000048373 001__ 48373
000048373 005__ 20200221144325.0
000048373 0247_ $$2doi$$a10.1186/s12711-016-0185-1
000048373 0248_ $$2sideral$$a94121
000048373 037__ $$aART-2016-94121
000048373 041__ $$aeng
000048373 100__ $$aVitezica, Z.G.
000048373 245__ $$aGenomic BLUP including additive and dominant variation in purebreds and F1 crossbreds, with an application in pigs
000048373 260__ $$c2016
000048373 5060_ $$aAccess copy available to the general public$$fUnrestricted
000048373 5203_ $$aBackground: Most developments in quantitative genetics theory focus on the study of intra-breed/line concepts. With the availability of massive genomic information, it becomes necessary to revisit the theory for crossbred populations. We propose methods to construct genomic covariances with additive and non-additive (dominance) inheritance in the case of pure lines and crossbred populations. Results: We describe substitution effects and dominant deviations across two pure parental populations and the crossbred population. Gene effects are assumed to be independent of the origin of alleles and allelic frequencies can differ between parental populations. Based on these assumptions, the theoretical variance components (additive and dominant) are obtained as a function of marker effects and allelic frequencies. The additive genetic variance in the crossbred population includes the biological additive and dominant effects of a gene and a covariance term. Dominance variance in the crossbred population is proportional to the product of the heterozygosity coefficients of both parental populations. A genomic BLUP (best linear unbiased prediction) equivalent model is presented. We illustrate this approach by using pig data (two pure lines and their cross, including 8265 phenotyped and genotyped sows). For the total number of piglets born, the dominance variance in the crossbred population represented about 13 % of the total genetic variance. Dominance variation is only marginally important for litter size in the crossbred population. Conclusions: We present a coherent marker-based model that includes purebred and crossbred data and additive and dominant actions. Using this model, it is possible to estimate breeding values, dominant deviations and variance components in a dataset that comprises data on purebred and crossbred individuals. These methods can be exploited to plan assortative mating in pig, maize or other species, in order to generate superior crossbred individuals in terms of performance.
000048373 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000048373 590__ $$a2.964$$b2016
000048373 591__ $$aAGRICULTURE, DAIRY & ANIMAL SCIENCE$$b2 / 57 = 0.035$$c2016$$dQ1$$eT1
000048373 591__ $$aGENETICS & HEREDITY$$b70 / 166 = 0.422$$c2016$$dQ2$$eT2
000048373 592__ $$a1.534$$b2016
000048373 593__ $$aAnimal Science and Zoology$$c2016$$dQ1
000048373 593__ $$aMedicine (miscellaneous)$$c2016$$dQ1
000048373 593__ $$aEcology, Evolution, Behavior and Systematics$$c2016$$dQ1
000048373 593__ $$aGenetics$$c2016$$dQ2
000048373 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000048373 700__ $$0(orcid)0000-0001-6256-5478$$aVarona, L.$$uUniversidad de Zaragoza
000048373 700__ $$aElsen, J.M
000048373 700__ $$aMisztal, I.
000048373 700__ $$aHerring, W.
000048373 700__ $$aLegarra, A.
000048373 7102_ $$11001$$2420$$aUniversidad de Zaragoza$$bDpto. Anatom.,Embri.Genét.Ani.$$cÁrea Genética
000048373 773__ $$g48, 1 (2016), [8 pp]$$pGenet. sel. evol.$$tGENETICS SELECTION EVOLUTION$$x0999-193X
000048373 8564_ $$s1283625$$uhttps://zaguan.unizar.es/record/48373/files/texto_completo.pdf$$yVersión publicada
000048373 8564_ $$s102344$$uhttps://zaguan.unizar.es/record/48373/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000048373 909CO $$ooai:zaguan.unizar.es:48373$$particulos$$pdriver
000048373 951__ $$a2020-02-21-13:43:15
000048373 980__ $$aARTICLE