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Resumen

A lo largo de los ultimos 40 afos, las diferentes misiones del proyecto Landsat han
proporcionado una gran cantidad de informacion espectral sobre la superficie terrestre. Las
imagenes obtenidas por estos satélites se caracterizan por una resolucién espacial de tipo
medio, bandas espectrales situadas en diferentes regiones del espectro electromagnético

(Opticas y térmicas) y una amplia cobertura terrestre.

Si bien las bandas del 6ptico han sido utilizadas con éxito en numerosas aplicaciones, el
uso del térmico ha sido mucho mas limitado, a pesar de la gran importancia que representa el
pardmetro de la temperatura de superficie para numerosas aplicaciones ambientales,
especialmente para aquellas relacionadas con la modelizacion de los flujos de energia en el

sistema suelo-vegetacion-atmasfera y con el cambio global.

En este contexto, el objetivo principal de la presente investigacion es explorar el potencial
de la temperatura de superficie terrestre (siglas en inglés - LST), derivada de imagenes
Landsat, en el estudio de ecosistemas heterogéneos, concretamente (i) areas afectadas por los
incendios forestales y (ii) ecosistemas de dehesa,formaciones constituidas por los arboles

dispersos y pastizal/cultivos.

En primer lugar, en el marco del proyecto BIOSPEC “Linking spectral information at
different spatial scales with biophysical parameters of Mediterranean vegetation in the
context of Global Change” (http://www.lineas.cchs.csic.es/biospec) se comparan las
diferentes metodologias disponibles para la estimacion de la LST a partir de la banda térmica
de Landsat. Los mejores resultados, en condiciones atmosféricas caracterizadas por niveles
medios de contenido de vapor, se obtuvieron usando el método mono-banda (en inglés -

SingleChannel) (Jiménez-Mufoz et al., 2003), con un error de estimacion menor de 1 K.

En el siguiente paso de la investigacion la informacion sobre la distribucion de LST
derivada del sensor Thematic Mapper se utilizo en el analisis de la severidad del fuego en una
zona forestal de Las Hurdes(Extremadura, Espafia), y en el estudio de los efectos ocasionados
por los diferentes tratamientos post-incendio en una zona quemada, esta vez localizada en los

Montes de Zuera (Zaragoza, Espafa).


http://www.lineas.cchs.csic.es/biospec

En relacion con la severidad del fuego analizada en diferentes fechas post-incendio, se han
detectado diferencias estadisticamente significativas entre los valores de LST
correspondientes a las categorias de severidad establecidas a partir del indice espectral ANBR
(Key y Benson, 2006).Los niveles de LST mas elevados se observaron en las zonas donde la
severidad del fuego fue mayor, debido a la menor emisividad de los productos de combustion

y los cambios en el balance de energia relacionados con la ausencia de vegetacion.

En cuanto a las consecuencias de los tratamientos de madera quemada en la regeneracion
vegetal, se han observado diferencias estadisticamente significativas entre las areas
intervenidas y no intervenidas. En este sentido, en las areas no intervenidas se registraron
valores de LST ~1 K mas bajos y niveles de recubrimiento vegetal ~10% mas altos que en las

intervenidas.

En otro &mbito de aplicacion, los datos de LST obtenidos mediante imé&genes de Landsat-
5 TM (periodo 2009-2011), se utilizaron en el analisis de los patrones espacio-temporales de
la LST vy su relacion con el grado de ocupacién de la fraccion arborea en ecosistemas de
dehesa. Se ha detectado una relacion negativa entre la LST y la cobertura arboérea, con

diferencias a nivel estacional debido al dinamismo del ciclo fenoldgico del pastizal.

Los resultados de la investigacion permiten afirmar que la LST puede ser obtenida
mediante las imagenes Landsat con el error alrededor de 1 K, aceptable para modelizacién de

procesos en los ecosistemas mediterrdneos heterogéneos.



Abstract

Landsat missions have been providing spectral data for research of land surface processes
for more than 40 years. Landsatprovides global coverage with multispectral images, which

include optical and thermal bands at the medium spatial resolution.

While optical bands have been successfully used in a wide range of applications, the use
of thermal data has been much more limited, in spite of a great importance of land surface
temperature (LST) for environmental applications, especially those related to modeling

energy fluxes in soil-vegetation-atmosphere systems and terrestrial global change research.

In this context, the main goal of this research is to explore the potential of Landsat-derived
LST in heterogeneous ecosystems of (i) the areas affected by wildfire burns and (ii) tree-grass

woodlands (Spanish dehesas).

First, different methods currently used for LST estimation from Landsat thermal bandare
compared in the frame of BIOSPEC “Linking spectral information at different spatial scales
with biophysical parameters of Mediterranean vegetation in the context of global change”
project (http://www.lineas.cchs.csic.es/biospec). The best results with an error below 1 K
were obtainedusing Single Channel method (Jiménez-Mufioz et al., 2003) in atmospheric
condition characterized by low/moderate levels of atmospheric water content.

Next, data on LST distribution derived from the Thematic Mapper sensorwere used in
assessment ofburn severity in the Las Hurdes forest burn (Extremadura, Spain) and in analysis

of effects of different post-fire treatments in the Montes de Zuera burn (Zaragoza, Espafa).

In respect of burn severity analyzed at different moments after the fire, statistically
significant differences in LST have been detected between burn severity categories
established based on ANBR spectral index (Key y Benson, 2006).Higher LST levels were
observed in zones of greater fire severity, due to the lower emissivity of combustion products
and changes in the energy balance related to vegetation removal.

In regard to the consequences of post-fire wood treatment on vegetation
recovery,statistically significant differences wereobserved between the intervened and not
intervened areas two years.Thus, LST registered in the not intervened areas were on average 1

°C lower and vegetation cover was 10% higher than in the intervened zones.



Besides, LST data retrieved fromLandsat 5 TM images acquired between 2009 and 2011
were used in analysis of relation between spatio-temporal patterns of LST and the tree cover
in ecosystems of dehesa. Negative relation has been detected between LST values and the
levels of tree cover linked to the seasonal dynamicsof pasture fenology.

Based on the results it is possible to affirm that LST can be retrieved from Landsat images
with an error closet to 1 K, which is acceptable for modeling surface processes in

heterogeneous ecosystems of Mediterranean.
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CHAPTER 1. Background, objectives and structure

1. Background, objectives and structure

Land surface temperature (LST) plays a crucial role in land surface processes and is
included in the list of high-priority parameters of the International Geosphere and Biosphere
Program (IGBP) (Townshend et al., 1994). The link between LST and surface environmental
variables is the surface energy balance equation.

LST is related to the transport of heat between the land surface and the atmospheric
boundary layer (Kustas and Anderson, 2009), and makes possible estimation of sensible heat
flux (Jia et al., 2001) and latent heat flux, or evapotranspiration (Anderson et al., 2012).
Energy absorption and emission by atmospheric water vapor, clouds and greenhouse gases
affect radiative balance. The increased concentrations of some of these gases, such as CO»,
contribute to the climate change. Continuous LST monitoring on a global scale is necessary
for characterization of such changes in climate and explains an increased interest in
operational LST estimation.

LST provides information about variations of the surface equilibrium state and is vital for
many applications (Kerr et al., 2004). Thus, LST is a key input to models in hydrology
(Ambast et al., 2008; Liang, 2004), climate (Wild, 2005), weather forecast (Van Den Hurk et
al, 2002) and ecology (Gamon et al., 2004) at multiple scales. LST influences all the stages of
plant development and is an indicator of vegetation health (Moran, 2004; Zarco-Tejada et al.,
2003), due to a close relation between the canopy temperature and hydric stress which causes
plant stomata closure. Being an indicator of vegetation water content, LST is one of the
variables used for fire danger evaluation in forest environments (Chuvieco et al., 2004; Garcia
et al., 2008): areas having lower water content present greater probability of fire ignition and
propagation. LST can also serve as a proxy of air temperature, assuming that the temperature
of a full cover canopy approaches the temperature of the air within the canopy (Prihodko and
Goward, 1997; Nieto et al., 2011).

Local modeling relies heavily on field data, while at the regional and global scales remote
sensing has become the main source for LST data retrieval. The history of temperature
measurements from remote platforms began in the late 50s (King, 1956) and the first remote
measurements of LST were performed by Television and Infrared Observation Satellite in
1960s (TIROS) (Bandeen et al., 1961). However, regular acquisition and distribution of LST
data has been established at the beginning of the 1980s (Price, 1984).

Last decades have seen a considerable increase in the use of remote sensing for estimation

of land surface biophysical properties (Houbourg et al., 2011; Kalma et al., 2008). Satellite-
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derived LST is among the products most required for operational monitoring of land surface
systems (Townshend and Justice, 2002).Because LST is highly variable in space and time,
ground measurements cannot adequately characterize its temporal and spatial distribution.
Moreover, remote sensing overcomes the limitations imposed by sparse networks of
meteorological and ground-based monitoring stations, particularly in areas having harsh
climates (Westermann, 2011) or difficult access (Neteler, 2010). One more advantage of
remote sensing is the possibility of obtaining homogeneous and continuous data over big
areas at spatial and temporal resolution suitable for various application types. It also provides
a framework for coupled modeling approaches to energy, carbon and water exchange studies
(French et al., 2000), and has a potential for data integration through upscaling and
downscaling (Gamon et al., 2004).

The current state-of-the-art of surface temperature retrieval allows quantification of the
atmospheric and surface effects fairly well. However, the approach has achieved a routine
performance only for the sea surface temperature (SST) estimation (McMillin, 1975). At
present, the reported accuracy of SST retrieved from MODIS data made available by a fully
operational schemeis about 0.26°C. However, estimation of LST resulted more complicated. It
is generally accepted that to be useful for studying surface systems and processes at regional
and local scale, LST should be retrieved with accuracy of 1 K or better. It is quite a challenge
because compared to the oceans where most of the surface is covered with water, land cover
types present different structure, composition and dynamics posing additional challenges to
LST estimation.

Main difficulties for LST can be summarized in the following way: (i) surface-emitted
radiance is altered by atmosphere before reaching TOA sensors; (ii) a direct separation of
temperature from surface radiance is not possible because of the problem indetermination: for
a sensor with N spectral channels, there are N measurements but N+1 unknowns (i.e. N
spectral emissivities and the surface temperature). Therefore, the corresponding system of
equations has no unique solution. The combined effect of atmospheric perturbations and
varying emissivity increases the difficulty. For resolving this ill-posed problem, additional
assumptions are necessary to constrain the extra degree-of-freedom. (iii) LST validation is
also a challenge: while LST derived from remote sensing images is representative for the
whole pixel, it is not true for the point temperature measurements which can vary over short
distances (Prata et al., 1995). It is not unusual for LST to vary by more than 10 K over just a

few centimeters of distance or by more than 1 K in less than a minute over certain cover



CHAPTER 1. Background, objectives and structure

types. Hence, a field validation is possible only for homogeneous areas, such as dense
vegetation or desert, for other areas validation is performed using simulated data or accuracies
are inferred from results of field validation over homogeneous areas, such as lakes, deserts,
and densely vegetated (Coll et al., 2009; Hook et al., 2004).

Over last decades techniques for measuring surface temperature from remote sensing data
have improved in terms of method, instrumentation and computation efficiency. Satellites
providing global data from the thermal region of the spectrum at different scales include
MODIS (Wan et al., 2004) and Spinning Enhanced Visible and Infrared Imager (SEVIRI)
(DaCamara, 2006). These satellites,for which LST products are available on a regular basis,
are characterized by low spatial and high temporal resolutions. At the medium spatial scale
Landsat has provided global brightness temperatures since 1984, with Landsat 8 launched at
the beginning of 2013 giving continuity to the data record (Roy et al., 2014). Landsat can
provide LST at a spatial detail much higher than MODIS, but only once in 16 days compared
to daily image acquisition by MODIS. Thus, integration of the data from these two satellites
would be highly beneficial given the spatial resolution of the former and the temporal
resolution of the latter. However there are still challenges and persisting uncertainties related
to the use of Landsat for LST estimation, especially in heterogeneous environments (Cleugh
etal., 2007).

In this context the research goal of this thesis is to explore the applicability of Landsat-
derived land surface temperature in the study of heterogeneous Mediterranean ecosystems
resulting from wildfire and traditional agrosilvopastoril management (dehesa).The main

objective was approached through the work on four specific objectives:

(1) Compare single band algorithms for LST estimation from satellite images in

Mediterranean ecosystems with partial tree cover (dehesa);

(2) Analyze spatio-temporal patterns of Landsat LST in Mediterranean forests affected by

wildfires and its relationship with burn severity;

(3) Study the effects of different post-fire wood treatments on vegetation recovery
(through NDVI) and LST;

(4) Analyze spatio-temporal patterns of Landsat LST in Mediterranean tree-grass

ecosystem (dehesa) and their relationship with vegetation fenology.
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The thesis contains eleven chapters. Chapter 1 presents the scientific context of research
and its objectives. Chapter 2 reviews the basic theory andmethods used for LST estimation
from remote sensing data. Chapter 3 describes study area, while Chapter 4 gives details on
data and materials used in the study. Chapters 5 presents the methods applied to achieve
research objectives. Chapters from 6 to 9 constitute the body of the research in form of the
original versions of the published articles. Finally, Chapters 10 and 11 summarize the most
relevant results and future research in English and Spanish, respectively. The Thesis also
includes the sections of References for Chapters 1-5 and Appendices, which include
information on contribution of the PhD student to the published papers and documents

certifying that the four presented articles are authorized for the exclusive use in this thesis.
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2. LST estimation from remotely-sensed data

2.1. Basic theory

Temperature is the measure of internal energy (Kinetic heat) of the object expressed in
units or degrees at a standard scale. This temperature also referred to as thermodynamic
temperature can be measured with thermometers. Objects with temperature above absolute
zero emit electromagnetic energy converted from internal kinetic heat. Blackbody, which is
an ideal energy absorber, is also an ideal emitter (Howell et al., 2010). The relationship
between surface temperature and the spectral radiance emitted by the blackbody is described
by Planck’s law.

The blackbody temperature is known as brightness temperature. Because natural objects
are not perfect emitters and do not behave as blackbodies, it is necessary to take into account
their emissivity (Li et al., 2013b), which is defined as the ratio between the target’s emitting
capacity and that of a blackbody at the same temperature. Brightness temperature corrected
for emissivity is known as radiometric temperature.

Radiance emitted by the surface can be registered by remote sensing and is used to
estimate LST. Earth emits radiance in thermal infrared region of the electromagnetic spectrum
at the wavelengths between 3um and 14 pm (Tang and Li, 2014). At an average temperature
of about 300 K Earth’s peak of electromagnetic emittance is located in the thermal
infrared(TIR) domain at about 9.7 pum. It is possible to use remote sensing devices to detect
infrared energy in these regions because the atmosphere allows a portion of the infrared
energy to be transmitted from the terrain to the detectors. To avoid water vapor (H,0), carbon
dioxide (CO,), and ozone (O3) absorption bands satellites usually record thermal infrared data
in the region from 10.5um to 12.5 pm (Jensen, 2009).

Sensors on remote platforms register solar radiation reflected and emitted by the Earth
surface, as well as radiation scattered and emitted by the atmosphere. The proportion of
radiation affected by each of these processes in the signal registered by the sensor depends of
the spectral region: reflection dominates in the optical region of the spectrum with
wavelengths in the range of 0.4 — 3.0 um, while Earth-emitted energy dominates in the TIR
range (3.0 — 14.0 um). Because emitted radiation is related to the object temperature (Stefan-
Boltzman law) LST can be estimated from the remotely-sensed thermal signal using radiation
transfer equation.

LST estimated from remote sensors is the “surface radiometric temperature” (Li et al.,

2013a). When a surface is homogeneous and isothermal, its radiometric temperature is equal

5
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to thermodynamic temperature. Otherwise, those temperatures are different, and surface
temperature estimated from remote sensors is not equivalent to the temperature measured by a
thermometer. Moreover, ground-based radiometric point measurements cannot provide LST
estimates on a pixel scale. Even in high-resolution remote sensing images a pixel can include
various surface types with different temperatures and emissivities, which presents additional

challenge for interpretation of the retrieved LST.

2.2. Radiative Transfer Equation
Earlier explanation makes it clear that LST cannot be directly measured with remote
sensors and is derived from the surface-emitted thermal radiance. The greatest difficulty of
the process consists in estimation and correction of signal distortion due mainly to the energy
absorption by atmospheric water vapor (Song et al., 2001) and the need to take into account
differences in thermal emitting capacity of earth landcovers (Valor and Caselles, 1996). The
required corrections can be realized using algorithms based on Radiative Transfer Equation
(RTE) applied to the thermal infrared region of the electromagnetic spectrum:
Lsensor = T€B(Ts) + L, +7(1 — €))Ly (1)

where Lgensor IS at-sensor radiance, B — Planck law, Tsis the land surface temperature (LST),
L, and Lgare upwelling and downwelling atmospheric radiances, respectively, t is

atmospheric transmittance and ¢ is land surface transmissivity.

When B(Ts) is known, the land surface temperature can be calculated by inversion of
Planck’s law:

— C2
Ts

=7 2
]Lln(agiT+1>

where Ts is the land surface temperature (LST) in K, ¢; (1.19104 x 108 W um * m2 sr'!) and
c (1.43877 x 10* um K) are calibration constants, and A=11.457 pm is an effective
wavelength for the Landsat-5 TM thermal band (Jiménez-Mufioz and Sobrino, 2003).

2.3. Methods for LST estimation from multispectral images
Since thermal satellite data became available researchers have tested various approaches
for LST estimation. Recent review of existing algorithms presented in Tang and Li (2014)

updates and complements earlier surveys (Dash et al., 2002; Li et al., 2013a; Prata et al.,
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1995). Currently used algorithms can be roughly grouped in single channel, multi-channel and
multi-angle algorithms, all requiring an a priori knowledge of surface emissivity. There are
also methods using techniques different to those already mentioned (e.g. Becker and Li, 1990;
Sun and Pinker, 2003). In each particular case the choice of the method depends on the
availability and characteristics of images and ancillary data and the required quality of the

results.

2.3.1. Single-channel methods

There are several methods successfully used for LST estimation from a single band.
Among the commonly used procedures are a direct inversion of the Radiative Transfer
Equation (RTE), mono-window method (Qin et al, 2001) and a single-channel algorithm
(Jiménez-Mufioz and Sobrino, 2003).

LST can be obtained through a direct inversion of RTE using Planck’s law. In this case it
is necessary to know parameters characterizing atmospheric conditions at the moment of
satellite overpass, which can be calculated from atmospheric profiles and radiative transfer
codes (models). It is possible to obtain this information through the on-line web tool
developed and implemented by Barsi et al. (2003).

Other two methods often used for LST retrieval from the unique thermal band are ETR
approximations which avoid dependence on actual atmospheric profiles. Mono-window
method (Qin et al, 2001) incorporates calculation of two empirical coefficients based on the
atmospheric water content and near-surface air temperature, while single-channel method
(Jiménez-Mufioz and Sobrino, 2003) requires only knowledge of atmospheric water content to
compute three atmospheric functions. Both algorithms are capable of obtaining LST with
errors close to 1 K for clear-sky images when water vapor content in the atmosphere is in the

range of 0.4 g/cm? and 2.5 g/cm?.

2.3.2. Multi-channel methods

Multi-channel method also known as split-window algorithm uses radiances in two
thermal bands with different atmospheric absorption to estimate the effect of atmosphere on
the signal. The technique was first proposed by Anding and Kauth (1970);it was applied for
estimating surface temperatureof sea/ocean (e.g., Njoku, 1985) and land (e.g., Sobrino et al.,
2006). The method is based on the fact that atmospheric attenuation of the signal is
proportional to the difference of the radiances simultaneously measured in two thermal

channels. Algorithm adapted for LST estimation by Sobrino et al. (1991) along with
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atmospheric attenuation due to water vapor absorption, also estimates the effect of much
greater heterogeneity of land surface emissivity on LST. The errors reported by researchers
who applied split-window method for LST estimation from several multi- and hyperspectral
sensors is ~1 K (Li et al., 2013a; Sobrino et al., 2006).

2.3.3. Multi-angle methods

Multi-angle algorithm is based on the same principle as the split-window method, but the
differences in absorption are due to the differences in signal path on its way to the sensor
registered in the images taken at different angles (Chedin et al., 1982). Assuming that
emissivity does not vary if the difference in the viewing angles is less than 60°, Prata (1993)
has developed dual-angle method for ATSR. Sobrino et al. (1996) improved the method
through incorporation of spectral and angular variations of land surface emissivity. However,
besides the assumption that atmospheric profiles maintain spatial uniformity, the algorithm
requires that the radiances registered at the two angles have significantly different paths,
otherwise the algorithm becomes unstable (Prata, 1993). Moreover, one more condition is the
knowledge of the anisotropy of the radiance due to the surface structure, which is very

difficult to satisfy.

2.4. Emissivity estimation

LST estimation requires precise knowledge of land surface emissivity (LSE), which is an
intrinsic characteristic of material composition. Because land surface is heterogeneous its
emissivity range is greater than that of the oceans; it varies with landcover type, surface
moisture, roughness, and viewing angle (Salisbury and D'Aria, 1992; Sobrino et al., 2008).
Surface emissivity is a critical variable for separation of surface influence and that of the
atmosphere in LST retrieval. Recent review by Li et al. (2013b) and Tang and Li (2014)
present a detailed explanation of proposed methods for emissivity estimation grouped in
multi-channel, physically-based and semi-empirical methods. For example, the temperature-
emissivity separation method (TES) (Gillespie et al., 1998) requires at least 4-5 infrared (IR)
channels within 10-12 nanometers. It uses an empirical relationship to predict the minimum
emissivity from the spectral contrast of the ratioed values and recover the emissivity
spectrum. Another attractive solution is to use one of the physical methods based on spectral
indices almost independent on LST, such as a method of temperature independent thermal
infrared spectral indices (TISI) (Becker and Li, 1990). It is obvious that neither TES, nor TISI

can be employed to estimate LST from sensors with one thermal band.
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On the contrary, semi-empirical methods based on either land-cover information (Peres
and DaCamara, 2004; Snyder et al., 1998) or NDVI do not have this limitation. Classification-
based methods work well with high-resolution imagery when each of the pixels can be
unambiguously assigned one of the established classes. However, the performance is
hampered when dealing with images of medium or coarse spatial resolution because most of
the pixels present a mixture of different landcover classes with contrasting emissivity levels
(Snyder et al., 1998). Methods for emissivity estimation based on NDVI use direct links
between emissivity and NDVI (Van de Griend and Owe, 1993), or exploit the relationship
between surface emissivity, the amount and structure of vegetation, and surface roughness
(Sobrino and Raissouni, 2000; Valor and Caselles, 1996). The empirical expression
suggested by Van de Griend and Owe (1993) is often used (e.g. Liu and Zhang, 2011)
because of simplicity. On the other hand, the equation of Valor and Caselles (1996) is more
general and supported by a theoretical model validated under differing environmental
conditions. Valor and Caselles (1996) showed that emissivity depends on surface structure,
the components contributing to emissivity (soil and vegetation), and the viewing geometry.
They also demonstrated that there is no universal relationship between emissivity and NDVI,
and hence the same equation cannot be applied to areas having dissimilar characteristics.
Validation experiments conducted in Mediterranean areas have confirmed the applicability of
the model to heterogeneous, fully vegetated or bare soil areas, as well as for areas where more

than one vegetation type or more than one soil type are present (Sobrino et al., 2008).

2.5. Atmospheric correction of optical bands

When emissivity estimation is basedon NDVI, it becomes necessary to perform
atmospheric correction of optical bands involved in the index calculation, i.e. red and near-
infrared. Because the effect of the atmospheric scattering and absorption on the signal
depends on the wavelength, methods of atmospheric corrections of the radiances in the optical
region are different from those applied for correction of the thermal spectral region.

Atmospheric correction methods can be relative and absolute (Thome et al., 1997).
Relative atmospheric correction methods avoid estimation of atmospheric parameters. In this
case reflectivity is compared with that of the reference pixels in the image. For example,
Empirical Line Correction requires selection in the scene and spectral characterization of two
pixels with contrasting radiances used as calibration standards, i.e. it assumes previous
familiarity with each of the selected locations. Empirical correction compares image radiance

values with those of the spectral standards calculating correction coefficients for each band,
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which are later applied to all the pixels in the corresponding band. When no field radiometric
data are available the reference spectra are obtained from the spectral libraries. This method
cannot be applied when there is no previous knowledge on spectral properties of landcover
types present in the image.

Dark Object Subtraction method is another method successfully applied to correct the
effects of atmospheric attenuation (Chavez, 1996; Song, 2001). The method assumes that
black objects do not reflect light and, therefore, radiance values they present result from
atmospheric scattering. These radiance values are subtracted from the radiances of all the rest
of the scene pixels. The method is relatively easy to apply and uses only image data for
correction.

More sophisticatedabsolute atmospheric correction methods use radiation transfer codes
(e.g. LOWTRAN, MODTRAN, 6S) for modeling optical properties of the atmosphere under
conditions observed at the moment of image acquisition removing the effects of atmospheric

absorption and scattering, as well as those caused by observation geometry.

2.6. LST validation

The final challenge in LST retrieval is its validation. The main difficulty is to be able to
obtain ground measurements which are synchronous with image acquisition and
representative of at the image scale because of great temporal and spatial LST fluctuations.
Existing approaches to LST validation include temperature-based, radiance-based and cross-
validation methods (Li et al., 2013a). In temperature-based method retrieved LST values are
compared to those obtained by ground sensors. Measurements are taken in areas
homogeneous at the pixel scale or representative of the landcover components (e.g. grass,
sun-lit tree canopy, tree shadows, and bare soil).

Although comparison between satellite LST and field LST seems to be the most obvious
validation method, it is almost impossible to perform because of the difficulty in locating of
the suitable areas. Thus, regional and global LST is often validated using radiance-based
method, in which reference LST is simulated using radiative transfer modeling (Sobrino et al.,
2004). The success of this approach depends on the quality of the inputs: data on emissivity
and atmospheric profiles. When data on atmospheric conditions are not available, LST quality
can be assessed through cross validation, consisting in comparison of obtained LST with LST
derived from other sensors. Since sensors have different spectral, spatial and temporal
characteristics, and different observation geometry, these differences should be taken into

account.

10



CHAPTER 3. Study area

3. Study area

Research was conducted in two types of settings in central and northeastern Spain: (1)
tree-grass woodlands known as dehesas and (2) areas affected by wildfires (Figure 1).

Dehesa is an integrated agroforestry ecosystem with complex vegetation structure typical
foropen savannah. It occupies large areas on Iberian Peninsula with more than 30000 km? in
Spain (Olea et al., 2005).Dehesas developed as a result of human interaction with original
forests thinned to create areas for agricultural, and are included in the EU Directive 92/43

because of their high ecological and cultural value.

France

Las Hurdes

Portugal

Study sites

W - wildfireburns =
. AR,

Figure 1. Location of the study sites.

Figure 2. Orthophoto of dehesa study sites: (1) blue line indicates the site used for methods
assessment of LST estimation methods, and (2) red linesshow polygons (SIOSE) used in the
study of LST variability.
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The work on the first specific objective dealing with comparison of methods for LST
estimation from Landsat images was performed in a 1 km? dehesa sitenear Las Majadas del
Tietar (Lat 39°56'26"N, Long 5°46'29"W)(blue-line rectangle in Figure 2).

The area located at 400 m above sea level is flat and includes FLUXNET tower operated
by the Mediterranean Center for Environmental Studies (CEAM). FLUXNET is a network of
micrometeorological observation stations established to perform continuous measurement of
exchange fluxes in the soil-vegetation—atmosphere system (Baldocchi et al., 2001).The
climate (Csa according to Koppen classification) is characterized by an annual average
temperature of 16 °C. Annual precipitation of about 550 mm is unevenly distributed through
the year and there is a four-month hot dry period from June to September (Nufiez and Sosa,
2001).Vegetation structure typical for dehesa consists of two main vegetation strata: grass

covering 75% of the area and holm oak trees (Quercus ilex ssp. rotundifolia) over the 25% of

the surface (Figure 3).

Figure 3. Views of the study sites: dehesa (left) and wildfire burn (right).

This site is a part of much more extensive area of dehesas in the province of Céceres,
Spain (Figures 1). Part of this area consisting of three polygons(Figure 2) with a total area of
~70 km? was used to develop the second specific objective dealing with the study of spatio-
temporal patterns of LST. Although tree and grass layers are present in any dehesa, their
proportion in this study area vary from 5% to more than 90%, which is not unusual for this
ecosystem (Moreno and Pulido, 2009).

Spatio-temporal patterns of LST distribution were also studied in areas affected by
wildfires (Figure 1). Wildfires are a major disturbance of Mediterranean forests (Pausas and
Vallejo, 1999) which in Spain occupy over 1.5 million km? The number of fires is steadily

growing. Due to the global warming and changes in socio-economic conditions big forest
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fires are becoming more frequent (Pausas and Vallejo, 1999). In this context, monitoring of
wildfire effects on landscapes and development of new indicators and metrics for assessment
of post-fire vegetation recovery is of primary importance.

Responding to this demand, the relationship between LST and fire severity (third specific
objective) was studied in the hilly area of the Las Hurdes 2009 wildfire (40°19-40°24'N,
6°10'-6°15'W) located in the province of Caceres, Spain, 100 km northeast of the study site
used for the work on the first specific objective of this research (Figure 1). More than 3000 ha
of pine forest (Pinus pinaster) were burned between 25 and 28 of July 2009. Pinus pinasteris
one of the most common Spanish conifer (occupies more than 1.5 million ha) and is the
species most affected by wildfires (27.96% of the burned area) (EGIF, 2008). High species
resilience to the recurrent fires is explained by its adaptation strategy known as serotony
(Vallejo et al., 2012). The seed production is generally related to the fire regime. Stands
suffering recurrent, high-intensity fires show more serotinous cones and a large aerial seed
bank compared to stands where crown fires are not frequent (Tapias et al., 2001).

Another studied burn used for the work on the fourth specific objectiveoccurred in August
2008 in the Zuera Mountains, NE Spain (41°56°- 4°58°N, 0°55’- 1°0’W). In some aspects (size
— 2500 ha, generally high fire severity) it is similar to the las Hurdes fire described earlier.In
this case wildfire destroyed forest dominated by Pinus halepensis Mill. on sandy-loam soils
over Rendzic Phaeozem (Badia et al., 2014). The understory is rich in typical Mediterranean
species, such as Quercus coccifera L., Juniperus oxycedrus L., Rosmarinus officinalis L. and
Genista Scorpius (L.)DC. Forests are interspersed with patches of shrublands dominated by
Quercus coccifera, Genista scorpius and Brachipodium retusum.Figure 3 shows typical
vegetation cover in the study area at the moment of sampling in August of 2014. Vegetation is
characterized by the presence of evergreen sclerophyllous shrublands (< 1.5 m tall),
sclerophyllous pastures dominated by Brachypodium retosum (a rhizomatous perennial grass
resprouting after fire), areas of bare soil, and Pinus halepensis saplings (<1 m tall) (~75 plants
per hectare). Shrub species with the highest contribution to the vegetation cover are: Quercus
coccifera (kermes oak) (~30%) —an obligate resprouter-, and Rosmarinus officinalis (~20%)
and Genista scorpius (15-20%) —obligate seeders-, representative species constituting a

typical garrigue plant community.
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4. Materials and data

4.1. Satellite images

4.1.1. Landsat

Beginning with the first mission in 1972 Landsat satellites have been monitoring Earth
environment building up regularly updated global archive. Due to their spatial (30 m for
optical and 60-120 m for thermal bands), spectral (7 or more bands including 1 or 2 thermal
infrared) and temporal (16 days revisiting period) resolution Landsat images are the most
widely used source of remote sensing data (Miller et al., 2013). Landsat has provided global
brightness temperature since the launch of Thematic Mapper (TM) instrument on board of
Landsat-4 in 1982. Landsat-5 mission equipped with TM sensor acquired data for more than
27 years until the system failure in November 2011. The latest Landsat-8 mission put on orbit
in February 2013 carries OLI (Optical land Imager) and TIRS (Thermal Infrared Scanner)
instruments ensuring continuity of data collection. With the current calibration parameters and
processing algorithms, the thermal bands of these sensors are calibrated to within 1 K (Schott
et al., 2012). Landsat images are especially suitable for multitemporal studies and research of
ecosystem disturbances, e.g. deforestation or wildfires. A number of indices currently used to
assess the degree of damage and post-fire vegetation recovery, such as NBR (normalized burn
ratio) and dNBR (differenced Normalized Burn Ratio), are tailored to the characteristics of
Landsat bands (Key and Benson, 2006).

