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Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
cIFLP, CONICET — Dpto. de F́ısica, Universidad Nacional de La Plata,

C.C. 67, 1900 La Plata, Argentina

E-mail: ernesto.arganda@unizar.es, maria.herrero@uam.es,

roberto.morales@fisica.unlp.edu.ar, szynkman@fisica.unlp.edu.ar

Abstract: In this paper we study the lepton favor violating decay channels of the neutral

Higgs bosons of the Minimal Supersymmetric Standard Model into a lepton and an anti-

lepton of different flavor. We work in the context of the most general flavor mixing scenario

in the slepton sector, in contrast to the minimal flavor violation assumption more frequently

used. Our analytic computation is a one-loop diagrammatic one, but in contrast to the

full one-loop computation which is usually referred to the physical slepton mass basis,

we use here instead the Mass Insertion Approximation (MIA) which uses the electroweak

interaction slepton basis and treats perturbatively the mass insertions changing slepton

flavor. By performing an expansion in powers of the external momenta in the relevant

form factors, we will be able to separate explicitly in the analytic results the leading

non-decoupling (constant at asymptotically large sparticle masses) and the next to leading

decoupling contributions (decreasing with the sparticle masses). Our final aim is to provide

a set of simple analytic formulas for the form factors and the associated effective vertices,

that we think may be very useful for future phenomenological studies of the lepton flavor

violating Higgs boson decays, and for their comparison with data. The accuracy of the

numerical results obtained with the MIA are also analyzed and discussed here in comparison

with the full one-loop results. Our most optimistic numerical estimates for the three neutral

Higgs boson decays channels into τ and µ leptons, searching for their maximum rates that

are allowed by present constraints from τ → µγ data and beyond Standard Model Higgs

boson searches at the LHC, are also included.

Keywords: Higgs Physics, Supersymmetric Standard Model

ArXiv ePrint: 1510.04685

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)055

mailto:ernesto.arganda@unizar.es
mailto:maria.herrero@uam.es
mailto:roberto.morales@fisica.unlp.edu.ar
mailto:szynkman@fisica.unlp.edu.ar
http://arxiv.org/abs/1510.04685
http://dx.doi.org/10.1007/JHEP03(2016)055


J
H
E
P
0
3
(
2
0
1
6
)
0
5
5

Contents

1 Introduction 1

2 The MSSM with general flavor mixing in the charged slepton and sneu-

trino sectors 4

3 Analytic results of the LFVHD widths in the MIA 9

4 Numerical results of the h,H,A → τ µ̄ decay rates 16

5 Conclusions 24

A Relevant Feynman rules 26

B Analytic expressions of the form factors 29

C Relevant loop integrals and their expansions for heavy SUSY 34

1 Introduction

After the discovery of a new scalar particle at the LHC [1, 2], identified with the so long

expected Higgs boson, and once its mass, now being set at mh = 125.09 ± 0.21 (stat.)

± 0.11 (syst.) GeV [3], and other properties like some of its couplings to the Standard

Model (SM) particles have been measured (see [4] for a recent review), one of the most

challenging open questions still to be solved is to disentangle if this is an elemental or a

composite particle and if there is new physics beyond the SM that could be hidden in the

Higgs sector. In this regard, it is clear that the future ambitious experimental program,

both at the CERN Large Hadron Collider (LHC) and future linear colliders, which will

determine all the Higgs couplings with higher precision than at present, will play a central

role. Among the most clear signals of Higgs physics beyond the SM, would be undoubtedly

the discovery of new Higgs scalar bosons, and the discovery of new Higgs decay channels,

both subjects being intensively explored at present at the LHC. We will focus here on

these two possibilities by considering, on the one hand, the existence of new Higgs bosons,

concretely those predicted in the Minimal Supersymmetric Standard Model (MSSM) and,

on the other hand, their potential new decay channels into leptons with different flavor,

therefore violating lepton flavor number, which would be certainly very exotic Higgs decay

channels, totally inhibited for the SM Higgs boson case.

The subject of Lepton Flavor Violating Higgs Decays (LFVHD) is actually a very

active research field, being explored at present at the LHC. The first direct search of the

particular decay h→ µτ (from now on we will refer in this short way to both h→ µτ̄ and
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h→ τ µ̄ decays), has been performed by the CMS Collaboration [5], and an upper limit of

BR(h → µτ) < 1.51 × 10−2 at 95% C.L. has been set. Besides, CMS has also observed a

slight excess with a significance of 2.4 standard deviations at mh = 125 GeV, whose best

fit branching ratio, if interpreted as a signal, is BR(h → µτ) = (8.4+3.9
−3.7) × 10−3. The

ATLAS collaboration has recently released their results for the same h → µτ decay [6] as

well, focusing on hadronically decaying τ leptons. ATLAS has reported an upper limit of

BR(h→ µτ) < 1.85× 10−2 at 95% C.L. in agreement with the previous CMS result. It is

worth mentioning that a small excess appears in one of the signal regions considered, even

though it is not statistically significant.

On the theoretical side, the subject of LFVHD has been studied for a long time in the

literature within various models beyond the SM (for recent works see, for instance, [7–31]),

but the most frequently explored ones are the supersymmetric (SUSY) models because the

needed feature of flavor mixing among particles of different generations to produce these

exotic decays is easily incorporated and well justified in the SUSY particles sector [32–47].

More specifically, it is the flavor mixing among the three generations of the charged sleptons

and/or sneutrinos, typically present in SUSY models, what produces via their contributions

at the one-loop level, these interesting Higgs decay channels with Lepton Flavor Violation

(LFV). In this work we will focus, in particular, on the LFVHD within the context of

the MSSM and with the hypothesis of general flavor mixing in the charged slepton and

sneutrino sectors. This in contrast to the alternative and more restrictive Minimal Lepton

Flavor Violation (MFV) hypothesis where the assumed unique origin of LFV comes from

the Yukawa fermion couplings. Several examples where the neutrino Yukawa couplings,

which can be large if neutrinos are Majorana fermions, are the responsible for generating

these LFVHD have been explored in the literature. The issue of LFVHD being radiatively

generated from loops with neutrinos was first explored in a non-SUSY context [48], and

later other cases were considered, including the case of the type-I seesaw model both with

and without SUSY [37], the inverse seesaw model [13] and its SUSY version [47]. The study

of LFVHD within the more general context of Non-Minimal-Flavor Violation (NMFV) of

the MSSM has also a long story. The LFVHD rates of the neutral MSSM Higgs bosons

into µ and τ leptons were computed in the effective Lagrangian framework in [34] and

a full-one loop diagrammatic computation in the physical SUSY particle basis was done

in [37]. The issue of non-decoupling of the heavy SUSY particles in the LFVHD within

this same MSSM context with NMFV was addressed numerically in [45].

In the present work we re-explore the LFV leptonic decays of the three neutral Higgs

bosons, h,H,A→ lk l̄m (k 6= m), within the context of the MSSM with NMFV, and calcu-

late their partial widths at the one-loop level with general slepton flavor mixings. These

mixings are parametrized by means of a complete set of slepton flavor mixing dimension-

less parameters, δABmk with AB = LL, RR, LR, RL, and flavor indices m, k = 1, 2, 3, with

m 6= k. These parameters take into account, in a model-independent way and without

any assumption on their particular origin, all the possible flavor mixings among the SUSY

partners of the leptons with either left-handed or right-handed chirality. The novelty of

this new computation is that we use a different technique, the so-called Mass Insertion

Approximation (MIA) [49–51], that works with sleptons in the electroweak basis instead
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of the physical basis of the full one-loop computation, and treats the off-diagonal in flavor

entries of the slepton squared mass matrices ∆AB
mk perturbatively, i.e., by means of mass in-

sertions inside the propagators of the electroweak interaction sleptons eigenstates, instead

of performing the exact diagonalization of the mass basis involved in the full one-loop com-

putation. Recent studies have additionally shown that the MIA results can alternatively

be also obtained if one expands properly the starting expressions in the mass basis [52, 53].

The main advantage of using the MIA for the one-loop computation of the Γ(Hx → lk l̄m)

partial widths (Hx = h,H,A) is clear: it provides very simple analytic formulas for the form

factors involved which after a proper expansion, to be valid in the case of heavy sparticle

masses of our interest here, say mSUSY & O(1 TeV), can be recast in simple LFV effective

vertices V eff
Hxlmlk

, and these in turn are very useful for a simplified phenomenological study

of the LFVHD rates in terms of the generic δABmk ’s and their comparison with data. In this

work, by applying the MIA at the first (linear) order in the off-diagonal mass insertions

∆AB
mk (m 6= k), we will compute analytically all the relevant diagrams that contribute at

the one-loop level to the LFV partial widths Γ(h,H,A → lk l̄m). Furthermore, the MIA

will also allow us to perform an analytic expansion of the involved form factors in pow-

ers of the external momenta and, in consequence, we will be able to capture analytically

for the first time both the leading non-decoupling contributions of O((mh,H,A/mSUSY)0),

i.e., those that go to a constant value in the asymptotically large SUSY masses limit, and

the next-to-leading decoupling contributions of O(m2
h,H,A/m

2
SUSY), which are numerically

much smaller than the leading ones but they turn out to play an important role for some

of the studied cases of the flavor mixings. A few comments and estimates will also be done

for the next-to-leading decoupling contributions of O(M2
W /m

2
SUSY), which are numerically

very tiny. In this work we will also include a numerical computation of the LFVHD rates

with the MIA for the case of most interest at present, h,H,A→ τ µ̄, which will be system-

atically compared with the full one-loop results to be able to conclude on the goodness of

this approximation, the MIA, and its range of applicability. Finally we will conclude with

simple analytic formulas for the useful LFV effective vertices, V eff
Hxτµ

, and with a numerical

estimate of the maximum expected BR(h,H,A→ τ µ̄) rates that are allowed by the present

experimental constraints from τ → µγ [54] and by the ATLAS and CMS searches for neu-

tral Higgs bosons beyond the SM [55, 56]. This numerical study will be performed in terms

of the most relevant model parameters, emphasizing which flavor mixing parameters will

be most efficiently tested at future colliders.

The paper is organized as follows. In section 2 we summarize the relevant aspects of

the MSSM with general sfermion flavor mixing and present the chosen scenarios for our

numerical estimates. Section 3 contains our analytic computation of the LFVHD widths

within the MIA. We select and compute the relevant one-loop diagrams and derive the

form factors for LFVHD, their proper expansions, and the corresponding effective vertices.

Section 4 contains all our numerical results for BR(h,H,A → τ µ̄) and the comparison

with the full one-loop predictions. The conclusions are summarized in section 5. The

technicalities, including the relevant Feynman rules for the interaction vertices in the MSSM

with NMFV, the analytic expressions of the form factors for each diagram, and the proper

expansions of the loop integrals are collected in the appendices A, B, and C, respectively.
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2 The MSSM with general flavor mixing in the charged slepton and

sneutrino sectors

In order to describe the MSSM with general sfermion mixing, the relevant model pieces

are the superpotential and the soft SUSY-breaking Lagrangian. The superpotential of the

MSSM in terms of the relevant superfields is given by:

WMSSM = ÛY uQ̂Ĥ2 − D̂Y dQ̂Ĥ1 − ÊY eL̂Ĥ1 + µĤ1Ĥ2 , (2.1)

where the Yukawa couplings Y u,d,e are 3×3 matrices in flavor space. All indices, including

the flavor ones, have been omitted in eq. (2.1) for simplicity.

The relevant soft SUSY-breaking MSSM Lagrangian for generic sfermion mixing is:

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
Q̃iAuijŨ∗jH2 − Q̃iAdijD̃∗jH1 − L̃iAeij Ẽ∗jH1 + c.c.

