
Dietary Squalene Increases High Density Lipoprotein-
Cholesterol and Paraoxonase 1 and Decreases Oxidative
Stress in Mice
Clara Gabás-Rivera1,3, Cristina Barranquero1,3, Roberto Martı́nez-Beamonte1,3, Marı́a A. Navarro1,3,

Joaquı́n C. Surra2,3, Jesús Osada1,3*
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Abstract

Background and Purpose: Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in
cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the
squalene’s role on lipid plasma parameters and the influence of genotype on this effect need to be addressed.

Experimental Approaches: Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic
diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and
lipoprotein profiles were analyzed.

Key Results: Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions
independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol
levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and
A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased
hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL-
paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of
Apolipoprotein A1.

Conclusions and Implications: Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases
reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might
contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be
particularly relevant.
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Introduction

Virgin olive oil is the main source of fat in the Mediterranean

dietary pattern, and it was shown an important relationship

between olive oil intake and the reduced cardiovascular risk [1],

[2], [3], and even cardiovascular mortality [4]. The mechanism of

this protective effect of virgin olive oil intake still needs to be

elucidated. It was firstly attributed to its main components,

monounsaturated fatty acids, and especially to the most abundant,

oleic acid. However, the interest has been lately focused on its

minor bioactive components since biological actions of these

compounds have been documented [2,5–7].

Squalene, first isolated from shark liver oil and named by

Tsujimoto in 1916 [8], is a polyunsaturated triterpene containing

six isoprene units and a biochemical precursor of cholesterol and

other steroids [9]. Squalene content in extra virgin olive oil is

especially high, up to 0.7% (7 g/kg), compared to other oils and

human dietary fats [10], [11]. In vitro, it is a highly effective

oxygen scavenging agent [12] and stable in virgin olive oil heated

at 180uC for 36 h [13]. For these reasons, it has been even stated

that squalene rather than oleic acid could be the important active

compound of virgin olive oil [14].

In humans, orally administered squalene is well absorbed (60–

85%). This and the intestinal de novo synthesized squalene are
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transported by chylomicrons into circulation, being rapidly taken

up by the liver, where it is converted into sterols and bile acids [15]

or secreted into bloodstream [16,17]. Hepatic squalene, either

biosynthesized or dietary, is secreted into very low density

lipoproteins (VLDL) and low density lipoproteins (LDL) and

distributed to various tissues. Skin is also a biosynthetic tissue for

squalene to provide the large quantities found in the sebaceous

glands [18], [19]. Therefore, squalene concentration in plasma

lipoproteins represents an equilibrium from dietary intake, with

important amounts coming from extra virgin olive oil, and

intestinal or liver synthesis [20].

Nonetheless, it is not clear yet squalene’s role on plasma lipids in

humans and animal models. While some authors did observe

increased plasma cholesterol after squalene intake in rats [21] and

in hamsters [22], others did not in humans [23], neither in rats

[24] nor in Apoe-deficient mice [25]. These discrepancies raise the

questions of whether animal models or administration regimens

(length and doses) are modifying squalene’s effect on plasma

cholesterol. Another aspect requiring attention is the long-term

effects and safety of high dose of squalene consumption [26].

Mice are considered high density lipoprotein (HDL) animals,

since they lack cholesteryl ester transfer protein and most of their

plasma cholesterol is transported in these lipoproteins [27].

Among mouse strains, C57BL/6J genetic background is widely

used due its higher predisposition to atherosclerosis development

[28]. Moreover, mice have been subjects of intensive genetic

manipulation, and genes codifying for proteins associated with

HDL have been created and tested to study their biological

functions [29]. Indeed, mice lacking apolipoprotein A1 (APOA1),

the main component of HDL, offer the possibility to explore

changes in absence of HDL-containing APOA1 [30]. Apoe-

deficient mice lack HDL-containing APOE, hence no apolipo-

protein E can be transferred to remnant chylomicrons, and the

latter are not taken up by the liver [31]. Both Apoa1- and Apoe-

deficient mice are also available on C57BL/6J genetic back-

ground. Therefore, these models provide interesting experimental

approaches to analyze the specific influence of these genotypes on

the observed outcome following the long term administration of a

semipurified diet supplemented with squalene. To this end, plasma

parameters and lipoprotein profiles, gene expression and oxidative

parameters will be analyzed in these three mouse models.

Results

Body and liver weight
Animal somatometric variables are shown in Table 1. In the

studied models, the administration of dietary squalene had no

effect on body weight, body weight gain or feed intake (data not

shown). Besides, no significant changes were observed for liver

weight, with the exception of a slight significant increase of this

parameter in WT mice consuming the diet enriched in squalene

that was not translated into changes of hepatic fat content

measured as lipid droplet extent (data not shown). These results

suggest that long term squalene administration is well tolerated in

terms of body weight changes.