The study used 22 clear sky images from the three Landsat missions: Landsat-5 TM,
Landsat-7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat-8 OLI (Optical Land
Imager) and TIRS (Thermal Infrared Scanner). Spectral and spatial resolution of the bands
used in analysis is presented in Table 1. Two sets of images processed by the NLAPS
(National Land Archive Production System—USGS) were downloaded from NASA website at
http://glovis.usgs.gov/ (Table 2). The first group (path 202/row 32) covers the area of study
sites in dehesa and Las Hurdes burn; the second group of images (Path 199; Row 31)
corresponds to the area of the Zuera burn. Optical (red and near infrared) and thermal data
were used in this research. Landsat-8 has two thermal bands, but only one of them (band 10)
was used for LST estimation, because of elevated uncertainties detected in the data from
another band (http://landsat.usgs.gov/calibration_notices.php).
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Table 1. Specification of Landsat bands used in the study.

. Spectral range . .
Satellite and sensor Band (Micrometers) Spatial resolution (m)
3 (Red) 0.63-0.69 30
4 (NIR) 0.76 - 0.90 30
Landsat-5 TM
7 (SWIR 2) 2.064 - 2.345 30
6 (Thermal IR) 10.40 - 12.50 120
3 (Red) 0.63 -0.69 30
4 (NIR) 0.76 - 0.90 30
Landsat-7 ETM+
7 (SWIR 2) 2.064 - 2.345 30
6 (Thermal IR) 10.40 - 12.50 60
4 (Red) 0.64 - 0.67 30
Landsat-8 OLI
5 (NIR) 0.85-0.88 30
Landsat-8 TIRS 10 (Thermal IR) 10.60 - 11.19 100

Table 2. Landsat images used in the study.

Mission Date Aquisition Az?rl;rl]ﬂh Sun Elevation Path/Row
time (GMT) (degrees)
(degrees)
27-jun-09 10:50:18 123.55 63.88 202/32
29-jul-09 10:50:49 128.98 59.94 202/32
30-ago-09 10:51:18 141.13 52.63 202/32
15-sep-09 10:51:32 147.28 47.91 202/32
17-oct-09 10:51:53 156.52 37.36 202/32
06-feb-10 10:52:39 151.39 29.19 202/32
10-mar-10 10:52:43 146.85 40.13 202/32
11-abr-10 10:52:40 141.79 52.28 202/32
Landsat 5 )
30-jun-10 10:52:19 124.31 64.00 202/32
16-jul-10 10:52:19 126.06 62.26 202/32
01-ago-10 10:52:10 130.34 59.61 202/32
05-nov-10 10:51:34 159.16 31.4 202/32
16-may-11 10:51:20 132.51 61.79 202/32
01-jun-11 10:51:13 127.86 63.89 202/32
04-ago-11 10:50:41 130.72 58.86 202/32
05-sep-11 10:50:24 142.93 50.94 202/32
27-jun-08 10:32:25 126.53 63.32 199/31
Landsat 7
30-ago-08 10:31:51 142.44 51.44 199/31
16-mar-14 10:43:19 150.02 4251 199/31
03-may-14 10:42:31 142.22 59.45 199/31
Landsat 8 .
20-jun-14 10:42:32 131.21 65.36 199/31
23-ago-14 10:42:54 143.84 55.02 199/31
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4.1.2. MODIS LST

When working on the first objective, data from eleven MODIS LST images at a 1-km
pixel spatial resolution corresponding to MOD11 L2 product were used for comparison with
LST values obtained from Landsat images by methods tested in this study (Table 3).
MOD11 L2 is obtained from application of the split window algorithm (Wan and Dozier,
1996) to MODIS bands 31 (10.780-11.280 pum) and 32 (11.770-12.270 um). The images of
the study area are acquired approximately 20 min earlier than those obtained by Landsat. To
account for important difference in spatial resolution (1000 m versus 30 m for MODIS and
Landsat, respectively), MODIS temperature value corresponding to a pixel centered in the
study area was compared with the mean value of the Landsat-5 TM pixels as suggested in
earlier studies (Li et al., 2010; Noyes et al., 2006). There are also important differences in the
observation geometry between the two sensors with the MODIS viewing angle of the study
area greater than 30 degrees versus Landsat images obtained at (almost) nadir. To minimize
these effects only the images with the best quality MODIS pixel of the study area (MODIS
product quality flag 0) were used for the comparison. According to the MOD11_L2 product
description quality flag 0 is assigned to the cloud-free pixels with LST error less than 1 °C

and the emissivity errors in channels 31 and 32 involved in LST estimation less than 0.01.

Table 3. Dates and observation geometry for MODIS images used in this study.

Date Aquisition time AzSirL:lTJth Sun Elevation
(GMT) (degrees) (degrees)
30-ago-09 10:51:18 141.13 52.63
15-sep-09 10:51:32 147.28 47.91
17-oct-09 10:51:53 156.52 37.36
06-feb-10 10:52:39 151.39 29.19
11-abr-10 10:52:40 141.79 52.28
30-jun-10 10:52:19 124.31 64.00
01-ago-10 10:52:10 130.34 59.61
05-nov-10 10:51:34 159.16 31.4
01-jun-11 10:51:13 127.86 63.89
04-ago-11 10:50:41 130.72 58.86
05-sep-11 10:50:24 142.93 50.94
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4.2. Atmospheric parameters

Atmospheric water vapor content necessary for atmospheric correction was obtained from
three online sources: Aerosol Robotic Network (AERONET) database, National Center for
Environmental Prediction (NCEP) Reanalysis (hereafter called REANALYSIS) database and
from MODIS MODO05 product. AERONET includes more than 500 sites distributed
worldwide (Holben et al., 1998). Values of precipitable water content (g-cm2) corresponding
to the AERONET site closest to the testing study area were obtained from the AERONET
website. The National Center for Environmental Prediction (NCEP) and the National Center
of Atmospheric Research Reanalysis Project (NCAR) maintain freely accessible online
database containing meteorological data at 2.5° x 2.5° spatial and 6 h temporal resolution
extending back to 1948 (Kistler et al., 2001) developed and regularly updated by the US
National Center for Environmental Prediction (NCEP) and the National Center of
Atmospheric Research Reanalysis Project (NCAR) constitute another source of precipitable
water values (kg-m2) (http://www.esrl.noaa.gov/psd/data). The study used values registered
at noon approximately an hour later than Landsat overpasses. Finally, values of precipitable
water corresponding to MODIS (MODO5) product at 1-km spatial were downloaded from
MODIS online archive. The study also used data from the Hurdes-Azabal meteorological
station situated about 10 km from the Las Hurdes study site. The station is part of the Spanish
Agroclimatic Information System for Irrigation (SIAR)
(http://www.magrama.gob.es/es/agua/).

Atmospheric profiles containing information on vertical distribution of pressure,
geopotential height, temperature and relative humidity served as inputs for radiative code
simulation of the reference LSTs. They were generated by online Atmospheric Correction
parameters Calculator (ACPC) tool based on the interpolation of the NCEP profiles resampled
to 1° x 1° spatial resolution (Barsi et al., 2003). This tool was specifically designed to
compute parameters for atmospheric correction of Landsat images. When using the tool the
user fills in the data about the sensor and the scene to be corrected choosing whether the
results will be interpolated for the specific location or the system will provide values for the
closest geographic grid intersection. There is also the possibility to fill in the data on near-
surface atmospheric conditions at the moment of image acquisition. In case of this study
meteorological inputs came from the FLUXNET tower. The results are mailed to the
electronic address provided by the user.
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4.3. Field data

4.3.1. Proximal sensing reflectance measurements

Field reflectance measurements were performed using ASD spectroradiometer (ASD,
2012) during 2009-2011 field campaigns in the frame of the BIOSPEC project (dehesa study
site), as well as in August 2014 in Zuera study area (wildfire burn) to validate results of
atmospheric correction of Landsat optical bands and to generate spectral signatures of
landcover types in the areas of post-fire wood treatments. ASD registers reflectance in the
wave range of 350-2500 nm with spectral resolution of 3-10 nm. Reflectance measurements
were performed between 12:00 and 15:00 local time with optical fiber 1 m above the plant
canopy pointing vertically downwards. To prevent signal saturation the instrument was
regularly calibrated using white reference Spectralon panel. For better signal-to-noise ratio
each spectral signature represents the mean of 20 individual spectra.NDVI resulting from
reflectances in Landsat spectral bands simulated from the continuous spectral signatures

(Teillet et al., 2001) were compared with available Landsat images.

4.3.2. Land Surface temperature measurements

In situ land surface temperature measurements were performed at the dehesa study site to
contextualize LST values derived from Landsat images and evaluate the necessary
adjustments due to the time difference between the Landsat and MODIS overpasses.
Measurements were realized by the infrared sensor Campbell IR120 installed on a FLUXNET
tower at a height of 8 m. The sensor measures grasstemperature from the received infrared
radiation in the wavelength range of 8 to 14 um in the field of view of 20°. The values
registered in a continuous mode are averaged every 10 min with an accuracy of £0.2 °C. The
in situ LSTs coincident with the Landsat image acquisition (10:50 a.m. GMT) were only used
to assess the significance of time mismatch between Landsat and MODIS TERRA overpasses
because the data are available only for one of the landcover components (grass) and for less

than 25% of the images.

4.3.3. Emissivity measurements

Errors in emissivity estimation hinder the quality of LST assessment. Soil and vegetation
are two main landcover components in the studied heterogeneous systems of dehesa and
wildfire burns. Vegetation emissivity is quite stable and presents variation around 0.99, while
variation of soil emissivity is higher, and emissivity of one soil type can be quite different

from the emissivity of the other (Sobrino et al., 2008). Thus, the emissivity of bare soil was
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measured in situ using box method (Rubio et al., 1997). The box built from material with
lambertian surface reflectance is used to isolate the sampled surface (soil) from the
surrounding environmental radiance (atmospheric descendent radiance and radiance from the
adjacent materials) (Figure 4). The method is capable of estimating emissivity with an error of
0.003. Soil emissivity value of 0.984 which resulted from field measurements is similar to the
values reported by previous research (Sobrino et al., 2008) and was used to adjust applied

land surface emissivity estimation algorithm to local conditions.

Figure 4. Box used for emissivity measurement using box method.

4.4. Cartography of dehesa

Initial information on the extension and vegetation structure of dehesa ecosystem was
obtained from the SIOSE (National Information System of Land Cover and Land Use of
Spain) (http://www.siose.es). Data generated in the frame of the Spanish National Plan for
Territory Observation (PNOT) at scale 1:25.000 were downloaded from the SIOSE website
and contain georeferenced polygonsof established land cover types in UTM projection (datum
ETRS 1989, zone 30N). Among SIOSE land cover types is dehesa coverage 701 with the
code DHS. Its attributes include information on the percentage of the area covered by
canopies of deciduous (FDC) and evergreen (FDP) tree species, shrubs (MTR) and pastures
(PST). Three polygons with the tree canopies covering between 30% and 50% of the area
were selected for further analysis (Figure 2).

Vegetation coverage within these polygons was classified into “tree canopy” and

“pasture” based on digital orthophotography generated in June 2012 in the frame of the
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Spanish National Plan for Territory Observation (PNOT). High resolution photomosaic (25
cm pixel) corresponding to the sheet number 0624 of the Spanish National Topographic Map
1: 50000 (MTN50, datum ETRS89, UTM projection zone 30N) was downloaded from the
server of Spanish National Geographic
Institute(http://centrodedescargas.cnig.es/CentroDescargas). Data preprocessing included
conversion of the downloaded image from RGB into gray scale format. Next, the images were
classified in two categories: (1) woody vegetation consisting of trees and shrubs, and (2)
pasture. New classified image contains pixels with two values: 1 for “tree cover” and 0 for
“pasture”. Zonal statistics were applied to calculate n, the number of “tree cover” pixels (0.25
m pixel size) in each Landsat pixel (30m pixel size). Finally, percentage of tree cover in
Landsat pixels was calculated using expression n*100/N, where N=14400 is the number of

orthophoto pixels in a pixel of a satellite image.

4.5. Landscape characteristics of the studied burns

Digital elevation model from the National Center for Geographic Information (Spain)
(http://centrodedescargas.cnig.es/CentroDescargas/) was used to generate grids of surface
slope and orientation (aspect) at 25 m spatial resolution. Aspect calculated as the maximum
rate of change in the z-value (elevation) from each cell in a raster surface is usually measured
in in degrees east of north, which complicates the use of this variable in LST and vegetation
modeling: north-facing slopes can have aspect values as different as 1 and 360 was. The

solution consisted in application of Beers transformation (Beers et al., 1966):

Transformed aspect = cos(45—Aspect) + 1 3)

This transformation rescales aspect values between zero and two, with zero corresponding
to the northeast and two to the southwest direction.

The amount of incident sun energy was considered incorporating in the models
“illumination” variable as the proxy. Illumination was calculated using expression suggested

by Burrough and McDonnell (1998):

Illumination= cos a*cos b + (sin a*sin b*cos(c-d))(4)

where a, b, ¢, and d are angles (in radians): a — solar zenith; b — slope; ¢ — solar azimuth and d
— aspect. For Landsat image used for vegetation regeneration and LST estimation in this
study, solar zenith (a) and azimuth (c) angles were obtained from the header file and

transformed from sexagesimal degrees into radians.
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Pre-fire forest composition in the Las Hurdes burn was obtained from the parcels database
of the Third National Forest Inventory, Spain
(http://www.magrama.gob.es/es/biodiversidad/servicios/banco-datos-naturaleza/informacion-
disponible/ifn3.aspx). Information on tree cover fraction, dominant and up to two less

important tree species is available for 24 inventory points within Las Hurdes study area.
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5. Methodology

5.1. Pre-processing ofremotely sensed images

Preprocessing of Landsat images consisted in (i) filling of the gaps existing in parts of
Landsat-7 images due to the malfunctioning of the scan-line corrector (Storey et al., 2005);
(i) conversion of original digital numbers (DN) into the top-of-the atmosphere radiance; and
(iii) atmospheric correction of optical bands.

Gap-filling of Landsat-7 images was performed using localized linear histogram match
method (Scaramuzza et al., 2004). Since data loss does not affect the same area on contiguous
in time Landsat passes, other images of similar phenology can be used for correction. In order
to fill the gap the method attempts to find a linear transformation between one image and
another calculating corrective gain and bias, which are applied to the pixels in the auxiliary
image. Calculated values are used to fill the pixels affected by data loss. The quality of
correction mainly depends on the similarity of atmospheric conditions and phenology in the
images used for gap-filling and the scenes affected by data gaps (Rulloni et al., 2012; Zhang
et al., 2007).

Coefficients from image metadata were applied to convert original digital numbers (DN)
into the top-of-the-atmosphere radiance using procedures recommended by NASA for
Landsat-5/7  (http://landsat.usgs.gov/how _is_radiance_calculated.php) and  Landsat-8
(http://landsat.usgs.gov/Landsat8 Using_Product.php).

Atmospheric correction of optical bands was performed using FLAASH (Cooley et al.,
2002) and LEDAPS(Masek et al., 2006) algorithms based on radiative transfer codes
MODTRAN 4 and 6S, respectively.

FLAASH is an acronym for Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes implemented as a part of the geospatial image-processing software package
ENVI (http://www.exelisvis.com). The method gives the user a possibility to choose one of
the MODTRAN standard atmospheres and types of aerosol environments to characterize the
scene calculating unique solution for each image. It can be used for correcting multi- and
hyperspectral images, acquired in conditions of vertical or oblique observation geometry.
Using FLAASH is time-consuming because of the need to manually fill in the required inputs
in the software interface.

LEDAPS (Landsat Ecosystem Disturbance Adaptive Processing System) overcomes this
limitation. It is a stand-alone tool created by NASA Goddard Space Flight Center (GSFC) to

deal with Landsat images (Masek et al., 2006). The algorithm is based on the assumptions that
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the surface is Lambertian and the effects of signal absorption are separable from the effects of
scattering. Transmissivty, reflectivity and albedo are calculated running 6S radiative transfer
code. DDV (Dark Dense Vegetation) correction method (Kaufman and Sendra, 1988) is used
to retrieve aerosol optical density from the image. Interpolated values of optical thickness,
atmospheric pressure and water vapor are input into 6S for calculation of pixel-by-pixel
corrections. Parameters required for atmospheric correction from the National Centers for
Environmental Prediction (NCEP) reanalysis database (atmospheric water vapor) and Earth
Probe Total Ozone Mapping Spectrometer (EP TOMS) (ozone) are resampled to the common
spatial resolution of 1.2 km by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, on-
line (http://www.esrl.noaa.gov/psd/data/).One of the advantages of the system is that it does
not require previous data transformation or scaling by the user or any other input besides

original Landsat data.

5.2. LST estimation from Landsat images

Four algorithms were used to estimate LST from Landsat images: RTE inversion, single-
channel method, mono-window method and simulation using radiative transfer code
MODTRANS-5.

5.2.1. Radiative Transfer Equation (RTE)

When parameters for atmospheric corrections are available and the surface emissivity is
known, it is possible to estimate LST from remote sensing images through direct inversion of
RTE and Planck’s law. One of the tested procedures obtained atmospheric correction
parameters from the Atmospheric Correction Parameter Calculator (ACPC). This on-line tool
based on MODTRAN 4 radiative transfer code was developed specifically for correction of
Landsat thermal imagery (Barsi et al.,, 2003). It calculates site-specific atmospheric
transmission, upwelling, and downwelling atmospheric radiances for LST estimation through
RTE inversion using information on geographical coordinates, site elevation, date and time of
the image acquisition provided by the user. User can also specify one of the two available
choices of the standard atmospheres, midlatitude summer or midlatitude winter. The tool does
not require the user to input meteorological data corresponding to the image acquisition time;
it uses atmospheric profiles from NCEP databases to interpolate the profile for the specified
place, date, and time. No batch processing is possible; user has to fill in data corresponding to
one Landsat imageat a time; the results are forwarded to the user’s e-mail address. Generated

atmospheric correction parameters (atmospheric profiles, transmissivity, upwelling and
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downwelling atmospheric radiance) allow LST estimation within 2 °C for clear-sky
midlatitude conditions (Barsi et al., 2005).

5.2.2. Mono-Window (MW) Method

MW algorithm is an approximation of RTE and does not require precise data on
atmospheric profiles. LST is calculated through decomposition of Planck’s radiance function
using a Taylor’s expansion and estimation of empirical coefficients a and b(Qin et al., 2001).
Three a priori known parameters are required for atmospheric correction: transmissivity
(z)/water vapor content, effective mean atmospheric temperature (Ta) and surface emissivity

(¢). The following equation is used to calculate Ts (in K):
Ts={a(l1—C—D)+[b(1—C—D)+C+D] xTsensor—DTa}/C (5)

where a =—67.355351 and b = 0.458606 are constants, and Tsensor is the at-sensor brightness

temperature. C and D are calculated as:

C=er (6) and D=(1-v)[1+(1-¢)T] (7)

Effective mean atmospheric temperature Ta is estimated from the relationship between Ta
and the vertical water vapor distribution in the atmosphere: it had been demonstrated that, the
distribution of the ratio of water vapor content at a particular altitude to the total is very
similar for all atmospheric profiles although water vapor content differs significantly
depending on the atmospheric conditions.Hence, Tacan be estimated from the total water

vapor content and the near surface local air temperature (To), according to the atmospheric

conditions:
Ta=19.2704+0.91118 To(mid-latitude winter) (8a)
Ta=19.2704+0.91118 To(mid-latitude summer) (8b)
Ta=17.9769+0.91715 Ty(tropical atmosphere) (8c)

Expressions for estimation of atmospheric transmissivity t were obtained from simulations
using LOWTRAN 7 for high (35 °C) and low (18 °C) air temperature profiles and two ranges

of atmospheric water vapor content w:

High temperature 1=0.974290—0.08007w (0.4 g-cm—2<w<1.6 g-cm ?) (9a)
1=1.031412-0.11536w(1.6 g-cm—2<w<3.0 g-cm ) (9b)
Low temperature 1=0.982007—0.0961 1w (0.4 g-cm—2<w<1.6 g-cm ?) (9¢)

1=1.053710-0.14142w(1.6 g-cm—2<w<3.0 g-cm ) (9d)
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MW method produces optimum results (error ~1 K) when atmospheric water vapor
content varies between 0.5 and 2.5 g-cm 2(Qin et al., 2001; Sobrino et al., 2004).

5.2.3. Single-Channel (SC) Method

Another RTE approximation, SC method (Jiménez-Mufioz and Sobrino, 2003)needs only
one atmospheric parameter for atmospheric correction (atmospheric water vapor content). The
following expression is used to calculate LST:

Ts=p[e™ (y1Lsensor +y2) +ra] +6(10)
wheree is surface emissivity, y and ¢ are parameters directly depending on Planck function.
w1, wo and w3 are atmospheric correction functions expressed as second degree polynomial

equations (Eq. 11) with coefficients (c;) obtained by simulation. These coefficients for

Landsat sensors used in the research are given in Table 4.

Yy C11 €12 C13][w?
Yo [=|[C21 €22 Coz||w (11)
Y13 C31 C32 C33ll1

where w is total atmospheric water vapor content in g-cm 2.

Table 4. Coefficients for SC atmospheric functions following matrix notation in Eq. 11
obtained for band 6 of Landsat 5 (L5B6), band 6 of Landsat 7 (L7B6) and band 10 of Landsat

8 (L8B10).
Sensor Cij i=1 i=2 i=3
j=1 0.14714 -0.15583  1.1234
L5B6 j=2 -1.1836 -0.37607 -0.52894
j=3 -0.04554 1.8719 -0.39071
=1 0.07593 -0.07132  1.08565
L7B6 j=2 -0.61438 -0.70916 -0.19379
j=3 -0.02892  1.46051 -0.43199
=1 0.04019 0.02916  1.01523
L8B10 j=2 -0.38333 -1.50294  0.20324
j=3 0.00918 1.36072 -0.27514

SC algorithm demonstrates optimal performance for the atmospheres with water vapor
content in the range of 0.5-2.5 g-cm .

5.2.4. Simulation of Land Surface Temperature (LST)
When comparing the performance of different LST estimation algorithms, LSTs simulated

by the latest version of the radiative transfer code MODTRAN 5 were used as a reference set.
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It is generally accepted (Li et al., 2013a) that LST simulated using radiative transfer code can
be an alternative for validation when field measurements at a required spatial scale are not
available. Previous studies applied the procedure for validation of Landsat (Sobrino et al.,
2004) and MODIS (Wan and Li, 2008) LST. MODTRAN 5 performs calculations based on
the information about observation geometry and atmospheric profiles at the moment of
observation. The best results are achieved when data come from in situ radiosoundings
synchronized in time with image acquisition. Unfortunately, data from in situ radiosoundings
synchronized in time with image acquisition were not available in this study. Instead, NCEP
atmospheric profiles interpolated for the exact location and time of Landsat overpass were
used in this research. This source has been successfully used for validation earlier(Coll et al.,
2012; Jiménez-Mufioz et al., 2010). On-site meteorological data for the lowest atmospheric
layer complemented the NCEP atmospheric profiles interpolated for the study area and
conditions by ACPC tool. The profiles were incorporated into MODTRAN input file.
MODTRAN was run twice to obtain parameters for LST simulation. The first
MODTRAN run is performed with 0% surface albedo. Atmospheric transmissivity (z) and

upwelling radiance (L) are extracted from the MODTRAN output files and integrated over
the Landsat-5 TM thermal band using the sensor filter function. Then MODTRAN 5 is run for

the second time with 100% surface albedo to calculate downwelling radiance (Lg). Next, the

obtained atmospheric correction parameters z, L, and Ly together with previously estimated
emissivity € are substituted into RTE (Eq. 1) to calculate the radiance from the target (Lrs).
The final step consists in transformation of the calculated target radiance into LST (LSTref)

by inversion of the Planck’s law.

5.3. Emissivity estimation

Methods for emissivity estimation from remotely sensed data requiring two or more
bands, e.g. TES (Gillespie et al., 1998) or TISI (Becker and Li, 1990) cannot be used with
Landsat images because there is only one thermal band. In this situation it is possible to use
one of the methods which take advantage of the relationship existing between emissivity and
the normalized difference vegetation index (NDVI) (Li et al., 2013b). The NDVI thresholds
method NDVI™"™(Sobrino and Raissouni, 2000) based on the findings of Valor and Caselles
(1996) was applied to estimate surface emissivity in this study. Pixel-based emissivity is
assigned based on the NDVI range. All the pixels, except those categorized as mixed pixels,

are assigned fixed emissivities according to the NDVI range (Table 5).
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Table 5. Emissivity values assigned to ranges of the normalized difference vegetation

index (NDVI).
NDVI Emissivity (& )
NDVI<0 0.985
0<=NDVI<= 0.1 f(red reflectivity)
0.1<=NDVI<= 0.7 | 0.990 Pv +0.984(1- Pv )+0.004* Pv (1- Pv )
NDVI > 0.7 0.990

In case of the mixed pixels category (vegetation and soil), the NDVI values (thresholds)
selection is based on the analysis of the images histograms and the emissivty values are scaled
between the & and &, values using the expression in Table 5. In landcovers consisting mainly
of different vegetation components, like in this study, soil emissivities show the greatest
variation in the thermal region of the spectrum. This is why the soil emissivity was adjusted to
local conditions; &5 value of 0.984 is based on in situ field measurements. The vegetation
emissivity e/is assigned the value of 0.990; de = 0.01 is the term accounting for surface
roughness different from zero for heterogeneous covers (Sobrino et al., 2004). Vegetation
fraction PVis estimated from pixel NDVI according to Choudhury et al. (1994) and Gutman
and Ignatov (1988):

(NDVI-NDVIg)
PV = S
(NDVIy_—NDVIg)

(12)

According to Sobrino et al. (2008) the method estimates emissivity of vegetation-soil
pixels with an error less than 0.01, which would allow LST estimation with the error below
0.5°C.

5.4. Vegetation abundance (NDVI) estimation

Vegetation abundance was assessed through NDVI calculated for each available image.
The NDVI exploits the difference between the maximum reflection of radiation in the near-
infrared spectral bands (0.78-0.90 um) and the maximum absorption of radiation in the red
spectral band (0.63—0.69 um) characteristic to vegetation. The effect of shadows is reduced by
normalization of the difference of the reflectances by their sum, resulting in
NDVI=(NIR-VIS)/(NIR + VIS).NDVIvary from -1.0 to +1.0. Because of high positive
correlation with vegetation status and density, NDVI is widely used for vegetation
monitoring. It is often used as a proxy for biomass although the relationship between them is
often non-linear (Myneni et al., 1997), and NDVI shows saturation before biomass reaches its

maximum levels. In spite of the limitations, NDVI is commonly used in assessing vegetation
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recovery after fire (among others Diaz-Delgado et al., 2003; Riafio et al., 2002) and as an

indicator of burn severity (Veraverbeke et al., 2012).

5.5. Burn Severity Estimation

There are several spectral indices developed for evaluation of burn severity, some of them
designed for Landsat were used to study Las Hurdes and Zuera burns. These indices are
Normalized Burn Difference (NBR) and Delta Normalized Burn Difference (dNBR). Close
relationship of these indices with burn severity in Mediterranean conifer forest was
demonstrated in previous research (DeSantis and Chuvieco, 2007). The indices were
calculated following the methodology suggested by Key and Benson (2006): (1) pre- and
post-fire images were transformed to reflectance and atmospherically corrected; (2) an NBR
image was generated for both dates using the formula (NIR — SWIR2)/(NIR + SWIR2); (3)
dNBR was calculated as NBRpre-fire — NBRpost-fire.
dNBR values were grouped into discrete classes of burn severity (e.g., low, moderate and
high) using original thresholds (Key and Benson, 2006), since there applicability for similar
ecosystems was confirmed in previous research (Kokaly et al., 2007). Burn severity
categories were created using thedNBR values as follows: unburned (UB) (from —100 to 99),
low severity (LS) (from 100 to 269), moderate-low severity (MLS) (from 270 to 439),
moderate-high severity (MHS) (from 440 to 659) and high severity (HS) (from 660 to 1300).

5.6. Statistical procedures
5.6.1. Measures of difference

Comparison of values obtained by different methods of LST estimation (first research
objective) with reference values was performed using bias, standard deviation and root mean-
square deviation.

Bias (B), also referred to as mean error, is calculated as the average of deviations, i.e. the
differences between LST calculated by the tested method (LST ) and reference LST (LST ).

1
B = Ezllv(LSTcalc - LSTref) (13)

Smaller absolute bias values indicate better agreement between measured and calculated
values. Positive values indicate positively biased computed values (overestimate) while

negative values indicate negatively biased computed values (underestimate).
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Standard deviation is often used to measure data dispersion; it is the average difference
between each value in dataset and the mean. For a sample standard deviation is expressed by

the following formula:

o= Z?=1(xi—u)2(14)
n—1

where X; is a value for each number within the dataset; p is the the average for the values in
the dataset; n is the number of values in the dataset; and o is a standard deviation.

The standard deviation of a normal distribution enables calculation confidence intervals.
In a normal distribution, about 68% of the values are within one standard deviation either side
of the mean and about 95% of the scores are within two standard deviations of the mean.

The root mean square deviation (RMSD) is a commonly used measure of deviation of a
random variable from some standard or accepted value, although sometimes the RMSD is
used to compare differences between two datasets, neither of which is accepted as the

"standard". RMSD is defined as the square root of the mean squared error:

1
RMSD = /;Z’Ll 67 (15)

where ¢ is the distance between N pairs of data values.

5.6.2. Correlation indices

Pearson product-moment correlation statistic also known as linear correlation coefficient
is one of the measures used to assess strength and direction of linear relationship between two
variables. Coefficient values vary between -1 and +1; the closer to the zero, the weaker is the
measured relation. To compare two sets of values (x and y) each containing n values, Pearson

correlation coefficient r is computed using formula:

N Yie1(xi—0)(yi—y) (16)

\/zz;l(xi—aaz ST (yi—7)?

When analyzing spatial data (events) it is also necessary to take in account spatial
autocorrelation. Autocorrelation and spatial auto correlation are correlation coefficients.

However, instead of assessing relation between two variables, the correlation is between two
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values of the same variable at different moments in time (autocorrelation)(Box et al., 2011) or
space (spatial autocorrelation) (Anselin, 1988). Spatial autocorrelation is common for spatial
data; according to the First Law of Geography formulated by Tobler (1970) “everything is
related to everything else, but near things are more related than distant things”. High spatial
autocorrelation violates the assumption of data independence required in statistical analysis
and can affect its results. Similarity of spatially distributed events as a function of distance
can be quantified using Moran’s I coefficient (Moran, 1950). Moran’s I is calculated similar

to the classical Pearson correlation coefficient using expression:

n n

(17)
So ?=1Zi2

I =

where z; is the deviation of an attribute for feature i from its mean (xi— X), wj; is the spatial
weight between feature i and j, n is the total number of features, and Sy is the sum of spatial
weights for all the features:

So = Xi=12j=1Wi; (18)

Moran’s I index values vary between -1 (close events are not similar) and +1 (close events
are similar, clustered distribution). When index is equal to 0, properties of spatially distributed

events show random distribution.

5.6.3. Analysis of variance (ANOVA)

One-way analysis of variance (ANOVA) was applied to verify if there are statistically
significant differences between the analyzed datasets. The designation of one-way is used
because the datasets are observations of the single variable at two or more levels. Inferences
about between-means differences are made by analyzing variance, a statistic that measures the
variability about the mean. The null hypothesis tested by ANOVA states that the means are
equal and the groups are subsets of the same population. Its rejection leads to the conclusion
that the means of at least two groups are different. To know which groups are different
ANOVA is followed by one of the post hoc test.