)

−Q̃†im2
Q̃ij
Q̃j − Ũ∗i m2

Ũij
Ũj − D̃∗im2

D̃ij
D̃j − L̃†im2

L̃ij
L̃j − Ẽ∗im2

R̃ij
Ẽj

−m2
H1
H∗1H1 −m2

H2
H∗2H2 − (bH2H1 + c.c.) , (2.2)

where we use calligraphic capital letters for the sfermion fields in the interaction basis with

generation indices, varying from 1 to 3,

Ũ1,2,3 = ũR, c̃R, t̃R ; D̃1,2,3 = d̃R, s̃R, b̃R ; Q̃1,2,3 = (ũL d̃L)T , (c̃L s̃L)T , (t̃L b̃L)T , (2.3)

Ẽ1,2,3 = ẽR, µ̃R, τ̃R ; L̃1,2,3 = (ν̃eL ẽL)T , (ν̃µL µ̃L)T , (ν̃τL τ̃L)T , (2.4)

and all the gauge indices have been omitted. All the trilinear couplings, Afij , and the soft

squared masses of sfermions, m2
ij , are 3× 3 matrices in the space of flavor.

The two Higgs doublets of the MSSM are given by:

H1 =

(
H0

1

H−1

)
=

(
v1 + 1√

2
(φ0

1 − iχ0
1)

−φ−1

)
,

H2 =

(
H+

2

H0
2

)
=

(
φ+

2

v2 + 1√
2
(φ0

2 + iχ0
2)

)
, (2.5)

where v1 and v2 are the vacuum expectation values (VEV) of the neutral Higgs fields,

v1 = 〈H0
1〉 and v2 = 〈H0

2〉, and the ratio between the two VEVs is defined as tan β = v2/v1.

In the present work, we focus on the three physical neutral Higgs bosons, which are built

from the previous Higgs doublet components as:

H = cosαφ0
1 + sinαφ0

2 ,

h = − sinαφ0
1 + cosαφ0

2 ,

A = − sinβ χ0
1 + cosβ χ0

2 , (2.6)

and use mA and tan β as input model parameters of the MSSM Higgs sector.
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Since we are interested here in the Lepton Flavor Violating Higgs decays of these three

neutral MSSM Higgs bosons, Hx → lk l̄m with Hx = h,H,A, we will focus on sfermion

mixing in the slepton sector and we will ignore the possible sfermion mixing in the squark

sector. Furthermore, we will work within a general flavor mixing context at the low energies,

i.e., without assuming any high-energy hypothesis for the generation of the relevant soft-

breaking terms producing this slepton flavor mixing. Therefore, we will work within a

NMFV framework which goes beyond the more frequently used MFV hypothesis in which

the sfermion mixing is always induced by the Yukawa couplings.

The most general hypothesis for flavor mixing among sleptons assumes a mass matrix

in the interaction basis that is not diagonal in the space of flavor, both for charged sleptons

and sneutrinos. In the charged slepton sector the mass matrix is 6 × 6, since there are six

electroweak interaction eigenstates, l̃L,R with l = e, µ, τ . For the sneutrinos the mass matrix

is 3 × 3, since within the MSSM there are only three electroweak interaction eigenstates,

ν̃L with ν = νe, νµ, ντ .

The non-diagonal 6 × 6 squared mass matrix of sleptons when expressed in the elec-

troweak interaction basis, that we order here as (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R), is written in terms

of left- and right-handed blocks M2
l̃ AB

(A,B = L,R), which are non-diagonal 3×3 matrices,

as follows:

M2
l̃

=



M2
l̃ LL

M2
l̃ LR

M2 †
l̃ LR

M2
l̃ RR


 , (2.7)

where:

M2
l̃ LL ij

= m2
L̃ ij

+

(
m2
li

+

(
− 1

2
+ sin2 θW

)
M2
Z cos 2β

)
δij ,

M2
l̃ RR ij

= m2
R̃ ij

+
(
m2
li
− sin2 θWM

2
Z cos 2β

)
δij ,

M2
l̃ LR ij

= v1Alij −mliµ tanβ δij , (2.8)

with flavor indices i, j = 1, 2, 3 running by the three generations, respectively; and

(ml1 ,ml2 ,ml3) = (me,mµ,mτ ) are the lepton masses. It is worth recalling that the non di-

agonality in flavor comes exclusively from the soft SUSY-breaking parameters, that could

be non vanishing for i 6= j. Specifically: the masses mL̃ ij for the slepton SU(2) dou-

blets, (ν̃Li l̃Li), the masses mR̃ ij for the slepton SU(2) singlets, (l̃Ri), and the trilinear

couplings, Alij .
In the sneutrino sector there is a 3 × 3 squared mass matrix that, when expressed in

the (ν̃eL, ν̃µL, ν̃τL) electroweak interaction basis, is given by:

M2
ν̃ =

(
M2
ν̃ LL

)
, (2.9)

where

M2
ν̃ LL ij = m2

L̃ ij
+

(
1

2
M2
Z cos 2β

)
δij . (2.10)

As a consequence of the SU(2)L gauge invariance, the same soft masses mL̃ ij enter in

both the slepton and sneutrino LL mass matrices. It should be noted that if the neutrino
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masses and neutrino flavor mixings (oscillations) were taken into account, the soft SUSY-

breaking parameters in the sneutrino sector would differ from the corresponding ones for

the charged slepton sector by a rotation with the PMNS matrix. This would be somehow

equivalent to what happens in the squark sector where the soft masses for the squarks of

down type and those of up type differ by a rotation given by the CKM matrix. However, due

to the smallness of the neutrino masses, we do not expect large effects from the inclusion

of neutrino masses in the present computation and consequently we will neglect them in

this work, as it is usually done in the context of the MSSM.

The general flavor mixing in the slepton sector is introduced via the non-diagonal terms

in the soft breaking slepton mass matrices and trilinear coupling matrices, and these are

defined here in a model-independent way in terms of a set of dimensionless parameters δABij
(A,B = L,R; i, j = 1, 2, 3, i 6= j), where L and R denote the “left-” and “right-handed”

SUSY partners of the corresponding leptonic degrees of freedom, and i, j indices run over

the three generations. We assume here that the δABij ’s provide the unique origin of LFV

processes with potentially measurable rates. Specifically, we define:

m2
L̃

=




m2
L̃1

δLL12 mL̃1
mL̃2

δLL13 mL̃1
mL̃3

δLL21 mL̃2
mL̃1

m2
L̃2

δLL23 mL̃2
mL̃3

δLL31 mL̃3
mL̃1

δLL32 mL̃3
mL̃2

m2
L̃3


 , (2.11)

v1Al =




meAe δLR12 mL̃1
mR̃2

δLR13 mL̃1
mR̃3

δLR21 mL̃2
mR̃1

mµAµ δLR23 mL̃2
mR̃3

δLR31 mL̃3
mR̃1

δLR32 mL̃3
mR̃2

mτAτ


 , (2.12)

m2
R̃

=




m2
R̃1

δRR12 mR̃1
mR̃2

δRR13 mR̃1
mR̃3

δRR21 mR̃2
mR̃1

m2
R̃2

δRR23 mR̃2
mR̃3

δRR31 mR̃3
mR̃1

δRR32 mR̃3
mR̃2

m2
R̃3


 . (2.13)

Some comments are in order regarding our parametrization above. First, for simplicity,

in all this work we are assuming that all δABij parameters are real, hence, hermiticity of

the squared mass matrices implies δABij = δBAji . Second, the diagonal entries in eq. (2.12)

have been normalized as usually done in the literature, namely, by factorizing out the

corresponding lepton Yukawa coupling: Alii = yliAli , with Al1 = Ae, Al2 = Aµ, Al3 = Aτ ,

and yli = mli/v1. Third, it should be noted that the choice in eqs. (2.11), (2.12), and (2.13)

is to normalize the non-diagonal in flavor entries with respect to the geometric mean of the

corresponding diagonal squared soft masses. Thus, the non-diagonal LL and RR terms,

with m 6= k, are normalized as:

∆LL
mk ≡ (m2

L̃
)mk = δLLmkmL̃m

mL̃k
, (2.14)

and

∆RR
mk ≡ (m2

R̃
)mk = δRRmkmR̃m

mR̃k
. (2.15)

However, in the case of sfermion mixing of LR (and RL) type, and taking into account

that the origin of these off-diagonal mass entries is intrinsically connected to the value of
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the soft trilinear couplings, having dimension of mass, we find more appropriate for the

purpose of this work, dealing with very large SUSY masses, to normalize them alternatively

as follows:

∆LR
mk ≡ (v1Al)mk = δ̃LRmkv1

√
mL̃m

mR̃k
, (2.16)

and similarly,

∆RL
mk ≡ (v1Al)km = δ̃RLmkv1

√
mR̃m

mL̃k
. (2.17)

This implies an obvious relation between δLRmk and δ̃LRmk which should be kept in mind:

δLRmk = δ̃LRmk
v1√mL̃m
mR̃k

, (2.18)

and similarly for the RL case.

Besides, if one wishes to relate the previous electroweak interaction basis and the

physical mass basis one must perform the corresponding rotations:




l̃1
l̃2
l̃3
l̃4
l̃5
l̃6




= Rl̃




ẽL
µ̃L
τ̃L
ẽR
µ̃R
τ̃R



,



ν̃1

ν̃2

ν̃3


 = Rν̃



ν̃eL
ν̃µL
ν̃τL


 , (2.19)

where Rl̃ and Rν̃ are the respective 6× 6 and 3× 3 unitary rotating matrices that provide

the diagonal mass-squared matrices as follows,

diag{m2
l̃1
,m2

l̃2
,m2

l̃3
,m2

l̃4
,m2

l̃5
,m2

l̃6
} = Rl̃M2

l̃
Rl̃† , (2.20)

diag{m2
ν̃1 ,m

2
ν̃2 ,m

2
ν̃3} = Rν̃M2

ν̃R
ν̃† . (2.21)

Regarding the particle interactions that are involved in the present computation of the

LFV Higgs decay widths, Γ(Hx → lk l̄m) with k,m = 1, 2, 3, k 6= m, and Hx = h,H,A,

we have collected all the relevant Feynman rules in appendix A, including all the needed

insertions, vertices, and propagators, which we have expressed in the proper basis here.

Concretely, we work with the mass basis for the external particles, Hx, lk, and l̄m, and

with the electroweak interaction basis for the internal sparticles in the loops, which from

now on will be shortly denoted by: l̃L,Ri (i = 1, 2, 3), ν̃i (i = 1, 2, 3), W̃±, W̃ 3, B̃, H̃±, and

H̃1,2. This choice of basis is the most convenient one for the computation in the MIA,

in contrast to the full one-loop computation where the physical mass basis is also usually

set for the internal sleptons, sneutrinos, charginos, and neutralinos: l̃α (α = 1, . . . , 6),

ν̃α (α = 1, 2, 3), χ̃±i (i = 1, 2), and χ̃0
i (i = 1, . . . , 4).

Finally, to close this section of model specifications, we shortly summarize next the

heavy SUSY scenarios that we work with for the estimates of this research. In order to

simplify our numerical analysis, and to reduce the number of independent parameters,

we define here three simplified SUSY scenarios, where the relevant parameters with mass

dimensions are related to a single SUSY mass scale, mSUSY:

– 7 –
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• Equal masses scenario. In this scenario we choose the simplest case with all the

relevant parameters involved set to be equal:

M1 = M2 = M3 = µ = mL̃ = mR̃ = Aµ = Aτ = mSUSY . (2.22)

• GUT approximation scenario. In this scenario we set an approximate GUT relation

for the gaugino masses:

M2 = 2M1 = M3/4 . (2.23)

And, for simplicity, we also relate the soft parameters and the µ parameter to a

common scale by choosing:

mL̃ = mR̃ = M2 = Aµ = Aτ = mSUSY , (2.24)

µ = amSUSY , (2.25)

where a is a constant coefficient that we will fix to two different values for comparison,

namely, a = 3
4 and 4

3 .