Plasma parameters
The effects of squalene on plasma parameters in WT, Apoa1-

and Apoe-deficient mice after the 11-week experimental period are

shown in Tables 2, 3 and 4. There were no significant differences

in plasma triglycerides, neither in total cholesterol when the 1 g/

kg squalene dose was provided to any mouse model. Nevertheless,

a dose of 0.25 g/kg squalene significantly increased total

cholesterol levels in Apoe-deficient mice (Table 4). HDL-choles-

terol levels were raised in all mouse models when they were

administered the high squalene dose. The increased HDL-

cholesterol in wild type was not accompanied by increases in

APOA1, nor in APOA4. However, paraoxonase, estimated as

arylesterase activity, was increased in WT and Apoa1-deficient

mice (Tables 2 and 3). Wild-type and Apoa1-deficient mice

consuming 1 g/kg squalene (Tables 2 and 3) also showed

increased plasma glucose levels. Non-esterified fatty acids were

increased in wild-type and Apoe-deficient mice consuming 1 g/kg

and 0.25 g/kg of squalene, respectively.

Effect of squalene on lipoprotein profiles
The distribution of the plasma parameters in lipoprotein

fractions separated by FPLC from the different mouse models is

shown in Figure 1. According to the model, cholesterol distribu-

tion changed. In this regard, cholesterol was mainly carried in

HDL in WT mice (Fig. 1A), lower cholesterol levels in the latter

lipoproteins and some cholesterol in VLDL and LDL fractions

were observed in Apoa1-deficient mice (Fig. 1G), and the plasma

cholesterol of Apoe-deficient mice was mainly accumulated in

VLDL fraction (Fig. 1L). In wild-type mice, squalene administra-

tion induced an increase in HDL cholesterol (Fig. 1A), mainly due

to esterified cholesterol (Fig. 1B), that was accompanied by

increased HDL phosphatidylcholine (Fig. 1C), whilst no changes

in sphingomyelin and APOA1, and redistribution of APOA4

towards smaller HDL particles were observed. In Apoa1-deficient

mice, squalene did not have any effect on cholesterol distribution

(Fig. 1G and H), decreased phosphatidylcholine (Fig. 1I) and

increased APOA4 in HDL particles (Fig. 1K) and did not modify

HDL sphingomyelin but decreased this phospholipid in LDL

(Fig. 1J). In Apoe-deficient mice, squalene administration at either

studied dose had little effect on cholesterol, esterified cholesterol,

phosphatidylcholine and sphingomyelin (Fig. 1, panels L, M, N

and O, respectively). However, it increased the presence of

APOA4 in HDL and decreased LDL APOA4 (Fig. 1Q). Thus,

these results indicate that squalene is modifying HDL composition

depending on the presence of APOE and APOA1.

Oxidative stress variables
As shown in Figures 2A and 2B, isolated LDL from the

squalene-treated groups had significantly lower levels of reactive

oxygen species than LDL from control animals in WT as well as in

Apoa1-deficient mice. This effect was not observed in Apoe-

deficient mice (Fig. 2C), although in this model receiving the high

squalene dose, the ROS content in VLDL was significantly

decreased as in wild-type. According to the modified HDL

composition, a decrease in HDL-ROS levels was found in the

three genotypes of mouse by the squalene administration, but

there were no differences in the ability of HDL to inactivate LDL

ROS species (Fig. 2A and B), except for Apoe-deficient mice, as

LDL particles from WT and Apoa1-deficient squalene-receiving

mice present already very low levels of ROS compared to control

mice.

Figure 2 (panels D and F) shows significant decreases of plasma

malondialdehyde (MDA) levels in WT and Apoe-deficient mice

receiving squalene at 1 g/kg dose, what is an indicator of lower

oxidative levels induced by squalene intake. No significant changes

were seen in Apoa1-deficient mice (Fig. 2E). To corroborate

whether the results of arylesterase activity corresponded to PON1,

its HDL levels were determined. As shown in Figure 2 (panels G

and I), mice administered squalene at 1 g/kg showed increased

HDL-PON1 in WT and Apoe-deficient mice. No significant

changes were observed in Apoa1-deficient mice (Fig. 2H). Since

PON2 is a ubiquitous antioxidant enzyme [32], we investigated
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whether the squalene administration induced any differential

hepatic mRNA expression in wild-type mice. According to results

depicted in Table 5, hepatic Pon2 expression was increased, so

was Pon1. Furthermore, the hepatic mRNA expression of

prenylcysteine oxydase 1, Pcyox1 (a pro-oxidant enzyme of LDL

[33]) was also tested (Table 5), and no significant change was

observed either. Hepatic Pcyox1 expression was found significantly

associated with Pon2 expression and with plasma cholesterol

(Figure 3A and B). In contrast, hepatic Lcat expression was

significantly increased (Table 5) and significantly associated with

that of Pon1 (Figure 3C).

Discussion

The aims of present study were to verify the influence of genetic

background and long-term administration of squalene on mouse

plasma parameters and lipoprotein distribution in different mouse

models. After 11-week administration, the main findings were that

a high dose of squalene (1 g/kg mouse) increased HDL-cholesterol

and PON1 levels with independence of the genetic background

without increasing total cholesterol and thus decreasing total/

HDL-cholesterol ratio. The increase in HDL-cholesterol was

mainly due to increased esterified cholesterol and phosphatidyl-

choline, in absence of changes in APOA1 and APOA4 levels and

correlated with arylesterase activity, PON1 levels and hepatic Lcat
mRNA expression in wild-type mice. Furthermore, lipoprotein

ROS content was diminished by squalene administration in

function of genotype. Overall, squalene is an important modifier of

HDL metabolism with important differences regarding genotype

and dose.