ANOVA requires continuous numerical data and provides reliable results when data
satisfy following assumptions:

1. The populations have the same variance, i.ehomogeneity of variance is assumed.
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2.The populations are normally distributed.
3. Valuesare sampled independently from each other.
ANOVA partitions the total variance in two components: between-group variability and
within-group variability. The test statistic for ANOVA (F) is a ratio of these quantities:

F= between-group variability/within-group variability

When the null hypothesis is true, this statistic has an F distribution with k-1 degrees of
freedom (k - the number of groups) and N-k degrees of freedom (N — total number of
observations) associated with the numerator and denominator, respectively. Thus, if the
calculated F value is greater than the critical value of the F distribution with k-1 and N-k
degrees of freedom and a significance level of a, the conclusion is that statistically significant
difference exists between at least two of the tested groups at (1-a) probability. Commonly
acceptable significance level is p=0.05. To evaluate the differences between the pairs of
means, ANOVA was followed by or post-hoc tests:Bonferroni when assumption of equal
variances was satisfied, or Tamhane T2 when comparing samples with unequal variances.
ANOVA results include the coefficient of determination R?, which indicates the proportion of
variance explained by the independent variable.

Contribution of multiple variables to levels of LST and NDVI in areas affected by wildfire
burns (research objective 2) was evaluated by factorial ANOVA. It allows exploring the
relationship between one dependent and several independent variables, which can be
continuous or categorical. Besides the effect of each of the dependent variables, the procedure
calculates the effect of their interactions. In this study model design included one dependent
variable (LST or NDVI), a fixed factor (treatment) and various continuous independent
variables (e.g. elevation and slope). The results quantified the contribution of each of the
independent variables and their significance.

To obtain valid results data should satisfy common ANOVA requirements: be normally

distributed, present homogeneity of variance and consist of independent values.
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Abstract: Land Surface Temperature (LST) is one of the key inputs for
Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of
BIOSPEC (Linking spectral information at different spatial scales with biophysical
parameters of Mediterranean vegetation in the context of global change) and FLUXPEC
(Monitoring changes in water and carbon fluxes from remote and proximal sensing in
Mediterranean “dehesa” ecosystem) projects LST retrieved from Landsat data is required
to integrate ground-based observations of energy, water, and carbon fluxes with multi-scale
remotely-sensed data and assess water and carbon balance in ecologically fragile
heterogeneous ecosystem of Mediterranean wooded grassland (dehesa). Thus, three
methods based on the Radiative Transfer Equation were used to extract LST from a series
of 2009-2011 Landsat-5 TM images to assess the applicability for temperature input
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Remote Sens. 2014, 6 4346

generation to a Landsat-MODIS LST integration. When compared to surface temperatures
simulated using MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5) with
atmospheric profiles inputs (LST;.r), values from Single-Channel (SC) algorithm are the
closest (root-mean-square deviation (RMSD) = 0.50 °C); procedure based on the online
Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC)
shows RMSD = 0.85 °C; Mono-Window algorithm (MW) presents the highest RMSD
(2.34 °C) with systematical LST underestimation (bias = 1.81 °C). Differences between
Landsat-retrieved LST and MODIS LST are in the range of 2 to 4 °C and can be explained
mainly by differences in observation geometry, emissivity, and time mismatch between
Landsat and MODIS overpasses. There is a seasonal bias in Landsat-MODIS LST
differences due to greater variations in surface emissivity and thermal contrasts between
landcover components.

Keywords: land surface temperature; Landsat; multitemporal

1. Introduction

Land surface temperature (LST) is a state variable that plays a crucial role in many land surface
processes [1]. LST is related to the transport of heat between the land surface and the atmospheric
boundary layer [1-3], and makes possible estimation of sensible heat flux [4] and latent heat flux, or
evapotranspiration [5,6]. It is a necessary input for ecosystem modeling [7], which can be performed at
local [4], regional, and global scales. While local modeling relies heavily on field data, remote sensing
has become the main source for LST estimation at the regional and global scales [8].

Radiance measured at a sensor can be transformed into LST by inverting the Radiative Transfer
Equation (RTE) applied to a particular thermal IR band or wavelength:

Lyensor =€l + L, + t(l i E)Ld (1)

where Ly, is the radiance registered by the sensor, also referred to as top of atmosphere radiance, L7
is the blackbody radiance related to the surface temperature by Planck’s law and T is the LST, L, and
L, are the upwelling and downwelling atmospheric radiances, respectively (all the radiances in
Wesr m >pm™"), T is the atmospheric transmissivity and € is the land surface emissivity. In the case of
dealing with a waveband, all these parameters are integrated according to the spectral response
function of this band.

The signal coming from the target to the sensor is modified as it passes through the atmosphere,
which both emits and absorbs thermal radiation. The latter effect is mainly caused by the presence of
water vapor. When atmospheric conditions are known, emission and absorption of radiation in the
atmosphere can be quantified and corrected using one of the radiative transfer computer codes, e.g.,
MODerate resolution atmospheric TRANsmission (MODTRAN) [9]. Atmospheric conditions are
typically assessed using in situ atmospheric profile data, which are often not available for the place and
time the image was acquired, although on-line atmospheric databases [10,11] or estimations based on
empirical models [12] can be used.
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At present, there are several satellites providing global data from the thermal region of the
spectrum at different scales. Among them are MODIS [13] and Spinning Enhanced Visible and
Infrared Imager (SEVIRI) [14] characterized by low spatial and high temporal resolutions, for which
LST products are available on a regular basis. At the medium spatial scale Landsat has provided global
brightness temperatures since 1984, with Landsat 8 launched at the beginning of 2013 giving
continuity to the data record [15]. The assessment of methods for LST estimation from a unique
thermal band gains additional importance if we consider problems with data from one of the Landsat 8
thermal bands (band 11) and National Aeronautics and Space Administration (NASA) suggestion not to
use band 11 for surface temperature retrieval [16]. The recently published reviews [8,17] mention
several single-channel methods based on approximations from the RTE, which can be applied for LST
retrieval from Landsat-5 unique thermal band [18-21]. These methods perform atmospheric correction
based on water vapor content [19,20] or both water vapor and near-surface air temperature [18,21].
Apart from the atmospheric correction parameters, the surface emissivity (defined as the ratio between
the target emitting capacity and that of a blackbody at the same temperature) is also required. A review
of methods for surface emissivity estimation from satellite data is available in Li ef al. [22]. Because of
the high level of correlation between NDVI and surface emissivity, many methods proposed for
estimating emissivity are based on this vegetation index [23-27].

One of the research fields with a great demand of LST data at a local scale is carbon and water
fluxes modeling in terrestrial ecosystems. BIOSPEC (Linking spectral information at different spatial
scales with biophysical parameters of Mediterranean vegetation in the context of global change) [28]
and FLUXPEC (Monitoring changes in water and carbon fluxes from remote and proximal sensing in
Mediterranean “dehesa™ ecosystem) [29] projects carry out the analysis of these processes using
information from ground-based measurements of fluxes and vegetation biophysical parameters, and
their modeling throughout the integration of spectral data from remote sensors having different spatial,
spectral and temporal resolutions (Landsat and MODIS) following the attempts of other scientific
teams [30,31]. Landsat can provide LST at a spatial detail much higher than MODIS, but only once in
16 days compared to daily images acquisition by MODIS. Thus, integration of the data from these two
satellites would be highly beneficial given the spatial resolution of the former and the temporal
resolution of the latter. However, the challenges and persisting uncertainties related to the use of
Landsat for LST estimation [32], especially in heterogeneous environments, make it necessary to
evaluate the methods and atmospheric information sources looking for those more similar to MODIS.
Although there are a number of studies comparing methods for LST retrieval from one thermal
band [18,19,33,34], the evaluation is usually based on data from homogeneous environments. On the
other hand, this study presents an assessment of the single-channel methods in heterogeneous
environments common for most of the land surface.

Our main interest in this study is to compare the performance of the most common methods for LST
retrieval from Landsat-5 TM images of the dehesa tree-grass ecosystem [8] and analyze the
relationship between LST estimated from Landsat and LST from MODIS product (MOD11_L2), for
the use in Landsat-MODIS LST fusion algorithm development to study energy and water exchange
between the dehesa landcover and the atmosphere. Three procedures are applied for LST retrieval from
a sequence of 13 images of Central Spain, acquired from 2009 to 2011: (1) RTE inversion with
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Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC) from here
on and two methods, which are approximations of the RTE with minimum parameters:
(2) single-channel (SC) method by Jiménez-Muiioz and Sobrino [20], updated in 2009 [19], and
(3) mono-window MW method by Qin ez al. [21]. The results are compared with LSTs simulated by
Radiative Transfer Code MODTRAN 5. We also assess and analyze the relationship existing between
Landsat LSTs and those from MODIS LST product (MODI11_L2). In situ grass temperature
measurements available for some of the images complete the set of reference data.

2. Study Area and Data
2.1. Study Area

The study area shown in Figure 1 is located in a dehesa ecosystem near the Las Majadas del Tietar
FLUXNET site (geographic coordinates: Lat 39°56'26"N, Long 5°46'29"W), which is operated
by the Mediterranean Center for Environmental Studies (CEAM). FLUXNET is a network of
micrometeorological observation sites established to perform continuous measurement of exchange
fluxes in the soil-vegetation—atmosphere system [35].

Figure 1. Study area: (a) Location of the study site (b) orthophoto of the study area
corresponding to MODIS pixel.
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The dehesa is an open savanna with an integrated agroforestry ecosystem, and has a complex
vegetation structure typical of Mediterranean areas. The study site is flat, and is covered by grass
(75% of the area) and holm oak trees Quercus ilex ssp. rotundifolia (25% of the area). The zone
climate (Csa according to Koppen classification) is characterized by an annual average temperature of
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16 °C and approximately 550 mm precipitation, and has a four-month hot dry period from June to
September [36].

2.2. Datasets
2.2.1. Landsat-5 TM Images

Landsat-5 TM provides images with six bands in the optical region, and a thermal band with a
bandwidth of 10.4-12.5 pm. The LST was retrieved from 13 Landsat-5 TM (path 202, row 32) clear
sky images pre-processed by the NLAPS (National Land Archive Production System—USGS) and
downloaded from [37] (Table 1). The images over the study area were acquired at approximately
10:50 a.m. GMT from 2009 to 2011.

Table 1. Acquisition time and observation geometry for Landsat-5 TM and MODIS
satellite images used in the study.

LANDSAT MODIS TERRA 5 .
T e = o Difference in
Date Ao.:qmsntmn ?un Sun. A?qmsntlon Viewing Acquisition Time
Time (a.m. Azimuth Elevation Time (a.m. Angle
GMT) (degrees) (degrees) GMT) (degrees) (min)
27 June 2009 10:50:18 123.55 63.88 10:31:45 63.00 18
29 July 2009 10:50:49 128.98 59.94 10:35:30 63.00 15
30 August 2009 10:51:18 141.13 52.63 10:29:40 63.00 21
15 September 2009 10:51:32 147.28 4791 10:24:00 63.00 27
17 October 2009 10:51:53 156.52 37.36 10:14:00 63.00 37
6 February 2010 10:52:39 151.39 29.19 10:43:00 63.00 7
11 April 2010 10:52:40 141.79 52.28 10:30:10 63.00 12
30 June 2010 10:52:19 124.31 64.00 10:32:25 63.00 20
1 August 2010 10:52:10 130.34 59.61 10:35:25 63.00 17
5 November 2010 10:51:34 159.16 31.40 10:12:45 63.00 38
1 June 2011 10:51:13 127.86 63.89 10:26:35 63.00 24
4 August 2011 10:50:41 130.72 58.86 10:35:10 63.00 15
5 September 2011 10:50:24 142.93 50.94 10:27:40 63.00 22

2.2.2. MODIS LST Images

The MODIS Terra LST MOD11_L2 product with a 1-km pixel spatial resolution was used for
comparison. MODI11_L2 constitutes an output of the split window algorithm [38] applied to MODIS
bands 31 (10.780-11.280 um) and 32 (11.770-12.270 um). The time difference between Landsat and
MODIS passes over the study area is about 20 min (Table 1): MODIS images are acquired
approximately 20 min earlier. FLUXNET tower data corresponding to the same dates show an average
air temperature increase of about 0.5 °C for the same time period, while in situ grass surface
temperature measurements available for three summer dates in 2011 (Table 2) demonstrate an average
increase of 1.5 °C. Following the procedure applied by other researchers [39,40] to account for
different spatial resolution of the sensors, MODIS temperature value corresponding to a pixel centered
in the study area was compared with the mean value of the Landsat-5 TM pixels within that MODIS

39



CHAPTER 6. Comparison of methods for LST estimation from Landsat data

Remote Sens. 2014, 6 4350

pixel. Moreover, to minimize the effects of the differences in the observation geometry only the
images with the best quality MODIS pixel of the study area (MODIS product quality flag 0) were used
for the comparison. According to the MOD11_L2 product description quality flag O is assigned to the
cloud-free pixels with LST error less than 1 °C and the emissivity errors in channels 31 and 32 involved
in LST estimation less than 0.01.

2.2.3. Atmospheric Correction Parameters Sources

We obtained and compared data on the atmospheric water vapor content from three online sources:
Aerosol Robotic Network (AERONET) database, National Center for Environmental Prediction
(NCEP) Reanalysis (hereafter called REANALYSIS) database and from MODIS MODOS5 product.
AERONET is part of the NOAA Observing System Architecture, which includes more than 500 sites
distributed worldwide. Precipitable water content values (g-cm"z) were downloaded from an online
database [41] for Céceres; the observation site is located approximately 50 km from the study area.
The National Center for Environmental Prediction (NCEP) and the National Center of Atmospheric
Research Reanalysis Project (NCAR) maintain a free access online database of gridded and
continuously updated meteorological data at 2.5° x 2.5° spatial and 6 h temporal resolution extending
back to 1948 [42]. Precipitable water values (kg-m_z) for 2009-2011 were downloaded from [43]. The
noon values, approximately 1 h later than the Landsat-5 TM overpass, were extracted for the study area
location and used in the water vapor sources comparison. Atmospheric profiles containing information
on vertical distribution of pressure, geopotential height, temperature and relative humidity for simulation
of the reference LSTs were generated by ACPC tool based on the interpolation of the NCEP profiles
resampled to 1° X 1° spatial resolution [11]. Interpolated profiles were completed with the data from the
standard atmospheres for the altitude range from 30 km to 100 km and user-supplied information for the
lowest level, resulting in the 31 levels in each profile. Precipitable water from MODIS MODOS5 product
at 1-km spatial resolution close in time to Landsat overpass was obtained from MODIS web archive [44].

FLUXNET tower was used as the source of ACPC tool meteorological inputs. Due to the limited
extension of the study site, meteorological data provided by the tower were considered characteristic
for all the analyzed area.

2.2.4. In Situ Grass Temperature Measurements

To put the obtained results in site context and take into account the difference in LST between the
overpass times of Landsat and MODIS on board of Terra (from Latin “land”) satellite, we used the data
on grass temperature obtained from an infrared sensor Campbell IR120 installed on a tower at a height of
8 m (Table 2). The sensor registers data every 10 min with an accuracy of 0.2 °C. The data are available
for a part of 2011 beginning 3 March 2011. The device offers a non-contact means of measuring the
surface temperature of an object by sensing the infrared radiation in the wavelength range of 8 to 14 pm
in the field of view of 20°. The in situ LSTs coincident with the Landsat image acquisition (10:50 a.m.
GMT) were only used to assess the significance of time mismatch between Landsat and MODIS TERRA
overpasses because the data are available only for one of the landcover components (grass) and for less
than 25% of the images.
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Table 2. Time difference between Landsat and MODIS passes over the study site and
corresponding increment in in situ Land Surface Temperature (LST) (grass) temperature
between 10:30 a.m. and 10:50 a.m. GMT.

Diate MODIS Landsat Time Difference In situ Temperature
(am. GMT) (a.m. GMT) (min) Increment (°C)
01 June 2011 10:26:35 10:51:13 24 2.13
04 August 2011 10:35:10 10:50:41 15 1.13
05 September 2011 10:27:40 10:50:24 22 1.31
3. Methods

3.1. Land Surface Temperature (LST) Estimation

Prior to LST retrieval optical bands of Landsat images used in emissivity estimation were corrected
for atmospheric effects using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) algorithm implemented in the ENVI (software package, a geospatial imagery analysis and
processing application marketed by Exelis Visual Information Solutions) [45]. The LST was retrieved
from the thermal band; the digital numbers were first converted into radiance using the header files
parameters and then to the at-sensor brightness temperature, which was then transformed to LST. Three
procedures used to transform the at-sensor brightness temperature into LST are: (1) RTE inversion using
atmospheric correction parameters from on-line ACPC tool [10] available at [46]; and two algorithms
based on the approximations of RTE: (2) single-channel SC method [19,20]; and (3) mono-window MW
method [21]. The most recent SC modification [18] is highly sensitive to water vapor changes and was
not considered, because in situ measurements of water vapor content were not available. Since LST
estimation methods require clear sky, only cloud-free images were used for processing.

3.1.1. Radiative Transfer Equation (RTE)

As mentioned in Section 1, LST can be obtained from RTE (Equation (1)) and Planck’s law
inversion once parameters for the atmospheric corrections (L,, L; and 7) are estimated and the surface
emissivity is known. The first tested procedure used the atmospheric correction parameters from the
Atmospheric Correction Parameter Calculator (ACPC). It is an on-line tool developed for atmospheric
correction of the Landsat 5 and 7 thermal data using MODTRAN 4 radiative transfer code [10,11]. The
tool receives as input user-provided information on geographical coordinates, site elevation, date and
time of the image acquisition and calculates site-specific atmospheric transmission, upwelling, and
downwelling atmospheric radiances to be used in LST estimation through RTE inversion. Henceforth,
the LST values obtained in the study by this procedure are referred to as RTE-ACPC. NCEP
atmospheric databases are used to interpolate the profile for the specified place, date, and time; the
profiles resulting from time interpolation can be provided for the closest lat/long grid corner or
interpolated for the user-specified location. The latter option was used in this study. The tool processes
data corresponding to one set of conditions (one Landsat image) at a time; the results are forwarded to
the user’s e-mail address. The set of parameters generated by the tool for the images analyzed in this
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study is presented in Table 3. According to developers, the tool provides parameters allowing LST
estimation through RTE (Equation (1)) inversion within £2 °C [11].

Table 3. Parameters provided by Atmospheric Correction Parameter Calculator (ACPC)
tool for the analyzed Landsat-5 TM images: upwelling (L,) and downwelling (L;) radiances
in W-st™"m >pm™", atmospheric transmissivity (t).

Date T L, Ly
27/06/2009 0.790 1.430 2.400
29/07/2009 0.890 0.830 1.410
30/08/2009 0.820 1.430 2.390
15/09/2009 0.860 0.940 1.580
17/10/2009 0.930 0.500 0.860
06/02/2010 0.870 0.820 1.380
11/04/2010 0.920 0.530 0.900
30/06/2010 0.730 2.060 3.370
01/08/2010 0.820 1.440 2.380
05/11/2010 0.830 1.220 2.010
01/06/2011 0.880 0.850 1.420
04/08/2011 0.750 1.870 3.070
05/09/2011 0.810 1.430 2.370

Mean 0.838 1.181 1.965

St. dev. 0.061 0.484 0.783

3.1.2. Mono-Window (MW) Method

In the MW algorithm [21] the LST is determined through decomposition of Planck’s radiance
function using a Taylor’s expansion and calculation of two empirical coefficients @ and b. Three
a priori known parameters are required for the algorithm: transmissivity (t)/water vapor content,
effective mean atmospheric temperature (7,) and emissivity (g). All the temperatures are in K. LST
(Ts) is calculated from the equation (2):

Ts = {a(1- C- D)+[b(1- C- D)+ C+ D]x Tiensor— Do}/ C )

where @ = —67.355351 and b = 0.458606 are constants, Tsensor is the at-sensor brightness temperature,
C and D are calculated using Equation (2a,2b) respectively:

C=¢t (2a)

D=(1-1)[1+(1-¢)] (2b)

The suggested method for calculation of 7, is based on the relationship between 7, and the vertical
water vapor distribution in the atmosphere [47]. Simulations performed using LOW resolution
TRANsmission 7 (LOWTRAN 7) [21] indicate that, while water vapor content differs significantly
depending on the atmospheric conditions, the distribution of the ratio of water vapor content at a
particular altitude to the total is very similar for all atmospheric profiles. This enabled formulation of
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the Equation (3a—3c) for calculation of 7, from the total water vapor content and the near surface local
air temperature (7)), according to the atmospheric conditions [21]:

T,=19.2704 + 0.91118 Ty(mid-latitude winter) (3a)
T.=19.2704 + 0.91118 Ty(mid-latitude summer) (3b)
T,=17.9769 + 0.91715T(tropical atmosphere) (3¢)

The most important parameter of the algorithm 7 is estimated using the expressions obtained from
simulations using LOWTRAN 7 [21] for two air temperature profiles: Equation (4a,4b) for high
(35 °C) and Equation (4c,4d) for low (18 °C) [21]:

7=0.974290 — 0.08007w (0.4 grecm ><w< 1.6 grem ) (4a)
7=1.031412-0.11536 w (1.6 g'em > <w< 3.0 g'em ) (4b)
7=0.982007 — 0.09611w (0.4 g'cm ><w< 1.6 g'cm ?) (4c)
7=1.053710— 0.14142w (1.6 g'cm * <w< 3.0 grem ) (4d)

The algorithm performs well for atmospheric conditions where the water vapor content is
0.5-2.5 grem 2 [18,19,21].

3.1.3. Single-Channel (SC) Method

SC method [19,20] is also an approximation of RTE and requires only atmospheric water vapor
content for atmospheric correction. In this method LST is obtained from the following Equation (5):

Ts = 'Y[l(\lllL.\'en.\'or+\V2)+\V3:|+8 (5)
€

where: € 1s surface emissivity, v and 6 are parameters directly depending on Planck function.
For Landsat TMS band 6 y and & are calculated using expression (5a,5b):

2

~ 7.;:’".\(}’
S T s -
T o
O T por — T oY

‘sensor

v, W2 and 3 are atmospheric correction functions expressed for Landsat-5 TM as Equation (6a—):

wi=0.14714w* —0.15583w+1.1234 (6a)
w2 = —1.1836w” —0.37607w—0.52894 (6b)
v = —0.04554w” +1.8719w—0.39071 (6¢)

where w is total atmospheric water vapor content in g°cm_2.
Similar to the MW, the optimal performance of the SC algorithm is observed for the atmospheres
with water vapor content in the range of 0.5-2.5 g-cm_2 [18,19,21].
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3.1.4. Reference Land Surface Temperature (LST)

Because of the incompleteness of the in sifu data, LSTs simulated by the latest version of the
radiative transfer code MODTRAN 5 are used as a reference set. As suggested in previous
studies [8,17,48,49], LSTs simulated using radiative transfer code can be an alternative for validation
when field measurements at a required spatial scale are not available. The method was earlier applied
for Landsat [34] and MODIS [48,49] LST assessment. Among the most important improvements in
MODTRAN 5 compared to MODTRAN 4 is the incorporation of band model parameters based on
HITRAN2008, with 2009 updates [9]. MODTRAN 5 performs calculations based on the information
about observation geometry and atmospheric profiles at the moment of observation. The best results
are achieved when data come from in sifu radiosoundings synchronized in time with image acquisition.
Unfortunately, they were not available in this study. When discussing the difficulty of obtaining local
radiosounding data, multiple studies [17,50,51] suggest the use of the atmospheric profiles from the
reanalysis products as a viable solution. Thus, we use NCEP atmospheric profiles interpolated for the
exact location and time of Landsat overpass, the choice validated by previous research [17,50,51]. The
NCEP atmospheric profiles interpolated for the study area and conditions by ACPC tool are
complemented with on-site meteorological data for the lowest atmospheric layer, which together with
the newer MODTRAN version (5 vs. 4) marks the difference with the RTE-ACPC procedure. To
simulate the reference LSTs, the profiles are inserted into MODTRAN input file. Then the first
MODTRAN run is performed with 0% surface albedo; atmospheric transmissivity (t) and upwelling
radiance (L,) are extracted from the MODTRAN output files and integrated over the Landsat-5 TM
thermal band using the sensor filter function. To calculate downwelling radiance (L;) MODTRAN 5 is
run for the second time with 100% surface albedo. Next, the obtained atmospheric correction
parameters T, L, and L, together with previously estimated emissivity ¢ are substituted into RTE
(Equation (1)) to calculate the radiance from the target (L7). The final step consists in transformation
of the calculated target radiance into LST (LST,.) by inversion of the Planck’s law.

3.2. Emissivity Estimation

Most of the emissivity retrieval methods from remotely sensed data, such as TES [52] or TISI [53]
cannot be used with Landsat images because there is only one thermal band. The possible solution is to
apply one of the methods based on the normalized difference vegetation index (NDVI) [22]. Among
the advantages of these methods is that they rely on the information from the image used for the LST
retrieval [22]. The NDVI thresholds method (NDVITHM) [25,54] based on the findings of Valor and
Caselles [26] was applied to estimate surface emissivity in this study. The emissivity of the pixel is
determined based on its NDVIL. Different functions are applied to calculate emissivity depending on the
NDVI range (Table 4).

In case of the mixed pixels category the NDVI values (thresholds) selection is based on an analysis
of the images histograms. The soil emissivity & value of 0.984 is based on in situ field measurements
using box method [24] with an estimated error of 0.003 [24], and is similar to the values reported by
previous research [34,55]. The vegetation emissivity & is assigned the value of 0.990 [34]; de = 0.01
is the term accounting for surface roughness different from zero for heterogeneous covers [3];
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and Pv is the vegetation fraction estimated from a scaled NDVIL, according to Choudhury et al. [56]
and Gutman and Ignatov [57]:

_ NDVI — NDVIs

'~ NDVIv - NDVI, 7

Table 4. Emissivity values assigned to ranges of the normalized difference vegetation
index (NDVI) [26,34].

NDVI Cover Type Emissivity (g)
NDVI <0 Water 0.985
0<NDVI<0.1 Bare soil [ (red reflectivity)
0.1 <NDVI=<0.7 Vegetation mixed with soil 0.990 Py +0.984(1 — Pv)+0.04 Pv(1— Pv)
NDVI > (.7 Vegetation 0.99

The validation of NDVI™ method performed by Sobrino er al. [34] gets the error of less
than 0.01, which in terms of LST would mean the error below 0.5 °C [26]. Of the three dehesa
landcover components, soil emissivities show the greatest variation in the thermal region of the
spectrum [24,34]. As the soil emissivity measured in sifu is high in present study, the related error
should be smaller.

4. Results and Discussion

We present and discuss below the results of LST estimation in heterogeneous Mediterranean
tree-grass (dehesa) ecosystem with the RTE-ACPC, MW and SC procedures described in Section 3.1.
Emissivity € is calculated using the NDVI Thresholds method presented in Section 3.2. Section 4.1
compares three sources of the atmospheric water vapor (w) and explains the choice of the NCEP
REANALYSIS for this study. Section 4.2 analyses the differences between the LST.r and LST
generated by the tested procedures. Next, Section 4.3 discusses the relationship between Landsat LST
and MODIS LST product. Both LST comparisons (LST,.fand MODIS) include the use of the in situ
values of grass temperature measured in 2011 to assess the implications of time mismatch on the
LST differences.

4.1. Atmospheric Water Vapor Content

Atmospheric conditions on the images acquisition dates are shown in Table 5. The registered
mean w values were relatively low (1.292 g-cm_z, 1.515 g-cm_z, and 1.600 g-cm_2 for REANALYSIS,
AERONET, and MODIS, respectively), and the maximum values were close to 2.5 g-cm_z. Therefore,
the data were considered adequate as inputs to the MW and SC methods. The average difference
between w sources was around 0.3 g-cm_z.

A detailed case-by-case analysis revealed important differences among databases on some dates.
For example, the difference between MODIS and other sources was greater than 0.7 g-cm_2
for 4 August 2011, while AERONET exceeded w values from REANALYSIS in more than half a
gram per square centimeter on 30 June 2010, and 17 October 2009. Although a clear pattern of

differences among the data sources was not observed. the REANALYSIS water vapor values were

45



CHAPTER 6. Comparison of methods for LST estimation from Landsat data

Remote Sens. 2014, 6 4356

lower than those of the other two databases; only once the w value from this source was marginally
greater than the value from MODIS (11 April 2010) and in two cases the w levels were greater than
those of the AERONET database (1 August 2010, and 4 August 2011). The comparison of three
different atmospheric water vapor (w) sources did not reveal statistically significant differences
between them (F-Test = 1.16; p-value > 0.05). Hence, the REANALYSIS w values were used in
atmospheric correction since this database is the result of modeling which assimilates data from
multiple sources and is continuously updated. We did not use the MODIS product as a w source,
because one of the objectives of the study is the comparison of the Landsat-retrieved LSTs with those
from MODIS LST product, which employs MODOS w values in the algorithm.

Table 5. Atmospheric water vapor content values (grem™) obtained from the
REANALYSIS and AERONET databases, and MODIS MODOS5 product, as well as the air
temperature 7, (°C) and relative humidity RH (%) for each date.

Atmospheric Water Vapor Content Values (g-cm )

Date T °C)  RH (%)
REANALYSIS AERONET MODIS
27/06/2009 1.770 1.796 1.791 26.80 31.59
29/07/2009 0.771 0.861 1.146 29.72 19.06
30/08/2009 2.060 2.373 2.088 31.52 32.73
15/09/2009 1.050 1.443 1.302 20.32 37.76
17/10/2009 0.390 0.967 1.080 16.34 48.66
06/02/2010 0.980 1.230 1.415 12.58 75.28
11/04/2010 0.580 0.781 0.569 17.87 41.94
30/06/2010 1.810 2.438 2.146 3243 40.99
01/08/2010 1.590 1.410 1.674 33.51 28.1
05/11/2010 1.120 1.538 1.175 17.25 66.2
01/06/2011 1.410 1.551 1.887 20.73 43.16
04/08/2011 1.930 1.854 2.639 31.32 33.87
05/09/2011 1.330 1.448 1.887 24.78 42.43
Mean 1.292 1.515 1.600 24.24 41.67
Max 2.060 2.438 2.639 33.51 75.28
Min 0.390 0.781 0.569 12.58 19.06
St. Dev. 0.530 0.513 0.553 7.12 15.10

4.2. Landsat-5 TM Retrievals vs. Reference Land Surface Temperature (LST)

The LSTs retrieved from each Landsat-5 TM image and LST,.rare shown in Table 6. Among the
Landsat LSTs the lowest average value of 31.36 °C is obtained using MW algorithm, followed by
RTE-ACPC (32.98 °C) and SC (33.33 °C) procedures, which present the values very close to the
LST,er average of 33.17 °C. Minimum (around 12 °C) and maximum (around 45 °C) LSTs from
RTE-ACPC and SC algorithms are also similar to the LST,; while for the MW method these
statistics are lower (11.27 and 43.95 °C respectively). MW also shows standard deviations lower than
other procedures.

There were no statistically significant differences between the values obtained using tested
procedures (F-Test = 0.111; p-value > 0.05) and the degree of correlation between the values
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obtained by different methods is very high (R > 0.986). It is not strange considering that all the four
algorithms are based on successive versions of the same radiative transfer code: LOWTRAN 7
(Mono-Window (MW)), MODTRAN 4 (RTE-ACPC and SC) and MODTRAN 5 (LST,), developed
in 1988 [58], 1999 [59] and 2011 [9] respectively. Moreover, all of them employ the fewest (although
different) possible number of parameters for atmospheric correction (w for SC; 7, and w for MW;
profiles of RH, T, and atmospheric pressure for RTE-ACPC and LST,¢f) and the same emissivity.