• Generic scenario. In this scenario we wish to explore the non-equal mass generic case.

Thus, we set different values for all the mass parameters involved. For the purpose

of this work, the particular values of each parameter is not much relevant, but the

important feature here is setting all of them to be heavy by a common mSUSY scale.

Concretely, we take:

M1 = 2.2mSUSY , M2 = 2.4mSUSY , M3 = 2.6mSUSY , µ = 2.1mSUSY ,

(2.26)

mL̃1
= 2mSUSY , mL̃2

=1.8mSUSY , mL̃3
= 1.6mSUSY , (2.27)

mR̃1
= 1.4mSUSY , mR̃2

= 1.2mSUSY , mR̃3
= mSUSY , (2.28)

Aµ = 0.6mSUSY , Aτ = 0.8mSUSY . (2.29)

For the first two scenarios that are defined above, we use a short notation for the common

soft masses, namely, mL̃ for mL̃ = mL̃1
= mL̃2

= mL̃3
, etc. For simplicity, in all the three

scenarios we have also assumed a vanishing soft-trilinear coupling for the first generation

in the charged slepton sector, i.e., Ae = 0. Concerning the soft masses of the squark

sector, they are indeed irrelevant for LFV processes. However, since we want to identify

the discovered scalar boson with the lightest MSSM Higgs boson, we set these parameters

to values which give a prediction of mh compatible with the LHC data in the mass range

of 125 GeV ± 3 GeV, and fix them to the particular values mQ̃ = mŨ = mD̃ = At =

Ab = 5 TeV in the three scenarios described just above. Besides, as already said, the other

MSSM input parameters to be set in the numerical analysis are mA and tanβ. Finally,

regarding the δABij parameters they will be taken in the conservative interval, |δABij | < 1,

since we wish to keep our computation in the perturbative regime. This computation will

be reported in the next section.
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Figure 1. Full one-loop diagrams for Hx → lk l̄m decays in the MSSM mass basis.

3 Analytic results of the LFVHD widths in the MIA

Here we present our analytic computation of the partial widths for the LFVHD, Γ(Hx →
lk l̄m) with k,m = 1, 2, 3, k 6= m, and Hx = h,H,A. These can be written with full

generality in terms of the two form factors F
(x)
L,R involved in the decay amplitude of this

Hx(p1)→ lk(−p2)l̄m(p3) process,

iM = −igūlk(−p2)(F
(x)
L PL + F

(x)
R PR)vlm(p3) , (3.1)

as follows:

Γ(Hx → lk l̄m) =
g2

16πmHx

√√√√
(

1−
(
mlk +mlm

mHx

)2
)(

1−
(
mlk −mlm

mHx

)2
)

(3.2)

×
(

(m2
Hx −m2

lk
−m2

lm)(|F (x)
L |2 + |F (x)

R |2)− 4mlkmlmRe(F
(x)
L F

(x)∗
R )

)
,

where p1 is the ingoing Higgs boson momentum, −p2 the outgoing momentum of the lepton

lk, and p3 the outgoing momentum of the antilepton l̄m, with p1 = p3 − p2. We focus here

on the Hx → lk l̄m channel, but due to the fact that we work with real parameters, the

predictions for the CP -conjugate channel Hx → lm l̄k will be equal.

The present computation of Γ(Hx → lk l̄m) is performed by taking into account the

following assumptions and considerations: 1) The amplitude is evaluated at the one-loop

level, 2) only loops containing sleptons and sneutrinos contribute since they are the only

particles propagating the LFV by means of the ∆AB
mk entries with m 6= k, 3) the particle

content assumed here is that of the MSSM, 4) the external particles h,H,A and lk, l̄m
are expressed in the physical mass basis, 5) the internal loop sparticles are expressed in

the electroweak interaction basis, and 6) we use the Mass Insertion Approximation [49–

51] to describe the propagation of slepton mixing changing flavor, and work in the linear

approximation for each insertion ∆AB
mk , with AB = LL,RR,LR,RL, and m 6= k, i.e,

considering one single insertion at a time.

In order to estimate the goodness of the MIA that we use here, we have systematically

compared all our results with the full-one loop results which were firstly computed in [37].

In this case, all the particles involved in the Hx → lm l̄k decay, both external and internal
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to the loops, are usually expressed in the mass basis. For completeness, we display in

figure 1 the eight one-loop diagrams that contribute to the full one-loop result. For our

posterior numerical analysis and comparison with our computation in the MIA, we have

also implemented in our code the full one-loop formulas for each of these eight diagrams

contributing to F
(x)
L,R, which we take from [37]. From now on, we will use the labels (i), with

i = 1, . . . , 8 associated to each of these diagrams according to figure 1, in the comparison

of the full versus MIA results.

Next, we present our computation of the form factors F
(x)
L,R within the MIA. The results

are presented in the following simple form,

F
(x)
L,R = ∆LL

mkF
(x)LL
L,R + ∆LR

mkF
(x)LR
L,R + ∆RL

mkF
(x)RL
L,R + ∆RR

mkF
(x)RR
L,R , (3.3)

where the contribution from each single insertion is explicitly separated. In order to extract

all the relevant contributions in the MIA to each of these form factors, we have selected

and computed, in a systematic way, all the diagrams that dominate the decay rates in the

kinematic region of our interest here, namely, for very heavy internal sparticle masses as

compared to the external particle masses: mSUSY � mHx ,mlk ,mlm . The set of contribut-

ing one-loop diagrams in the MIA are displayed in figures 2, 3, 4, and 5, for each case

with a non-vanishing insertion, ∆LL
mk, ∆LR

mk, ∆RL
mk, and ∆RR

mk , correspondingly. The labels

assigned to these diagrams refer explicitly to the particular class of full one-loop diagram

they should be compared with. For instance, the contributions from the MIA diagrams

with labels (1a), (1b), when added, should be compared with the full diagram (1), the ones

with labels (3a), (3b), when added, should be compared with (3), etc. It should be noted

that, in the scenarios that we are working with, all the sparticle masses are considered to

be heavy by means of a unique common SUSY mass scale, generically called here mSUSY.

In each of the three considered scenarios, the particular relation between each soft mass

and mSUSY varies, but in all scenarios the sparticle masses grow linearly with the common

mSUSY scale. Saying it in different words, we are integrating to one-loop order all the inter-

nal SUSY particles, considering all of them very heavy, and without keeping any of them at

low energies with a fixed mass. This feature allows us to classify the various contributions

from the loop diagrams in the MIA into two categories, depending on their behavior in the

asymptotic limit mSUSY →∞: 1) Contributions that go to a constant, which will be called

from now on non-decoupling contributions, and 2) contributions that go to zero, which will

be called from now on decoupling contributions. Furthermore, among these later we will

distinguish between the dominant decoupling contributions, which decrease with mSUSY as

powers of (mHx/mSUSY), and the subdominant decoupling contributions, which decrease

with mSUSY as powers of (mEW/mSUSY), with mEW being any of the other electroweak

masses involved, namely, MW , MZ , mlk , and mlm . Here we will not include these subdom-

inant decoupling contributions. For instance, diagrams of type (2), that would be classified

as (2a), (2b), with a Hx ν̃Lk ν̃Lm vertex and one insertion of ∆LL
mk type into one of the

two sneutrino internal propagators, would be one of these cases, leading to contributions

that are subdominant and decoupling by powers of (mEW/mSUSY), and consequently we

have not included them into our selected diagrams. Although for all the cases studied

in this work, we have checked that these corrections are not relevant numerically from a
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Figure 2. Relevant one-loop diagrams within the Mass Insertion Approximation for Hx → lk l̄m
decays in the MSSM electroweak interaction basis for the internal SUSY particles, with one insertion

changing flavor given by × = ∆LL
mk.

Hx

lk

Hx

Figure 3. Relevant one-loop diagrams within the Mass Insertion Approximation for Hx → lk l̄m
decays in the MSSM electroweak interaction basis for the internal SUSY particles, with one insertion

changing flavor given by × = ∆LR
mk.
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Figure 4. Relevant one-loop diagrams within the Mass Insertion Approximation for Hx → lk l̄m
decays in the MSSM electroweak interaction basis for the internal SUSY particles, with one insertion

changing flavor given by × = ∆RL
mk.

Hx

lk

Hx

lk

Hx

lk

Hx

lk

Hx Hx

Hx

Hx Hx

Hx Hx Hx

Figure 5. Relevant one-loop diagrams within the Mass Insertion Approximation for Hx → lk l̄m
decays in the MSSM electroweak interaction basis for the internal SUSY particles, with one insertion

changing flavor given by × = ∆RR
mk .

phenomenological point of view, in some specific cases in which important cancellations

among the leading non-decoupling contributions occur, we have found that they may play

some important role in order to obtain a better convergence between the full and the MIA

results. This will be commented later in our numerical analysis.

The analytic results of the form factors in eq. (3.3), F
(x)AB
L,R with AB =

LL,LR,RL,RR, from all the diagrams in figures 2, 3, 4, and 5 are collected in appendix B.

The contributions from each diagram are presented separately and expressed in terms of

the relevant one-loop functions, C0, C2, D0, and D̃0, which are given in appendix C. Some

comments are in order regarding these analytic results. First of all, it is immediate to learn
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that within the MIA each diagram by itself is ultraviolet finite, since the contributing loop

functions, C0, C2, D0, and D̃0, are all convergent. This is in contrast to the full one-loop

computation, where there are some diagrams that are ultraviolet divergent, more specifi-

cally, all diagrams in figure 1 except (2) and (6) and, of course, the total full one-loop result

given by the sum of the eight diagrams is ultraviolet convergent [37]. Second, according to

our previously explained classification into non-decoupling and decoupling contributions,

we can already conclude from these analytic results which particular terms will dominate.

In particular, by selecting just the contributions from the loop functions at zero external

momenta, we are capturing all the non-decoupling terms, and we can already conclude that

these only appear in the LL and RR form factors but not in the LR and RL ones.

By considering zero external momenta in eqs. (B.1) through (B.8), neglecting mµ, and

after some algebraic simplifications due to the symmetry properties of the loop functions,

we obtain for the case of our main interest here, Hx → τ µ̄ with k = 3 and m = 2, the

following simple results for the non-decoupling (ND) part of the form factors, which is by

far the dominant part:

(
∆LL

23 F
(x)LL
L

)
ND

=

(
g2

16π2

mτ

2MW

)[
σ

(x)
2 + σ

(x)∗
1 tβ

cβ

]
(δLL23 mL̃2

m
L̃3

)

×
[

3

2
µM2D0(0, 0, 0,m

L̃2
,m

L̃3
, µ,M2)

− t
2
W

2
µM1D0(0, 0, 0,m

L̃2
,m

L̃3
, µ,M1)

−t2WµM1D0(0, 0, 0,m
L̃2
,m

L̃3
,m

R̃3
,M1)

]
, (3.4)

where only eight diagrams contribute: (1a), (4a), (5a), (5b), (6a), (8h), (8i), and (8l), and

(
∆RR

23 F
(x)RR
R

)
ND

=

(
g2t2W
16π2

mτ

2MW

)[
σ

(x)∗
2 + σ

(x)
1 tβ

cβ

]
(δRR23 m

R̃2
m
R̃3

)

×
[
µM1D0(0, 0, 0,m

R̃2
,m

R̃3
, µ,M1)

−µM1D0(0, 0, 0,m
R̃2
,m

R̃3
,m

L̃3
,M1)

]
, (3.5)

where only four diagrams contribute: (5i), (6e), (8o), and (8t). The rest of form factors

have a vanishing ND part. The coefficients σ
(x)
1 and σ

(x)
2 are defined in eq. (A.2), and

tW = tan θW , sβ = sinβ, cβ = cosβ, and tβ = tanβ.

