.
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Conclusiones y Perspectivas

Las simulaciones moleculares proporcionan un método eficaz para comprender sis-
temas biológicos. La alta resolución que proporcionan, permite obtener de manera
muy detallada tanto las caracteŕısticas termodinámicas como las cinéticas del sis-
tema de interés. Esto permite estudiar problemas de gran relevancia, tales como la
descripción de los mecanismos de plegamiento en protéınas, regulación alostérica,o
incluso contribuir al diseño de fármacos. Asimismo, es posible una relación directa
de los resultados computacionales con los datos experimentales, lo cual contribuye
tanto a la interpretación de resultados como a sugerir nuevos experimentos.

No obstante, para ser capaces de aprovecharnos de todo su potencial, debemos
cumplir dos requisitos. Primero, es necesario un modelo adecuado de nuestro sistema
biológico, ya que éste será la base de nuestra simulación. Este modelo debe ser capaz
de conectar de manera directa con el sistema real, tanto para poder proporcionar
resultados precisos, como para permitir la elaboración de predicciones. Por otra
parte, es necesario disponer de métodos de análisis que puedan proporcionar un
conocimiento directo, aśı como realizar una conexión cuantitativa entre los resultados
computacionales y los experimentales.

La presente Tesis Doctoral se ubica en esta problemática, tratando tres cuestiones
diferentes donde el modelado de procesos biomoleculares y el empleo de técnicas
adecuadas de análisis son los elementos sustentantes. En particular, el trabajo que
hemos presentado tiene en el cálculo de enerǵıas libres el hilo conductor, al ser
ésta una herramienta de gran valor cuando se pretende comprender las propiedades
estáticas y dinámicas de las moléculas biológicas.

En los próximos párrafos, resumimos los logros más relevantes de esta Tesis
Doctoral. Discusiones más detalladas de los resultados pueden encontrarse en los
caṕıtulos correspondientes.

Parte I

En esta parte hemos analizado el mecanismo de desplegamiento de una protéına
modelo bajo la presencia de una fuerza externa. Este estudio computacional se
inspira en los experimentos de molécula individual a fuerza constante, donde una
molécula se somete a una fuerza mecánica. Hemos aplicado dos métodos de análisis
complementarios para comprender el espacio conformacional del sistema y revelar
los caminos de desplegado seguidos. Comenzamos describiendo el sistema con repre-
sentaciones de baja dimensión de su paisaje de enerǵıa libre a lo largo de parámetros
de orden relevantes. A continuación, construimos el modelo de Markov del sistema,
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comparando ambas descripciones. Este estudio nos permite llegar a las siguientes
conclusiones:

• Calculamos los perfiles unidimensionales a lo largo de dos coordenadas de
reacción apropiadas, la distancia entre extremos ξ y la fracción de contactos
nativos Q. El empleo de la primera de estas coordenadas está motivado por
la topoloǵıa del sistema. La fuerza mecánica convierte ξ en la coordenada de
reacción natural del sistema. De hecho esta es la coordenada empleada experi-
mentalmente para describir moléculas bajo la acción de una fuerza. La fracción
de contactos nativos ha sido empleada de manera en numerosas ocasiones para
caracterizar el plegado de protéınas, incluso cuando los contactos nativos no
se asumen previamente en el modelo. Estos dos perfiles están de acuerdo en
su descripción global del sistema. Identificamos cuatro estados metaestables
principales, el nativo, el estirado, y dos intermediarios, el alineado y el medio-
estirado. Estas dos últimas conformaciones son energéticamente favorables ya
que la protéına alinea sus extremos en la dirección de la fuerza. En particular,
la conformación medio-estirada es el estado más estable bajo estas condiciones.
Aśı mismo, parece ser el intermediario mecánico del sistema, apareciendo como
una configuración a medio camino entre la nativa y la totalmente estirada.

• Aplicamos el test Bayesiano para evaluar la calidad de ξ y Q como coordenadas
de reacción. Sorprendentemente, ξ resulta una elección mediocre, dada la
estructura de múltiples picos en el histograma de los caminos de transición,
lo cual sugiere que la proyección es no-Markoviana. Q aparece como una
coordenada de reacción de mayor valor, al localizar el estado de transición en
un valor muy bajo de Q. No obstante no es posible determinar el camino de
desnaturalización con esta descripción simple.