Table 6. LST values retrieved from Landsat-5 TM images using Mono-Window (MW),
Single-Channel (SC), Radiative Transfer Equation Atmospheric Correction Parameters
Calculator (RTE-ACPC, procedure based on the online ACPC), LST,s and LST from
MODIS MODI11_L2 product used for comparison, as well as LST;, s (grass surface
temperature at 10:50 a.m. GMT).

LST (°C) Landsat LST (°C) 5 s
Tt MW sc  RTeacpC  Mmopis ST (O 8T CC)
27/06/2009 41.92 4379 4491 3987 4355 s
29/07/2009 43.95 4532 4536 3921 45.11 b
30/08/2009 41.11 4544 42.15 38.87 45.00 -
15/09/2009 29.78 30.75 31.25 28.03 30.68 =
17/10/2009 2185 22.59 2133 2223 2232 -
06/02/2010 1127 12.04 11.99 11.99 12,01 -
11/04/2010 21.61 2245 22.17 2235 22.09 -
30/06/2010 36.23 40.14 41.40 34.17 40.40 2
01/08/2010 41.49 4476 42.96 3951 43.82 s
05/11/2010 17.49 18.25 17.78 18.41 17.59 "
01/06/2011 27.76 29.09 27.97 2527 28.52 33.01
04/08/2011 4039 4427 44.85 38.55 45.04 4571
05/09/2011 32.79 3438 34,57 29.29 35.03 38.11
Mean 31.36 3333 32,98 2983 33.17 -
Min. 1127 12.04 11.99 11.99 12,01 -
Max. 43.95 45.44 45.36 39.87 45.11 -
St. dev. 10.69 11.68 11.71 9.34 11.76 -

When compared to LST,, the RMSDs are within 2.4 °C (Table 7): SC and RTE-ACPC present
RMSDs lower than 1 °C, while the MW shows the highest RMSD (2.34 °C) with systematical LST
underestimation (bias = —1.81 °C). SC values are the closest to the LST.; with the RMSD of 0.50 °C
(bias = 0.16); RTE-ACPC shows similar RMSD (0.85 °C) and a slight underestimation of the LST
(bias =—0.19 °C).

Differences between LST.r and Landsat LSTs depend on the “age” of the code version used in
procedure development: greater differences with LST, correspond to procedures based on the older
code version, i.e., MW-LST,y > SC-LST,. They are also consistent with the results of LST
simulations using LOWTRAN 7 and MODTRAN 4 performed by Jiménez-Muiioz et al. [19], which
show that MODTRAN 4 generates greater w values (around 1 g- cm™? for high w values) resulting in
higher LSTs. At the same time, the SC and RTE-ACPC (methods based on MODTRAN4) are closer to
the in situ data: (averages of 5.46, 3.19, and 3.31 °C for LSTi sin-LSTmw, LSTiy sin-LSTsc, and
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LSTi sinr LSTrTE ACPC, Tespectively), although this comparison is not fully accurate since LST;, sin
corresponds only to grass component of the landcover.

Table 7. Root mean square deviation (RMSD) of the comparison between the LST,
MODIS product and LSTs obtained from Landsat-5 TM by MW, SC and RTE-ACPC (°C).

RMSD MW SC RTE-ACPC MODIS
MW - - - -
SC 2:37 - - -
RTE-ACPC 2.28 1.26 - -
MODIS 2.27 4.29 4.16 -
LST,. 2.34 0.50 0.85 4.27

Even though MW systematically underestimates LST, the size of the differences varies from 0.11 to
4.66 °C depending on the date (Table 8); the range of variations for SC and RTE-ACPC is much
smaller (below 1 °C and 3 °C for SC and RTE-ACPC, respectively). Considering that both procedures
use the same emissivity, explanation of the anomalies lies in different sensitivity of the algorithms to
atmospheric variables. Good correlation of the differences between LST,; and MW with w and air
temperature (R = 0.8) can be appreciated in Figures 2 and 3; high atmospheric water vapor
concentration and high temperatures in summer time explaining the biggest LST deviations. The same
graphics reveal that there is no relationship between atmospheric parameters and the differences
between SC and LST.r (R <0.2). Bigger errors in hot and wet conditions have already been detected in
other studies [19,50]. Modeling [60] shows that a typical w error of 10% [61] may lead to LST error of
0.4 K and 0.2 K for SC and MW algorithms respectively for summer atmosphere [60]. For MW it is
also necessary to consider the 0.2 °C error due to the air temperature [21]. Because in MW algorithm
coefficients are developed only for two air temperature values and a reduced number of standard
atmospheres, the algorithm fails to represent real atmospheric conditions in the study area correctly,
especially on in summer. However, SC incorporates atmospheric functions based on extensive
atmospheric profile databases allowing more precise representation of atmospheric conditions over the
study site at the moment of satellite pass [19,50].

Based on statistical analysis we can conclude that SC and RTE-ACPC procedures are capable of
retrieving LSTs in the study area of Mediterranean tree-grass ecosystem with an error below 1 °C,
which is similar to the results of the previous studies conducted in the homogeneous areas [34,62].
Thus, Sobrino et al. [34] compared LSTs from MW and SC methods applied to Landsat images with
LSTs simulated using radiative transfer code and in sifu emissivity in agricultural area obtaining the
errors of around 0.9 °C for SC and around 2 °C for MW procedures; similar errors were reported by
Copertino et al. [33] who applied the same methods for estimating LST over different landcover types
in Southern Italy, in this case retrieved LSTs were compared to the soil temperatures. Limin ef al. [60]
compared LST estimated from HJ-1B satellite by MW and SC with MODTRAN 4 simulations of LST
registering errors below 1 °C in summer for nadiral view of the sensor.
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Table 8. Differences between the LST retrieved from Landsat-5 TM using RTE-ACPC,

MW and SC procedures and LST simulated using MODTRANS (LST,y).

LSTLands‘nl_LS Trel' (OC)

Date LST, (°C)
MW SC RTE-ACPC
27/06/2009 43.55 -1.63 0.24 1.36
29/07/2009 45.11 —-1.16 0.21 0.25
30/08/2009 45.00 -3.89 043 -2.85
15/09/2009 30.68 -0.9 0.07 0.57
17/10/2009 22.32 -047 0.27 -0.99
06/02/2010 12.01 -0.74 0.03 -0.02
11/04/2010 22.09 -0.48 0.36 0.08
30/06/2010 40.40 -4.17 -0.27 1.00
01/08/2010 43.82 -2.34 0.94 -0.86
05/11/2010 17.59 -0.11 0.65 0.19
01/06/2011 28.52 -0.76 0.58 —0.55
04/08/2011 45.04 -4.66 -0.77 -0.19
05/09/2011 35.03 -2.24 -0.65 —-0.46
Bias —1.81 0.16 -0.19
St. Dev 1.54 0.49 1.05

Figure 2. Relationship between w and LSTp angsa—LS Trer.
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Figure 3. Relationship between near surface air temperature 7 and LST andsa—LS Trer.

2
1 ®
°
a © R=0.14 & a L]
G n @ ~ [ ]
o
— b= 2
o o
] ° \\ o* ® o
s )
= \\ e\\o .
2 %0 e
3 o2 B
= ©
g \ L]
—
7
a 3 e
4 L
o
oMW eSC °
-5 -
10 15 20 25 30 35

Air Temperature {°C)
4.3. Landsat LST vs. MODIS Land Surface Temperature (LST)

We now present the comparison of Landsat LSTs and LSTs from MODIS LST product. Before the
comparison some adjustment was performed to account for differences in data format and spatial
resolution between Landsat and MODIS. MODIS LST images (MOD11_L2 product) were reprojected
to match spatial reference of Landsat. Since the study site is in the middle of the much more extensive
tree-grass ecosystem area with similar LST variability at the MODIS scale, the average LST value of
the Landsat pixels inside the MODIS pixel covering the center of the study area is calculated for each
date and method and is used for the comparison.

The results of the comparison with MODIS product LST and the intercomparison of the LST values
retrieved by the tested methods (Table 7) show that SC and RTE-ACPC are more similar to each other
than to the LSTs from MODIS product (RMSD of 4.16 and 4.29 °C for RTE-ACPC and SC
respectively). On the contrary, the MW-estimated LST values are much closer to MODIS LSTs
(RMSD of 2.27 °C).

Compared to Landsat-estimated values MODIS product underestimates LST, the bias is 1.5 °C for
MW and 3.5 °C for SC procedures. This is in agreement with the results reported in previous
studies [40,63,64], which mention that LST values from MODIS product are lower than those obtained
from other sensors or in situ measurements. Thus, Trigo et al. [65] observed a negative bias of 2.6 °C
in MODIS LST compared with ground values, especially at night. The underestimation also occurs
when comparing MODIS with other sensors, such as SEVIRI [65] and AATSR [40]. In case of
AATSR sensor, which is the most accurate infrared radiometer currently being flown in space
according to [40], the biases of —0.5 and —1.2 °C were observed both during day and night
respectively. So, it is evident that there is a problem related to spatial scale differences, which makes
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complicated the comparison of satellite and in situ data [17,48,49,66], although the differences are also
affected by other factors. One of the most important is the impact of the observation angles on the
measurements: while Landsat angles of observation are almost nadiral, MODIS views the study area at
an angle of 60°, i.e., the sensor observes the surface from the west, detecting higher fraction of shadow
and vegetation surfaces considerably decreasing LST. Previous studies show that the differences in the
LST measured in nadir and off-nadir observations can be as large as 5 °C depending on the angle and
cover type [17,67].

On the other hand, the 21 min time mismatch in the study area overpass between the sensors
(ranging from 7 min to 38 min, see Table 1) also operates in the same direction. The analysis of the
time differences between Landsat and MODIS is performed using data from thermal sensor installed in
the study area. The average temperature increment between 10:30 and 10:50 GMT for the three dates
in 2011, all of them in summer, is around 1.5 °C (Table 2). These coincide with [66] who indicate that
LST difference between the LSTs at the moments of Landsat and MODIS Terra overpasses can range
from 0.8 to 2 K, depending on the vegetation cover. If this time mismatch and the corresponding
surface temperature increase were taken into account the gap between Landsat and MODIS would be
reduced. The LSTs were not adjusted because only grass temperatures are available, not so the
temperatures of tree canopies and shadows. However, even though tree canopies cover only about 20%
of the area, we would expect significant decrease of the LST due to their presence within the MODIS
pixel, since some studies [68] indicate that the difference between the grass and tree canopy
temperatures in summer can be around 6-15 °C depending on the species and time of the day.

Although MW apparently generates LST values, which are closer to those from MODIS, they may
not be more accurate than LSTs estimated by other procedures. The similarity between MW and
MODIS LSTs results from two trends acting in the same direction: one is the underestimation of the
LST by MW algorithm due to the use of the older radiative transfer code version (LOWTRAN) and
another is the underestimation of the LSTs by MODIS due to the differences in time and observation
angles between MODIS and Landsat and implications of these differences on the emissivity.

When SC results (the closest to the LST,.y) are compared to MODIS LST, a seasonal bias is observed:
the greatest variances (above 6 °C) occur in summer (Table 9) and the lowest (0.00-0.38 °C) in winter
and autumn. This fact was already mentioned in other studies [51]. Trigo et al. [65] observed that
greater LST dispersion in summer can be related to the great thermal contrasts between landcover
components (bareground, grass, tree canopy) taking place during this season. Because of higher spatial
resolution and higher variability in emissivity, Landsat is more sensitive to this dispersion. Greater
thermal range of around 8 °C on summer dates can be appreciated in Figure 4 showing Landsat LST
variability within MODIS pixel. We should also consider that MODIS surface emissivity estimation is
based on landcover types from the map updated annually [69], while NDVI Thresholds emissivity
algorithm used in this study is based on NDVI (see Section 2.4).
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Table 9. Differences between LST retrieved from Landsat using MW and SC methods and

LST from MODIS MODI11_L2 product.

LSTyandsat—LSTrnopis (°C)

Date LSTwoms (°C) MW SC RTE-ACPC
27/06/2009 39.87 2.05 3.92 5.04
29/07/2009 39.21 4.74 6.11 6.15
30/08/2009 38.87 2.24 6.57 3.28
15/09/2009 28.03 1.75 i) 322
17/10/2009 22.23 -0.38 0.36 -0.90
06/02/2010 11.99 -0.72 0.05 0.00
11/04/2010 22.35 -0.74 0.10 -0.18
30/06/2010 34.17 2.06 597 7.23
01/08/2010 39.51 1.98 5.5 3.45
05/11/2010 18.41 -0.92 -0.16 -0.63
01/06/2011 25.27 2.49 3.82 2.70
04/08/2011 38.55 1.84 572 6.30
05/09/2011 29.29 3.50 5.09 5.28

Bias 1.53 3.50 3.15

St. Dev 1.74 2.59 2.82

Figure 4. Box plot showing variability of Landsat LST estimated from Landsat-5 TM

images using MW (in red) and SC (in blue) within MODIS pixel.
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Another explanation for the magnitude of LST7unasa—LSTmonis is the greater spatial and temporal

variability of emissivity values estimated from Landsat-5 TM NDVI. This wider range is caused by the
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higher spatial resolution of the Landsat-5 TM, different algorithms used for emissivity estimation for
two sensors and differences in viewing angles between Landsat and MODIS Terra (almost nadiral for
Landsat vs. around 60° viewing angles for MODIS Terra) resulting in greater sensitivity of Landsat to
an increase in the soil component and greater temperature contrasts between areas with and without
vegetation, characteristic to summer as a consequence of grass senescence.

5. Conclusions

The study demonstrates that LST of dehesa ecosystem can be estimated from Landsat-5 TM
thermal band using SC and RTE-ACPC procedures with RMSDs lower than 1 °C and the RMSD
of 2.3 °C using MW algorithm, with expected uncertainties in energy fluxes modeling of
around 10-30 W-m? for SC and RTE-ACPC [17]. The differences with the reference LSTs (LST) are
due to the fact that the tested methods are based on the different versions of the radiative transfer code:
LOWTRAN 7 for MW and MODTRAN 4 for SC and RTE-ACPC. Moreover, there is a seasonal bias
in the MW results, as evident from the correlations between MW-LST,s and near-surface air
temperature and atmospheric water vapor w (R = 0.8), explained by the worse fit of MW coefficients
to real atmospheric conditions in the study area compared to other procedures. This dependence is not
evident in the LSTs obtained by the SC and RTE-ACPC procedures.

On the other hand, the existing LST mismatch between Landsat and MODIS is due mainly
to (1) the time differences in the satellites overpasses and (2) the differences in the viewing angles
which make Landsat much more sensitive to changes in the proportion of different landcover
components with high thermal contrasts (soil and vegetation) and decrease of emissivity, especially
during hot summer months.

Considering the generally-accepted error at the level of 1-2 K [70,71], the three tested procedures
(SC, RTE-ACPC, and MW) can be used for LST estimation from Landsat-5 TM thermal data. RMSDs
obtained for SC and RTE-ACPC procedures are below 1 °C, with the best results for SC (RMSD = 0.5 °C).
This algorithm, which does not require radiosounding data, is considered the most adequate for
integration with LST from MODIS MODI11_L2 product. However, the between-sensors differences
due to time mismatch and observation angles should be taken into account. It was not possible to
estimate the precise magnitude of Landsat-MODIS LST differences due to the lack of information on
the contribution of each of the landcover components to ensemble radiance from heterogeneous and
non-isothermal pixel characteristic for dehesa ecosystem.
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Abstract: The paper assesses spatio-temporal patterns of land surface temperature (LST)
and fire severity in the Las Hurdes wildfire of Pirnus pinaster forest, which occurred in July
2009, in Extremadura (Spain), from a time series of fifteen Landsat 5 TM images
corresponding to 27 post-fire months. The differenced Normalized Burn Ratio (AINBR) was
used to evaluate burn severity. The mono-window algorithm was applied to estimate LST
from the Landsat thermal band. The burned zones underwent a significant increase in LST
after fire. Statistically significant differences have been detected between the LST within
regions of burn severity categories. More substantial changes in LST are observed in zones of
greater fire severity, which can be explained by the lower emissivity of combustion products
found in the burned area and changes in the energy balance related to vegetation removal. As
time progresses over the 27 months after fire, LST differences decrease due to vegetation
regeneration. The differences in LST and Normalized Difference Vegetation Index (NDVI)
values between burn severity categories in each image are highly correlated (= 0.84). Spatial
patterns of severity and post-fire LST obtained from Landsat time series enable an evaluation
of the relationship between these variables to predict the natural dynamics of burned areas.
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1. Introduction

Land surface temperature (LST) is one of the most important factors controlling physical processes
responsible for the land surface balance of water, energy and CO; [1-3]. In the context of wildfire studies,
fire-induced environmental changes cause variations in the spatial distribution of LST, mainly due to
a decrease in transpiration and an increase in the Bowen ratio ( = sensible heating/latent heating) [4].
The higher post-fire LST of the burned areas was observed in field data [5,6] and remotely-sensed
images [7,8]. Moreover, according to Beringer ez al. [9], there is a relationship between fire intensity and
an increase in the Bowen ratio, as far as fire intensity determines the likely impact on energy and carbon
fluxes. Consequently, burn severity, defined for the current study as the amount of change in a burned
area with respect to the pre-fire conditions [10-12], is very dependent on fire intensity [13] and can be
considered a key variable in understanding the spatial distribution of LST in the immediate post-fire
environment [8]. The regrowth of vegetation is also one of the most important factors controlling LST in
the years following a fire, as vegetation cover and bare ground have different emissivity, defined as the
ratio between the object emitting capacity and that of a blackbody at the same temperature. That is why
spatio-temporal patterns of LST can help monitor the processes that structure ecosystem development
and may assist in developing appropriate management strategies following forest fires.

Satellite sensors have long been used in wildfire research [11,14] to assess variables related to burn
severity and vegetation recovery in a cost-effective and time-efficient way (among others [15,16]. On
the medium spatial scale, Landsat has provided global coverage since 1984, with Landsat 8 launched at
the beginning of 2013, ensuring the continuity of data record [17].However, compared to optical bands,
the use of Landsat thermal data presents additional challenges [1,18].

Radiance levels in the thermal region of the spectrum depend not only on the amount of solar
radiation received, but also on the ability of the surface to emit energy, expressed by its emissivity and
atmospheric conditions (water vapor and temperature). At present, several physically-based methods
have been suggested for LST estimation based on thermal infrared data from satellites, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat [19]. In the specific case of
Landsat-5 TM, with only one thermal infrared band available, atmospheric profiles of temperature and
water vapor content must be known for the exact time of image acquisition, as well as the knowledge of
surface emissivity for each pixel. There are several LST algorithms applicable to Landsat 5/7, including
mono-window [20], single channel [21,22] and the on-line Atmospheric Correction Parameters
Calculator (ACPC) [23,24]. All of the procedures report similar estimation errors of 1-2 K.

Burn severity can be assessed through the calculation of spectral indices, which are focused on
reflectance changes in burned areas mainly related to vegetation removal, soil exposure, changes in
water content and the deposition of carbon and ash [25]. Although the Normalized Difference
Vegetation Index (NDVI) [26] yields good results for burn severity assessment [27,28], the Normalized
Burn Ratio applied in a two-date approach, the delta Normalized Burn Ratio (ANBR) [12], outperforms
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the other indices [29-33]. dNBR can be considered a consistent method for burn severity assessment,
due to its proven relationship with field severity metrics. Empirical models have shown strong
relationships (r* > 0.6-0.7) between dNBR and specific parameters of burn severity, such as ash cover
percentage, tree mortality, or twig diameter [30,34—37], or field indices, such as the Composite Burn Index
(CBI) [31,38-42]. Moreover, the bi-temporal approach, where values of the post-fire image are
subtracted from values of the pre-fire image, is considered the best approach to detect change caused by
fire. Spectral vegetation indices have been proven useful in monitoring seasonal variations in vegetation
development (phenological cycle) [43.44], as well as post-fire plant regeneration [45,46]: strong
correlations were observed between the NDVI and various biophysical vegetation parameters, such as
Leaf Area Index (LAI), the fraction of photosynthetically active radiation (fPAR) or vegetation
abundance [47].

Although relationships between burn severity, NDVI and LST values seem quite clear, few studies
have explored these [8,48,49]. There are indications that the inclusion of thermal information in spectral
indices for severity mapping improves their performance [48,49]. The post-fire LST-severity
relationship was assessed by Veraverbeke et al. [8] using MODIS images for a two-year period after
fire, detecting an increase in post-fire LST up to 8.4 °C for a conifer forest. However, Landsat images
can be especially suitable, because both the severity and LST of burned areas can be estimated in a more
detailed spatial resolution.Therefore, the objectives of this study are: (1) to evaluate changes in LST for
several images over a two-year period after fire; (2) to analyze the relationship between LST and burn
severity estimated using the dNBR index; and (3) to study the relationship between vegetation regrowth
measured by NDVI and changes in LST. The working hypothesis tested in this study is that the spatial
distribution of LST in the burned areas depends on burn severity and that the LST range in each image is
related to the phenological cycle and the time elapsed since the fire. From a methodological perspective,
this study relies on the potential of remotely-sensed data and, more specifically, Landsat data to estimate
LST, burn severity and vegetation regrowth.

2. Study Area and Data
2.1. Study Area

The study area of the Las Hurdes 2009 wildfire is located in Extremadura, in the province of Céceres,
Spain (40°19'—40°24'N, 6°10'-6°15'W) (Figure 1). It is a hilly area with elevation ranging from 390 to
1280 m above the sea level. The typical acid fine-textured soils are mainly umbricLeptosols and
humicCambisols formed over metamorphic bedrock [50]. The Mediterranean climate (Csa according to
the Koppen classification), characterized by an annual average temperature of 16°C and approximately
550 mm of precipitation, has a four-month hot, dry period from June to September [51].

The Las Hurdes fire analyzed in this study burned more than 3000 ha of the 30—40 year-old pine
forest (Pinuspinaster) in four days (25-28 July 2009). According to the Spanish Third National Forest
Inventory [50] (sample points shown as points in Figure 1), the average tree coverage is around 40%;
besides Pirnuspinaster, otherspecies, notablyArbutus unedoandQuercus ilex are also present. In Spain,
Pinus pinaster occupies more than 1 million ha and is highly important to Spanish forestry [52]. It is also
the species most affected by wildfires (27.96% of the burned area) [ 50]. Growth usually occurs in spring
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(early April to mid-June) and autumn (late August to early October) [53]. The seed production is
generally related to the fire regime. Stands suffering recurrent, high-intensity fires show more serotinous
cones and a large aerial seed bank compared to stands where crown fires are not frequent [54].

Figure 1. Map of the fire site. Points indicate the location of the Spanish National Forest
Inventory parcels [50].
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2.2. Data

Data from recently calibrated Landsat-5 TM archive [55] were used in this study. Landsat-5 TM
images are composed of six optical and one thermal (bandwidth of 10.4-12.5 um) spectral bands. Spatial
resolution is 30 m for optical bands and 120 m for the thermal band.

Fifteen clear sky images, path 202/row 32, covering the period from July 2009 to September 2011,
downloaded from the NASA website [56], are listed in Table 1 along with the information on the
observation geometry and atmospheric conditions (near-surface air temperature 7, and relative humidity
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RH) obtained from the Hurdes-Azabal meteorological station [57]. The station is part of the Spanish
Agroclimatic Information System for Irrigation (SIAR) [58] and is about 10 km from the study site.

Table 1. Landsat-5 TM images and meteorological data on the dates involved.RH,
relative humidity.

Months Sun Azimuth Sun Elevation

T Post-Fire (Degrees) (Degrees) Tag(Meat, ) -RE(Nean; %)
13 July 2009 0 (Pre-fire) 125.0 62.4 253 41.6
29 July 2009 1 129.0 59.9 243 32.8
30 August 2009 2 141.1 52.6 28.7 239
15 September 2009 3 147.3 47.9 17.9 38.6
17 October 2009 4 156.5 37.4 11.7 40.7
10 March 2010 9 146.9 40.1 5.9 39.6
11 April 2010 10 141.8 52.9 134 58.0
30 June 2010 12 124.3 64.0 25.8 47.0
16 July 2010 13 126.1 62.3 24.5 41.3
1 August 2010 14 130.3 59.6 25.8 35.2
5 November 2010 17 159.2 31.4 12.8 81.9
16 May 2011 23 132.5 61.8 18.7 56.2
1 June 2011 24 127.9 63.9 17.7 40.1
4 August 2011 26 130.7 58.9 25.8 45.8
5 September 2011 27 142.9 50.9 20.2 473

We used preprocessed level L1T Landsatdata. The downloaded images (GeoTiff format) were
available in the UTM projection (datum: WGS84). The digital elevation model with 25-m resolution in
the UTM projection was downloaded from the online archive of the National Center for Geographic
Information (Spain) [59]. It was processed using ArcGIS software [60] to obtain information on the
surface slope and aspect.

3. Methodology
3.1. Atmospheric Correction of the Optical Bands

An open-source Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) from
NASA Goddard Space Flight Center (GSFC) [61] was used for the atmospheric correction of the optical
bands. It obtains parameters required for atmospheric correction from the National Centers for
Environmental Prediction (NCEP) reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder,
Colorado, USA, on-line [62](atmospheric pressure and water vapor), at 2.5° spatial resolution and the
Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) (ozone) at 1° spatial resolution, available
from [63]. The obtained values are resampled to the same spatial resolution of 1.2 km and each image is
processed and corrected independently. One of the advantages of the system compared to other similar
tools, is that it takes the original Landsat data (DN values) as inputs and provides atmospherically
corrected reflectance values for each of the optical bands as outputs ,without the need for previous data

transformation or scaling by the user.
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3.2. Monitoring Vegetation Recovery

Monitoring of vegetation recovery was performed through NDVI calculated for each available image.
The NDVI is based on the difference between the maximum reflection of radiation in the near-infrared
spectral bands (0.78-0.90 pm) and the maximum absorption of radiation in the red spectral band
(0.63-0.69 pm). The difference of the reflectances is normalized by their sum, reducing the effect of
shadows, resulting in NDVI = (NIR — VIS)/(NIR + VIS).

Values of the NDVI range between —1.0 and +1.0. The wide use of NDVI for vegetation monitoring
arises because of its positive correlation with characteristics of plant status and abundance. NDVI frequently
serves as a proxy for biomass, although the relationship between them is often non-linear [26,44],and NDVI
shows saturation before biomass reaches its maximum levels. In spite of the limitations, NDVI is
commonly used in assessing vegetation recovery after fire (among others [8,16,27,64]). It is sometimes
used as a metric of burn severity [8,48,65,66].

3.3. LST Estimation

LST was calculated using the mono-window (Mw) method [20]. Prior to the LST estimation, band 6
original data were transformed first into radiance, with the help of the data from the header files, and
next into the at-sensor brightness temperature. The AMw algorithm [20] requires three a priori known
parameters: atmospheric transmissivity (7) calculated from the water vapor content, effective mean
atmospheric temperature (7,) and surface emissivity (¢). The formula used to calculate LST (7’s) is the
approximation of the radiative transfer formula and includes two empirical coefficients a and b:

Ts = {a(l- C- D)+ [b(1- C - D)+ C+ D|x Teenssr— DTo}/ C (1

where @ =—67.355351 and b = 0.458606 are constants, 7.,,.,, is the at-sensor brightness temperature and:
C=e¢gt (2a)

DZ(I—T)[1+(1—8)’C] (2b)

Formulas for the estimation of the atmospheric correction parameters were developed by Qin and
Karnieli[20] using LOWTRAN 7 simulations. The simulation of atmospheric transmissivity t,
depending on water vapor content, yielded Equation (3a,b) for a low temperature profile (18°C) and
Equation (3c.d) for a high temperature profile (35°C) [20]:

7=10.974290 — 0.08007w (0.4 g-cm~2 <w<1.6 g-cm“z) (3a)
7=1.031412- 0.11536w (1.6 g-cm *<w < 3.0 g-cm °) (3b)
7=0.982007 — 0.09611w (0.4 g-cm > <w < 1.6 g-cm °) (3¢)
7=1.053710— 0.14142w (1.6 g-cm > <w < 3.0 g-cm ) (3d)

The effective mean temperature 7, is computed for specific atmospheric conditions using
Formulas 4a—c based on the ratio of water vapor content at a particular altitude to total atmospheric water
vapor content and near-surface local air temperature 7 [20]:

T,=19.2704 + 0.911187, (mid-latitude winter) (4a)

66



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6142
T.=19.2704 + 0.911187, (mid-latitude summer) (4b)
T.=17.9769 + 0.917157 (tropical atmosphere) (4¢)

The empirical formula (Equation (5)) developed by Butler [67] based on Bolton [68] and adjusted for
central Spain by De Vicente and Pulido [69] was used to estimate atmospheric water vapor content:
exp(17.677, /(243.5+17}))

T+273.15

w=0.013227 RH *135 5)
where w is the water vapor content (g-cm™2), 7 is the near-surface air temperature in °C and RH is the
relative humidity (%).

When working with Landsat thermal data, surface emissivity estimation required for calculating LST
is a challenge, because only one thermal band is available. To solve the problem, the NDVI-based
methods, which rely on the information from the image used for the LST retrieval, were successfully
applied [70]. One of these, the NDVI thresholds method (NDVI™™) [71,72], based on the findings of
Valor and Caselles [73], was used to calculate surface emissivity in this study. The emissivity for different
NDVIranges was estimated using different functions. For water and fully vegetated pixels, the emissivity
values of 0.985 and 0.99, respectively, were assigned following the suggestion of Sobrino et al. [74].
The soil emissivity value of 0.984 is a result of the field measurements using the box method [75] and is
similar to values reported by previous research [74,76]. As for the pixels with the mixed cover of
vegetation and soil (0.1 < NDVI < 0.7), emissivity ¢ is calculated using Formula (6) [72-74], which
involves vegetation fraction Py estimated from a scaled NDVI, according to Choudhury et al. [77] and
Gutman and Ignatov [78] (Equation (7)):

£=0.990L, + 0.984(1— B,)+0.04B.(1- P,) (6)
NDVI,, ., — NDVI.
Py=—_Z (7)

NDVIy — NDVI;

where NDV1,,..; is the NDVI value of a pixel.
NDVI thresholds for the mixed pixels range are based on image histogram analysis.

3.4. Burn Severity Estimation

In this research, INBR was the spectral index applied for burn severity evaluation due to the very strong
association observed between dNBR and field burn severity measurements in conifer forests [34,42,79]
and more specifically, in Mediterranean areas [80,81]. Likewise, as LST values were obtained from
Landsat data, it was considered appropriate to use the burn severity index especially designed for
Landsat spatial and spectral specifications [12]. The methodology followed for dNBR calculation
was [82]: (1) pre- and post-fire images were transformed to reflectance R and atmospherically corrected;
(2) an NBR image was generated for both dates using the formula (R4 — R7)/(R4 + R7), where subscripts
correspond to the band numbers; (3) ANBR was calculated as NBRpre-fire — NBRpost-fire; and (4) the
polygon encompassing fire-affected pixels (AINBR > 100) plus a 350-m buffer was defined for the
purposes of analysis.

dNBR values are sometimes grouped into discrete classes of burn severity (e.g., low, moderate
and high) [12]. Original thresholds for these intervals were not thought to be used as fixed values, valid
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worldwide. Several studies have used the relationship between dNBR and CBI to calculate dNBR
thresholds representing breaks between burn severity classes [39,40,83], sometimes with fairly
insignificant differences from the initially suggested values [84]. However, there are also studies that
have adopted them in ecosystems quite different from the one for which they were created [30,31,34].
For simplicity and objectivity, thedNBR values suggested by Key and Benson [12] were used for
creating the burn severity categories as follows: unburned (UB) (from —100 to 99), low severity (LS)
(from 100 to 269), moderate-low severity (MLS) (from 270 to 439), moderate-high severity (MHS)
(from 440 to 659) and high severity (HS) (from 660 to 1300).