It is interesting to notice that only the loop function D0 at zero external momenta

is involved in these simple expressions for the ND parts. The definition of this D0 for

arbitrary masses is given in eq. (C.7). It is clear that if one considers all mass parameters

to be asymptotically heavy, the two functions in eqs. (3.4) and (3.5) tend to a constant

value, meaning that the integration out of the heavy SUSY particles does leave as a remnant

a non-vanishing value of the Γ(Hx → τ µ̄) partial widths that is constant with mSUSY if

either δLL23 or δRR23 are non vanishing. We also wish to emphasize that for the particular

choice of µ = m
L̃3

there is an important cancellation in the RR form factor between the two
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contributing terms in eq. (3.5), leading to a vanishing of the ND part in this case. It is also

worth mentioning that the above analytic results at zero external momenta of eqs. (3.4)

and (3.5) are in agreement with previous results obtained in the alternative framework of

the effective Lagrangian approach [34].

On the other hand, the above simple expressions also tell us about how large can be

this constant value as a function of the other relevant parameters, namely, tan β and mA.

Indeed, these two dependencies are fully contained in the factor inside the big squared

parenthesis, which can be easily derived using eq. (A.2) and setting sα and cα in terms

of the input parameters mA and tanβ, namely, sα = sinα = −cβ + O(M2
Z/m

2
A) and

cα = cosα = sβ + O(M2
Z/m

2
A). This simple exercise gives the relevant dependence with

mA and tanβ in the two form factors above. We find that for the case of δLL23 and δRR23

mixings, and for generic masses, the modulo of the form factors go at large tan β as:

∣∣∣∣∣
σ

(h)
2 + σ

(h)∗
1 tβ

cβ

∣∣∣∣∣ ∝
(
MZ

mA

)2

tβ and

∣∣∣∣∣
σ

(H,A)
2 + σ

(H,A)∗
1 tβ

cβ

∣∣∣∣∣ ∝ t
2
β . (3.6)

By collecting all findings together, we can summarize this general power counting with all

the relevant factors in the case of δLL23 and δRR23 as follows:

(
∆LL

23 F
(h)LL
L

)
ND
∼ O

(
δLL23

(
g2

16π2

)(
mτ

MW

)1( mh

mSUSY

)0(MZ

mA

)2

(tβ)1

)
, (3.7)

(
∆LL

23 F
(H,A)LL
L

)
ND
∼ O

(
δLL23

(
g2

16π2

)(
mτ

MW

)1( mH,A

mSUSY

)0(MZ

mA

)0

(tβ)2

)
, (3.8)

(
∆RR

23 F
(h)RR
R

)
ND
∼ O

(
δRR23

(
g2t2W
16π2

)(
mτ

MW

)1( mh

mSUSY

)0(MZ

mA

)2

(tβ)1

)
, (3.9)

(
∆RR

23 F
(H,A)RR
R

)
ND
∼ O

(
δRR23

(
g2t2W
16π2

)(
mτ

MW

)1( mH,A

mSUSY

)0(MZ

mA

)0

(tβ)2

)
, (3.10)

which show, on the one hand, the expected decoupling behavior with mA in the lightest

Higgs boson h case, recovering the well known feature of vanishing LFVHD rates within a

SM Higgs-like scenario, and, on the other hand, the also well known feature of the enhanced

heavy H and A LFVHD rates at large tan β, which grow as (tan β)4.

In the case of δLR23 and δRL23 mixings, the effective form factors, as we have said, decouple

with the large sparticle masses, since the potential non-decoupling terms coming from the

evaluation of the loop functions at zero external momenta vanish when adding the two

relevant diagrams: (6c) and (8m) in the LR case and (6d) and (8m) in the RL one. In

these two cases, the leading contribution then comes from the decoupling (D) terms of

O(m2
Hx
/m2

SUSY) in the C0 loop functions expansions:

(
∆LR

23 F
(x)LR
L

)
D

=
g2t2W
16π2

(δ̃LR23 v1
√
mL̃2

mR̃3
)
M1σ

(x)∗
1

2MW cβ
(3.11)

×
(
−C0(p2, p1,M1,mR̃3

,m
L̃2

) + C0(p3, 0,M1,mL̃2
,m

R̃3
)
)
,
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and

(
∆RL

23 F
(x)RL
R

)
D

=
g2t2W
16π2

(δ̃RL23 v1
√
mR̃2

mL̃3
)
M1σ

(x)
1

2MW cβ
(3.12)

×
(
−C0(p2, p1,M1,mL̃3

,m
R̃2

) + C0(p3, 0,M1,mR̃2
,m

L̃3
)
)
.

It is remarkable that these results above for the LR and RL cases are not dependent on the

lepton masses nor on µ. We also see the factorized dependence in tan β, this time inside

σ
(x)
1 . Thus, we can summarize the general power counting with all the relevant factors in

the case of δ̃LR23 as follows:

(
∆LR

23 F
(h)LR
L

)
D
∼ O

(
δ̃LR23

(
g2t2W
16π2

)(
v

MW

)1( mh

mSUSY

)2(MZ

mA

)0

(tβ)−1

)
, (3.13)

(
∆LR

23 F
(H,A)LR
L

)
D
∼ O

(
δ̃LR23

(
g2t2W
16π2

)(
v

MW

)1( mH,A

mSUSY

)2(MZ

mA

)0

(tβ)0

)
, (3.14)

and similarly for δ̃RL23 , by interchanging L by R in the formulas above.

Finally, to finish this section we find illustrative to include the analytic results in the

simplest scenario where all soft mass parameters are equal, i.e, the Equal masses scenario

with just one SUSY scale: mSUSY = mS . In this case the formulas can be greatly simplified

and they could be useful both as a reference benchmark scenario to compare with and to

perform an easy phenomenological analysis. First, the form factors are expressed as:

F
(x)
L,R = δLL23 F̂

(x)LL
L,R + δ̃LR23 F̂

(x)LR
L,R + δ̃RL23 F̂

(x)RL
L,R + δRR23 F̂

(x)RR
L,R . (3.15)

Then, by using the formulas of the loop functions in eq. (C.10) of appendix C, we have

found the results collected at the end of appendix B, where we explicit the contributions

from each diagram. After adding the contributions from all the diagrams, the total results

of the form factors, which can be interpreted as effective LFV interaction vertices, are

the following:

F̂
(x)LL
L =

g2

16π2

mτ

2MW cβ

[(
σ

(x)
2 + σ

(x)∗
1 tβ

) 1− t2W
4

+
m2
Hx

m2
S

(
σ

(x)
2

3− 5t2W
120

+ σ
(x)∗
1

9− 11t2W
240

)]
, (3.16)

F̂
(x)LL
R =

g2

16π2

mµ

2MW cβ

[(
σ

(x)∗
2 + σ

(x)
1 tβ

) 1− t2W
4

+
m2
Hx

m2
S

(
σ

(x)∗
2

3− 5t2W
120

+ σ
(x)
1

9− 11t2W
240

)]
, (3.17)

F̂
(x)LR
L =

gt2W
16π2

1

24
√

2

m2
Hx

m2
S

[
σ

(x)∗
1

]
, (3.18)

F̂
(x)RL
R = +F̂

(x)LR∗
L ; F̂

(x)LR
R = F̂

(x)RL
L = 0 , (3.19)
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F̂
(x)RR
L = −g

2t2W
16π2

mµ

2MW cβ

m2
Hx

m2
S

[
2σ

(x)
2 + σ

(x)∗
1

120

]
, (3.20)

F̂
(x)RR
R = −g

2t2W
16π2

mτ

2MW cβ

m2
Hx

m2
S

[
2σ

(x)∗
2 + σ

(x)
1

120

]
. (3.21)

We can see clearly in the total results above how relevant are the strong cancellations that

occur in this Equal masses scenario among the various contributing diagrams. In fact,

the behavior of the RR case at large mS changes qualitatively with respect to a generic

scenario with heavy sparticles, since we find in contrast a decoupling behavior, with the

form factor going as (m2
Hx
/m2

S), due to an exact cancellation of the non-decoupling terms

in this particular case. Regarding the LL case, we find again non decoupling, and for the

LR and RL cases we find decoupling as in the generic case.

Interestingly, if we keep just the leading non-decoupling terms and neglect mµ in the

previous formulas for the Equal masses scenario, we are left with only one relevant form

factor, F̂
(x)LL
L , and therefore the total effect of the heavy SUSY particles can be summarized

in terms of a very simple effective LFV vertex given by (−igV eff
Hxτµ

PL) with:

V eff
Hxτµ =

g2

16π2

mτ

2MW

[
σ

(x)
2 + σ

(x)∗
1 tβ

cβ

](
1− t2W

4

)
δLL23 . (3.22)

It should be noted that this is valid for all tan β values. We have further checked that when

the large tan β limit is considered in this eq. (3.22), we find agreement with the results

found from the full one-loop computation in [37]. Concretely, using eq. (3.6) for the lightest

Higgs boson vertex we find the expected decoupling behavior in the large mA �MZ limit

going as (MZ/mA)2, which then makes this h boson to resemble as the SM Higgs boson.

We also get agreement with the expected (tan β)2 enhanced LFV vertex [37] in the case of

the H and A Higgs bosons:

V eff
hτµ|tβ�1 = − g2

16π2

mτ

MW

M2
Z

m2
A

tβ

(
1− t2W

4

)
δLL23 ,

V eff
Hτµ|tβ�1 = −iV eff

Aτµ|tβ�1 = − g2

16π2

mτ

2MW
t2β

(
1− t2W

4

)
δLL23 . (3.23)

4 Numerical results of the h,H,A → τ µ̄ decay rates

In this section we analyze the behavior of the radiative corrections from SUSY loops to the

LFV neutral Higgs bosons decays h,H,A→ τ µ̄, comparing numerically the predictions of

the full one-loop calculation [37] with the MIA results, calculated for the first time here.

The SUSY mass spectra for the three scenarios considered along this work are computed

numerically with the code SPheno [57, 58]. The LFVHD rates are computed with our

private FORTRAN code in which we have implemented both the analytic results of the

MIA of eqs. (B.1) through (B.8) and also the complete one-loop formulas of [37]. The

masses of the three neutral MSSM Higgs bosons, with two-loop corrections included, and
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Figure 6. Contributions of the dominant diagrams and the total one to BR(h→ τ µ̄) (left panels)

and BR(A→ τ µ̄) (right panels) as functions of mSUSY in the Generic scenario with mA = 800 GeV

and tanβ = 40, for δLL23 = 0.5 (upper panels), δRR23 = 0.5 (middle panels), and δ̃LR23 = 0.5 (lower

panels). The results for δ̃RL23 = 0.5 (not shown) are identical to those of δ̃LR23 = 0.5. In each case,

the other flavor changing deltas are set to zero. The results for the heavy scalar H (not shown) are

nearly equal to these ones for the pseudoscalar A.

their corresponding total decay widths are computed by means of the code FeynHiggs [59–

63]. We have explicitly checked that all the numerical results for BR(H → τ µ̄) are nearly

equal to those of BR(A→ τ µ̄) and, for shortness, we will show in this section only the latter.