• Empleamos PCA como herramienta para encontrar parámetros de orden rele-
vantes. La primera componente principal describe el sistema de manera similar
a ξ y Q, lo que implica que los modos de mayor amplitud se relacionan con
transiciones entre las configuraciones nativa, medio-estirada y estirada. La
segunda componente principal proporciona una versión más detallada del sis-
tema, con numerosas transiciones separadas por barreras de enerǵıa libre bajas.
Esto sugiere que el verdadero espacio conformacional del sistema podŕıa ser
más complejo, al estar más de un estado proyectado en valores similares de Q
y ξ.

• Construimos el modelo de Markov del sistema, que representa el conjunto de
equilibrio de nuestro sistema como una red con 13 macroestados diferentes. A
grosso modo, la estructura es la misma que la encontrada anteriormente, ya
que la red está dividida en tres regiones diferentes, la nativa, la estirada y la
medio estirada. No obstante, esta descripción permite una visión más precisa
del sistema, caracterizada por los siguientes puntos:

1. Existen dos escalas temporales diferentes involucradas en nuestro sistema.
La primera está asociada a transiciones entre los estados nativo y medio-
estirado con un tiempo caracteŕıstico de ∼ 100 ns. La segunda se asocia
a la transición de desnaturalización, con un tiempo caracteŕıstico mayor
de ∼ 10 µs.
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2. El estado nativo está compuesto por dos estados distintos separados por
una barrera considerable, lo cual les otorga un papel cinético muy difer-
ente. El primero está relacionado con las transiciones rápidas al estado
medio-estirado, mientras que el otro con transiciones entre diversos in-
termediarios, que conducen al estado desnaturalizado.

3. Encontramos dos estados intermediarios reales, que conectan las configu-
raciones nativas con la estirada. F́ısicamente, ambos implican la ruptura
del núcleo hidrófobo de la protéına.

• Aplicando Transition Path Theory somos capaces de calcular los caminos de
desnaturalización que sigue el sistema. Esta transición no ocurre a través de
una única ruta bien definida, sino más bien a través de un conjunto de caminos
de transición. Existen dos rutas principales, impulsadas por cada uno de los
dos intermediarios mencionados anteriormente.

• La configuración medio-estirada tiene un papel despreciable en el mecanismo
de desnaturalización, al participar en tan sólo una pequeña fracción del flujo
de desnaturalización.

En esta parte hemos aplicado algunos de los métodos de análisis existentes para
comprender simulaciones moleculares. Las representaciones de baja dimensión son
capaces de proporcionar descripciones globalmente correctas, donde su principal
virtud es tanto la simplicidad como su descripción intuitiva. Los modelos de Markov
son métodos de análisis más sofisticados, capaces de representar el paisaje de enerǵıa
libre de una manera fácilmente comprensible. Permiten la identificación sencilla de
la estabilidad de los estados, aśı como de las tasas de transición entre mı́nimos de
enerǵıa libre. Asimismo, permiten un cálculo directo de los caminos que conectan
dos subconjuntos de estados de la red, y por tanto de los mecanismos de plegado o
desplegado.

Las descripciones unidimensionales no son capaces de explicar de manera ade-
cuada nuestro sistema, dada la multiplicidad de estados de desplegamiento y el
solapamiento de estados conformacionales. Aśı, los modelos de Markov presentan
una visión más relevante. Dada la presencia de la fuerza externa, que simplifica la
dinámica del sistema, este hecho es sorprendente. La elección de coordenadas de
reacción más sofisticadas, probablemente mediante algún algoritmo de optimización,
proporcionaŕıan probablemente perfiles de enerǵıa libre más adecuados, donde los
estados que visita el sistema estaŕıan adecuadamente representados. No obstante,
la multiplicidad de caminos de desplegado parece ser un ingrediente incompatible
con cualquier representación unidimensional.