3.5. Statistical Procedires

The comparison of pre- and post-fire images suffers from problems related to interannual
phenological differences and time since fire [12,45,85,86]: the overall regeneration trend may vary
significantly from one year to another due to climatic differences. To solve this problem, Diaz-Delgado
and Pons [45] compared burned and unburned plots within the same image, while Veraverbeke et al. [86]
used a control plot selection procedure based on Lhermite et a/ [87], which exploits the similarity
between the temporal evolution of the burned and unburned pixels. In this context, two different
approaches to the temporal study of the LST-severity relationship were applied in this research. First,
variations in LST and NDVI differences throughout the 27 months after the fire were identified by
comparing the images captured at similar moments of the annual phenological cycle in different post-fire
years. This analysis was applied to images satisfying the following criteria: (1) post-fire images from
different years can be compared only if the acquisition day corresponds to the same phenological stage
of Pinuspinaster (all of the images used for comparison in this study are acquired within the period
between two active growth phenological stages between mid-June and late August [53]);and (2) the
difference in atmospheric temperature between compared dates has to be lower than 1.5°C (Table 1).
Thus, the following raster arithmetic calculations were applied: (1) dLST: subtraction of the
post- and pre-fire LST, i.e., LST29 juy 2000 = LSTe; (2) dNDVI: subtraction of the pre- and post-fire NDVI
for three dates, ie., dNDVIzmg = NDVIpre— NDVIzg July 2009, dNDVI2010= NDVIp,-e = NDVI]5 July 2010, and
dNDVlIz011 = NDVIe — NDVI4 august 2011-

Second, statistical differences were studied between the LST and NDVI values observed in the burn
severity categories. To reduce the spatial auto-correlation effects, a random sample of 10% pixels by
severity category, including the UB category for reference, was extracted from the pixels inside the
study site perimeter (n = 4230). Sample points were analyzed independently for each date using
ANOVA analysis and Tamhane’sT2 post hoc test algorithms. Moreover, for further study of the
temporal differences between burn severity categories, the variables “fire severity differences in LST”
(fsdLST) and “fire severity differences in the NDVI” (fsdNDVI) were analyzed. fsdLST specifically
refers to the LST differences between areas within burn severity categories: UB, LS, MLS, MHS and
HS. It was accomplished by Formula (8):

ate

f5dLST = |LST, - LST, (8)

where LS7 is the mean value of the LST variable and 7, j are a pair of burn severity categories.
A similar procedure (Equation (9)) was applied to calculate fsdNDVT:
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ate

fidNDVI = NDVI, - NDVI, * ©)
where NDVI is the mean value of the NDV7 variable and i, j are a pair of burn severity categories.
4. Results and Discussion
4.1. Spatial Pattern of ANBR

The RGB 7-4-3 band combination (Figure 1) depicts the Las Hurdes fire perimeter in shades of red
associated with the low reflectance in the NIR band, a characteristic of zones of scarce vegetation, and
high reflectance at 2.1 pm in the SWIR spectral region, typical of areas with a low moisture content. This
is the typical spectral response of burned areas [79] (Figure 2). Different exposure time and different fire
intensity result in the great spatial variability of burn severity in the affected ecosystem. The spatial
distribution of burn severity, classified from the original ANBR threshold values, can be seen in Figure 2.
Within the Las Hurdes fire, 32.9% of the burned surface presents HS, 37.4% MHS, 18% MLS and
11.7% LS. On the whole, Las Hurdes was a high severity fire, since more than 70% of the area falls
within the MHS and HS categories. However, within the fire perimeter, two wide diagonals of low
severity pixels divide the burned area in the north and south (Figure 2), defining four sectors: two in the
north with a large number of high-severity nuclei, a very large one in the center and one of
predominantly moderate-low severity in the south. The predominance of the highest burn severity
intervals is also related to the initial approach applied to the burn severity assessment, by using an
immediate post-fire image and not giving time for the ecosystem to show additional responses
to fire [12].

4.2. Temporal Dynamics of LST and NDVI Values

This section presents the temporal dynamics of LST and NDVI throughout the study period.
Descriptive statistics for LST and NDVI (Tables 2 and 3) refer to data from all of the available images:
the pre-fire image (13 July 2009) and 14 post-fire images taken between July 2009 (one day after fire),
and September 2011 (two years after fire), while Figure 3 shows data in the form of graphics on four
different dates: 13 days before the fire on13 July 2009, and on three midsummer dates corresponding to
successive post-fire summer seasons (29 July 2009,16 July 2010, and 4 August 2011). Values are
grouped by severity categories. In addition, Figure 4 shows the spatial distribution of LST and NDVI on
the same dates as Figure 3.

In the pre-fire image, all burn severity categories present similar average LST values (~30 °C)
(Table 2). The coolest areas associated with greater biomass are those registering the highest severity
levels after fire (Figures 3 and 4). The existence of this type of relationship between pre-fire biomass and
further burn severity was previously reported by Garcia-Martin ef a/. [88], who demonstrated that
knowledge of crown biomass enables the prediction of the burn severity levels.
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Figure 2.Burn severity map.
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Table 2. The average LST values by fire severity category and date (MMDD).
UB = unburned (n = 673); LS=low severity (n = 415); MLS = moderate-low severity
(n = 640); MHS = moderate-high severity (» = 1332); HS = high severity (2= 1170).

LST 2009 2010 2011

Severity Date Mean SD Min Max Date Mean SD Min Max Date Mean SD Min Max

UB 0713 30.84 430 21.34 4280 03/0 984 4.1 054 1855 0516 2599 3.60 17.82 35.89
LS 0713 31.04 323 2139 38.09 03/0 1193 393 0.86 21.08 05/6 28.26 3.55 18.13 38.20
MLS 0713 30.10 2.74 20.75 3747 0310 137 426 045 224 0516 30.29 3.50 18.01 39.69
MHS 0713 29.23 242 20.70 3696 03/0 1438 487 089 23.18 056 31.34 3.80 18.56 39.26
HS 0713 27.70 2.05 2133 36.50 0370 14.82 596 1.15 2388 0516 32.32 437 21.12 40.26
UB 0729 36.61 5.56 25.32 49.37 0411 2434 4.12 1478 35.17 0601 23.12 3.05 1597 30.06
LS 0729 40.59 5.06 24.62 50.85 04771 27.8 43 151 40.09 060 24.87 265 1646 30.18
MLS 0729 4323 491 25.08 53.74 0411 31.06 4.32 1531 41.53 060/ 26.28 240 16.75 33.98
MHS 0729 45.87 493 2652 5541 0411 3279 485 16.48 4201 060! 26.87 2.61 16.72 33.87
HS 0729 4729 494 29.69 56.58 0471 3436 5.83 19.15 4455 0601 27.54 296 19.32 33.89
UB 0830 37.18 490 26.12 47.06 0630 3259 4.72 19.44 45.12 0804 26.57 5.41 855 3943
LS 0830 40.17 442 26.85 48.66 0630 3575 4.58 18.72 47.39 0804 28.46 525 228 37.12
MLS 0830 42.19 459 2691 5241 0630 39.06 398 2422 4741 0804 30.12 491 1191 39.76
MHS 0830 4422 484 27.07 53.65 0630 4045 391 25.17 49.21 0804 30.40 4.78 5.72 40.64
HS 0830 45.02 5.14 29.60 53.79 0630 4142 4.11 3045 49.76 0804 30.35 499 1133 39.70
UB 0915 23.84 4.84 13.83 35.18 0716 33.13 5.09 23.05 44.03 0905 24.27 4.10 1547 3249
LS 0915 2635 4.17 14.18 34.12 0716 36.64 4.71 2352 46.59 0905 26.38 3.61 15.22 32.86
MLS 0915 28.01 421 13.71 36.13 07/6 39.81 3.88 24.19 4791 0905 27.86 3.37 15.10 35.36
MHS 0915 29.14 442 1472 39.65 0716 412 379 2422 4822 0905 28.28 3.69 15.18 36.06
HS 0915 30.00 493 15.01 39.66 0716 41.84 4.15 30.14 48.34 0905 28.59 4.46 16.19 35.88
UB 1017 21.80 5.58 10.21 33.69 080/ 36.51 4.87 26.37 46.65
LS 1017 2451 5.15 11.03 36.10 0801 39.66 447 27 49.62
MLS 1017 27.04 5.71 11.04 3991 0801 42.61 3.71 28.02 50.58
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Table 2. Cont.
LST 2009 2010 2011
Severity Date Mean SD Min Max Date Mean SD Min Max Date Mean SD Min Max
MHS 1017 28.88 6.72 10.16 42.69 080/ 4392 3.6 28.64 50.65
HS 1017 2927 7.79 10.16 41.73 0801 4447 3.87 33.88 50.76
UB 1105 17.24 346 9.82 26.75
LS 1105 19.1 39 981 31.36
MLS 1105 21.05 4.7 935 3194
MHS 1105 21.83 5.61 8.13 33.2
HS 1105 2255 6.85 8.12 33.61
Table 3. Average NDVI values by fire severity category and date (MMDD). UB = unburned
(n = 673); LS = low severity (n = 415); MLS = moderate-low severity (n = 640);
MHS = moderate-high severity (zn = 1332); HS = high severity (n = 1170).
NDVI 2009 2010 2011
S Date Mean SD Min Max Date Mean SD Min Max Date Mean SD Min Max
UB 0713 046 0.14 0.13 074 0310 050 0.13 0.14 0.76 0516 052 0.13 0.15 0.80
LS 0712 045 0.12 0.15 074 0370 038 0.12 0.13 0.73 0516 048 0.11 022 0.80
MLS 07713 049 0.10 021 074 0310 025 0.08 0.03 0.71 0516 043 0.10 0.19 0.72
MHS 0773 055 0.07 035 0.79 0310 0.19 0.06 0.03 047 0516 044 0.09 021 0.80
HS 0712 063 0.04 044 078 0370 0.16 0.04 0.08 0.38 0516 041 0.10 021 0.76
UB 0729 044 0.15 0.13 075 0411 049 0.13 0.11 0.82 0607 052 0.13 0.17 0.82
LS 0729 034 0.12 0.10 073 0477 037 0.12 0.05 0.75 0607 048 0.12 0.23 0.80
MLS 0729 025 009 005 058 0477 025 0.09 0.11 0.61 0607 043 0.09 021 0.71
MHS 0729 0.18 0.07 0.07 048 04171 0.19 0.06 0.09 0.51 0607 045 0.09 0.19 0.82
HS 0729 0.14 0.04 0.07 034 0477 0.16 0.04 0.08 049 6007 043 0.10 021 0.80
UB 0830 042 0.15 0.10 072 0630 049 0.14 0.16 076 0804 045 0.13 0.13 0.77
LS 0820 032 0.11 0.10 069 0630 039 0.13 0.08 0.79 0804 0.39 0.10 0.18 0.74
MLS 0830 0.24 0.07 009 059 0630 029 0.09 0.13 0.64 0804 036 0.07 0.18 0.70
MHS 0830 0.19 0.05 0.09 044 0630 027 0.08 0.13 0.76 0804 0.38 0.07 0.18 0.73
HS 0830 0.17 0.03 0.09 030 0630 0.25 0.07 0.13 0.74 0804 0.39 0.07 021 0.69
UB 0975 044 0.14 0.11 071 0716 049 0.16 0.10 0.80 0905 0.50 0.14 0.11 0.79
LS 0915 034 0.11 0.13 070 0716 037 0.14 -0.06 081 0905 043 0.12 0.17 0.78
MLS 0975 025 007 009 053 07176 027 0.09 0.11 0.63 0905 040 0.09 0.18 0.71
MHS 0975 0.21 005 007 052 0716 025 0.08 0.11 0.76 0905 042 0.08 020 0.80
HS 0915 0.19 0.03 0.07 032 0716 024 0.07 0.11 0.73 0905 044 0.08 020 0.75

UuB /017 046 0.16 0.11 076 0807/ 046 0.14 0.13 0.74
LS 7017 035 0.2 0.12 071 0807 035 0.13 0.02 0.74
MLS /017 026 0.08 0.09 056 080/ 026 0.08 0.11 0.61
MHS 7017 021 006 0.09 061 0807 025 007 0.12 0.73
HS 71017 0.18 0.04 0.04 039 080/ 024 006 0.11 0.71

UB 1105 055 0.14  0.19 0.82
LS 1105 044 0.13 0.16 0.82
MLS 7105 036 0.10 0.05 0.80
MHS 1105 036 0.09 0.16 0.67
HS 7105 036 0.10 —500.10 0.73
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Figure 3.The relationship between burn severity categories and LST in °C (left panel), and
NDVI (right panel). Bars indicate confidence interval of average values (oo = 0.01). Each

graphic shows data for a date specified in its title (YYYYMMDD).
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Figure 4.Spatial distribution of LST (left panel) and NDVI (right panel) before the fire event
and in the three post-fire summer seasons.(a) 13 July 2009 (pre-fire); (b) 29 July 2009;
(c) 16 July 2010;(d) 4 August 2011.

(b)
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The immediate effects of the fire on the LST are reflected in the first two post-fire images (29 July
and 30 August 2009) closest to the event. For the visual assessment of these effects, Figure 5 presents the
spatial distribution of the dLST, where LST values of the post-fire image are subtracted from the pre-fire
image. According to this formula and the assigned colors, areas with the greatest increase of LST are
highlighted in red, and areas without a change are shown in green. To improve the understanding of
pre- and post-fire LST changes, Figure 6 presents the confidence levels of average values for the dLST
by burn severity category. The average LST increase is 13°C, reaching 20°C for the HS pixels. The
generalized LST increase in the post-fire image (both in the burned and unburned areas) may be due to
the fact that this image was acquired on a date closer to the middle of summer than the pre-fire image,
and therefore, the air temperature was high. However, thermal differences between HS and UB
categories within the post-fire image (>10°C) reveal the influence of burn severity on the spatial
distribution of LST (Table 3). The decrease of aboveground green biomass in the burned zones [12],
especially in those of higher severity, and the appearance of lower emissivity coverage (ash, char and
mineral soils) lead to a large increase in the LST.

Figure 5. The spatial distribution of dLST between immediate post-fire (29 July 2009) and
pre-fire (13 July 2009) images.
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Elevated LST after fire events is mentioned by several authors (among others Lambin et al. [7];
Montes-Helu et al. [5]; Wendt et al. [6]). Veraverbeke ef al. [8] studied this increase using MODIS
imagery following the major Peloponnese fire in 2007. Until now, few studies have analyzed
spatiotemporal patterns of post-fire surface temperature using Landsat data, although the high potential of
existing single channel algorithms, such as the mono-window (MW) method by Qin ef al. [20] or the
single-channel (SC) method by Jiménez-Muiioz and Sobrino [22], has already been demonstrated [89-91].
The greater surface heterogeneity of the burned areas due to the incorporation of combustion products,
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changes to lighter-colored soil and ash, char and scorched, then blackened, vegetation [12] results in an
increase in post-fire thermal variability (SD values ~5, Table 2).

Figure 6.The relationship between burn severity categories and dLST between pre-fire
(13 July 2009) and post-fire (29 July 2009) images. Bars indicate the confidence interval of
the average values (oo =0.01).
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Some interesting ideas arise regarding the influence of burn severity on the LST distribution and the
contrast between areas of different burn severity categories. The general decrease in LST observed in
the first post-fire autumn (September and October data of 2009) is probably associated with lower solar
illumination angles. When the sun is directly above the observation location and the sunlight is
perpendicular to the land surface, the amount of solar radiation received by the surface is at its
maximum. However, as the angle between the sun and a surface is continually changing, the surface gets
only part of the incident sunlight. Topography (slope) and sun azimuth also affect the incidence angle of
sunrays and the time the area is illuminated by the sun. However, burn severity remains the main factor
influencing the spatial distribution of LST: higher LST values correspond to higher burn severity and
vice versa (Table 2). Likewise, post-fire thermal variability within burn severity categories maintains
the level observed in the immediate post-fire image.

The same patterns of LST changes are observed in the images from different years: (i) same season
LST values (spring, summer, autumn) become lower from year to year; (ii) the spatial distribution of
LST values is qualitatively in agreement with the burn severity categories; and (iii) differences between
extreme severity categories in 2010 are slightly lower compared to 2009 (the year of fire) and even lower
in 2011 (Table 2). This smoothing of contrast among categories can be explained by both the effects of
time on the combustion products and, most of all, the effects of vegetation regeneration, reflected in
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NDVI values registered in all of the temporal series in the various burn severity categories (Table 3) and
a visual comparison of three ANDVI images (Figure 7): each image is calculated as the subtraction of the
NDVI raster of one of the post-fire summer seasons from the pre-fire NDVI (dANDVIxp9, dNDVIagi0
and dNDVI,g;1). The images show areas with higher AND VI in red and those with lower AND VI (similar
to the pre-fire situation) in green. The progress of vegetation recovery is quite evident: while the
highest differences are characteristic to the first post-fire summer, the contrast between burned and
unburned areas is smoothed in 2010 and especially in 2011 data, with much lower dNDVI values in the
corresponding images.

Figure 7.Temporal evolution of AINDVL

0 1 2 Kilometres
dNDVI dNDVI,, o dNDVI,, . -

This successful regeneration process is explained by the efficient recovery mechanisms of the
vegetation species dominant in this area. Pirus pinaster, the main species affected by the Las Hurdes
fire, is highly adapted to fire-prone environments through the massive release of seeds from serotinous
cones after fire forgermination [92,93]. In the same way, shrubland species observed in fire affected
areas near the study site (Erica arborea, Erica lusitanica, Cistus ladanifer, Phillies angustifolia,
Cytisus scoparius, Calluna vulgaris and Lavandulastoechas)[94]also apply efficient post-fire
reproduction strategies in recolonizing burned areas.

Our results demonstrate that the LST increase in fire-affected areas was evident in the analyzed series
of images, which cover all of the seasons of the two post-fire years, except winter. This is similar to the
results reported by the previous research [5,6,8], although the range and the size of the differences
between severity categories of the same date is much larger than that detected in the earlier studies. This
is probably due to the different response of the analyzed vegetation: much more homogeneous in this
study (predominantly conifer forests) than analyzed in the study by Veraverbeke ef a/. [8] (shrublands,
olive groves, coniferous and deciduous forests). Immediate post-fire increment in LST calculated from
Landsat is much more pronounced than that registered for similar vegetation cover at the same
phenological stage registered by MODIS, because of the difference in spatial resolution between the two
sensors, i.e., the smoothing of contrasts in the lower resolution images.

4.3. Analysis of f5dLST and fsdNDVI

The results of the date-by-date LST-NDVI comparison by severity categories are shown below. It can
be seen that the differences between burned/unburned areas increase with burn severity in terms of LST
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from around 3 °C to almost 7 °C (Figure 8a) and from 0.09 to 0.21 in terms of the NDVI (Figure 8b).
Mean fsdLST between the successive severity categories is 1.42°C. In fact, significant statistical
differences (p < 0.05) were registered in all of the pairs, with the only exception being HS-MHS and
MHS-MLS in the images from August and September of 2011.

A detailed date-by-date analysis of the differences between severity categories allows for the
identification of common features. Each pair in Figure 8 shows the distribution of the fsdLST and
fsdNDVI by date. The size of the circle reflects the between-category distance for each pair (i.e., a size
of four corresponds to combinations of the extreme burn severity categories UB-HS). The color in these
figures represents the type of categories paired: green when one of the categories in the pair is the UB;
red and orange when the HS category is involved and blue for the combinations of the intermediate
categories. Pairs combining high burn severity levels (HS and MHS) and the UB class register the most
pronounced differences (between 7 °C and 10 °C). A seasonal pattern is observed during 2009 and 2010,
as well as a stronger decrease and temporal stabilization in 2011, two years after the fire. Pairs formed by
consecutive categories (HS-MHS and MHS-MLS) (size = 1) show lower differences (<3 °C), without
any specific temporal pattern.Differences below 1°C are almost exclusively observed in combinations of
high severity levels (HS-MHS) on all of the dates, except in the image taken just after the fire, where
they are slightly above 1 °C.Between these two groups of high and low differences, differences for the
HS-LS (orange), UB-MLS (light green) and MHS-LS (blue) (size = 2-3) pairs show a large range of
variation (from 2 °C to 7 °C).

The greatest fsdNDVI between 0.25 and 0.35 (Figure 8b) are always related to the comparison
between UB and all of the other severity categories (green).They are mainly observed in the images of
the first post-fire summer, when the effects of fire are more obvious, and especially in March and April
2010.Lower fsdNDVI (0.25-0.15) are characteristic of the pairs formed by the UB and HS (size = 4) in
the last images of 2010, MHS and MLS (light blue, size = 1) and also between HS-LS (orange, size = 3)
until the spring of 2010.Many pairs register differences between 0.15 and 0.05. The majority of images
included in this group are from 2011. Differences below 0.05 correspond to the HS-MHS pair on all of
the dates and the HS-MLS pair on the dates after June 2010.

Analysis of the fsdLST and fsdNDVI in 2011 reveals: (1) lower fsdLST compared to 2010; and
(2) progressive smoothing of contrast between severity categories. fsdNDVI are below 0.10 (Figure 8b),
and fsdLST values are less than 5°C (Figure 8a), except in May, when they are slightly higher.
A general downward trend is observed in both the fsdLST and fsdNDVI throughout the time series,
especially significant in 2011. Thus, the scatterplot in Figure 9 highlights the strong relationship between
these two variables (7 = 0.84): most of the bigger circles in the graphic are located in the upper part of
the scatterplot, except those corresponding to the 2011 dates (in green), which are located in the lower
part of the plot, always below the reference line, due to the minimizing effects of vegetation regeneration
on fsdLST. Unusually low fsdLST values observed in March of 2010 are due to particularly low air
temperature on this date.
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Figure 8.Fire severity differences in LST(fsdLST_ (a) and fsdNDVI (b) by date
(YYYYMMDD), combination type (color) and distance between categories (circle size).
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Figure 9.Scatterplot between fsdLST and fsdNDVLThe symbol color shows the dates
(YYYYMMDD); the symbol size represents the distance between severity categories.
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However, the spatial distribution of LST depends not only on burn severity and its interaction with
local-scale variables, such as surface emissivity (vegetation regeneration).Factors explaining intra- and
inter-annual LST changes also include illumination geometry controlled by solar azimuth and elevation
angles and topography reflected in slope and aspect. The role of aspect in the spatial distribution of LST
is shown in Figure 10. The figure presents mean LST values for eightcategories of aspects (at 45-degree
intervals) grouped by burn severity levels from the pre-fire image up to the image taken 27 months after
the fire in September of 2011.

At first glance, some influence of aspect on the spatial distribution of LST and its relationship with
severity levels, cover type and day of the year is observed. High LST values are systematically registered
on SE-facing slopes (between 90° and 180°), with slight variations depending on the image date.
Conversely, values corresponding to pixels in NNE- and NW-facing slopes (between 270° and 360° and
between 0° and 45°, respectively) always register lower LST. Differences between hot and cold
orientations deepen in the spring and autumn images, due to the lower elevation angles of the sun. For
example, in the image from July2010, the differences between the aspect intervals described above can
exceed 6°C, and in October2009, they can be higher than 15°C, because of the deeply shaded areas.
However, thermal contrast between pixels of different aspects is not as pronounced in the pre-fire image,
where it does not exceed 4°C. Therefore, the fire and the consequent vegetation removal lead to greater
thermal heterogeneity, increasing the role of aspect in the spatial distribution of LST. In later images
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(those from 2011), however, vegetation regeneration reduces the differences in LST between burn

severity categories and aspect intervals, as can be appreciated in the 2011 images.

Figure 10. Mean LST values in different burn severity categories by date and aspect
intervals (degrees). The title of each graphic indicates the image date (YYYYMMDD).
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5. Conclusions

The study quantifies fire-induced changes in the spatial and temporal distribution of land surface
temperature (LST) within the Las Hurdes fire in Central Spain using Landsat imagery. Immediately after
the fire, the burned zones were, on average, 7.6 °C warmer than the unburned; the difference with the
unburned areas was above 10 °C for the zones of high burn severity. The size of LST differences was
directly related to the area’s burn severity. After the first months following the fire, LST contrasts
between burned and unburned areas in the same image decrease, although the LST differences between
areas of different burn severity categories are still detectable for two years after fire.

The spatial distribution of post-fire LST is mainly influenced by vegetation regeneration. In the
specific case of the Las Hurdes fire, study results point to the vegetation regrowth two years after the fire
as a key factor in the temporal evolution of LST values, making less noticeable the consequences of fire
as time elapses.

LST contrasts in the areas of different burn severity are also enhanced by the aspect and illumination
geometry, being higher for the better-illuminated slopes. As vegetation recovers, the differences
between aspect intervals considerably decrease.

The study draws upon the Landsat potential to provide spatially continuous quantitative estimation of
land surface temperature and demonstrates the influence of burn severity and post-fire vegetation
recovery, both of them assessed by spectral indices, on the spatial distribution of land surface
temperature, one of the key parameters controlling physical processes in fire-altered areas.

Future research will approach the relationships between burn severity, LST and vegetation
regeneration in other ecosystems and test the possibility of combining LST with commonly used metrics
to improve burn severity differentiation.

Acknowledgments

This research has been financially supported by the FLUXPEC project “Monitoring changes in water and
carbon fluxes from remote and proximal sensing in a Mediterranean dehesa ecosystem” (CGL2012-34383,
Ministry of Economy and Competitiveness, Spain) and by a collaboration agreement between the Aragén
Government (DGA) and the Obra Social “La Caixa” (Aragon Government DGA-La Caixa,
GA-LC-042/2011), Spain. The authors also appreciate the financial support provided to this research by
Secretariat for Higher Education, Science, Technology and Innovation (SENESCYT), Ecuador.

Author Contributions

This research was conducted by Lidia Vlassova and Fernando Perez-Cabello. Lidia Vlassova
performed data processing and modelling. Raquel Montorio contributed to interpretation of the results
and supervision of the methods employed. Marcos Rodrigues and Alberto Garcia-Martin contributed to
the organization of the manuscript. All authors helped in editing and revision of the manuscript, and
responding to reviewers comments. All authors read and approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

81



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6157

References

1. Kuenzer, C.; Dech, S. Thermal Infrared Remote Sensing: Sensors, Methods, Applications;
Springer: London, UK, 2013.

2. Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling.
Agric. For. Meteorol. 2009, 149, 2071-2081.

3. Monson, R.; Baldocchi, D. Terrestrial Biosphere-Atmosphere Fluxes; Cambridge University Press:
Cambridge, MA, USA, 2014.

4. Bowen, LS. The ratio of heat losses by conduction and by evaporation from any water surface.
Phys. Rev. 1926, 27, 779-787.

5. Montes-Helu, M.; Kolb, T.; Dore, S.; Sullivan, B.; Hart, S.; Koch, G.; Hungate, B. Persistent effects
of fire-induced vegetation change on energy partitioning and evapotranspiration in Ponderosa pine
forests. Agric. For. Meteorol. 2009, 149, 491-500.

6. Wendt, C.K.; Beringer, J.; Tapper, N.J.; Hutley, L.B. Local boundary-layer development over burnt
and unburnt tropical savanna: An observational study. Bound.-Layer Meteorol. 2007, 124, 291-304.

7. Lambin, E.; Goyvaerts, K.; Petit, C. Remotely-sensed indicators of burning efficiency of savannah
and forest fires. Int.J. Remote Sens. 2003, 24, 3105-3118.

8. Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; van de Kerchove, R.; Goossens, R. Assessment
of post-fire changes in land surface temperature and surface albedo, and their relation with
fire—burn severity using multitemporal MODIS imagery. Int.J. Wildland Fire 2012, 21, 243-256.

9. Beringer, J.; Hutley, L.; Tapper, N.; Coutts, A.; Kerley, A.; O’grady, A. Fire impacts on surface
heat, moisture and carbon fluxes from a tropical savanna in Northern Australia. Int. J Wildland Fire
2003, 72, 333-340.

10. De Santis, A.; Chuvieco, E. Geocbi: A modified version of the composite burn index for the initial
assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009,
113, 554-562.

11. Gitas, I.Z.; Santis, A.; Mitri, G.H. Remote Sensing of Burn Severity. In Earth Observation of
Wildland Fires in Mediterranean Ecosystems;Chuvieco, E., Ed.; Springer: Berlin/Heidelberg,
Germany, 2009; pp. 129-148.

12. Key, C.H.; Benson, N.C. Landscape Assessment. In Firemon: Fire Effects Monitoring and
Inventory System;, Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S.,
Gangi, L.J., Eds.; USDA Forest Service, Rocky Mountain Research Station: Fort Collins, CO,
USA, 2006; pp.1-55.

13. Chuvieco, E.; Riano, D.; Danson, F.M.; Martin, P. Use of a radiative transfer model to simulate
the postfire spectral response to burn severity. J. Geophys. Res.: Biogeosci. 2006, 111,
doi:10.1029/20051G000143.

14. Chuvieco, E.; Cocero, D.; Riafo, D.; Martin, P.; Martinez-Vega, J.; de la Riva, J.; Pérez, F.
Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest
fire danger rating. Remote Sens. Environ. 2004, 92, 322-331.

15. Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.;
Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and
post-fire effects. IntJ. Wildland Fire 2006, 15, 319-345.

82



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6158

16. Riafio, D.; Chuvieco, E.; Ustin, S.; Zomer, R.; Dennison, P.; Roberts, D.; Salas, J. Assessment of
vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa
Monica mountains. Remote Sens. Environ. 2002, 79, 60-71.

17. Landsat Missions. Available online: http://landsat.usgs.gov (accessed on 25 May 2014).

18. Tang, H.; Li, Z.-L. Introduction. In Quantitative Remote Sensing in Thermal Infrared; Springer:
Berlin/Heidelberg, Germany, 2014; pp.1-4.

19. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, LF.; Sobrino, J.A.
Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ.
2013, 731, 14-37.

20. Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface
temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J.
Remote Sens. 2001, 22, 3719-3746.

21. Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of
the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared
data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339-349.

22. Jiménez-Muiioz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land
surface temperature from remote sensing data. J. Geophys. Res. 2004, 108, 46-88.

23. Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a Single
Thermal Band Earth-Sensing Instrument. In Proceedings of the 2003 IEEE International
Geoscience and Remote Sensing Symposium, IGARSS 03, Toulouse, France, 21-25 July 2003;
Volume 3015, pp. 3014-3016.

24. Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction
tool for single thermal band instruments. Proc. SPIE 2005, 5882, doi:10.1117/12.619990.

25. Jakubauskas, M.E.; Lulla, K.P.; Mausel, P.W. Assessment of vegetation change in a fire-altered
forest landscape. Photogramm. Eng. Remote Sens. 1990, 56, 371-377.

26. Kiriegler, F.J.; Malila, W.A.; Nalepka, R.F.; Richardson, W. Preprocessing Transformations and
Their Effects on Multispectral Recognition. In Proceedings of the Sixth International Symposium
on Remote Sensing of Environment, Ann Arbor, MI, USA, 13—-16 October 1969; pp. 97—-131.

27. Diaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of
remote sensing imagery. Int.J. Remote Sens. 2003, 24, 1751-1763.

28. Escuin, S.; Navarro, R.; Fernandez, P. Fire severity assessment by using NBR (Normalized Burn
Ratio) and NDVI (Normalized Difference Vegetation Index) derived from Landsat TM/ETM
images. Int. J. Remote Sens. 2008, 29, 1053-1073.

29. Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and mapping
wildfire severity: A comparison of methods. Phofogramm. Eng. Remote Sens. 2005, 71, 1311-1320.

30. Chafer, C.J. A comparison of fire severity measures: An Australian example and implications for
predicting major areas of soil erosion. Catena 2008, 74, 235-245.

31. Epting,J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity
in interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328-339.

32. Holden, Z.A.; Morgan, P.; Hudak, A.T. Burn severity of areas reburned by wildfires in the Gila
National Forest, New Mexico, USA. Fire Ecol 2010, 6, 77-85.

83



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6159

33. Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.;
Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire
effects. Fire Ecol. 2007, 3, 64-90.

34. Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Comparison of burn severity assessments using differenced
normalized burn ratio and ground data. Int. J. Wildland Fire 2005, 14, 189-198.