We start the presentation of the numerical results with the most general scenario

considered along this work, the Generic scenario, in which all the SUSY mass parameters

are different. We show in figure 6 the contributions of the dominant diagrams and the total
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one to BR(h → τ µ̄) (left panels) and BR(A → τ µ̄) (right panels) as functions of mSUSY,

within this scenario with mA = 800 GeV and tan β = 40, for δLL23 = 0.5 (upper panels),

δRR23 = 0.5 (middle panels), and δ̃LR23 = 0.5 (lower panels). In each case, the other flavor

changing deltas are set to zero. Since the results for δ̃RL23 = 0.5 are identical to those of

δ̃LR23 = 0.5, they are not shown here.

The BR(h→ τ µ̄) for the LL case is displayed on the upper left panel of figure 6. First of

all, we can see that each diagram contribution and the total prediction present the expected

non-decoupling behavior with mSUSY, with a very good agreement between the full one-

loop results and the MIA ones. The agreement is found for each diagram contribution and

for the total result. It should be noted that although the non-decoupling behavior of the

partial width manifests in that it goes to a constant value at large mSUSY, in the plots we

see however a slight increase of the branching ratios due to the slight decrease of the total

width with mSUSY. Regarding the dominant contributions, they come from diagrams 1 and

4, and we have found that they nearly cancel between each other. The rest of subdominant

diagrams (3, 5, 6, and 8) are indeed important, since the remnant contributions of diagrams

1 and 4 interfere negatively with their contributions and fall down the total contribution

below the diagram 3 one, what is the lowest one. Therefore, it is clear that there is in

the LL case a strong cancellation among diagrams of the BR(h → τ µ̄) that reduces the

rates around three orders of magnitude, from the dominant contributions (diagrams 1 and

4) to the total one. This strong cancellation does not occur for BR(A → τ µ̄) as we can

observe on the right panel of figure 6. The dominant contribution to this process in the

LL case comes from the diagram 4, followed by far by the diagram 8. There is indeed

a small negative interference between these two diagrams, resulting in total contributions

slightly lower than the diagram 4 ones. The non-decoupling behavior with mSUSY of all

the contributions is also manifest, and the results in the MIA are very close to the full

one-loop ones again.

Now we move our attention to the RR case. The dominant and total contributions to

BR(h→ τ µ̄) are depicted on the middle left panel of figure 6, in which we can see that the

diagram 6 is the dominant one, followed by the diagram 5 and secondly by the diagram 8.

In this case there is again a very strong cancellation among the contributions of these three

diagrams, and the surviving contribution comes from the diagram 7, which reproduces very

well the total result for BR(h → τ µ̄). As in the previous cases, the agreement between

the full one-loop calculation and the MIA one is very good, and all the contributions to

the LFVHD partial width show a constant behavior as mSUSY grows. On the other hand,

we observe on the middle right panel that for BR(A → τ µ̄) the dominant contribution

comes from the diagram 8, reproducing extremely well the total result. In this RR case

there cannot be any class of interference among diagrams because the rest of contributions

are at the most two orders of magnitude smaller than dominant one. All of them present

also the expected non-decoupling behavior with mSUSY. We obtain again a very good

agreement between the full and the MIA calculations. As we have already said in the LL

case, it happens also here for the RR case that the slight increase of both branching ratios,

BR(h → τ µ̄) and BR(A → τ µ̄), with mSUSY has not its origin in the LFV Higgs partial

decay widths, since they are constant as mSUSY grows, but it is due to a small reduction
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of the total decay widths with mSUSY.

To end up with this Generic scenario, the results of the h → τ µ̄ and A → τ µ̄ rates

for the LR case are displayed on the lower panels of figure 6. Both LFVHD rates can

be understood by means of the contributions from the most relevant diagrams that are

diagrams 6 and 8 in this case. The dominant non-decoupling terms, constant with mSUSY,

of these two diagrams are identical in the MIA but with opposite sign. Thus, they exactly

cancel and the remaining dominant decoupling contributions in the branching ratios are

proportional to (mHx/mSUSY)4, what explains the final decoupling behavior of these rates

with mSUSY observed in the plots. A good agreement between the full result and the MIA

one is again achieved.

As main conclusions of the figure 6, we could say that in the Generic scenario the

MIA approximates very well the full one-loop results, diagram by diagram and the total

contributions. The LFVHD rates present a clear non-decoupling behavior with mSUSY

if δLL23 or δRR23 is the responsible for the flavor mixing, whilst these rates have a strong

decoupling behavior with the SUSY mass scale when the δ̃LR23 or δ̃RL23 is connected.

In figure 7 the results for BR(h → τ µ̄) and BR(A → τ µ̄) as functions of mSUSY

are displayed in the GUT approximation scenario with µ = 3/4mSUSY (left panels) and

µ = 4/3mSUSY (right panels), for δLL23 = 0.5 (upper panels), δRR23 = 0.5 (middle panels),

and δ̃LR23 = 0.5 (lower panels). In both scenarios we have set mA = 800 GeV and tan β = 40.

The first conclusion from this figure is that the LFVHD rates in this GUT approximation

scenario show again a non-decoupling behavior with mSUSY in the LL and RR cases and

a decoupling behavior with mSUSY in the LR case, as in the Generic scenario. We also

see that the MIA works very well in all the cases LL, RR, and LR cases, reproducing

accurately the results of the full one-loop computation at large mSUSY. The only exception

is the prediction of BR(h → τ µ̄), where we have found some discrepancies between the

MIA and the full results in the RR case and also a little one in the LR case, being these

differences larger for µ = 3/4mSUSY than for µ = 4/3mSUSY. We have also detected that

these discrepancies are due to the fact that, in the light Higgs boson case, the missing

decoupling terms in our MIA computation of the form factors of O(M2
W /m

2
SUSY) compete

with the leading decoupling terms of O(m2
h/m

2
SUSY) and, for some particular cases in which

there are strong cancellations among the dominant non-decoupling contributions, they may

play some important role in order to obtain a better convergence between the MIA and

the full results. We have also checked that this divergence appears more pronounced where

there is some degree of degeneracy among the mass parameters, as it happens partially

in the GUT approximation scenario and totally in the Equal masses one. Indeed, for this

latter scenario with RR mixing, we have checked that, by means of an explicit analytic

computation in the MIA of these decoupling O(M2
W /m

2
SUSY) contributions from the most

relevant additional diagrams (see at the end of appendix B), we achieve a better convergence

between the MIA and the full results. However, we believe that is not worth including those

extra terms in our general estimates here, since they are numerically extremely tiny and

therefore irrelevant for the associated phenomenology.

Next we study in figure 8 the dependence of the LFVHD rates on the four flavor

changing deltas considered in this work, δLL23 (upper left panel), δRR23 (upper right panel),
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Figure 7. BR(h → τ µ̄) and BR(A → τ µ̄) as functions of mSUSY in the GUT approximation

scenario with µ = 3/4mSUSY (left panels) and µ = 4/3mSUSY (right panels), for δLL23 = 0.5 (upper

panels), δRR23 = 0.5 (middle panels), and δ̃LR23 = 0.5 (lower panels). The results for δ̃RL23 = 0.5 (not

shown) are identical to those of δ̃LR23 = 0.5. In each case, the other flavor changing deltas are set to

zero. In all the panels we have set mA = 800 GeV and tan β = 40. The results for the heavy scalar

H (not shown) are nearly equal to these ones for the pseudoscalar A.

δ̃LR23 (lower left panel), and δ̃RL23 (lower right panel), within the GUT approximation scenario

with µ = 4/3mSUSY, mSUSY = 5 TeV, mA = 800 GeV, and tan β = 40. First of all, it is

clear that the behaviors of the branching ratios are symmetric with respect to positive and

negative values of the deltas and we observe the expected increase of the LFVHD rates in

the MIA with each delta, as |δXY23 |2. On the upper panels we observe a very good agreement
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Figure 8. BR(h→ τ µ̄) and BR(A→ τ µ̄) as functions of δLL23 (upper left panel), δRR23 (upper right

panel), δ̃LR23 (lower left panel), and δ̃RL23 (lower right panel), in the GUT approximation scenario

with µ = 4/3mSUSY, mSUSY = 5 TeV, mA = 800 GeV, and tan β = 40. In each case, the other

flavor changing deltas are set to zero. The results for the heavy scalar H (not shown) are nearly

equal to these ones for the pseudoscalar A.

between the MIA and the full one-loop results for BR(h → τ µ̄) and BR(A → τ µ̄) in the

LL and RR cases, up to values of |δLL,RR23 | ' 0.6. From this value, the predictions of

the full results start to separate from the MIA ones, showing the expected departure from

the quadratic O(δ2) dependence. Anyway, the discrepancy between the MIA and the full

calculation is not large, at the most of a factor of 3 for |δLL23 | = 1 and of 6 for |δRR23 | = 1.

The results of the LR and RL cases are identical and we comment together. The full/MIA

agreement for the A→ τ µ̄ rates is almost exact and the predictions of both calculations do

not separate for values of δ̃
LR(RL)
23 close to 1, since they are still perturbative (remember

eqs. (2.16) and (2.17)). Again, the observed small discrepancies in BR(h → τ µ̄) between

the MIA and the full results are due to the missing subdominant decoupling contributions

of O(M2
W /m

2
SUSY) in our MIA calculation.

The dependence of the LFVHD rates as functions of tan β is depicted in figure 9

within the Equal masses scenario with mSUSY = 5 TeV, mA = 800 GeV, and δXY23 = 0.5,

with XY = LL, RR, LR, in each case. The full/MIA agreement in the LL and LR

cases is very accurate for both LFVHD branching ratios, BR(h → τ µ̄) and BR(A → τ µ̄),

while there is an appreciable disagreement for the RR predictions, of up to two orders of
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Figure 9. BR(h → τ µ̄) (left panel) and BR(A → τ µ̄) (right panel) as functions of tan β in the

Equal masses scenario with mSUSY = 5 TeV, mA = 800 GeV, and δXY23 = 0.5, with XY = LL, RR,

LR (δ̃, for the latter), in each case. The green crosses are the MIA predictions in the RR case

after including the O(M2
W /m

2
SUSY) corrections. The results for the heavy scalar H (not shown) are

nearly equal to these ones for the pseudoscalar A.

magnitude. The main reason to explain these discrepancies is that in this Equal masses

scenario the cancellation among diagrams is even stronger than in the previous ones, since

all of the SUSY mass parameters are identical. This strong cancellation makes that the non-

decoupling dominant terms of all the diagrams completely cancel. The remnant terms in the

form factors proportional to (mHx/mSUSY)2 are not sufficient to reproduce the full one-loop

results and then, to obtain a better convergence in this RR case, one should include the MIA

subdominant decoupling contributions, proportional to (MW /mSUSY)2. In order to check

this expected better convergence, we have computed the most relevant diagrams providing

the most important O(M2
W /m

2
SUSY) corrections in the MIA for this particular RR case in

the Equal masses scenario. We include these analytic results at the end of appendix B. Our

numerical estimates of the LFVHD rates for this RR case after including these additional

O(M2
W /m

2
SUSY) corrections are also displayed (in green) in figure 9, for comparison. We

can clearly see that there is indeed a better convergence to the full result. However, as we

have already said in all those cases where the disagreement MIA/full is clearly manifest,

the predicted rates are very tiny and irrelevant for phenomenological purposes.