Parte II

En esta parte, hemos estudiado el modelo de Peyrard-Bishop-Dauxois para la molécula
de DNA mediante tres aplicaciones diferentes. Podemos enumerar los principales
logros de la siguiente manera:

1. Modificamos el modelo de PBD para incorporar una barrera que tuviese en
cuenta los efectos del solvente. Esta barrera mejora los resultados del modelo
original de dos maneras diferentes. Por una parte, la transición de desnat-
uralización es más similar a la experimental. Reproducimos una curva de
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desnaturalización más abrupta, ya que la barrera incrementa el grado de coop-
eratividad del modelo. Por otra parte, la dinámica de la formación de burbujas
es más realista. Las burbujas duran más y son más grandes, de acuerdo con
las observaciones experimentales. Además, empleamos PCA para caracteri-
zar la transición de desnaturalización de manera novedosa. La dependencia
de los autovalores de PCA con la temperatura nos permiten identificar esta
transición como un modo que tiende a cero.

2. Proponemos una modificación del modelo original de PBD para introducir una
part́ıcula o protéına genérica que interacciona con las burbujas del DNA. Este
modelo está inspirado en los mecanismos de interacción protéına-DNA, por
los cuales ciertas protéınas se acoplan a las propiedades f́ısicas de la molécula.
Aplicamos este modelo a tres promotores diferentes, ya estudiados en otros
trabajos con el modelo de PBD. Dos de ellos son promotores fuertes y el otro
débil, en términos de expresión de RNA. El modelo se comporta de manera
satisfactoria, ya que la dinámica de la part́ıcula se acopla a las de los pares de
bases, consiguiendo burbujas más duraderas, en consonancia con las escalas
biológicas. En los tres promotores analizados, los sitios más relevantes están
correlacionados con regiones de relevancia biológica, tales como el sitio de
inicio de la transcripción. Asimismo, encontramos diferencias relevantes entre
la estructura del paisaje de enerǵıa libre de los promotores fuertes y débiles.
Los promotores fuertes tienen unos pocos estados que atraen la mayor parte de
la dinámica, caracterizados como cuencas de enerǵıa libre profundas. Por otro
lado, el promotor débil muestra una estructura más distribuida, con varios
estados de población intermedia.

3. Aplicamos el modelo y método de análisis anterior a nueve secuencias de pro-
motores de un organismo en particular, la cianobacteria Anabaena PCC7120.
La relevancia de este estudio es que dichos promotores no han sido analizados
previamente con el modelo de PBD. Nos centramos en la identificación del sitio
de inicio de la transcripción. Adicionalmente, algunos de estos nueve promo-
tores tienen más de un sitio de inicio de la transcripción. De esta manera,
nuestro método puede usarse para proporcionar una comparación cuantitativa
entre ellos, correlacionándola con el conocimiento biológico de que disponemos.
Nuestro análisis nos aporta información de valor sobre los nueve promotores,
ya que los sitios de inicio de la transcripción son identificados en todos ellos
como estados de relevancia en la dinámica del modelo. La importancia rel-
ativa entre dichos promotores con varios sitios de inicio de la transcripción
muestra una correlación con su papel biológico. El modelo identifica además
más sitios probables de unión para factores de transcripción, que en algunos
casos aparecen en regiones t́ıpicas para organismos procariotas, como la −10
o −35.

Este trabajo explota una de los aspectos más controvertidos de modelo de PBD,
la relación entre la formación de burbujas y la presencia de sitios de unión en secuen-
cias de promotores. Nuestro estudio supone un paso más en este punto, al incluir el
ingrediente activo de este proceso, la protéına que se difunde a lo largo de la cadena
de DNA. En el primer trabajo escogemos promotores ya analizados en un contexto
similar, de manera que la identificación de sitios de unión no supone ningún logro
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particular. Gracias al método de análisis, somos capaces de caracterizar de una
manera global el paisaje de enerǵıa libre del sistema. En el caso de los promotores
de cianobacteria, aplicamos el modelo por primera vez en ellos, siendo los resultados
satisfactorios. Si interpretamos el modelo y método como un procedimento para
analizar secuencias de promotores, hemos relacionado el sitio de inicio de la tran-
scripción con regiones que se abren con mayor facilidad. Asimismo, la probabilidad
de estos estados se relaciona con la “fuerza” biológica de los promotores. Obvia-
mente, en ningún momento concluimos que la formación de burbujas sea la causa
de la unión de protéınas a la molécula de DNA, pero nuestro estudio muestra una
cierta correlación entre ambos fenómenos.