35. Hudak, A.T.; Robichaud, P.; Evans, J.S.; Clark, J.; Lannom, K.; Morgan, P.; Stone, C. Field
Validation of Burned Area Reflectance Classification (BARC) Products for Post Fire Assessment.
In Proceedings of the Tenth Forest Service Remote Sensing Applications Conference, Salt Lake
City, UT, USA, 5-9 April 2004; pp. 1-13.

36. Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage.
Int. J. Wildland Fire 2009, 18, 116-126.

37. Robichaud, P.R.; Lewis, S.A.; Laes, D.Y.M.; Hudak, A.T.; Kokaly, R.F.; Zamudio, J.A. Postfire soil
burn severity mapping with hyperspectral image unmixing. Remwofe Sens. Environ. 2007, 108,
467-480.

38. Allen, J.L.; Sorbel, B. Assessing the differenced normalized burn ratio’s ability to map burn
severity in the boreal forest and tundra ecosystems of Alaska’s national parks. Int. J. Wildland Fire
2008, 17, 463-475.

39. Hall, R.J.; Freeburn, J.; de Groot, W.; Pritchard, J.; Lynham, T.; Landry, R. Remote sensing of burn
severity: Experience from Western Canada boreal fires. Int. J. Wildland Fire 2008, 17, 476—489.

40. Picotte, J.J.; Robertson, K.M. Validation of remote sensing of burn severity in South-Eastern US
ecosystems. Int. J. Wildland Fire 2011, 20, 453—464.

41. Soverel, N.O.; Perrakis, D.D.; Coops, N.C. Estimating burn severity from Landsat dNBR and
RdANBR indices across Western Canada. Remote Sens.Environ. 2010, 114, 1896-1909.

42. Wimberly, M.C.; Reilly, M.J. Assessment of fire severity and species diversity in the Southern
Appalachians using Landsat TM and ETM+ imagery. Remote Sens. Environ. 2007, 108, 189-197.

43. Schwartz, M.D. Phenology: An Integrative Environmental Science; Kluwer Academic Publishers:
Dordrecht, The Netherlands, 2011.

44. Myneni, R.B.; Keeling, C.; Tucker, C.; Asrar, G.; Nemani, R. Increased plant growth in the
northern high latitudes from 1981 to 1991. Nature 1997, 386, 698—702.

45. Diaz-Delgado, R.; Pons, X. Spatial patterns of forest fires in Catalonia (NE of Spain) along the
period 1975-1995: Analysis of vegetation recovery after fire. For. Ecol Manag. 2001, 147, 67-74.

46. Viedma, O.; Melia, J.; Segarra, D.; Garcia-Haro, J. Modeling rates of ecosystem recovery after fires
by using Landsat TM data. Remote Sens. Environ. 1997, 61, 383-398.

47. Jones, H.G.; Vaughan, R.A. Remote Sensing of Vegetation: Principles, Techniques, and Applications;
Oxford University Press: New York, NY, USA, 2010.

48. Harris, S.; Veraverbeke, S.; Hook, S. Evaluating spectral indices for assessing fire severity in
chaparral ecosystems (Southern California) using MODIS/ASTER (MASTER) airborne simulator
data. Remote Sens. 2011, 3, 2403-2419.

49. Veraverbeke, S.; Harris, S.; Hook, S. Evaluating spectral indices for burned area discrimination using
MODIS/ASTER (MASTER) airborne simulator data. Remote Sens. Environ.2011, 115, 2702-27009.

84



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6160

50. Forestal, S.D.I., 3rd; Spanish National Forest Inventory (IFN3). Direccion General de Medio
Natural y Politica Forestal del Ministerio de Medio Ambiente; Medio Rural y Marino: Madrid,
Spain, 2011.

51. Nunez Corchero, M.; Sosa Cardo, J.A. Climatologia de Extremadura (1961—-1990); Ministerio de
Medio Ambiente: Madrid, Spain, 2001; p. 232.

52. Gil, L.; Gordo, J.; Alia, R.; Catalan, G.; Pardos, J. Pinus pinaster Aiton en el paisaje vegetal de la
peninsula Iberica. Ecologia 1990, 1, 469-495.

53. Miguel Pérez, 1.; Gonzédlez Martinez, S.; Alia Miranda, R.; Gil Sanchez, L. Growth phenology and
mating system of Maritime pine (Pirus pinaster Aiton) in Central Spain. Investig. Agrar. Sist.
Recur. For. 2002, 11, 193-204.

54. Tapias, R.; Gil, L.; Fuentes-Utrilla, P.; Pardos, J.A. Canopy seed banks in Mediterranean pines of
South-Eastern Spain: A comparison between Pinus halepensis mill., P. pinaster ait., P. nigra arn.
and P. pinea l. J. Ecol. 2001, 89, 629-638.

55. Schott, J.R.; Hook, S.J.; Barsi, J.A.; Markham, B.L.; Miller, J.; Padula, F.P.; Raqueno, N.G.
Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 archive (1982-2010).
Remote Sens. Environ. 2012, 122, 41-49.

56. USGS Global Visualization Viewer. Available online: http://glovis.usgs.gov (accessed on 25 May 2014).

57. REDAREX. Available online: http://sw-aperos.juntaex.es/redarex/fs_estaciones.asp?lug=cc (accessed
on 25 May 2014).

58. SIAR. Available online: http://www.magrama.gob.es/es/agua/temas/gestion-sostenible-de-regadios/
sistema-informacion-agroclimatica-regadio/Red-Estaciones-Agroclimaticas.aspx (accessed on 25
May 2014).

59. Centro de Descargas de CNIG. Available online: http://centrodedescargas.cnig.es/CentroDescargas
(accessed on 25 May 2014).

60. ArcGIS Software. Available online: http://www.esri.com/software/arcgis (accessed on 25 May 2014).

61. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.;
Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990-2000.
IEEE Geosci. Remote Sens. Leit. 2006, 3, 68—72.

62. ESRL:PSD:PSD Data: NCEP/NCAR Reanalysis Monthly Means and Other Derived Variables.
Available online: http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.derived.surface.
html (accessed on 25 May 2014).

63. NASA—Space-Based Measurements of Ozone and Air Quality in the Ultraviolet and Visible.
Available online: http://ozoneaq.gsfc.nasa.gov/measurements.md (accessed on 25 May 2014).

64. Lanorte, A.; Lasaponara, R.; Lovallo, M.; Telesca, L. Fisher—Shannon information plane analysis
of SPOT/Vegetation Normalized Difference Vegetation Index (NDVI) time series to characterize
vegetation recovery after fire disturbance. Int. J. Appl. Earth Obs.Geoinf. 2014, 26, 441-446.

65. Fox, D.; Maselli, F.; Carrega, P. Using SPOT images and field sampling to map burn severity and
vegetation factors affecting post forest fire erosion risk. Catena 2008, 75, 326-335.

66. Petropoulos, G.P.; Griffiths, H.M.; Kalivas, D.P. Quantifying spatial and temporal vegetation
recovery dynamics following a wildfire event in a Mediterranean landscape using EO data and GIS.
Appl. Geogr.2014, 50, 120-131.

67. Butler, B. Precipitable Water at the VLA—1990-1998, MMA Memo: Charlottesville, VA, USA, 1998.

85



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6161

68. Bolton, D. The computation of equivalent potential temperature. Mon. Weather Rev. 1980, 108,
1046-1053.

69. De Vicente, P.; Pulido, A.D. The Atmosphere in the 40 m RT Environment,; Water Vapour and
Opacity; 2012-18; IT-OAN: Madrid, Spain, 2012.

70. Li, Z.-L.; Wu, H.; Wang, N.; Qiu, S.; Sobrino, J.A.; Wan, Z.; Tang, B.-H.; Yan, G. Land surface
emissivity retrieval from satellite data. Int. J. Remote Sens. 2013, 34, 3084-3127.

71. Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring:
Application to Morocco. Int. J. Remote Sens. 2000, 21, 353-366.

72. Sobrino, J.A.; Raissouni, N.; Li, Z.-L. A comparative study of land surface emissivity retrieval from
NOAA data. Remote Sens. Environ. 2001, 75, 256-266.

73. Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European,
African, and South American areas. Remote Sens. Environ. 1996, 57, 167-184.

74. Sobrino, J.A.; Jiménez-Muiioz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat
TM 5. Remote Sens. Environ. 2004, 90, 434-440.

75. Rubio, E.; Caselles, V.; Badenas, C. Emissivity measurements of several soils and vegetation types in
the 8—14 um wave band: Analysis of two field methods. Remote Sens. Environ. 1997, 59, 490-521.

76. Sobrino, J.A.; Jiménez-Muiioz, J.C.; Soria, G.; Gémez, M.; Ortiz, A.B.; Romaguera, M.; Zaragoza, M.;
Julien, Y.; Cuenca, J.; Atitar, M.; ef al. Thermal remote sensing in the framework of the SEN2FLEX
project: Field measurements, airborne data and applications. Int.J. Remote Sens. 2008, 29,
4961-4991.

77. Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S.T. Relations between
evaporation coefficients and vegetation indices studied by model simulations. Remnote Sens. Environ.
1994, 50, 1-17.

78. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data
for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533-1543.

79. Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+
detection capabilities for burn severity. Remote Sens. Environ. 2004, 92, 397—408.

80. De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of
simulation vs. empirical models. Remote Sens. Environ. 2007, 108, 422-435.

81. Tanase, M.; de la Riva, J.; Pérez-Cabello, F. Estimating burn severity at the regional level using
optically based indices. Can. J. For. Res. 2011, 41, 863-872.

82. Key, C.H.; Benson, N.C. Remote Sensing Measure of Severity: The Normalized Burn Ratio,
FIREMON Landscape Assessment (LA) v4, Sampling and Analysis Methods; USFS Rocky
Mountain Research Station: Collins, CO, USA, 2004.

83. Parks, S.; Dillon, G.; Miller, C. A new metric for quantifying burn severity: The relativized burn
ratio. Remote Sens. 2014, 6, 1827—1844.

84. Kokaly, R.F.; Rockwell, B.W.; Haire, S.L.; King, T.V.V. Characterization of post-fire surface
cover, soils, and burn severity at the Cerro Grande fire, New Mexico, using hyperspectral and
multispectral remote sensing. Remote Sens. Environ. 2007, 106, 305-325.

85. Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing

intra-annual vegetation regrowth after fire using the pixel based regeneration index. ISPRS J.
Photogramm. Remote Sens. 2011, 66, 17-27.

86



CHAPTER 7. Analysis of the relationship between land surface temperature and wildfire
severity in a series of Landsat images

Remote Sens. 2014, 6 6162

86. Veraverbeke, S.; Lhermitte, S.; Verstraeten, W.; Goossens, R. The temporal dimension of
Differenced Normalized Burn Ratio (INBR) fire/burn severity studies: The case of the large 2007
Peloponnese wildfires in Greece. Remote Sens. Environ. 2010, 114, 2548-2563.

87. Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A pixel based regeneration index using
time series similarity and spatial context. Photogramm. Eng. Remote Sens. 2010, 76, 673—682.

88. Garcia-Martin, A.; Pérez-Cabello, F.; de la Riva Fernandez, J.; Lloveria, R.M. Estimation of crown
biomass in the context of forest-fire management in Mediterranean areas. Towar. Oper. Use Remnote
Sens. For. Fire Manag. 2007, 84, 78-82.

89. Copertino, V.A.; di Pietro, M.; Scavone, G.; Telesca, V. Comparison of algorithms to retrieve land
surface temperature from Landsat-7 ETM+ IR data in the Basilicata Ionian band. Tethys 2012, 12,
25-34.

90. Srivastava, P.K.; Majumdar, T.J.; Bhattacharya, A.K. Surface temperature estimation in
Singhbhum Shear Zone of India using Landsat-7 ETM+ thermal infrared data. Adv. Space Res.
2009, 43, 1563-1574.

91. Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martin, P.; Riafio, D.; de la Riva, J. Assessment of
methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale
tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345-4368.

92. Barbero, M.; Loisel, R.; Quezel, P.; Richardson, D.M.; Romane, F. Pines of the Mediterranean
Basin. In Ecology and Biogeography of Pinus; Richardson, D., Ed.; Cambridge University Press:
Cambridge, UK, 2000; pp. 153-170.

93. Pérez-Cabello, F.; Echeverria, M.; Ibarra, P.; Riva, J. Effects of Fire on Vegetation, Soil and
Hydrogeomorphological Behavior in Mediterranean Ecosystems. In Earth Observation of Wildland
Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany,
2009; pp. 111-128.

94, Junta de Extremadura. Plan de Ordenacién de los Recursos Forestales de las Hurdes. In Plan
Forestal de Extremadura; Government of Extremadura: Extremadura, Spain, 2011.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

87



88



8. Effects of post-fire wood management strategies on vegetation
recovery and land surface temperature (LST) estimated from
Landsat images

This chapter reproduces the text of the following article:

Title:

Effects of post-fire wood management strategies on vegetation recovery and land surface
temperature (LST) estimated from Landsat images

Authors:
Vlassova, L.; Pérez-Cabello, F.

89



90



CHAPTER 8. Effects of post-fire wood management strategies on vegetation recovery and
land surface temperature (LST) estimated from Landsat images

International Journal of Applied Earth Observation and Geoinformation 44 (2016) 171-183

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and
Geoinformation

journal homepage: www.elsevier.com/locate/jag

s

ELSEVIER

Effects of post-fire wood management strategies on vegetation
recovery and land surface temperature (LST) estimated from Landsat
images

@ CrossMark

Lidia Vlassova®"*, Fernando Pérez-Cabello*

2 GEOFOREST Group, IUCA, Department of Geography and Spatial Management, University of Zaragoza, Spain, Pedro Cerbuna 12, E-50009, Zaragoza, Spain
b Department of Environmental Sciences, Technical State University of Quevedo, Quevedo EC120509, Los Rios, Ecuador

ARTICLE INFO ABSTRACT

Article history:
Received 8 April 2015
Received in revised form 27 July 2015

Accepted 31 August 2015
Available online 12 September 2015

The study contributes remote sensing data to the discussion about effects of post-fire wood management
strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation
Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem
recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction
from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in
place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all
snags were left standing. Six years after the fire NDVI values ~0.5 estimated from satellite images and
field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed
Ecosystem recovery by the dominant plant species. However, two years after management activities in part of the burnt area,
Landsat-8 the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically
NDVI significant differences are detected between the intervened areas (SL and SS) and control areas of non-
Land surface temperature (LST) intervention (CL); no difference is registered between zones of different intervention types (SLand SS). CL
areas are on average 1°C cooler and 10% greener than those corresponding to either SL or SS, because of
the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient
cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to
the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient
ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management
intervention, being an indication of more favorable conditions for vegetation regeneration.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Wildfireis one of the main disturbance causes of Mediterranean
forests (Pausas et al., 2009) being a main driver of vegetation and
landscape dynamics (Agee, 1998; Lloret and Zedler, 2009). Accord-
ing to authors who have reviewed effects of fire on soils and
vegetation (Cerda and Robichaud, 2009; Certini, 2005; Pausasetal.,
2009; among others), fires consume above surface biomass (trees,
understory, litter) partly or completely, and modify physical, chem-
icaland microbial propertiesof soils. The loss of vegetation canopies
alters hydrological cycle modifying conditions for evapotranspira-
tion and changing parameters controlling runoff and infiltration

* Corresponding author at: GEOFOREST Group, IUCA, Department of Geography
and Spatial Management, University of Zaragoza, Spain, Pedro Cerbuna 12, E-50009,
Zaragoza, Spain. Fax: +34 976 761 506

E-mail address: vlassova@unizar.es (L Vlassova).

http://dx.doi.org/10.1016/j.jag.2015.08.011
0303-2434/© 2015 Elsevier B.V. All rights reserved.

(DeBano, 2000; Wagenbrenner etal.,2015), whichresults inimpor-
tant increase of soil erosion (Badia et al., 2011; Pérez-Cabello et al.,
2009). The degree of damage depends on several factors, which
include fire severity (Lentile et al., 2006) and the type of survival
strategy developed by predominant plant species (Vallejo et al.,
2012).

Short term priority of the emergency post-fire activities is to
prevent soil degradation and tree pests, and decrease risks to peo-
ple from the burnt trees (Robichaud, 2009; Vallejo et al., 2012).
Long-term objectives often consider reestablishment of the pre-fire
structure and processes in the burned forests. At present for-
est restoration is not limited to reforestation and afforestation
as earlier (Pausas et al., 2004). Besides active intervention, which
consists in planting the trees, available approaches include indi-
rect restoration, either passive (natural regeneration protecting
against further disturbances) or assisted, when natural regener-
ation is complemented with management activities. The success
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of different management techniques varies a lot from one expe-
rience to another, and there is a great demand of objective and
unbiased data from monitoring. Difficulties in generalization of fire
effects and a great variation in natural capacity of environmental
response explain the lack of consensus on the efficiency of current
forest restoration strategies (Pausas et al., 2004).

One of the most controversial aspects is the role of the burnt
wood. Strategy of post-fire wood management is a topic of ongoing
intense scientific discussion. Recent examples include the contro-
versy raised by the article from (Donato et al., 2006a) with the
following responses and contra-responses (Baird, 2006; Donato
et al., 2006b; Newton et al., 2006), and reports by Mclver et al.
(2000), Bautista et al. (2004) or Lindenmayer et al. (2008). In Spain,
post-fire salvage logging is a common practice (Fernandez et al.,
2008; Hernandez Jimenez, 2014; Vallejo et al., 2012). However,
multiple studies show that burnt wood extraction can have mul-
tiple negative ecological consequences. It affects key ecosystem
processes altering water, carbon and nutrients cycles (Serrano-
Ortizetal., 2011). When logs and other woody debris are removed,
fire-affected areas are left without part of their biological legacies
vital for forest regeneration (Perera and Buse, 2014). Removal of
snags reduces the amount of seeds available for regeneration of
serotinous tree species (Greene et al.,, 2013). Greater exposure to
sunlight due to clear-cutting modifies microclimate and limits the
number and variety of sites suitable for germination (Maranon-
Jiménezet al., 2013b; Marzano et al., 2013); elevated temperatures
and wind reduce soil moisture content and cause hydric stress of
seedlings, sprouts and young trees (Martiinez-Sanchez et al., 1999;
Vacchiano et al, 2014). Among the effects of salvage logging are
vegetation homogenization (Purdon et al., 2004), loss of complex-
ity in the forest structure (Lindenmayer et al., 2008) and changes in
species composition (Leverkus et al., 2014; Marzano et al., 2013).

Recovery after wild fire is a slow process requiring scientific
short- and longtime monitoring (Pausas et al., 2009). Ecological
effects of salvage logging are usually evaluated based on field stud-
ies, but the use of alternative techniques, such as satellite remote
sensing, in studying the influence of wood removal on vegeta-
tion regeneration can complement fieldwork results and provide
another spatial dimension to analysis. Remote sensing is a valuable
tool for environmental monitoring because it provides system-
atic coverage of extensive areas (Lentile et al., 2006; Schroeder
et al., 2010). Remotely sensed data have been widely applied in
fire science and management for detecting active fires (Roy, 1999);
assessing active fire behavior (Smith and Wooster, 2005); and eval-
uating post-fire vegetation response (Diaz-Delgado et al., 2003;
Hernandez Clemente et al., 2009). Data from Landsat satellites are
especially suitable because of their temporal and spatial resolution
(16 days and 30 m, respectively). The potential of Landsat data in
detecting patterns of post-fire forest recovery resulting from appli-
cation of different management strategies has been reported by
Chenet al. (2014). Landsat images provide data from visible, near
infrared, shortwave infrared and thermal spectral regions, which
makes possible the analysis of biophysical variables using LST syn-
chronous with spectral indices.

One of the most popular spectral indices used for vegetation
assessment from the satellite images is the Normalized Difference
Vegetation Index (NDVI) (Rouse etal., 1973). 1t is based on the con-
trasting reflectance values in near-infrared and red wavelengths
characteristic to plants and has been often used as indicator of
management success in post-fire vegetation regeneration. Multiple
studies (Van Leeuwen et al, 2010; Vila and Barbosa, 2010 among
others) observed that NDVI has higher correlation with post-fire
vegetation recovery estimated from the field data than other veg-
etation indices.

Changes in land surface energy balance due to the vegetation
loss arereflected in modified LST values and distribution (Quintano

et al., 2015; Veraverbeke et al., 2012; Vlassova et al., 2014). LST is
a key factor conditioning soil physical environment since it deter-
mines the speed and direction of physico-chemical processes and
energy/matter interchanges with the atmosphere (Quattrochi and
Luvall, 2004). It affects soil microbiological activity; controls root
development, levels of seed germination and plant growth rates
(Mexal and South, 1991; Spanos et al., 2000). Moreover, increased
temperature is a clear indication of plant moisture stress, which
occurs whendemand for water exceeds available soil moisture level
(Liang, 2004). As vegetation transpires, the evaporated water cools
the leaves so that their temperatures are below air temperature.
When the plant becomes water stressed, transpiration decreases
and the canopy temperature increases (Jackson, 1982). Because it
affects photosynthesis and respiration (Hatfield, 1997), transpira-
tion rate is a primary indicator of adequate functioning of any plant
ecosystem, including forests (Vidal and Devaux-Ros, 1995). The
direct link between the process of transpiration and the vegeta-
tion thermal response explains the potential of the use of LST as a
metric of plant ecosystem health in monitoring of the fire-affected
zones (Moran, 2004).

Monitoring of NDVI and LST as indicators of post-fire landscape
regeneration can be performed using remote sensing, which pro-
vides a cost-efficient alternative for estimation of these variables
on a regular basis with precision required for assessment of post-
fire landscape recovery (Gitas et al., 2008; Vicente-Serrano et al.,
2008).

The objective of this research is to study the effect of different
post-fire wood treatments on vegetation recovery (through NDVI)
and LST. Precise information on spatio-temporal distribution of sur-
face temperature in areas of salvage logging can help understand
its role in processes taking place in soil and vegetation after fire.

2. Materials and methods
2.1. Study area

The study area (Fig. 1) is situated in the Zuera Mountains,
NE Spain (41°56/- 4°58'N, 0°55'- 1°0'W), where in four days
between 5 and 8 of August 2008 a wildfire consumed more than
2500 ha of forest managed by Forest Administration of Aragon
Autonomous Region DGA causing damage to Special Bird Protec-
tion Zone (ZEPAS) and Places of Community Importance (LIC) (EGIF,
2008).

The burnt area located at 500-740 m above sea level is charac-
terized by Mediterraneanclimate withaverage annual temperature
of 12.5°Cand average annual precipitation ~560 mm with summer
minimum (Cuadrat et al., 2007). The fire destroyed forests domi-
nated by Pinus halepensis Mill on sandy-loam soils over Rendzic
Phaeozem (Badia et al.,, 2013). The understory is rich in typical
Mediterranean species, such as Quercus coccifera L., Juniperus oxyce-
drus L., Rosmarinus officinalis L. and Genista Scorpius (L.)DC. Forests
are interspersed with patches of shrublands dominated by Q. coc-
cifera, G. scorpius and Brachipodium retusum.

Three different burnt wood treatments were implemented
in the fire-affected area (Fig. 1) between November 2009 and
September 2011: (1)salvage logging (SL): felling of the snags, their
removal from the burnt site on the skidder in suspended position
with following branch cutting and wood shredding outside the site;
(2)shredding of snags insitu (SS): mastication of the standingburnt
trees with a mulching head attached to a retroexcavator, leaving
wood debris on site; (3) non-intervention/control (CL): areas where
burnt trees were not logged and no management activities were
realized.

Fig. 2 shows typical vegetation cover in the study area at the
moment of sampling in August of 2014. Vegetation in Salvage
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Fig. 1. Map of the fire site (color RGB composite of Landsat-7 bands 7-4-3; burnt area appears in tones of red). Polygons indicate areas of different post-fire wood treatments:
Salvage Logging (SL); Snag Shredding (SS); and Control (CL). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

Logging (SL) and Snag Shredding (SS) areas (Fig. 2A and 2B, respec-
tively) is characterized by the presence of evergreen sclerophyllous
shrublands (<1.5m tall), sclerophyllous pastures dominated by
Brachypodium retosum (a rhizomatous perennial grass resprout-
ing after fire), areas of bare soil, and P. halepensis saplings (<1 m
tall) (~75 plants per hectare). Shrub species with the highest con-
tribution to the vegetation cover are those typical for a garrigue
plant community: Q. coccifera (kermes oak) (~30%) — an obligate
resprouter-, and R. officinalis (~20%) and G. scorpius (15-20%) —
obligate seeders-. Among other plant species identified in both
SL and SS areas are Prunus spinosa, J. oxycedrus, Staehelina dubia,
Rhamnus lycioides, Rubia peregrina, Bupleurum rigidum, Quercus ilex,
Phyllerea angustifolia, Pistacea terebinthus, Loniceraimplexa, Thymus
sp. and Euphorbia sp. Control areas (CL) at the moment of sam-
pling were characterized by the presence of snags (3-5 per hectare),
logs and other coarse wood debris, sometimes forming a 1-1.5m
layer (Fig. 2C), and the greater vigor of the regenerated vegeta-
tion in these areas consisting mainly of P. halepensis saplings and
Q. coccifera.

22. Data

2.2.1. Remotely and proximally sensed data

Six clear sky Landsat images of the area(path 199/row 31)taken
between 10:30and 10:45 GMT (Table 1) were downloaded from the
USGS Global Visualization Viewer (http://glovis.usgs.gov). Level 1T
scenes in UTM projection are provided after geometric and radio-
metric correction. Two scenes were acquired by Landsat-7 before
and a short time after the fire (June 27 and August 30 of 2008,
respectively); four other images were taken by Landsat-8 in 2014
and give information on the present state of the fire-affected area.
Both satellites produce images of similar spectral and spatial char-
acteristics. Optical and thermal data are used in the study. There
are two thermal bands (10 and 11) in Landsat-8 images, but only
band 10 (10.60-11.19 pm) was used for LST estimation, because

Table 1
Acquisition time and observation geometry of Landsat images.

Mission Date Aquisition time Sun Azimuth  Sun Elevation
(GMT)
(Degrees) (Degrees)
Landsat 7 27-Jun-08  10:32:25 126.53 63.32
30-Aug-08 10:31:51 142,44 51.44
Landsat 8 16-Mar-14  10:43:19 150.02 4251
03-May-14  10:42:31 142,22 59.45
20-Jun-14  10:42:32 131.21 65.36
23-Aug-14  10:42:54 143.84 55.02

of elevated uncertainties detected in the data from another band
(http://landsat.usgs.gov/calibration_notices.php).

Reflectance spectra of landcover in treated and control areas
were measured during field campaign in August 2014 using
ASD spectroradiometer (ASD, 2012). The instrument registered
reflectance in the wave range of 350-2500 nm with spectral res-
olution of 3-10 nm. Reflectance measurements were performed
between 12:00and 15:00 local time with optical fiber 1 m above the
plant canopy pointing vertically downwards. 44 SL and 59CL spec-
tral signatures were obtained. Each spectral sample was calculated
as the mean of 20 individual spectra to improve signal-to-noise
ratio. Reflectance in Landsat spectral bands was simulated from
the continuous spectral signatures (Teillet et al., 2001) and used to
calculate NDVI for comparison with available Landsat images.

222. Ancillary data

Surface slope and aspect were generated at 25 m spatial reso-
lution using digital elevation model from the National Center for
Geographic Information (Spain) (http://centrodedescargas.cnig.es/
CentroDescargas/). To overcome the difficulty present when aspect
is measured in degrees east of north, and north-facing slopes can
have aspect values as different as 1 and 360 Beeris transformation
(Beers et al., 1966) was applied rescaling aspect between zero and
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CL

Fig. 2. Vegetation regeneration in areas of different post-fire treatments (August 7,
2014): SL- salvage logging, SS — snag shredding and CL — non-intervention/control.

two, with zero corresponding to the northeast and twoto the south-
west direction. calculated according to Burrough and McDonnell
(1998) was considered a proxy for the amount of incident sun
energy.

2.3. Methods

2.3.1. Pre-processing of remotely sensed data

As a first step, gap-filling was applied to the parts of Landsat-
7 images affected by data loss due to the malfunctioning of the
scan-line corrector (Storey et al., 2005). Localized linear histogram
match method (Scaramuzza et al., 2004) was used for filling the
gaps. It takes advantage of the fact that the area of data loss is not
the same on contiguous in time Landsat passes, so other images
of similar phenology can be used for gap-filling. When the gap is
detected, the linear histogram matching methodology attempts to
find a linear transformation between one image and another. Fill
values for the gap pixels are generated by applying a corrective gain
and bias to the pixels in the auxiliary image. The quality of the cor-
rection mainly depends on the similarity of atmospheric conditions
and phenology in the images used for gap-filling and the scenes
affected by data gaps (Rulloni et al., 2012 Zhang et al., 2007). Thus,
the correction of the pre-fire (June 27, 2008) and post-fire (August
30, 2008) Landsat images was performed using July 8, 2007 and
September 15, 2008 scenes acquired at atmospheric visibility of
~12km and average NDVI within the burn perimeter around 0.6
and 0.2 for pre- and postfire images, respectively.

Next, original digital numbers (DN) were converted to the
top-of-the-atmosphere radiance using coefficients from image
file and procedure recommended by NASA for Landsat-7 and
Landsat-8 (http://landsat.usgs.gov/how.is_radiance_calculated.
php and http://landsat.usgs.gov/Landsat8_Using_Product.php).

Finally, atmospheric correction of optical bands was per-
formed by Fast Line-of-sight Atmospheric Analysis of Hypercubes
(FLAASH) algorithm (Cooley et al., 2002). Atmospheric water vapor
content from the National Center for Environmental Prediction
(NCEP) Reanalysis database (http://www.esrl.noaa.gov/psd/data)
was used for the algorithm adjustment.

2.3.2. Vegetation recovery and land surface temperature (LST)
estimation

Vegetation regeneration was assessed from the NDVI, which is
one of the most popular metrics for assessment of post-fire vegeta-
tion recovery (Diaz-Delgado et al., 2003; Lanorte et al., 2014; Riafio
et al., 2002).

LST was estimated using Single-Channel (SC) method (Jiménez-
Mufioz et al., 2014; Jiménez-Muiioz and Sobrino, 2004). Multiple
studies have successfully applied this method for LST estimation
from Landsat-5 and Landsat-7 thermal data. For atmospheres with
water content in the range of 0.5-2.5 g cm~2 the method provides
LST values from Landsat 5/7 with an error of around 1K (Jiménez-
Mufioz et al., 2014); software simulations for Landsat-8 thermal
band 10 performed by the algorithm developers (Jiménez-Mufioz
etal.,2014)estimate the expected erroraround 1.5 K. The algorithm
requires only total water vapor content for atmospheric correction.