On the other hand, the different behaviors with tan β of the full LFVHD rates depend-

ing on each delta are well reproduced by the MIA predictions. They can be understood,

in the case of generic SUSY masses, from eqs. (3.7)–(3.10) and (3.13)–(3.14), and in the

case of equal SUSY masses from eqs. (3.16)–(3.21) and (B.15)–(B.16), and knowing that,

at large tan β, the total Higgs decay widths go as Γtot(H,A) ∼ (tanβ)2 and Γtot(h) is

approximately constant with tan β. The partial widths of the h→ τ µ̄ decay in the LL and

RR cases, for generic SUSY masses, go as (tan β)2 and the H,A → τ µ̄ decay widths are

proportional to (tan β)4, therefore all the corresponding branching ratios grow as (tan β)2.

By contrast, in the LR case, Γ(h → τ µ̄) ∼ (tanβ)−2 and Γ(H,A → τ µ̄) are independent

of tanβ, thus BR(h,H,A→ τ µ̄) ∼ (tanβ)−2.

From figures 6–9 we learn that the only delta that can lead us to phenomenologically

interesting LFVHD rates is δLL23 . In order to try to find the largest LFV Higgs branching
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Figure 10. Contour lines of BR(h→ τ µ̄)/|δLL23 |2 (left panel) and BR(A→ τ µ̄)/|δLL23 |2 (right panel)

in the [mSUSY, tanβ] plane within the Equal masses scenario with mA = 800 GeV. The shaded

red area is excluded by the current experimental upper limit for τ → µγ channel, BR(τ → µγ)

< 4.4× 10−8 [54]. The shaded blue area represents the 95% C.L. excluded regions by the negative

searches by ATLAS and CMS for neutral MSSM Higgs bosons decaying to a pair of τ leptons [55, 56].

The results for the heavy scalar H (not shown) are nearly equal to these ones for the pseudoscalar A.

ratios, we are going to investigate the quantities BR(h → τ µ̄)/|δLL23 |2 and BR(H,A →
τ µ̄)/|δLL23 |2 that are delta-independent when computed with the MIA. First, the contour

lines of these two observables in the [mSUSY, tanβ] plane are displayed in figure 10, within

the Equal masses scenario with mA = 800 GeV. In both contour plots, the shaded red

area is excluded by the current experimental upper limit for τ → µγ channel, BR(τ → µγ)

< 4.4×10−8 [54], and the shaded blue area represents the 95% C.L. excluded regions by the

negative searches by ATLAS and CMS for neutral MSSM Higgs bosons decaying to a pair of

τ leptons [55, 56]. It is clear again the non-decoupling behavior with mSUSY of the LFVHD

rates and their growth with tan β. The largest values obtained for BR(h→ τ µ̄)/|δLL23 |2 and

BR(H,A → τ µ̄)/|δLL23 |2 are 7 × 10−8 and 1 × 10−4, respectively, but unfortunately they

are excluded by the τ → µγ upper limit and/or the ATLAS and CMS searches for MSSM

Higgs bosons. The maximum values for these delta-independent rates, allowed by data,

are BR(h→ τ µ̄)/|δLL23 |2 ∼ 3× 10−8 and BR(H,A→ τ µ̄)/|δLL23 |2 ∼ 5× 10−5, very far away

both from the current LHC sensitivity to these LFV processes [5, 6].

Finally, we show in figure 11 the contour lines of BR(h→ τ µ̄)/|δLL23 |2 (left panel) and

BR(H,A→ τ µ̄)/|δLL23 |2 (right panel) in the [mA, tanβ] plane predicted in the MIA within

the Equal masses scenario with mSUSY = 4 TeV, being the shaded blue area the 95% C.L.

excluded regions by the negative searches by ATLAS and CMS for neutral MSSM Higgs

bosons decaying to a pair of τ leptons [55, 56]. The fact of fixing mSUSY = 4 TeV ensures us

that the predictions are in agreement with the τ → µγ upper limit, as can be inferred from

figure 10. In this case, the known decoupling behavior of BR(h→ τ µ̄) in the large mA limit
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Figure 11. Contour lines of BR(h→ τ µ̄)/|δLL23 |2 (left panel) and BR(A→ τ µ̄)/|δLL23 |2 (right panel)

in the [mA, tanβ] plane within the Equal masses scenario with mSUSY = 4 TeV. The shaded blue

area represents the 95% C.L. excluded regions by the negative searches by ATLAS and CMS for

neutral MSSM Higgs bosons decaying to a pair of τ leptons [55, 56]. The results for the heavy

scalar H (not shown) are nearly equal to these ones for the pseudoscalar A.

is manifest on the left panel. The largest value for BR(h→ τ µ̄)/|δLL23 |2 is 1×10−5, however

it is again excluded by the ATLAS and CMS searches for neutral MSSM Higgs bosons.

The largest h → τ µ̄ rates allowed by data are of O(10−7), out of the reach of the present

and next future LHC experiments. Fortunately, the prospects for H → τ µ̄ and A→ τ µ̄ are

much more promising, as we can see on the right panel of figure 11. The MIA predictions

for BR(H,A → τ µ̄)/|δLL23 |2 are practically independent on mA and increase quadratically

with tan β as expected. It reaches values, allowed by data, up to 3.5 × 10−4 for large mA

and tanβ, not very far from the current LHC sensitivity. It is important to mention that

our predictions of the LFVHD rates are identical for the τ µ̄ and τ̄µ final states, since we

are assuming real δLL23 , and in order to compare our results with the ATLAS and CMS

reported data, we have to multiply our rates by a factor of 2. Our maximum branching

ratio is then of O(10−3), only one order of magnitude lower than the current percent-level

sensitivity achieved at the LHC [5, 6].

5 Conclusions

In this work we have analyzed in full detail, both analytically and numerically, the decay

rates of the neutral MSSM Higgs bosons into a lepton and an anti-lepton with different

flavor: h,A,H → lk l̄m (m 6= k). Our computation of the LFV partial widths Γ(h,A,H →
lk l̄m) is a one-loop diagrammatic one, but different to previous analytic computations in

the literature. Here it has been performed by the first time using the simple approximation

provided by the MIA, which works with the electroweak interaction slepton and sneutrino
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eigenstates, l̃L,Ri and ν̃Li , with i = 1, 2, 3, and treats perturbatively the mass insertions

changing lepton flavor, ∆AB
ij with AB = LL,LR,RL,RR and i 6= j. By using the MIA

at the first order in the dimensionless parameters expansion δABij , we have found compact

analytic results for all the form factors involved in the LFVHD amplitudes in terms of the

well known 3- and 4-point scalar one-loop integrals, and the relevant MSSM parameters,

namely, the soft masses m
L̃i

, m
R̃i

, M1, and M2, the Higgs sector input mass mA, tanβ,

and the µ parameter. Then, by performing an expansion of the loop integrals in powers

of the external momenta and keeping just the leading and next-to-leading terms, we have

been able to find a set of simple analytic formulas, both for each contributing diagram and

for the total sum, with all the relevant contributions explicit. These relevant contributions

consist of two qualitative different parts that we have analyzed and presented separately:

the leading non-decoupling contributions of O((mh,H,A/mSUSY)0) that tend to a constant

value for asymptotically large mSUSY, and the next-to-leading decoupling contributions of

O(m2
h,H,A/m

2
SUSY). At this point, we would like to emphasize that an alternative analytic

computation to ours could be done by starting instead with the full analytic results of the

form factors of [37], given in terms of the physical sparticle masses and rotation matrices,

then performing a Taylor expansion in powers of ∆AB
mk and keeping the first order in this

expansion. However, this is not an easy task since such a computation would involve

a systematic Taylor expansion of all the physical slepton masses and rotation matrices

elements, keeping all the relevant terms that will contribute to O(∆AB
mk ) in the form factors,

and expressing them in terms of the EW basis parameters like the soft masses, etc. This

kind of computation has not been completed yet, to our knowledge, for the LFV form

factors of the three neutral Higgs bosons to a comparable level of our MIA computation,

i.e. dealing with all the four slepton mixing cases LL, LR, RL, and RR, and keeping in the

final results both the leading non-decoupling contributions of O((mh,H,A/mSUSY)0) and

the next-to-leading decoupling contributions of O(m2
h,H,A/m

2
SUSY).

We have also analyzed numerically the MIA results for the most interesting case of

h,H, and A decays into τ and µ leptons. After an exhaustive comparison with the full one-

loop results, we have concluded that the MIA provides indeed quite accurate predictions for

the explored mixing parameters range, |δAB23 | < 1. We have detected only a few cases, for

specific choices of the model parameters, in which there occur strong cancellations among

contributing diagrams, mainly due to some degree of degeneracy in the mass parameters,

where the MIA does not provide a good result as compared to the full one-loop computation.

This happens for instance in the case of the Equal masses scenario with the non-vanishing

flavor mixing input given by δRR23 . In this case, we have checked by an explicit computation

that to achieve a better convergence of the MIA with the full results one must include in

addition the next-to-leading decoupling contributions of O(M2
W /m

2
SUSY) which we have not

taken into account generically in this work. Nevertheless, we wish to emphasize that this

detected mismatch MIA/full is not important at all for phenomenological purposes since the

predicted rates in those cases are very tiny and therefore irrelevant. Furthermore, it should

be noticed that, for the heavy mA � MW values considered here, it is only in the case of

the lightest Higgs boson where generically the two types of next-to-leading corrections of

O(M2
W /m

2
SUSY) and O(m2

Hx
/m2

SUSY) could be comparable in size and therefore, a priori,
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equally relevant. However, we have found that in the heavy SUSY masses scenario of

our interest here, with mSUSY > 1 TeV, these corrections are below O(10−13), and the

maximum rates found for the lightest Higgs decays, allowed by data, are experimentally

unreachable, being at most of O(10−7). Hence, we have focused our interest here on the

LFV heavy Higgs bosons decays.

In summary, we have presented in this work a set of simple analytic formulas for

the form factors and the associated effective vertices, computed within the MIA, that we

think may be very useful for future phenomenological studies of LFVHD and for their

comparison with data. Finally, we have also concluded from our numerical results of the

LFVHD rates, presented in contour plots in the [mA, tanβ] and [mSUSY, tanβ] planes, that

for the most promising case of δLL23 mixing, one can obtain maximum allowed values (by

τ → µγ experimental constraints and MSSM Higgs boson searches at the LHC) of up to

BR(H,A→ τµ) ∼ 10−3 (adding both final state τ µ̄ and τ̄µ rates), not far from the present

experimental sensitivity accomplished at the LHC. In the case of the lightest MSSM Higgs

boson h, the rates are much smaller and clearly not reachable at the LHC.
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A Relevant Feynman rules

The relevant Feynman rules for the present computation are collected in figures 12–16.

The notation and conventions are:

Hx =



h

H

A


 , (A.1)

σ
(x)
1 =




sα
−cα
isβ


 , σ

(x)
2 =




cα
sα
−icβ


 , σ

(x)
3 =




sα+β

−cα+β

0


 , (A.2)

S
(x)
L,i = − mli

2MW cβ
σ

(x)∗
1 , S

(x)
R,i = S

(x)∗

L,i , (A.3)

yli =
gmli√

2MW cosβ
=
mli

v1
. (A.4)
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l̃Ai l̃Bj

−i∆AB
ij

ν̃i ν̃j
−i∆LL

ij

l̃Li l̃Ri

−imli(Ali − µtβ)

H̃−(W̃−) W̃−(H̃−)
−i

√

Figure 12. Feynman rules for the relevant insertions. Insertions changing (non-changing) flavor

are denoted by a cross (point).

W̃−(W̃ 3)
+ i

Figure 13. Feynman rules for the relevant propagators.
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li(H̃
−)

H̃−(li)

ν̃i

+iyliPR(L)

li(H̃1)

H̃1(li)

l̃Ri

−iyliPL(R)
li(H̃1)

H̃1(li)

l̃Li

−iyliPR(L)

li(W̃
−)

W̃−(li)

ν̃i

−igPL(R)
li(W̃

3)

W̃ 3(li)

l̃Li

+i g

Figure 14. Feynman rules for the relevant lepton-ino-slepton vertices.