Parte III

En esta parte presentamos una colaboración experimental, en la cual analizamos
experimentos de DFS-AFM para la disociación mecánica de dos complejos diferentes
protéına:protéına. El objetivo es la recuperación de la barrera de enerǵıa libre
y la enerǵıa libre de disociación. Asimismo, proponemos un modelo para dicho
proceso, el cual nos permite realizar simulaciones numéricas para reproducir los
datos experimentales, sobre los cuales podemos aplicar el mismo método de análisis.
Los principales resultados conseguidos son:

• Proponemos un método sistemático y robusto para extraer de manera inde-
pendiente la barrera de enerǵıa libre, aśı como la enerǵıa libre de disociación
a partir de experimentos de DFS. Extraemos valores relevantes para ambas
magnitudes, de acuerdo conn el valor de calorimetŕıa de la enerǵıa libre de
disociación conocido para ambos complejos.

• Encontramos que las barreras de enerǵıa libre son menores que sus respectivas
enerǵıas libres de disociación. Este problema aparece de manera recurrente en
la disociación de complejos biológicos, de manera que los perfiles de enerǵıa
libre convencionales no son adecuados para representarlos.

• Proponemos un nuevo perfil de enerǵıa libre que tenga en cuenta dicha dis-
crepancia. Este perfil está caracterizado por dos regiones desacopladas, una
primera abrupta y una segunda suave.

• Realizamos simulaciones sobre un modelo fenomenológico basado en dicho
perfil permiten reproducir los datos experimentales. La aplicación del mismo
procedimiento de análisis en las simulaciones recuperan de manera exitosa
ambas magnitudes de enerǵıa libre.

La idea central de este trabajo es que el perfil de enerǵıa libre que gobierna la
disociación mecánica de complejos biológicos está caracterizada por dos regiones a
diferente escala. La primera es abrupta y determina el comportamiento promedio.
La segunda es suave y domina sobre los escapes a baja fuerza, explicando la aplicabil-
idad del protocolo de análisis empleado. Desde un punto de vista fenomenológico,
esta primera región está asociada con interacciones espećıficas de corto alcance,
mientras que la segunda con interacciones no espećıficas entre ambas moléculas.
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Perspectivas futuras
El trabajo realizado a lo largo de esta Tesis Doctoral plantea numerosas preguntas
que pueden motivar trabajos futuros. Enumeramos algunas de estas perspectivas,
relacionadas con cada uno de los tres bloques tratados:

Parte I

La metodoloǵıa aqúı presentada es de amplia aplicación, no sólo en el campo de la
simulación molecular. Una continuación natural de este planteamiento es la apli-
cación al estudio de distintos sistemas con técnicas similares. Un planteamiento
posible es el análisis del plegamiento de distintos tipos de protéınas empleando mod-
elos a todos los átomos. En concreto, seŕıa interesante comparar la topoloǵıa de las
redes de Markov para protéınas que pliegan en dos estados con aquellas que pliegan
sin barrera (downhill folders). Las diferencias en su perfil de enerǵıa libre unidimen-
sionales son bien conocidas, si bien no tanto la estructura de su paisaje de enerǵıa
libre.

Respecto al modelo de protéına estudiado, hemos explorado solamente su mecan-
ismo de desplegado. Un problema interesante es la conexión entre la desnatural-
ización mecánica y la térmica. Las técnicas de manipulación de moléculas individ-
uale modifican su paisaje de enerǵıa libre. De esta manera, el comportamiento bajo
fuerza podŕıa tener poco interés en relación con su comportamiento in vivo. Un
proyecto inmediato consiste en simular la desnaturalización térmica para la misma
protéına modelo y realizar un análisis análogo, que permita una comparación entre
ambos paisajes. Esto posibilitaŕıa buscar caracteŕısticas comunes, como la preva-
lencia de la configuración medio-estirada, y su posible papel en el mecanismo de
desplegado.