Surface emissivity (ratio between the target emitting capacity
and that ofa blackbody at the same temperature) necessary for LST
calculation cannot be estimated from the Landsat image (Li et al.,
2013). It is highly correlated with the NDVI and was calculated in
this study using the NDVI Thresholds Method (NDVI™M) (Sobrino
and Raissouni, 2000) based on the findings of Valor and Caselles
(1996). Emissivity is assigned to a pixel based on its NDVI range.
Thus, fully vegetated pixels with NDVI > 0.7 are assigned emissiv-
ity of 0.990, whereas bare soil pixels with NDVI < 0.1 are assumed
to have average emissivity of 0.973, as suggested in Sobrino et al.
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o~

NDVI August 23

Fig. 3. Spatial distribution of LST (left column) and NDVI (right column) on four spring and summer dates in 2014. Areas of SL and SS management activities are delimited
by red and blue lines, respectively; black line encircles control (CL) area. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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Table 2
Mean and standard deviation (in parenthesis) for land surface biophysical variables. S1,52, S3 are random samples (N=300); SL, SS and CL are treatment types (n=100).
Variable Treatment S1 S2 S3
Elevation (m) CcL 652(23) 656 (23) 653 (23)
SL 623 (16) 625(22) 628 (20)
SS 613(22) 616 (22) 616(21)
Slope (degrees) CL 15.7 (5.6) 14.8 (6.2) 15.0(5.6)
SL 14.2 (6.4) 143 (6.2) 13.2(6.4)
SS 15.8(5.7) 15.7(5.7) 15.2(5.9)
Aspect CL 0.85 (0.68) 0.86 (0.76) 0.86 (0.70)
SL 1.00(0.76) 0.97 (0.71) 1.00(0.73)
SS 1.01(0.71) 0.94(0.67) 1.02(0.70)
Illumination (March 16, 2014) CcL 0.58(0.13) 0.59(0.12) 0.58(0.13)
SL 0.60(0.11) 0.60(0.12) 0.60(0.11)
SS 0.57(0.13) 0.61(0.13) 0.59(0.13)
Illumination (May 3, 2014) CcL 0.77 (0.09) 0.78 (0.09) 0.78(0.10)
SL 0.79(0.08) 0.79 (0.09) 0.80(0.08)
SS 0.77 (0.10) 0.79 (0.09) 0.78 (0.10)
Illumination (June 20, 2014) CcL 0.83(0.08) 0.84 (0.08) 0.83(0.08)
SL 0.84(0.08) 0.84 (0.08) 0.85(0.08)
SS 0.83(0.08) 0.85(0.08) 0.84 (0.08)
Illumination (August 23, 2014) CcL 0.73(0.10) 0.74(0.10) 0.73(0.11)
SL 0.75(0.09) 0.75(0.10) 0.75 (0.09)
SS 0.73(0.11) 0.75(0.10) 0.74 (0.11)
Pre-fire NDVI (June 27, 2008) CcL 0.68(0.04) 0.69 (0.04) 0.69 (0.04)
SL 0.67 (0.04) 0.67 (0.05) 0.68 (0.03)
SS 0.69(0.05) 0.68 (0.05) 0.69 (0.05)
Pre-fire LST (June 27, 2008) CL 246(1.1) 244(1.1) 245(1.2)
SL 24.4(1.0) 24.0(0.9) 24.4(1.1)
SS 24.3(1.3) 242(1.4) 24.4(1.1)
dNBR CcL 793 (86) 799 (85) 801 (83)
SL 787 (90) 791(93) 801(79)
SS 810(95) 802 (98) 810(96)
14

(2004). Emissivity of the pixels containing both soil and vegetation
(0.1 <NDVI<0.7) is scaled between these two extremes.

2.3.3. Burn severity assessment

Burn severity was estimated using Delta Normalized Burn Ratio
Index (dNBR). Multiple studies have demonstrated that dNBR is
closely related to burn severity of conifer forests in the Mediter-
ranean (Gitas et al., 2009; Tanase et al., 2011; Veraverbeke et al.,
2011). dNBR calculation followed the methodology suggested by
Key and Benson (2006) and involved (1) transformation of the digi-
talnumbers into reflectance (R) of the pre- and post-fire images; (2)
generation of the Normalized Burn Ratio (NBR) image for each date
using the formula (R4 — R7)/(R4 + R7), where subscripts correspond
to band numbers; and (3) calculation of the dNBR subtracting pre-
and post-fire NBR images.

2.3.4. Statistical procedures

Data were grouped in three classes according to wood treat-
ment: (1) salvage logging (SL); (2) snag shredding (SS); and
non-intervention/control (CL). For statistical analysis 100 points
per class were randomly selected forming a sample of 300 points.
The procedure was repeated three times obtaining samples S1, S2,
and S3.Spatial distribution of the pointsin S1,S2 and S3 is shown in
Fig. A1 of Appendix A. Furthermore, to prevent bias due to the influ-
ence of the adjacent agricultural areas, only pixels farther than 60
m from the edge of the treated area were considered. Spatial auto-
correlation was estimated using Moranis I index, which quantifies
similarity of spatially distributed events (pixels) as a function of
distance (Moran, 1950). In case of CL pixels Moranis I index is close
to zero for pre- and post-fire NDVI revealing random distribution.
As for the SL and SS, positive Moranis I values are 0.2-0.3 for pre-
fire NDVI and 0.25-0.35 for post-fire NDVI, which is an indication
of a slight tendency for clustering.

One-way ANOVA was performed to test (1) similarity of envi-
ronmental factors between classes and (2) to verify if there are
significant differences in analyzed land surface variables (LST and

BCL-SL CCL-SS
12

10 A

% of CL
B

March 16 May 03 June 20 August 23

Fig. 4. NDVI differences between control (CL) and intervened (SL and SS) areas in
2014 (data for S1).

NDVI) between treatments. For greater robustness the analysis was
realized on S1, S2 and S3.

Contribution of different post-fire wood management treat-
ments to vegetation regeneration (NDVI) and land surface
temperature (LST) was evaluated by factorial ANOVA, widely used
inenvironmentalresearch (e.g., Wheater and Cook, 2000).All of the
predictors fully satisfy ANOVA assumptions (Chapmanetal., 1976).

3. Results
3.1. Environmental variables

Comparison of post-fire treatments requires knowledge of
environmental characteristics in terms of pre-fire vegetation
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Table 3
ANOVA results for land surface biophysical variables in three analyzed samples (S1, S2 and S3).
Variable S1 S2 S3
F Sig. F Sig. F Sig.
Elevation (m) 90.695 0.000 82.179 0.000 69.704 0.000
Slope (degrees) 2524 0.082 1.442 0.238 3.411 0.054
Aspect 1.480 0.229 0.637 0.530 1.575 0209
Illumination (March 16, 2014) 1515 0.221 0.766 0.466 1.274 0.281
Illumination (May 3,2014) 1.494 0.226 0.455 0.635 1.072 0.344
[llumination (June 20,2014) 1.210 0.300 0.182 0.833 0.700 0497
[llumination (August 23, 2014) 1.470 0.232 0.521 0.594 1.090 0337
Pre-fire NDVI (June 27, 2008) 1.745 0.176 1.653 0.193 1.720 0.181
Pre-fire LST (June 27, 2008) 1.090 0.338 1232 0.294 0.545 0.581
dNBR 1.638 0.196 0.407 0.666 0.307 0.736
p-Value<0.05.
Table 4 Table 5

Mean values and standard deviation (in parenthesis) for LST (“C) estimated from
Landsat 8 images for samples S1,S2 and S3.

Mean LST differences (°C) between CL, SL and SS areas for samples S1,S2 and S3.

Dependent variable ) ) Difference of means (1-])
Date Treatment S1 S2 S3 S1 S2 S3
March 16,2014 CL 15.95(1.19) 15.93(1.17) 15.99(1.19) LST_March.16 CL SL -0.73 —0.80 —0.67
SL 16.68(1.18) 16.74(1.31) 16.66 (1.22) CL SS -1.04 —-0.93 -1.00
SS 16.99(1.26) 16.86 (1.42) 16.99(1.36) SL SS -031 -0.12 -0.33
May 3,2014 CcL 2298(1.18)  2290(1.16) 22.98(1.26) LST.May.03 CcL SL -0.93 -1.05 —-0.88
SL 2390(1.18)  2394(1.31) 23.86(1.24) CL SS -1.03 -1.00 -1.02
SS 2400(1.21) 2390(1.37) 23.99(131) SL SS -0.10 0.04 -0.13
June 20, 2014 CcL 3535(0.94) 3538(0.81) 35.41(099) LST_June_20 CcL SL -1.88 -1.82 -1.80
SL 3724(1.01) 37.20(1.07) 37.21(1.02) CcL SS -1.69 -1.63 -1.65
SS 37.04(0.86) 37.01(0.94) 37.06(0.86) SL SS 0.19 0.19 0.16
August 23,2014 CL 2500(1.09) 2499(1.15) 24.99(1.16) LST.August.23 CL SL -1.23 -1.29 -1.21
SL 2625(1.18)  26.27(1.32)  26.20(1.24) CcL SS -1.30 -1.26 -1.35
SS 2631(1.21) 26.24(1.24)  26.34(1.26) SL SS -0.07 0.03 —-0.14

abundance and LST, land surface topographical and illumination
conditions and fire severity, to prevent contamination of the post-
fire vegetation regeneration analysis with effects of these variables.
Table 2 presents descriptive statistics of elevation, slope, aspect,
solar illumination, dNBR and pre-fire NDVI and LST.

ANOVA results demonstrate that there are no statistically signif-
icant differences among SS, SLand CL, except for elevation (Table 3),
whichis ~620 m for SLand SS, and ~650 m for CL points. This mis-
match, although not very relevant, is statistically significant and
its effect on vegetation recovery and spatial distribution of LST is
further analyzed using factorial ANOVA (see Sections 3.3 and 3.4).

Slope and exposition together with solar elevation angle were
used to estimate illumination geometry at the moment of satellite
overpass. These conditions are homogeneous in the three samples
(Table 3). Pre-fire vegetation cover (pre-fire NDVI ~0.68) and fire
severity (ANBR ~800) are similar for SL, SS and CL. Similarity in most
of the environmental characteristics ensures the comparability of
LST and NDVI, indicators of landscape regeneration.

3.2. Land surface temperature (LST)

Table 4 shows descriptive statistics for LST in S1, S2 and S3 by
analyzed treatment categories in March, May, June and August of
2014.In addition, left column in Fig. 3 presents spatial distribution
of LST on the same dates. The lowest values correspond to pixels in
the burntareas without intervention (CL) on all dates and inall sam-
ples. LST differences between control and intervened areas (Table 5)
increase from 0.84°Cin Marchto 1.23°CinJune and are statistically
significant on all tested dates. However, the differences between SL
and SS areas are minimal; they range from 0.13°Cin May to0.33 °C
in March. The pattern is the same for the three samples

Differences between control and intervened areas increase with
temperature. Moreover, LST variability and standard deviations in

not intervened part of the burn (CL) are notably lower than in the
intervened areas on three of four dates (except June).

3.3. Vegetation status (NDVI)

Descriptive statistics of NDVI for 2014 images (Table 6) reveal
that vegetation abundance in the burned area six years after the
fire is lower than the pre-fire level (Table 2): 0.5-0.55 versus 0.68.
Fig. 2 (right column) shows spatial distribution of NDVIin four ana-
lyzed images from 2014. NDVI values observed in the control areas
are the highest, except the difference between CL and SS in March
(SS 0.01 higher than CL, not significant at 0.05 level). NDVI differ-
ences between CL and SL range from 0.03 in March to above 0.06 in
June (Table 7), being significant for the three samples; NDVI differ-
ences between CL and SS are much lower (vary from 0.005 average
in March to 0.04 average in June; Table 7), they are statistically
significant at 0.05 level on all the dates, except March. Observed
differences in vegetation recovery (NDVI) between areas with dif-

Table 6
Mean and standard deviation (in parenthesis) for NDVI estimated from Landsat-8
images for three samples (S1, S2 and S3).

Date Treatment  S1 S2 S3

March 16, 2014 CcL 0.56(0.07) 0.56 (0.07) 0.57 (0.07)
SL 0.53(0.07) 0.53(0.07) 0.54 (0.07)
Ss 0.57 (0.07) 0.55(0.08) 0.56 (0.07)

May 3,2014 CcL 0.56 (0.06) 0.55 (0.06) 0.56 (0.05)
SL 0.50 (0.06) 0.50 (0.06) 0.50(0.06)
SS 0.52(0.06) 0.50(0.07) 0.52(0.06)

June 20,2014 CL 0.53(0.05) 0.53(0.05) 0.53(0.05)
SL 0.46 (0.05) 0.47 (0.05) 0.47 (0.06)
SS 0.49 (0.06) 0.47 (0.06) 0.49 (0.06)

August 23,2014 CL 0.53(0.07) 0.53(0.07) 0.54 (0.06)
SL 0.47 (0.06) 0.48 (0.06) 0.48 (0.06)
SS 0.51(0.07) 0.49 (0.08) 0.51(0.07)
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Fig. 5. Mean field spectra of the intervened (SL) and not intervened (CL) areas. Spectral regions corresponding to Landsat-8 Band 4 (RED} and Band 5 (NIR) are highlighted
in red and purple, respectively. (For interpretation of the references to colourin this figure legend, the reader is referred to the web version of this article.)

ferent post-fire wood management activities (SL and SS) are much
smaller than the difference of these areas and those not intervened
in May and June (Table 7).

NDVI variation between dates is notably smaller for CL, than
for SL or SS. Fig. 4 shows differences between intervened and not
intervened areas in terms of percent of NDVI in control areas. The
figure shows results for S1, since S2 and S3 present similar pattern:
(1) differences between CL and SL exceed 10% in May, June and
August; (2) they are greater than CL-SS on all the dates; (3) differ-
ences between CL and SS are smaller, even though in May and June
they are statistically significant (>5%).

Table 7
Mean NDVI differences between treatments.

Dependent variable ()] )] Difference of means (I-])
S1 S2 S3
NDVI_March.16 CL SL 0.033 0.028 0.030
CL SS —-0.006 0.008 0.005
SL SS -0.039 -0.020 -0.025
NDVI.May.03 CL SL 0.057 0.048 0.052
CcL SS 0.038 0.051 0.039
SL SS -0.019 0.003 -0.013
NDVI_June20 CL SL 0.065 0.061 0.066
CL SS 0.038 0.055 0.045
SL SS -0.027 -0.006 -0.021
NDVI.August.23 CL SL 0.058 0.050 0.058
CL SS 0.018 0.033 0.030
SL SS -0.040 -0.017 —-0.028

Values significant at 0.05 level are in bold cursive

3.4. Spectral signatures

Fig. 5 shows mean spectral signatures obtained from field mea-
surements in intervened (SL) and not intervened (CL) areas in
August of 2014. The overall shape of the CL and SL spectra is sim-
ilar: low reflectance levels in VIS are followed by sharp increase
in NIR and overall decrease with some absorption features in
SWIR spectral regions. In spite of these similarities, there are
important differences between the spectra, too. Compared to the
CL, the “treated” spectrum presents: (1) higher reflectance lev-
els in 400-700 nm wavelengths; (2) shorter red edge and lower
reflectance in the 750-1130nm; and (3) higher reflectance in the
1400-2450 nm wavelengths (Fig. 5). NDVI values computed from
the field spectra resampled to the Landsat-8 bands highlighted in
Fig. 4 are higher in CL areas compared to SL(0.54 vs 0.34).

3.5. Relevance of environmental variables and type of wood
treatment for spatial patterns of NDVI and LST

Because initial analysis detected statistically significant differ-
ences in Elevation between SL, SS and CL (see Section 3.1) factorial
ANOVA was applied to assess the influence of this variable on
NDVI and LST, especially in comparison with the effect of applied
wood management strategy (Treatment). Since similar results were
obtained for three samples, only those related to Sample 1 are
presented in Tables 8 and 9, which show statistics for variables
significant on one or more dates.

In case of LST models, explanatory variables in addition to Ele-
vation and Treatment included date-specific [llumination and NDVI.
The models explain between 53% (May 2014) and almost 70%
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Table 8
Factorial ANOVA results for LST. Significant values are in bold cursive.

March 16 May 3

June 20 August 23

R2=0.573 R?=0.529

R2=0.696 R2=0.597

Independent variable F Sig. 72 F Sig.

2 F Sig. 2 F Sig. 7

23955 0.000 0.141 16.172
236.025 0.447 225995
0.601 0.002 0.595

Treatment
Illumination®

NDVI® 0.439

0.000
0.000
0441

0.100 94,588 0.000 0393 36.549 0.000 0.200
0436 180.746 0.000 0382 243458 0.000 0.455
0.002 13.590 0.000 0.044 2062 0.152 0.007

p-Value<0.05.
2 Corresponding to a specific date.

Table 9
Factorial ANOVA results for NDVI.

March 16 May 3

June 20 August 23

R?=0.337 R2=0.33

R?2=0.394 Rz =0.355

Independent variable F Sig. W F Sig.

W F Sig. n? F Sig. n

7430
34.162
1.001
1.349

0.001
0.000
0.318
0.246

0.049
0.105
0.003
0.005

20.039
23961
17.033

0.888

Treatment
NDVljyne2008
Slope
elevation

0.121 26.475 0.154 20.229 0.000 0.122
0.076 32.813 0.102 30996 0.000 0.097
0.055 6.771 0.023 3.027 0.083 0.010
0.003 0.052 0.000 4498 0.035 0.015

p-Value<0.05.

(June 2014) of LST variance (Table 8). The proportion of variance
explained by each of the independent variables was estimated from
eta squared (m?2). The highest contribution comes from Illumina-
tion and Treatment, significant on all the dates. While Illumination
explains ~40% or more in all the models, the importance of Treat-
ment varies, with the maximum of explained variance in June (39%).
NDVI is significant only in June explaining 4% of variance, on other
dates its contribution is less than 1%. Contribution of Elevation to
LST explanation is not significant.

The set of independent variables in NDVI models included
Treatment, pre-fire NDVI estimated from June 2008 image, Slope,
Aspect, dNBR and Elevation. Models explain 33-39% of NDVI vari-
ance (Table 9). Similar to LST, the model run on June data yielded
the highest R% (0.39). Among the most important independent vari-
ables are Treatment and pre-fire NDVI, which explain 5-15% and
8-10% of NDVI variance, respectively. Treatment has the highest
contribution in June, and pre-fire NDVI exercises maximum influ-
ence in August. Slope is significant in May and June explaining 2%
and 5% of variance on these dates. As in the case of LST modeling,
Elevation is among the tested variables, but its power in explaining
NDVI variance does not exceed 1.5%.

Zones of higher NDVlare associated with lower LST; the strength
of the relation varies from date to date with the highest values
observed in June (Fig. 6), the date with the highest relevance of
treatment type for explanation of distribution of both NDVI and
LST (Tables 8 and 9).

4. Discussion

Land surface temperature (LST) and vegetation cover (through
NDVI), which control hydrological and biochemical cycles (Bonan
etal., 2002), can be used as indicators of surface processes and were
analyzed in this research to assess the consequences of post-fire
wood treatments in an area of Zuera fire dominated by P. halepensis.

Different management strategies were applied by regional
administration in emergency context to prevent surface erosion
due to the sudden loss of vegetation and soil degradation after for-
est fire. The study based on Landsat-8 data compared LST and NDVI
in the intervened (SL and SS) and control (CL) areas. The SS and
SL strategies vary in degree of intervention: while salvage logging
(SL)involves removal of the wood debris, it is left on site when snag
shredding (SS) is performed.

4id i e treatment
=-0.45 ocL

a osL
488

38

LST (oC)

367

NDVI

Fig. 6. Scatterplot of NDVI and LST (June 2014, Sample 1).

NDVI values of ~0.5 in the analyzed areas estimated from satel-
lite images and field radiometry indicate considerable vegetation
recovery with the consequent reduction of ecosystem degradation
risks. Visual field inspection of the site (Fig. 2) gives way to the con-
clusion that recovery is due to the effective “reseeder” mechanism
developed by Aleppo pine (Trabaud et al., 1985) consisting in stim-
ulation of post-fire seed release and germination by smoke or heat.
This trait is typical to Mediterranean pine forests, where recruit-
ment of serotinous pines is related to fire (De las Heras etal., 2012;
Pausas, 1999). Another effective recovery trait of “resprouter” is
observed in Q. coccifera, which survives by producing new growth
from underground lignotubers, so that dead plants seem to revive
(Trabaud, 1991). Field observations are in agreement with existing
research on vegetation regeneration of the burns close to the study
area (Vicente-Serrano et al., 2011).

CL zones are characterized by higher proportion of vegetation
recovery. On the three of four analyzed dates NDVI values here
are significantly higher than those in the intervened zones (SL and
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SS), although observed differences are not large (~7%). This is not
strange since there is ample evidence that snag and other coarse
wood residuals present in zones with no post-fire intervention pro-
mote and facilitate the post-fire forest regeneration (Beschta et al.,
1995; Lindenmayeretal., 2008; Mclveretal.,2000; Perera and Buse,
2014) through greater nutrient availability due to soil retention
and wood decomposition (Maranon-Jiménez et al., 2013a), better
microclimate (lower temperatures and higher soil moisture con-
tent) in a great number of shelters for plants germination and
survival (Devine and Harrington, 2007; Marafién-Jiménez et al.,
2013b),and preventing mechanical damage of seedlings which may
occur as a result of delayed salvage logging (Greene et al., 2006).

Higher proportion of vegetation cover is accompanied by lower
LST in CL compared to the intervened zones (Table 4). The dif-
ferences in LST vary from 0.5°C in March to almost 2 °C in June
(Table 5), when atmospheric temperature is higher and there is
a greater proportion of exposed bare ground in the intervened
areas (NDVI 12% and 7% lower than CL for SL and SS, respectively).
These results are in agreement with data from the field study by
Fontaine et al. (2010), who observed higher near-surface tempera-
ture values around midday due to earlierand accelerated heating in
salvage-logged areas of the burn compared to the non-intervened
areas. Distribution of lower LST values in zones of higher NDVI has
also been mentioned in previous research based on multitempo-
ral satellite data (Veraverbeke et al., 2012; Vlassova et al., 2014).
Both green (photosynthetically active vegetation) and dead (snags,
logs and other coarse wood debris) biomass contribute to lower
LST in the CL areas: the former through the transpiration process
(Jones and Vaughan, 2010) and the latter through much greater
surface shading (Devine and Harrington, 2007). Thus, higher NDVI
and lower LST in the non-intervened zones are indicators of a more
successful reestablishment of ecological processes because of the
beneficial effects of wood residuals on recovery of biochemical
dynamics and microclimate. In areas without post-fire human dis-
turbance soil is less exposed to sunlight and wind (Perera and Buse,
2014), and burnt wood enhances nutrient cycling processes and
improves soil ecological functions (Maranon-Jiménez, 2012).

Differences in NDVI identified from Landsat images were also
evident in the spectral signatures collected in the field. Higher
reflectance in VIS of the spectrum from the intervened area is pos-
sibly related to the lower content of the photosynthetic pigments
and higher proportion of bare soil in the areas where snags and
other wood debris have been removed; shorter red edge and lower
reflectance in the NIR wavelength range of the treated spectrum is
caused by reduction of vegetation cover in the intervened areas;
finally, higher reflectance in the SWIR spectral region is explained
by higher water absorption by leaf structures of more abundant
vegetation in the control areas. NDVIs computed using Landsat
bands simulated from field spectra are in agreement with data
from image analysis: differences in NDVI levels between control
and intervened zones in this case are much greater (>30%) due to
the time lag between data acquisition and differences in spatial
resolution of the two methods. No statistically significant differ-
ences in LST and NDVI have been detected between SL and SS,
which is probably explained by the fact that applied intervention
strategies are not ecologically aggressive. According to Hernandez
Jiménez (2014) the performed intervention activities are classified
as “low impact” because of the effort taken to minimize generation
of skid trails and soil compaction to reduce soil scarification and
degradation.

Initial analysis of environmental conditions (Section 3.1)
revealed statistically significant differences in elevation among SS,
SL and CL. In order to assess the possible effect of elevation on LST
and NDVI, we used factorial ANOVA. Date by date analysis detected
that elevation was not statistically significant in any LST model;

in case of NDVI, elevation was significant only in August, when it
explained <1.5% of variance.

Factorial ANOVA provided additional insight on importance of
other factors, such as Pre-fire NDVI and Illumination, for LST and
NDVI levels in the studied area. Pre-fire NDVI is relevant in explain-
ing vegetation regeneration (NDVI) because recovery of the burnt
plant communities does not start from zero point. Only part of
the biological content is destroyed and some conditions necessary
for recovery are conserved. Moreover, adaptive vegetation traits
of “resprouters” and “reseeders” help in reestablishment of plant
communities in Mediterranean ecosystems (Vallejo et al., 2012).
In case of the LST, lllumination emerges as the major explanatory
variable due to the relationship between LST distribution and sun-
sensor-surface observation geometry at the moment of satellite
overpass. However, naturally outstanding role of Illumination in LST
models should not dim the relevance of treatment type: its influ-
ence on LST distribution is statistically significant, and in June its
explanatory power equals that of [llumination.

Post-fire regeneration takes time and requires short- and long-
term monitoring (Pausas and Vallejo, 2008). From this perspective,
remote sensing, which allows observationofland surface processes
over extensive areas and time periods, is a valuable complement of
field data. Few studies have used information from remote sensing
to study impacts of post-fire salvage logging on forest regenera-
tion, although there is an extensive research exploring this topic
based on field observations (Castro et al., 2011; Marafién-Jiménez
et al,, 2013b). The relationship between land surface temperature
and vegetation recovery/fire severity and salvage logging has been
earlier mentioned in studies based on field (Fontaine et al., 2010)
and remotely-sensed data (Quintanoetal., 2015; Veraverbekeetal.,
2012; Vlassovaetal., 2014). This study uses satellite images to ana-
lyze the effect of post-fire wood management activities on land
surface biophysical characteristics providing additional data for
understanding of the complicated relationship.

5. Conclusions

The influence of post-fire wood management was assessed from
remotely-sensed data. Two land surface biophysical variables (LST
and NDVI) were analyzed on 4 dates in 2014 in the areas of three
wood treatments in the Zuera burn.

LST and NDVI demonstrate great post-fire vegetation recovery
capacity of P. halepensis ecosystem, and confirm low aggressiveness
of the analyzed wood management treatments, even though their
effects are still detectable from the satellite images three years after
being applied.

Statistically significant, albeitnotvery relevant, differences have
been detected between intervened and not intervened zones; there
were no differences between the intervened zones. The results of
the study show that in ecosystems with high regeneration capacity,
such as P. halepensis forests, post-fire recovery in terms of NDVI is
higher and LST is lower in areas where no management activities
were realized, being an indication of more favorable conditions for
vegetation regeneration.
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Appendix A.

e

A

Fig.Al. Location of sampling points in the study area over the color RGB composite
of Landsat-7 bands 7-4-3: Sample 1 (S1), Sample 2 (S2) and Sample 3 (S3). Point
color indicates the type of treatment: SL - light blue, SS - green, and CL - white. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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RESUMEN: Las dehesas son sistemas agro-forestales en los que se producen complejos mecanismos
de intercambio de carbono y agua debido a la presencia de estratos de vegetacion con comportamiento
eco-fisiologico contrastado: arbolado/herbaceo. Una de las variables clave en la parametrizacion del
balance energético en estos ecosistemas es la temperatura de superficie (Ts). Este trabajo analiza su
variacion espacio-temporal en funcién de la cobertura arborea en una dehesa al norte de Céceres. La
Ts se obtiene a partir de una serie de 14 imagenes Landsat-5 TM (2009-2011) que se agrupan en 3
compuestos estacionales (primavera, verano y otofio). La cobertura arbérea se estima a partir de
ortofotografia e informacién del SIOSE. La distribucion espacial de la Ts se relaciona con los niveles
de cobertura en los compuestos de otofio y, especialmente, en verano momento en el que las
diferencias medias entre las categorias extremas de arbolado (<10% y >60%) alcanzan los 2,5°C.

Palabras-clave: temperatura de superficie, cobertura arbdrea, LANDSAT, dehesa.

1. Introduccion

El término dehesa refiere a un tipo de monte arbolado de uso agrosilvopastoril (San Miguel,
1994) resultado de un largo proceso de transformacion (Blanco et al., 1997; Diaz et al., 1997).
Principalmente se localiza en la parte suroccidental de la Peninsula Ibérica, extendiéndose en
Espafia sobre una superficie de mas de 3,5 millones de hectareas (Olea et al., 2005). Su alto
valor ecoldgico, socio-cultural y econémico (Pulido et al., 2001; Montero et al., 1998) hace
que estos habitats estén incluidos en la Directiva 92/43 de la Union Europea para su
preservacion. En este sentido,algunos estudios expresan dudas respecto a su sostenibilidad
(Pulido et al., 2001 y Diaz et al., 1997) debido a los problemas derivados del sobrepastoreo,
la intensificacion del laboreo agricola o la escasez de regeneracion del arbolado (Moreno y
Pulido, 2009). En relacién con este ultimo extremo, el predominio de los arboles de edad
intermedia/avanzada y la ausencia de plantas jovenes constituye uno de los problemas mas
importantes (Montero et al., 1998; Plieninger et al., 2004, entre otros). Segun datos del Tercer
Inventario Forestal Nacional (IFN3) en la provincia de Caceres, la regeneracién se considera

insuficiente o nula en 2/3 de la superficie evaluada a nivel nacional (Pulido y Picardo, 2010).
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La dehesa se caracteriza por su estructura en dos estratos: arbolado/matorral disperso y
pastizal o cultivo. La fraccion de cabida cubierta mas habitual oscila entre el 5% y el 60% con
una densidad promedio de 40-90 pies por hectarea que puede ser méas baja (10) o més alta
(200) dependiendo del tipo de dehesa (Huntsinger et al., 2013; Pulido et al., 2010; Carreiras
et al., 2006). Las especies comunmente encontradas en el estrato lefioso son Quercus ilex L.
subsp. ballota, Quercus suber, Quercus faginea Lam.y diferentes arbustos perennifolios. El
pastizal presenta un reducido potencial productivo que depende de la pluviometria. Entre los
taxones mas representativos de la fraccion herbacea encontramos especies de gramineas como
Aira caryophyllea L., Airopsis tenella (Cav.) Asch. & Graebn.,Psilurus incurvus (Gouan)
Schinz & Tell y Bromus sp., algunos especies de Trifolium entre leguminosas, y Echium
plantagineum L., Spergula arvensis L., Rumexacetosella L., Erygium campestre L. o Erodium

cicutarium L. de otras familias (Devesa, 1995; Olea et al., 2005).

En las dehesas los mecanismos de intercambio de carbono y agua son complejos debido a la
presencia de estratos de vegetacion diferenciados desde el punto de vista eco-fisiologico. En
gran medida los ciclos de carbono y agua son controlados por los flujos de energia que son
distintos en las copas de arboles y pastizal (Baldocchi et al., 2004). De esta manera, los
estudios de balance de energia son necesarios para validacion de los modelos de dehesa que
buscan predecir estados de equilibrio entre vegetacion y la humedad de suelo (Eagleson,
1982) y el efecto que puede ejercer en estos ecosistemas el cambio climéatico (Rodriguez-
Iturbe et al., 1999; Volder et al., 2013; Zeng y Neelin, 2000).

La temperatura de superficie (Ts) constituye una de las claves en la modelizacion de los
intercambios de energia, agua y carbono que se producen entre la vegetacion, el suelo y la
atmosfera, debido a su influencia sobre la tasa metabdlica de las plantas y la descomposicion
de la materia organica del suelo, dos aspectos muy importantes en relacién con la
transferencia neta de carbono a la atmosfera (Miquelajauregui, 2013). A su vez, la presencia
y, mas especificamente, el tipo de vegetacion juegan un rol importante en el control de la Ts,
debido a las diferencias en emisividad entre los componentes bioticos y abioticos que

conforman la dehesa (Quattrochi y Luvall, 2000).

Tanto la temperatura de la superficie (Ts) como la abundancia de la vegetacion pueden ser
analizadas a partir de la informacion proporcionada por sensores remotos, entre los cuales se
destacan los datos de las misiones Landsat. Las imagenes Landsat-5 TM (Thematic Mapper)

han sido utilizadas profusamente en el estudio de la distribucion espacio-temporal de
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vegetacion a traves de los diferentes indices espectrales a partir de la informacion captada en
la regidn oOptica del espectro electromagnético. EI mas ampliamente usado es el indice de
vegetacion de diferencia normalizada NDVI, que se relaciona con diferentes propiedades
biofisicas de la vegetacion (clorofila, cubrimiento, LAI, fAPAR, etc.) (Daughtry et al., 2000;
Hwang et al., 2011; Turner et al., 1999). Las imagenes Landsat también poseen una banda en
el infrarrojo térmico que posibilita la espacializacion de la Ts (Vlassova et al., 2014; Weng et
al., 2004).

El objetivo de este trabajo consiste en analizar la variabilidad espacio-temporal de la Ts,
estimada a partir de las imagenes Landsat, en funcion de la densidad de arbolado en una zona
de dehesa situada al norte de la provincia de Caceres. La utilizacion conjunta de indices de
vegetacion procedentes de informacién multiespectral, de cartografia de la Ts y de
informacion sobre las proporciones que ocupan diferentes estratos ofrece la posibilidad de
crear modelos de la dehesa mas precisos. Los resultados de estos modelos pueden ser
integrados en el disefio de planes que aseguren la sostenibilidad y el mantenimiento de las
funciones productivas y ecoldgicas (proteccion frente a la erosion, mantenimiento de la
biodiversidad y regulacion de los flujos de carbono y agua) de la dehesa (Moreno y Pulido,
2009).