Hx

H̃−(W̃−)

W̃−(H̃−)

+i g

Figure 15. Feynman rules for the relevant Higgs-ino-ino vertices.
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Hx

l̃Li

l̃Ri

+ig
(
σ
(x)
1 Ali + σ

(x)∗
2 µ

)
mli

Figure 16. Feynman rules for the relevant Higgs-slepton-slepton and Higgs-lepton-lepton vertices.

Here and through the paper we use the short notation: sα = sinα, cα = cosα, sβ = sinβ,

cβ = cosβ, tβ = tanβ, sα+β = sin(α + β), cα+β = cos(α + β), and tW = tan θW . PL,R =

(1 ∓ γ5)/2 are the usual L,R projectors. MW and MZ are the W± and Z gauge boson

masses, respectively. g and g′ are the gauge coupling constants of SU(2)L and U(1)Y ,

respectively. In the propagators, p denotes the flowing momentum and 1 denotes the

identity in spinor space.

B Analytic expressions of the form factors

Here we present the analytic results of the form factors, F
(x)AB
L,R with AB =

LL,LR,RL,RR, in eq. (3.3), from all the diagrams in figures 2, 3, 4, and 5. The contribu-

tions from each diagram are explicitly separated (with an obvious notation by a subscript

referring to the corresponding diagram) and expressed in terms of the relevant one-loop

functions, C0, C2, D0, and D̃0. These functions are given in appendix C.

F
(x)LL
L =

g2

16π2

mlk

2MW cβ

[
−
(
−µM2σ

(x)
2 D0 + σ

(x)∗
1 D̃0

)
(1a)

+
(
σ

(x)∗
1 (µM2tβD0 + D̃0)

)
(4a)

+
t2W
2

(
−µM1σ

(x)
2 D0

)
(5a)
− 1

2

(
−µM2σ

(x)
2 D0

)
(5b)

+
t2W
2

(
σ

(x)∗
1 D̃0

)
(5c)
− 1

2

(
σ

(x)∗
1 D̃0

)
(5d)
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−t2W
(
M1(σ

(x)∗
1 Alk + σ

(x)
2 µ)D0

)
(6a)
− t2W

2

(
σ

(x)∗
1 µM1tβD0

)
(8h)

+
1

2

(
σ

(x)∗
1 µM2tβD0

)
(8i)
− t2W

2

(
σ

(x)∗
1 D̃0

)
(8j)

+
1

2

(
σ

(x)∗
1 D̃0

)
(8k)

+ t2W

(
σ

(x)∗
1 M1(Alk − µ tβ)D0

)
(8l)

]
, (B.1)

F
(x)LL
R =

g2

16π2

mlm

2MW cβ

[
−
(
−µM2σ

(x)∗
2 D0 + σ

(x)
1 D̃0

)
(1b)
−
(
σ

(x)
1 (µM2tβD0 + D̃0)

)
(3a)

+
(
σ

(x)
1 (C0 + C2)

)
(3b)

+
(
σ

(x)
1 (µM2tβD0 + D̃0)

)
(4a)

+
(
σ

(x)
1 (µM2tβD0 + D̃0)

)
(4b)
−
(
σ

(x)
1 (C0 + C2)

)
(4c)

+
t2W
2

(
−µM1σ

(x)∗
2 D0

)
(5e)
− 1

2

(
−µM2σ

(x)∗
2 D0

)
(5f)

+
t2W
2

(
σ

(x)
1 D̃0

)
(5g)
− 1

2

(
σ

(x)
1 D̃0

)
(5h)

−t2W
(
M1(σ

(x)
1 Alm + σ

(x)∗
2 µ)D0

)
(6b)

+
t2W
2

(
σ

(x)
1 µM1tβD0

)
(7a)

−1

2

(
σ

(x)
1 µM2tβD0

)
(7b)

+
t2W
2

(
σ

(x)
1 D̃0

)
(7c)

−1

2

(
σ

(x)
1 D̃0

)
(7d)

+
t2W
2

(
σ

(x)
1 (C0 + C2)

)
(7e)

+
1

2

(
σ

(x)
1 (C0 + C2)

)
(7f)
− t2W

(
σ

(x)
1 M1(Alk − µ tβ)D0

)
(7g)

− t
2
W

2

(
σ

(x)
1 µM1tβD0

)
(8a)

+
1

2

(
σ

(x)
1 µM2tβD0

)
(8b)

− t
2
W

2

(
σ

(x)
1 D̃0

)
(8c)

+
1

2

(
σ

(x)
1 D̃0

)
(8d)

− t
2
W

2

(
σ

(x)
1 (C0 + C2)

)
(8e)
− 1

2

(
σ

(x)
1 (C0 + C2)

)
(8f)

+t2W

(
M1(Alm − µ tβ)σ

(x)
1 D0

)
(8g)
− t2W

2

(
σ

(x)
1 µM1tβD0

)
(8h)

+
1

2

(
σ

(x)
1 µM2tβD0

)
(8i)
− t2W

2

(
σ

(x)
1 D̃0

)
(8j)

+
1

2

(
σ

(x)
1 D̃0

)
(8k)

+ t2W

(
M1(Alk − µ tβ)σ

(x)
1 D0

)
(8l)

]
, (B.2)

F
(x)LR
L =

g2t2W
16π2

M1σ
(x)∗
1

2MW cβ

[
− (C0)(6c) + (C0)(8m)

]
, (B.3)

F
(x)LR
R = 0 , (B.4)

F
(x)RL
L = 0 , (B.5)

F
(x)RL
R =

g2t2W
16π2

M1σ
(x)
1

2MW cβ

[
− (C0)(6d) + (C0)(8n)

]
, (B.6)
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F
(x)RR
L =

g2t2W
16π2

mlm

2MW cβ

[(
µM1σ

(x)
2 D0

)
(5k)
−
(
σ

(x)∗
1 D̃0

)
(5l)

−
(
M1(σ

(x)∗
1 Alm + σ

(x)
2 µ)D0

)
(6f)
−
(
σ

(x)∗
1 µM1tβD0

)
(7h)

−
(
σ

(x)∗
1 D̃0

)
(7i)

+
(

2σ
(x)∗
1 (C0 + C2)

)
(7j)

−
(
σ

(x)∗
1 M1(Alk − µ tβ)D0

)
(7k)

+
(
σ

(x)∗
1 µM1tβD0

)
(8o)

+
(
σ

(x)∗
1 D̃0

)
(8p)

+
(
σ

(x)∗
1 µM1tβD0

)
(8q)

+
(
σ

(x)∗
1 D̃0

)
(8r)
−
(

2σ
(x)∗
1 (C0 + C2)

)
(8s)

+
(
σ

(x)∗
1 M1(Alk − µ tβ)D0

)
(8t)

+
(
σ

(x)∗
1 M1(Alm − µ tβ)D0

)
(8u)

]
, (B.7)

F
(x)RR
R =

g2t2W
16π2

mlk

2MW cβ

[(
µM1σ

(x)∗
2 D0

)
(5i)
−
(
σ

(x)
1 D̃0

)
(5j)

−
(
M1(σ

(x)
1 Alk + σ

(x)∗
2 µ)D0

)
(6e)

+
(
σ

(x)
1 µM1tβD0

)
(8o)

+
(
σ

(x)
1 D̃0

)
(8p)

+
(
σ

(x)
1 M1(Alk − µ tβ)D0

)
(8t)

]
. (B.8)

The arguments of the above loop integrals are the following:

D0, D̃0 = D0, D̃0(0, p2, p1,mL̃m
,m

L̃k
, µ,M2) in (1a)

D0, D̃0 = D0, D̃0(0, p2, p1,mL̃m
,m

L̃k
,M2, µ) in (1b)

D0, D̃0 = D0, D̃0(0, p2, 0,mL̃k
,m

L̃m
, µ,M2) in (3a)

C0,2 = C0,2(0, p2,mL̃k
,m

L̃m
,M2) in (3b)

D0, D̃0 = D0, D̃0(0, p3, 0,mL̃m
,m

L̃k
, µ,M2) in (4a), (4b)

C0,2 = C0,2(0, p3,mL̃m
,m

L̃k
,M2) in (4c)

D0, D̃0 = D0, D̃0(0, p2, p1,mL̃m
,m

L̃k
, µ,M1) in (5a), (5c)

D0, D̃0 = D0, D̃0(0, p2, p1,mL̃m
,m

L̃k
, µ,M2) in (5b), (5d)

D0, D̃0 = D0, D̃0(0, p2, p1,mL̃m
,m

L̃k
,M1, µ) in (5e), (5g)

D0, D̃0 = D0, D̃0(0, p2, p1,mL̃m
,m

L̃k
,M2, µ) in (5f), (5h)

D0, D̃0 = D0, D̃0(0, p2, p1,mR̃m
,m

R̃k
, µ,M1) in (5i), (5j)

D0, D̃0 = D0, D̃0(0, p2, p1,mR̃k
,m

R̃m
,M1, µ) in (5k), (5l)

D0 = D0(p2, p1, 0,M1,mR̃k
,m

L̃k
,m

L̃m
) in (6a)

D0 = D0(p2, 0, p1,M1,mL̃k
,m

L̃m
,m

R̃m
) in (6b)

C0 = C0(p2, p1,M1,mR̃k
,m

L̃m
) in (6c)

C0 = C0(p2, p1,M1,mL̃k
,m

R̃m
) in (6d)

D0 = D0(p2, p1, 0,M1,mL̃k
,m

R̃k
,m

R̃m
) in (6e)

D0 = D0(p2, 0, p1,M1,mR̃k
,m

R̃m
,m

L̃m
) in (6f)
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D0, D̃0 = D0, D̃0(0, p2, 0,mL̃k
,m

L̃m
, µ,M1) in (7a), (7c)

D0, D̃0 = D0, D̃0(0, p2, 0,mL̃k
,m

L̃m
, µ,M2) in (7b), (7d)

C0,2 = C0,2(0, p2,mL̃k
,m

L̃m
,M1) in (7e)

C0,2 = C0,2(0, p2,mL̃k
,m

L̃m
,M2) in (7f)

D0 = D0(0, 0, p2,mR̃k
,m

L̃k
,m

L̃m
,M1) in (7g)

D0, D̃0 = D0, D̃0(0, p2, 0,mR̃k
,m

R̃m
, µ,M1) in (7h), (7i)

C0,2 = C0,2(0, p2,mR̃k
,m

R̃m
,M1) in (7j)

D0 = D0(0, 0, p2,mL̃k
,m

R̃k
,m

R̃m
,M1) in (7k)

D0, D̃0 = D0, D̃0(0, p3, 0,mL̃m
,m

L̃k
,M1, µ) in (8a), (8c)

D0, D̃0 = D0, D̃0(0, p3, 0,mL̃m
,m

L̃k
,M2, µ) in (8b), (8d)

C0,2 = C0,2(0, p3,mL̃k
,m

L̃m
,M1) in (8e)

C0,2 = C0,2(0, p3,mL̃k
,m

L̃m
,M2) in (8f)

D0 = D0(0, 0, p3,mR̃m
,m

L̃m
,m

L̃k
,M1) in (8g)

D0, D̃0 = D0, D̃0(0, p3, 0,mL̃m
,m

L̃k
, µ,M1) in (8h), (8j)

D0, D̃0 = D0, D̃0(0, p3, 0,mL̃m
,m

L̃k
, µ,M2) in (8i), (8k)

D0 = D0(0, 0, p3,mL̃m
,m

L̃k
,m

R̃k
,M1) in (8l)