Parte II

El modelo de PBD ha sido estudiado ampliamente por numerosos investigadores
con propósitos diversos. Nuestro trabajo muestra una herramienta interesante para
el análisis de secuencias de promotor. Su valor no radica en su eficiencia, sino en
su modelado del proceso f́ısico y en su habilidad para cuantificar posibles sitios de
unión. Naturalmente, una continuación directa es su aplicación a otras secuencias
de promotores, particularmente si están bien caracterizadas desde un punto de vista
biológico.

El modelo de protéına-DNA propuesto considera una protéına general que inter-
acciona con las burbujas formadas en el DNA. Este planteamiento podŕıa inspirar
modelos de interacción para otro tipo de protéınas que operen a escala similar. Una
de las principales candidatas son las helicasas, que emplean la enerǵıa del ATP para
abrir una burbuja y desplazarla a lo largo de la molécula de DNA. El principal ingre-
diente a incluir en este modelo es la asimetŕıa en el desplazamiento de la protéına.
Ésta debeŕıa estar relacionada con el consumo de enerǵıa, transformando el modelo
en uno de motores moleculares a nivel mesoscópico. Los efectos de la secuencia en
la velocidad del motor, aśı como su eficiencia seŕıan sencillos de comprobar con esta
propuesta. Actualmente estamos desarrollando este proyecto con objeto de llegar a
resultados concluyentes a corto plazo.
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Parte III

Hemos presentado un modelo y un método de análisis general para la disociación
de complejos biológicos. De esta manera, su aplicación a este tipo de sistemas es de
utilidad directa. Esto serviŕıa no sólo para validar el método y la relevancia de este
perfil de enerǵıa libre, sino también para comprobar si la discrepancia encontrada
es general y está fundamentada en el origen f́ısico que argumentamos.

Otra manera para comprobar la forma de este perfil de enerǵıa libre es mediante
simulaciones de dinámica molecular. La reconstrucción de este tipo de perfiles es
hoy en d́ıa relativamente directa, dada la disponibilidad de técnicas de enhanced
sampling aśı como la eficiencia con la que están implementadas en la mayoŕıa de
los paquetes de simulación. Una descripción con resolución atómica de este pro-
ceso nos proporcionaŕıa un conocimiento detallado del mecanismo de disociación,
permitiéndonos explorar el origen de estas dos regiones desacopladas. Asimismo,
supondŕıa una conexión interesante entre las simulaciones de dinámica molecular y
los resultados experimentales.

239



240



Bibliography

[1] Erwin Schrodinger. What is Life? Cambridge University Press, 2012.
[2] David L. Nelson, Albert K. Lehninger, and Michael M. Cox. Lehninger Prin-

ciples of Biochemistry. New York: W. H. Freeman, 2008.
[3] L. Pauling, R. B. Corey, and H. R. Branson. “The Structure of Proteins:

Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain”. In:
Proc. Natl. Acad. Sci. USA 37.4 (1951), pp. 205–211.

[4] C. B. Anfinsen. “Principles that govern the folding of protein chains”. In:
Science 181.4096 (1973), pp. 223–230.

[5] Cyrus Levinthal. “Are there pathways for protein folding?” In: Journal de
Chimie Physique et de Physico-Chimie Biologique 65 (1968), pp. 44–45.

[6] David J. Wales. Energy Landscapes. Cambridge University Press, 2003.
[7] Robert Zwanzig, Attila Szabo, and Biman Bagchi. “Levinthal’s paradox”. In:

Proceedings of the National Academy of Sciences 89 (1992), pp. 20–22.
[8] K. Dill and H. S. Chan. “From Levinthal to pathways to funnels”. In: Nat.

Struct. Biol. 4.1 (1997), pp. 10–19.
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[119] M. Peyrard, S. Cuesta-López, and D. Angelov. “Experimental and theoreti-
cal studies of sequence effects on the fluctuation and melting of short DNA
molecules.” In: J. of Phys.: Condens. Matter 21.3 (2009), p. 034103.

[120] E. Giudice, P. Várnai, and R. Lavery. Base pair opening within B-DNA: Free
energy pathways for GC and AT pairs from umbrella sampling simulations.
2003.

[121] B. S. Alexandrov et al. “A nonlinear dynamic model of DNA with a sequence-
dependent stacking term”. In: Nucleic Acids Res. 37.7 (2009), pp. 2405–2410.
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