2. Material y métodos

2.1. Area de estudio

La zona de estudio de 70 km? se localiza en un ecosistema de dehesa en el noreste de la
provincia de Caceres (Figura 1), muy cerca del area de estudio del proyecto de investigacion
FLUXPEC (CGL2012-34383): “Seguimiento de flujos de agua y carbono mediante
teledeteccion en ecosistemas mediterraneos de dehesa”
(http://www.lineas.cchs.csic.es/fluxpec/) que incluye una torre de medicién de flujos de agua
y carbono por el sistema Eddy Covariance (Lat. 39,9415° N, Lon. 5,7734° W) gestionada por
el CEAM (Centro de Estudios Ambientales del Mediterraneo) desde el afio 2003. El area se
caracteriza por un clima tipico mediterraneo con veranos secos Yy calurosos e inviernos
himedos y templados. La temperatura y precipitacion media anual son 16,7° C y 572 mm,
respectivamente. La altitud media sobre el nivel del mar es de 256 m. Las especies
perennifolias de Quercus ilex L. subsp. Ballota y Quercus suber predominan en el estrato
arboreo y las de Trifolium glomeratum L., Echium plantagineum L., y Spergula arvensis son

los mas comunes en el pastizal.
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Figura 1. Ubicacion y ortofotografia del &rea de estudio (limites en rojo). Las lineas de color
gris claro delimitan el ecosistema de dehesa (Sistema de Informacion de Ocupacion del Suelo
en Espafia, SIOSE).

2.2. Imagenes de satélite

El estudio se basa en una serie multitemporal de 14 imagenes Landsat-5 TM adquiridas sobre
el area de estudio entre junio de 2009 y septiembre de 2011 (Tabla 1). Las imagenes
georreferenciadas se descargaron del servidor del Servicio Geoldgico de los Estados Unidos o
USGS por sus siglas en inglés (https://Ipdaac.usgs.gov/get_data). En el trabajo se utilizaron
las bandas dpticas en las regiones espectrales de rojo (0,63-0,69 um) e infrarrojo cercano
(0,76-0,90 um), con una resolucién espacial de 30 m, y la banda térmica (10,4-12,5 pm), con

una resolucion de 120 m.

Para la correccion atmosférica de las reflectividades se ha utilizado la herramienta LEDAPS
(Landsat Ecosystem Disturbance Adaptive Processing System), basada en el cddigo de
transferencia radiativa 6S (Wolfe et al., 2004). El algoritmo emplea datos auxiliares (ozono,
vapor de agua, grosor éptico de la atmdsfera) para corregir en las imagenes las distorsiones
causadas por la dispersion y absorcion atmosférica. En el caso de los datos térmicos, los
niveles digitales originales fueron transformados primero a valores de radiancia y luego en
temperatura de brillousando las constantes de calibracién proporcionadas en los metadatos
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(Chander et al., 2009).

Tabla 1. Fechas y condiciones de iluminacion en el momento de adquisicién de las imagenes

utilizadas.

FECHA | Hora (UTC) | Azimut solar (grados) | Elevacion solar (grados) | Estacién climatica
27-jun-09 | 10:50:18 123,55 63,88 verano
29-jul-09 10:50:49 128,98 59,94 verano
30-ago-09 10:51:18 141,13 52,63 verano
17-oct-09 10:51:53 156,52 37,36 otofio
10-mar-10 10:52:43 146,85 40,13 primavera
11-abr-10 10:52:40 141,79 52,28 primavera
30-jun-10 10:52:19 124,31 64,00 verano
16-jul-10 10:52:16 126,06 62,26 verano
01-ago-10 10:52:10 130,34 59,61 verano
05-nov-10 10:51:34 159,16 31,40 otofio
16-may-11 10:51:20 132,51 61,79 primavera
01-jun-11 10:51:13 127,86 63,89 verano
04-ago-11 10:50:41 130,72 58,86 verano
05-sep-11 10:50:24 142,93 50,94 otofio

2.3. Estimacion de la temperatura de superficie (Ts) e indice de vegetacion
La temperatura de superficie (Ts) ha sido estimada mediante el método de monocanal
(Jiménez-Murioz et al., 2010) que, aparte de la emisividad de la superficie ¢ requerida por
cualquier algoritmo de Ts, s6lo necesita el contenido de vapor en la atmésfera como dato
auxiliar. La Ts se calcula usando la ecuacion:
(1) Ts= }/|:£ (l//ll_sensor-l- WZ)-!— l//?} +0

&
donde y ando son parametros calculados a partir de la radiancia (Lsensor) Y temperatura de

brillo (Tsensor) Usando las expresiones:

Tszensor é‘ ~ T Ts%nsor
) V= 1256L ooy 3) ~ Tsensor ™ 1256Ly,q,
y i, w2, y3son funciones atmosféricas, que para Landsat-5 TM vienen dadas por:
(4a) w1=0.14714w* —0.15583w+1.1234
(4b) w2=-1.1836w* —0.37607w—0.52894

w3=-0.04554w" +1.8719w—0.39071 (4c)
donde w es el contenido total del vapor en la atmésfera en g cm™.

En este estudio se utilizaron los valores de vapor atmosférico de la base de datos del Centro
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Nacional para Analisis Atmosférico de EEUU (http://www.esrl.noaa.gov/psd/data/). El
método es capaz de estimar la Ts con un margen de error £1°C cuando el contenido de vapor

atmosférico se encuentra en el rango de 0,5 — 2,5 g cm™ (Jiménez-Mufioz et al., 2010).

Para el analisis temporal de la vegetacion se ha utilizado el indice de vegetacion de diferencia
normalizada NDVI (Rouse et al., 1974), que se basa en la diferencia de la reflectividad entre
las bandas de las regiones espectrales rojo (banda 3) e infrarrojo cercano (banda 4)
caracteristica para la vegetacion. EI NDVI también se aplico para estimar la emisividad por el
método de umbrales de NDVI de Sobrino y Raissouni (2000), que asigna los valores de

emisividad de acuerdo a los rangos de este indice.

2.4. Cartografia de la distribucion espacial de la densidad del arbolado

Para la identificacion de la dehesa se han utilizado los datos del Sistema de Informacion de
Ocupacion del Suelo en Espafia (SIOSE) incluido en el Plan Nacional de Observacion del
Territorio en Espafia (PNOT), coordinado por el Instituto Geografico Nacional (IGN). La
informacidn consiste en capas de poligonos georeferenciados en proyecciéon UTM (huso 30N,
datum ETRS89) con escala de referencia 1:25000 (http://www.siose.es). A partir de la
cobertura 701 dehesa (cddigo DHS) se ha extraido la informacion referente al porcentaje de
cubrimiento de frondosas caducifolias (FDC), frondosas perennifolias (FDP), matorral (MTR)
y pastizal (PST). Dentro de la zona de estudio se han seleccionado para su analisis los tres
poligonos mas extensos cuya fraccion lefiosa (arbolado y matorral) se encuentra en el rango
de 30-50% caracteristico de la dehesa (Figura 1).

Dentro de los poligonos seleccionados se ha analizado la variabilidad espacial del arbolado
mediante el uso de la ortofotografia digital generada en el marco del PNOT a partir de los
datos de junio 2012. EI fotomosaico (pixel de 0,25 m) correspondiente a la hoja 0624 del
MTN50 (Mapa Topografico Nacional 1:50.000) fue descargado del servidor del CNIG
(http://centrodedescargas.cnig.es/CentroDescargas) en formato ECW, sistema geodésico de
referencia ETRS89 y proyeccion UTM huso 30N. En la etapa de pre-procesamiento la imagen

RGB fue convertida a escala de grises.

Las imagenes (Figura 2A) fueron clasificadas en dos categorias: vegetacion lefiosa de
arboles/matorral (pixeles con niveles de gris menor de 130) y pastizal (pixeles con niveles de
gris mayor o igual a 130). Como resultado de la clasificacion se ha obtenido una nueva
imagen raster con pixeles de dos valores: 1 para “cobertura arborea” y 0 para “pastizal”

(Figura 2B). Tras ello, aplicando funciones de estadistica zonal, se calculo la cantidad de
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pixeles de “cobertura arborea” en pixeles Landsat y, finalmente, el porcentaje de cobertura

arborea en pixeles Landsat (CAy,) a través de la expresion:

(5) CA,, =100

N

donde n es la cantidad de pixeles con cobertura arbdrea dentro del pixel Landsat y N=14400

es la cantidad de pixeles de ortofoto en un pixel de la imagen satelital.

Figura 2. (A) Identificacion de un pixel de Landsat-5 TM sobre la ortofotografia del PNOA,;
(B) Raster de clasificacion de ortofotografia en “cobertura arborea” (pixeles de valor 1) y

“pastizal” (pixeles de valor 0).

2.5. Andlisis estadistico

Se han establecido 7 categorias de dehesa en funcidn del porcentaje de la cobertura arbérea:
<10%; 10-20%; 20-30%; 30-40%; 40-50%; 50-60%; >60%. La determinacion de los
intervalos se baso en dos criterios: (1) generar intervalos regulares de cobertura arbérea dentro
del rango de mayor representacion de estos ecosistemas, entre 10% y 60% (Moreno y Pulido,
2009; Pulido y Picardo, 2010); y (2) disponer de suficiente numero de pixeles en cada
categoria para hacer posible el equilibrio de las submuestras en el andlisis estadistico. Para
evitar la contaminacion de los resultados por la influencia de las areas adyacentes y de los
componentes no propios de la dehesa, se han excluido del andlisis los pixeles situados a
menos de 120 m de los limites de poligonos, asi como los pertenecientes a otras cubiertas
diferentes a la dehesa (Iaminas de agua, cultivos, edificios). El analisis se concentré en los dos
componentes estructurales de la dehesa: el estrato con presencia del material lefioso (arboles y
matorral) y el estrato herbaceo.

En cada categoria se ha identificado una muestra aleatoria de 1000 puntos (pixeles de la
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imagen) que representan de manera equilibrada las 7 categorias de dehesa. Considerando los
ciclos anuales de las variables climaticas y fenologia del componente herbaceo de la dehesa,
se han generado los compuestos de los datos correspondientes a los valores promedio de
imagenes de cada estacion climéatica (primavera, verano y otofio) (Tabla 1), realizandose la
prueba de ANOVA vy la prueba post hoc de Tamhane T2 para determinar la existencia de

diferencias significativas de Ts y NDVI entre categorias.

3. Resultados y discusion

3.1. Cartografia de la cobertura arborea

La figura 3 representa la distribucion espacial de los porcentajes de cobertura arborea en el
area de estudio. La clasificacion digital de la ortofotografia permite identificar espacialmente

el desigual reparto del arbolado en cada uno de los tres poligonos del SIOSE.

Cobertura arbérea (%)

B > 60

[ 50-60
[ ]40-50
[ ]30-40
[ ]20-30
[]10-20
[1<10

Figura 3. Distribucion espacial de la cobertura arborea en el area de estudio.

Los tonos marrones, correspondientes a las categorias en las que el recubrimiento del
arbolado es intermedio (20-30% y 30-40%) son predominantes, ocupando en torno al 50% de
la superficie analizada, lo que coincide con las descripciones del SIOSE para estas unidades
(30% de cobertura arborea y hasta 15% de matorral). En el otro extremo, el color verde
oscuro, que representa las zonas en las que la ocupacion del arbolado es superior al 60%, es
poco representativo (~3.5% de la superficie), siendo mas profuso en el extremo occidental del
poligono situado al Oeste y en zonas especificas del poligono que ocupa la posicién central.

En el poligono oriental los pixeles de esta categoria son casi inexistentes.

3.2. Patrones de distribucion espacio-temporal del NDVIy Ts
La distribucion espacial de la Ts y el NDVI correspondientes a los compuestos de primavera,

verano y otofio se muestra en la figura 4. Los valores mas elevados de NDVI (con un valor
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promedio de ~0,57) se observan en el compuesto de primavera, presentando un reparto
bastante homogéneo sobre la superficie analizada. Sin embargo, a nivel térmico, se aprecia
una mayor heterogeneidad espacial que se concreta en un gradiente moderado con direccién

este-oeste.

NDVI

|0.80

- 0.00

Temperatura_otofio NDVI_otofio

Figura 4. Distribucion de la Ts (izquierda) y NDVI1 (derecha) estimados a partir de las

imagenes Landsat-5 TM en el area de estudio.

Los valores méas bajos de NDVI, tal como se esperaba, se recogen en el compuesto de verano.
Su distribucion presenta una gran variabilidad espacial, de tal modo que se reconocen sectores
especificos en los que los valores de NDVI alcanzan valores elevados (~0,5) y otros en donde
los valores de NDVI se aproximan a 0 (nucleo del poligono central). Este patrén se reproduce
a nivel térmico al observarse diferencias considerables entre zonas en las que los valores de
NDVI también son resefiables. Los valores de Ts mas elevados se observan en el nucleo del
poligono central y, en el extremo contrario, las Ts méas bajas se recogen en la zona occidental,
reproduciendo groseramente la distribucion de los valores de NDV1 y la de los porcentajes de
cobertura arborea. El compuesto de otofio (parte inferior de la figura 4) representa

espacialmente una situacion intermedia entre las dos anteriormente descritas.
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A nivel estadistico, la Tabla 2 y la Figura 5 (A-C) recogen, respectivamente, algunos
indicadores descriptivos de la Ts y los intervalos de confianza para la media al 95%, extraidos

de las distintas categorias de dehesa para los tres compuestos (primavera, verano y otofio).

Tabla 2. Estadisticos descriptivos de la Ts (°C) por categorias de dehesa y estaciones

climaticas.

Categoria (% de cobertura arborea) | Media | Desviacion tipica | Minimo [ Maximo

<10 22.10 0.77 19.01 | 23.86

10-20 21.94 0.77 19.59 | 23.83

§ 20-30 21.79 0.82 19.52 | 23.85

% 30-40 21.60 0.88 19.19 | 23.89

o 40-50 21.45 0.88 18.88 | 23.89

" 50-60 21.41 0.85 19.02 | 24.53

>60 21.31 0.84 19.22 | 24.24

<10 42.11 1.03 38.48 | 44.38

10-20 41.80 1.01 38.68 | 44.45

e 20-30 41.46 1.06 38.14 | 44.35

;§| 30-40 41.11 1.04 37.58 | 43.68

s 40-50 40.76 1.10 37.43 | 43.59

50-60 40.50 1.10 36.14 | 43.47

>60 39.85 1.35 36.01 | 43.14

<10 26.26 0.76 23.96 | 28.22

10-20 25.97 0.77 2352 | 28.17

o 20-30 25.68 0.79 23.45 | 28.12

g 30-40 25.44 0.80 2319 | 28.07
»

= 40-50 25.18 0.80 23.07 | 27.56

50-60 25.05 0.82 2219 | 27.17

>60 24.74 0.88 22.03 | 27.05

En términos generales, se advierte una clara relacion entre los valores de Ts y los niveles de
densidad del arbolado, de tal modo que un aumento del porcentaje de la fraccion lefiosa
conlleva una disminucion en los valores de la Ts. Esta relacion inversa es muy evidente en los
compuestos de verano y otofio, recogiéndose diferencias estadisticamente significativas entre
todas las categorias (p < 0,01). En cambio, en el compuesto de primavera solo las categorias
en las que la cobertura arborea es inferior al 40% presentan diferencias estadisticamente
significativas. De hecho, mientras que en los compuestos de verano y otofio las diferencias
entre los valores promedio en las categorias extremas (<10% y >60%) adquieren cierta

significacion (~2,5° C), en el compuesto de primavera apenas alcanzan 1° C.
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Figura 5. Distribucion de la Ts (A-C) y NDVI (D-F) por categorias de dehesa (segun
intervalos de cobertura arbdrea) en primavera (izquierda), verano (centro) y otofio (derecha).
Las barras indican el intervalo de confianza 95% para el valor medio.

Teniendo en cuenta el caracter perennifolio de Quercus ilex, la especie arbdérea con mayor
representacion espacial en la dehesa de Caceres, es precisamente la diferente contribucion del
estrato herbéaceo y su variabilidad fenoldgica interanual el principal factor explicativo de la
variabilidad espacial de la Ts en los diferentes compuestos. Concretamente, los procesos de
senescencia del estrato herbaceo durante el verano y el incremento de la contribucion del
suelo desnudo a la radiacion emitida explicarian el mayor contraste térmico que se produce
entre diferentes categorias de densidad de arbolado. Ademas, la menor presencia de zonas con
sombra en los pixeles con escaso arbolado también contribuye de manera positiva en el
incremento de la Ts. En términos generales, en verano una disminucion del 10% en la
cobertura arbdrea (con el consiguiente aumento porcentual de la cobertura de pastizal) se
asocia con un aumento de 0,4° C en la Ts. En cambio, en primavera, cuando el estrato

herbaceo se sitda fisiolégicamente en su maximo productivo, especialmente a finales de abril
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(San Miguel, 2009), se produce una reduccion en la exposicion de suelo desnudo y, sobre
todo, un incremento de los procesos de transpiracion que explicarian la disminuciéon de
gradientes térmicos entre categorias de dehesa. En otofio, a pesar de existir un maximo
secundario en la produccion de biomasa a principios de noviembre (Moreno y Pulido, 2009),
se recoge un patron de distribucion semejante al de verano, aunque los contrastes térmicos
entre densidades de arbolado son mas moderadas. En este caso se aprecia un decremento de

0,25° C por cada incremento del 10% en la cobertura arborea.

Por tanto, son las variaciones fisiologicas del estrato herb&ceo, complemento del arbdreo en
los sistemas de dehesa, las que parecen explicar en gran medida los patrones de distribucion
espacial de la Ts. El analisis de la distribucién de los valores de NDVI en las categorias de

dehesa permite comprobar este extremo (Tabla 3, Figura 5 D-F).

Tabla 3. Estadisticos descriptivos de NDVI por categorias de dehesa y estaciones climaticas.

Categoria (% de cobertura arbérea) | Media | Desviacion tipica | Minimo | Maximo
<10 0.57 0.06 0.24 0.71

- 10-20 0.56 0.05 0.33 0.69
2 20-30 0.56 0.05 031 | 0.72
g 30-40 0.56 0.05 0.39 0.69
ﬁ 40-50 0.57 0.05 0.37 0.70
= 50-60 0.57 0.04 0.35 0.69
>60 0.57 0.04 0.40 0.67

<10 0.29 0.03 0.20 0.39

10-20 0.31 0.02 0.23 0.39

% 20-30 0.32 0.03 0.23 0.46
§ 30-40 0.34 0.03 0.25 0.45
,2' 40-50 0.35 0.03 0.23 0.47
50-60 0.37 0.03 0.18 0.52

>60 0.39 0.04 0.28 0.55

<10 0.35 0.04 0.23 0.48

10-20 0.36 0.04 0.24 0.49

2 20-30 0.38 0.04 0.27 0.51
‘gl 30-40 0.40 0.03 0.27 0.51
2 40-50 0.42 0.04 0.26 0.55
50-60 0.43 0.04 0.27 0.59

>60 0.45 0.05 0.30 0.62

El NDVI, al ser un indice espectral muy correlacionado con variables biofisicas como la
actividad clorofilica, la densidad y el vigor de la vegetacion, presenta valores muy
homogéneos (valor medios ~ 0,57, Tabla 2) en el compuesto de primavera
independientemente de la densidad del arbolado. De este modo, no se recogen diferencias

significativas entre las categorias (p>0,05). Por el contrario, en los compuestos de otofio v,
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especialmente, en el verano, se recogen diferencias significativas en los valores de NDVI
entre categorias de arbolado. Los niveles de NDVI mas altos se observan en la categoria con
el maximo porcentaje de cobertura arbérea (>60%) disminuyendo en forma progresiva hasta
llegar a los niveles mas bajos en las categorias con predominio de pastizal, lo que demuestra
un patron de distribucion completamente diferente (aunque relacionado) al presentado por la
Ts.

Los diagramas de dispersion de la figura 6 representan las relaciones, pixel a pixel, entre los
valores promedio de la Ts y los promedios de NDVI en los compuestos de primavera (6A),
verano (6B) y otofio (6C). El color de los puntos hace referencia a los porcentajes de
cobertura arborea.
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Figura 6. Diagramas de dispersion de NDVI1y Ts en primavera (A), verano (B) y otofio (C).

De acuerdo con la interpretacién del espacio formado por las variables NDVI-Ts sugerida por
Jiang e Islam (2001), los puntos correspondientes a zonas de suelo desnudo se localizarian en
el extremo superior izquierdo, lugares donde la fraccion lefiosa es muy baja; en cambio, los
puntos correspondientes a los pixeles completamente cubiertos por vegetacion se localizarian

en el extremo inferior derecho.

De esta manera, en los diagramas de los compuestos de verano y otofio se advierte una
relacion negativa entre los valores de NDVI y Ts y una organizacion de los pixeles acorde a
los parametros preestablecidos. Sin embargo, en el compuesto de primavera esta relacion es
inexistente y las diferentes clases de arbolado se solapan en el espacio del diagrama NDVI-Ts
generando una distribucion mas homogénea en la que los pixeles rojos, correspondientes a las

categorias con porcentajes inferiores al 10% de cobertura arbérea, aparecen en toda la nube de
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puntos. Esto es debido a que en esta fecha la vegetacion muestra una elevada actividad

fotosintética, independientemente de la proporcidn del estrato arboreo o del pastizal.

4. CONCLUSIONES

El analisis cartografico de los poligonos de dehesa (obtenidos a partir de SIOSE) mediante
ortofotografia de alta resolucion espacial permite evaluar la heterogeneidad de los niveles de
cubrimiento del arbolado dentro de los ecosistemas de dehesa, proporcionando un mayor

nivel de precision en el analisis de las relaciones con la Ts.

Se analizan los patrones espacio-temporales de la Ts estimada a partir de la serie de iméagenes
Landsat-5 TM del periodo 2009-2011 y su relacién con las categorias de dehesa. La
distribucion espacial de la Ts esta estrechamente relacionada con la cobertura de la superficie
por la vegetacion: la Ts méas baja se observa en las areas con mayor cobertura de la vegetacion
y la més elevada en las zonas de vegetacion senescente o suelo desnudo. Por esa razon, en el
ecosistema de dehesa el patron espacial de Ts depende del ciclo fenoldgico del pastizal, que
es el componente méas dinamico. El ciclo de desarrollo del estrato herbaceo contiene
momentos de intenso vigor en la primavera, asi como estado de senescencia en verano. Esto
explica la relacion negativa que existe entre la cobertura arborea y la Ts. Esta relacion es mas
pronunciada en verano (diferencia entre los promedios de las categorias extremas (<10% y
>60%) se acerca a 2,5°C) debido al estado senescente de las herbaceas y a la menor
importancia de las sombras proyectadas por el estrato arboreo, observandose un aumento de
Ts de 0,4 °C con cada disminucion de 10% en la cobertura arbdrea. Las diferencias en la Ts
entre los tipos de dehesa se mantienen en primavera, aunque son de menor magnitud (~1°C)
por cuanto la vegetacion de los dos estratos de la dehesa (arboreo y pastizal) esta en el
maximo vigor y el promedio de las diferencias en Ts con la disminucion de 10% en la

cobertura arborea se reduce a 0,1 °C.

El estudio en su conjunto responde a la necesidad de generar informacion que pueda ser
integrada en los modelos de respuesta del ecosistema de dehesa a los efectos del cambio
climatico (Moreno y Pulido, 2009; Joffre et al., 1999). En este contexto, se ha demostrado la
capacidad de los sensores remotos para monitorizar la variabilidad espacio-temporal de la
temperatura de la superficie (Ts), una de las variables destacadas en otras investigaciones (a.o.
Plieninger et al., 2004), y contribuir asi a la definicion de estrategias para mantener la

sostenibilidad de este ecosistema.
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10. Conclusions and future research

10.1 Main findings

The present research analyzes the potential of Landsat images as a source of land surface

temperature (LST) data. Spatio-temporal patterns of LST estimated from Landsat images and

their relationship with vegetation cover are studied in areas affected by forest fires and in tree-

grass woodlands (dehesas) located in central and northeastern Spain. The most important

results of the study are presented below:

1. Comparison of single band algorithms for LST estimation from Landsat images in

Mediterranean ecosystems of dehesa:

Single-Channel method and inversion of Radiative Transfer Equation with
atmospheric correction parameters from ACPC on-line tool can be used for LST

estimation from Landsat-5 TM thermal band with an error of ~1 K.

There is a seasonal bias in the results obtained by Mono-Window method due to the

worse fit of the coefficients to real atmospheric conditions in the study area.

The best results (RMSD = 0.5 °C) were obtained using Single-Channel method. This
algorithm, which does not require radiosounding data, is considered the most adequate
for integration with MODIS LST product MOD11 L2.

2. Analysis of spatio-temporal patterns of Landsat LST in Mediterranean forests affected by

wildfires and its relationship with burn severity

This study generates cartography of LST, one of the parameters controlling physical
processes in areas affected by wildfires, and describes relations between burn severity

and post-fire vegetation recovery.

In Las Hurdes burn (Extremadura, Spain), LST values in the zones of high burn
severity were 10 °C higher than in the unburned areas. Although these differences
decrease with the pass of time, they are still detectable two years after fire.

LST contrasts in the areas of different burn severity are enhanced by the aspect and
illumination geometry, being higher for the better-illuminated slopes.
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3. Analysis of the effects of different post-fire wood treatments on vegetation recovery
(through NDVI) and LST

The study leads to the conclusion that in ecosystems highly resilient to fire, such as
Pinus halepensis forests, post-fire recovery in terms of NDVI is high with or without
application of active strategies for burnt wood management. However, in terms of
vegetation recovery and LST distribution, statistically significant differences were
observed between intervened and not intervened areas. Intervened areas showed lower
levels of vegetation cover and higher values of LST. On the other hand, no statistically

significant differences have been detected between the zones of two treatments.

Remotely assessed levels of vegetation cover and LST distribution in burnt areas can
be used as indicators in diagnostics of recovery and efficiency of applied treatments,
since they synthesize important processes taking place in soil-vegetation-atmosphere
systems.

4. Analysis of spatio-temporal patterns of Landsat LST in Mediterranean tree-grass

ecosystem (dehesa) and their relationship with vegetation fenology

In dehesa spatial patterns of LST depend on phenology of pasture, tree density and
shadows projected by tree canopies. There is negative relation between the tree cover
and LST; 0.4 °C temperature increase is observed for each 10% of decreasein tree

cover.
In spring negative relation between LST and tree cover is less pronounced, because

vegetation greenness is at its maximum. At this moment the observed rate of LST

increase per 10% decrease of tree cover constitutes only 0.1 °C.
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10.2 New research lines derived from the thesis:

Application of Landsat LST in modeling of carbon and water fluxes in heterogeneous
ecosystems.

Analyze relationship between LST, burn severity and vegetation regeneration in other
ecosystems.

Combine LST with traditional burn severity metrics in order to improve spatial
differentiation of severity levels in fire-affected areas.

Assess methods for LST estimation from Landsat images in tropical coastal

ecosystems of Ecuador; combine Landsat LST with data from high-resolution remote
sensing images to assess status of tropical agricultural crops.
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11. Conclusiones y trabajos futuros

11.1 Principales hallazgos

La presente investigacion se enmarca en el analisis del potencial de las imagenes Landsat

para obtener cartografia de la temperatura de superficie (LST). Los patrones espacio-

temporales de LST y su relacion con la cobertura vegetal se estudian en areas afectadas por

incendios forestales y en ecosistemas de dehesa, situados en el centro y noreste de Espafia.

Los resultados mas importantes de este estudio se presentan a continuacion:

1. Comparacion de los algoritmos de una banda para la estimaciéon de la LST desde las

imagenes Landsat en los ecosistemas Mediterraneos de dehesa:

El método mono-banda (SC) y la inversién de la Ecuacion de la Transferencia
Radiativa (RTE) con los parametros de correccion atmosférica de la herramienta web
ACPC pueden ser utilizados para la estimacién de la LST a partir de la banda térmica
de Landsat-5 TM con el error de ~1 K.

Existe un sesgo estacional en los resultados obtenidos por el método de mono-ventana
(MW) debido al peor ajuste de los coeficientes a las condiciones atmosféricas reales

en el area de estudio.

Los mejores resultados (RMSD = 0.5 °C) se obtuvieron con el método mono-banda
(SC). Este algoritmo, que no requiere de datos de radiosondeos, es considerado el mas
adecuado para la integracién con el producto de temperatura de superficie de MODIS
MOD11_L2.

2. Andlisis de los patrones espacio-temporales de la LST de Landsat en bosques

mediterraneos afectados por los incendios forestales y su relacion con la severidad de fuego:

En este estudio se genera cartografia multitemporal deLST, uno de los parametros
clave en el control de los procesos fisicos en las areas afectadas por incendios, y se
describen las relaciones entre la severidad del incendio y la recuperacion post-incendio

de la vegetacion.
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— En el incendio de Las Hurdes (Extremadura), en las zonas de severidad alta se
registraron valores de LST hasta 10 °C superiores a las no quemadas. Estas diferencias
disminuyen con el paso de tiempo, aunque siguen siendo detectables dos afios despues

del fuego.

— Los contrastes de LST en las areas de diferente severidad de incendio se acentdan en
funcién de la orientacion y la geometria de iluminacién, siendo mas altos para las

laderas mejor iluminadas.

3. Analisis de los efectos de los diferentes tratamientos post-incendio de madera sobre la

recuperacion de vegetacion (a través de NDVI) y la temperatura de superficie:

— A partir de este estudio se concluye que en ecosistemas muy resilientes, como los
bosques de Pinus halepensis, la recuperacion post-incendio en términos de NDVI es
elevada, independientemente de que se apliquen o no medidas para la gestion activa de
la madera quemada. Sin embargo, en términos de recubrimiento vegetal y en relacion
con la distribucion de la LST, se constatan diferencias estadisticamente significativas
entre las areas intervenidas y las no-intervenidas. Las Ultimas muestran niveles mas
bajos de recubrimiento vegetal y valores de LST mas altos. Por otro lado, entre las
zonas en las que se han aplicado los dos tratamientos no se recogen diferencias

significativas.

— Los niveles de recubrimiento vegetal y la distribucién de la LST en zonas quemadas,
medidas mediante teledeteccidon, pueden ser utilizados como indicadores en el
diagnosticos de la recuperacion y eficacia de los tipos de tratamiento aplicados, en la
medida de que sintetizan importantes procesos que protagonizan las interacciones

suelo-planta-atmosfera.

4. Anélisis de los patrones espacio-temporales de la LST en los ecosistemas de dehesas

Mediterraneas y su relacién con la fenologia de vegetacion:

— EI patron espacial de LST depende del ciclo fenolégico del pastizal, de la densidad
del arbolado y de la sombraproyectada por el estrato arbéreo. Se observa un aumento

de la LST de 0,4 °C con cada disminucion de 10% en la cobertura arbérea.
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— In spring negative relation between LST and tree cover is less pronounced, because
vegetation greenness is at its maximum. At this moment the observed rate of LST

increase per 10% decrease of tree cover constitutes only 0.1 °C.

11.2 Nuevas lineas de investigacion derivadas de la tesis:
— Aplicacion de los productos cartograficos de LST en los modelos de flujos de carbono

y agua en ecosistemas heterogéneos.

— Analisis de la relacion entre LST, la severidad de incendios y la regeneracion de

vegetacion en otros ecosistemas.

— Combinar la LST con las métricas tradicionales para mejorar la diferenciacién espacial

de los niveles de severidad en &reas afectadas por fuegos forestales.

— Evaluacion de los métodos para la estimacion de LST a partir de las imagenes Landsat
en ecosistemas tropicales de las areas costeras de Ecuador; combinar la LST derivada
de datos Landsat con los datos de los sensores remotos de alta resolucidn para detectar

el estatus de los cultivos agricolas tropicales
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