C0 = C0(p3, 0,M1,mL̃m
,m

R̃k
) in (8m)

C0 = C0(p3, 0,M1,mR̃m
,m

L̃k
) in (8n)

D0, D̃0 = D0, D̃0(0, p3, 0,mR̃m
,m

R̃k
, µ,M1) in (8o), (8p)

D0, D̃0 = D0, D̃0(0, p3, 0,mR̃k
,m

R̃m
,M1, µ) in (8q), (8r)

C0,2 = C0,2(0, p3,mR̃k
,m

R̃m
,M1) in (8s)

D0 = D0(0, 0, p3,mR̃m
,m

R̃k
,m

L̃k
,M1) in (8t)

D0 = D0(0, 0, p3,mR̃k
,m

R̃m
,m

L̃m
,M1) in (8u)

For the particular case of the Equal masses scenario, the analytic results of the form

factors are considerably simplified. We include here the results for the F̂
(x)AB
L,R of eq. (3.15),

specifying the contributions from each diagram:

F̂
(x)LL
L =

g2

16π2

mτ

2MW cβ

[
σ

(x)∗
1

((
1

3
+

m2
Hx

40m2
S

)

(1)

+

(
1

6
tβ −

1

3

)

(4)

+
(1− t2W )

2

(
1

3
+

m2
Hx

40m2
S

)

(5)

− t2W
(

1

6
+

m2
Hx

30m2
S

)

(6)

+

(
1

12
tβ −

1

6
− 1

4
t2W tβ +

1

3
t2W

)

(8)

)

+σ
(x)
2

((
1

6
+

m2
Hx

60m2
S

)

(1)

+
(1− t2W )

2

(
1

6
+
m2
Hx

60m2
S

)

(5)

− t2W
(

1

6
+

m2
Hx

30m2
S

)

(6)

)]
,

(B.9)
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F̂
(x)LL
R =

g2

16π2

mµ

2MW cβ

[
σ

(x)
1

((
1

3
+

m2
Hx

40m2
S

)

(1)

−
(

1

6
tβ

)

(3)

+

(
1

3
tβ −

1

3

)

(4)

+
(1− t2W )

2

(
1

3
+

m2
Hx

40m2
S

)

(5)

− t2W
(

1

6
+

m2
Hx

30m2
S

)

(6)

+

(−1

12
tβ +

1

4
t2W tβ +

−1

2
t2W

)

(7)

+

(
1

6
tβ +

−1

6
− 1

2
t2W tβ +

5

6
t2W

)

(8)

)

+σ
(x)∗
2

((
1

6
+

m2
Hx

60m2
S

)

(1)

+
(1− t2W )

2

(
1

6
+

m2
Hx

60m2
S

)

(5)

− t2W
(

1

6
+

m2
Hx

30m2
S

)

(6)

)]
,

(B.10)

F̂
(x)LR
L =

g

16π2

1√
2
t2Wσ

(x)∗
1

((
1

2
+

m2
Hx

24m2
S

)

(6)

−
(

1

2

)

(8)

)
, (B.11)

F̂
(x)RL
R = +F̂

(x)LR∗
L ; F̂

(x)LR
R = F̂

(x)RL
L = 0 , (B.12)

F̂
(x)RR
L =

g2

16π2
t2W

mµ

2MW cβ

[
σ

(x)∗
1

((
1

3
+

m2
Hx

40m2
S

)

(5)

−
(

1

6
+

m2
Hx

30m2
S

)

(6)

−
(

1

2

)

(7)

+

(
1

3

)

(8)

)

+σ
(x)
2

((
1

6
+

m2
Hx

60m2
S

)

(5)

−
(

1

6
+

m2
Hx

30m2
S

)

(6)

)]
, (B.13)

F̂
(x)RR
R =

g2

16π2
t2W

mτ

2MW cβ

[
σ

(x)
1

((
1

3
+

m2
Hx

40m2
S

)

(5)

−
(

1

6
+

m2
Hx

30m2
S

)

(6)

−
(

1

6

)

(8)

)

+σ
(x)∗
2

((
1

6
+

m2
Hx

60m2
S

)

(5)

−
(

1

6
+

m2
Hx

30m2
S

)

(6)

)]
. (B.14)

Finally, we have also computed for this Equal masses scenario the subleading decoupling

contributions of O(M2
W /m

2
SUSY) to the specific form factor F̂

(x)RR
R , where we have detected

that there are strong cancellations among diagrams and these contributions play a relevant

role in obtaining a better convergence between the MIA and the full results. The main

contributions at this order come from diagrams with two extra gaugino-Higgsino insertions

in the internal fermion propagators of diagrams 5i, 5j, 6e, 8o, 8p, 8t; or one extra insertion

gaugino-Higgsino and one extra of type l̃Lk−l̃Rk in diagrams 5i, 5j; or only one extra insertion

of type l̃Lk − l̃Rk in diagram 6e; or considering a new “type 6 like” diagram -pure Bino

exchange- with vertex Hx− l̃Rk(m)− l̃Rk(m) (no chirality flip). After this computation we have

found that to include these new O(M2
W /m

2
SUSY) contributions into this RR form factor

one should replace (F̂
(x)RR
R ) by (F̂

(x)RR
R + F̃

(x)RR
R ), where:

F̃
(x)RR
R =

g2t2W
16π2

mτ

2MW cβ

M2
W

m2
S

t2β
1 + t2β

[(
σ

(x)
1

60

(
3t2W + 13− 4t2W tβ − 12tβ

)

−σ
(x)∗
1

5
− 4σ

(x)
2

15
− 2σ

(x)∗
2

15
+
σ

(x)
3

√
1 + t2β

12tβ

(
1 + t2W

)



+


1 + t2W

60tβ

(
−8σ

(x)
1 + 4σ

(x)∗
1 + σ

(x)
2 + σ

(x)∗
2

)
+
σ

(x)
3

√
1 + t2β

12t2β

(
−1 + 5t2W

)


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+

(
1 + t2W
30t2β

(
−σ(x)

1 + σ
(x)∗
1 + σ

(x)
2 − σ(x)∗

2

))]
. (B.15)

In the large tan β limit we obtain that this correction in eq. (B.15) grows linearly with

tanβ for h and quadratically for H and A. More specifically, we get for the heavy Higgs

boson H (and similarly for A):

F̃
(H)RR
R |tβ�1 =

g2t2W
16π2

mτ

2MW

M2
W

m2
S

3 + t2W
15

t2β . (B.16)

C Relevant loop integrals and their expansions for heavy SUSY

The loop integrals that are relevant for the present computation are the following:

i

16π2
C0, C

µ(q1, q2,m1,m2,m3)

=

∫
dk̃

1, kµ

(k2 −m2
1)((k + q1)2 −m2

2)((k + q1 + q2)2 −m2
3)
, (C.1)

and

i

16π2
D0, D̃0(q1, q2, q3,m1,m2,m3,m4)

=

∫
dk̃

1, k2

(k2 −m2
1)((k + q1)2 −m2

2)((k + q1 + q2)2 −m2
3)((k + q1 + q2 + q3)2 −m2

4)
,

(C.2)

where

dk̃ ≡ µ4−D
0 dDk

(2π)D
, (C.3)

and

Cµ(q1, q2,m1,m2,m3) =
2∑

i=1

qµi Ci(q1, q2,m1,m2,m3) . (C.4)

The particular values of the relevant loop functions for zero external momenta are the

following:

C0(0, 0,m1,m2,m3)

=
a(b− c)log(a) + b(c− a)log(b) + c(a− b)log(c)

(a− b)(a− c)(c− b) , (C.5)

C2(0, 0,m1,m2,m3)

=
a2 log(a)(b−c)2−b2(a−c)2 log(b)+c(a−b)((a−c)(b−c)+log(c)(2ab−c(a+b)))

2(a− b)(a− c)2(b− c)2
,

(C.6)
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where a = m2
1, b = m2

2, and c = m2
3.

D0(0, 0, 0,m1,m2,m3,m4) =
1

(a− b)(a− c)(b− c)

[
(−b+ c)(−a+ d+ alog(a)− dlog(d))

a− d

+
(a− c)(−b+ d+ blog(b)− dlog(d))

b− d
+

(−a+ b)(−c+ d+ clog(c)− dlog(d))

c− d

]
, (C.7)

where a = m2
1, b = m2

2, c = m2
3, and d = m2

4. The D̃0 function can be derived from C0 and

D0 by:

D̃0(0, 0, 0,m1,m2,m3,m4) = C0(0, 0,m2,m3,m4) +m2
1D0(0, 0, 0,m1,m2,m3,m4) . (C.8)

At non-zero external momenta all these integrals can be Taylor expanded for heavy

internal particle masses as compared to the external momenta, m2
i � q2

j , and expressed

generically as their values at zero external momenta plus corrections given by functions

with extra powers of the small O(q2
j /m

2
i ) quantities.

For instance, by keeping just the O(p2
1/m

2
i ) corrections in C0(p2, p1,m1,m2,m3) we get:

C0(p2, p1,m1,m2,m3) = C0(0, 0,m1,m2,m3)

+
d

2(a− b)2(a− c)2(c− b)3
[(a− b)(a− c)(b− c)(−2bc+ a(b+ c))

−a2(b− c)3log(a)

+b(a− c)2(−2ac+ b(b+ c))log(b)

+(a− b)2c(2ab− c(b+ c))log(c)] , (C.9)

with a = m2
1, b = m2

2, c = m2
3, and d = p2

1. And similarly for other loop functions.

For the present computation we have computed all the relevant Taylor expansions

including the O(p2
1) corrections with p2

1 = m2
Hx

, for C0,2, D0, and D̃0, but we omit to show

them here for shortness. Here we include instead just the simplest case, for illustrative

purposes, that corresponds to taking all the involved SUSY masses to be equal, the so-

called Equal masses scenario, keeping just the dominant and the leading subdominant

contributions in the previously commented Taylor expansions. In this case, we get the

following simple formulas:

C0(0, p2,mS ,mS ,mS) ≈ C0(0, p3,mS ,mS ,mS) ≈ − 1

2m2
S

,

C0(p2, 0,mS ,mS ,mS) ≈ C0(p3, 0,mS ,mS ,mS) ≈ − 1

2m2
S

,

C2(0, p2,mS ,mS ,mS) ≈ C2(0, p3,mS ,mS ,mS) ≈ 1

6m2
S

,

C0(p2, p1,mS ,mS ,mS) ≈ − 1

2m2
S

−
m2
Hx

24m4
S

,

D0(0, p2, 0,mS ,mS ,mS ,mS) ≈ D0(0, p3, 0,mS ,mS ,mS ,mS) ≈ 1

6m4
S

,
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D̃0(0, p2, 0,mS ,mS ,mS ,mS) ≈ D̃0(0, p3, 0,mS ,mS ,mS ,mS) ≈ − 1

3m2
S

,

D0(0, 0, p2,mS ,mS ,mS ,mS) ≈ D0(0, 0, p3,mS ,mS ,mS ,mS) ≈ 1

6m4
S

,

D0(0, p2, p1,mS,mS ,mS ,mS) ≈ 1

6m4
S

+
m2
Hx

60m6
S

,

D̃0(0, p2, p1,mS ,mS ,mS ,mS) ≈ − 1

3m2
S

−
m2
Hx

40m4
S

,

D0(p2, p1, 0,mS ,mS ,mS ,mS) ≈ 1

6m4
S

+
m2
Hx

30m6
S

,

D0(p2, 0, p1,mS ,mS ,mS ,mS) ≈ 1

6m4
S

+
m2
Hx

30m6
S

. (C.10)
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