The highest squalene dose used in the present study was 1 g/

kg/day, which is five times lower than the lethal dose 50 (5 g/kg/

day) [34] and far lower than the dose required to induce

encephaloneuropathy in rats (20 g/kg/day) [35]. Considering

the higher metabolic rate of mice [36], our dose would translate

into a human of 100 mg/kg/day. This is clearly higher than the

highest reported in human nutritional studies (15 mg/kg/day)

[17], but lower than the pharmacological doses of 185 and

385 mg/kg/day provided to female volunteers for 90 days [37].

Therefore, the present study uses a dose higher than those

provided in human nutritional interventions, but lower than the

used in pharmacological trials.

HDL levels are an inverse risk factor for coronary artery

diseases and the total/HDL-cholesterol ratio has been reported to

be a better predictor of ischemic heart disease than other

conventional risk markers (total cholesterol, LDL-cholesterol or

triacylglycerides) [38–42]. In this way, a high dose of 1 g/kg of

squalene could be protective since it raised HDL-cholesterol

Table 1. Effect of the experimental diets on somatic variables in male mice of the three experimental models.

Final body weight (g) Body weight gain (g) Liver weight (g)

Wild-type

Control (n = 6) 3061 3.161.2 1.260.1

Squalene (1 g/kg) (n = 7) 3062 3.662.2 1.360.1*

Apoa1-deficient

Control (n = 7) 2964 4.865.0 1.060.3

Squalene (1 g/kg) (n = 7) 2763 2.865.1 1.060.2

Apoe-deficient

Control (n = 13) 3562 5.562.2 1.860.9

Squalene (0.25 g/kg) (n = 13) 3463 4.762.4 1.660.3

Squalene (1 g/kg) (n = 14) 3363 4.561.8 1.660.4

Results are shown as mean values with their standard deviations. Statistical analysis was carried out using Mann Whitney U test.
* p,0.05 vs control.
doi:10.1371/journal.pone.0104224.t001

Table 2. Effect of dietary squalene supplementation on plasma parameters in male wild-type mice.

Control (n = 6) Squalene 1 g/kg (n = 7)

Total cholesterol (mM) 5.960.7 6.560.8

HDL-cholesterol (mM) 2.660.5 3.160.4*

Triglycerides (mM) 1.860.5 1.660.4

Glucose (mM) 1861 2061*

Non-esterified fatty acids (mM) 0.860.1 1.060.2*

APOA1 (AU) 2062 1961

APOA4 (AU) 761 761

Arylesterase activity (6103 IU/L) 6366 6963*

Results are shown as mean values with their standard deviations. Statistical analysis was carried out using Mann Whitney U test.
* p,0.05 vs control.
AU, arbitrary units.
doi:10.1371/journal.pone.0104224.t002
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without modifying total cholesterol in all studied mouse models,

confirming our previous study using this dose [25]. However, an

increase in total cholesterol was observed at a low squalene dose

(0.25 g/kg mouse) in Apoe-deficient mice without increasing

HDL-cholesterol. In this regard, discrepant effects of squalene

on plasma lipids have been previously reported. Indeed, a lowering

plasma cholesterol effect was described in rats using a 1 g/kg dose

during 4 weeks [24] and the opposite was also found in this animal

consuming the same dose in corn oil [21]. In humans, dietary

supplementation of squalene at 12 mg/kg formulated in rapeseed

oil for nine weeks was reported to cause increases in total and

LDL-cholesterol concentrations [16] or not to have effect when

provided as pills [23]. However, a subsequent six-week period on a

lower dose of 6 mg/kg normalized serum sterols [43]. Low dose

had a hypercholesterolemic effect in hamsters [22] as well. This

discrepant outcome shows that squalene effect on plasma

cholesterol is dose dependent, as low doses seem to promote

cholesterol synthesis (squalene is an intermediary in cholesterol

biosynthesis), and high doses might have a different effect. A

potential action could be related to an intestinal contribution as

well. In fact, the high doses of 185 and 385 mg/kg/day provided

to female humans for 90 days [37] elicited presence of steatorrhea,

whose percentage of incidence was dose-dependent. Overall, doses

and matrices of squalene administration may have a profound

influence.

Another interesting aspect noted in WT mice receiving squalene

was that the increase in HDL-cholesterol was mainly due to

augmented esterified cholesterol (Fig. 1B). This fact indicates that

the activity of the enzyme responsible for this type of cholesterol in

HDL, lecithin:cholesterol acyltransferase (LCAT), was increased.

Elevated hepatic Lcat mRNA expression (Table 5) supported this

finding. LCAT plays an important physiological role in the process

of maturing HDLs, modulating the conversion of HDL3 to HDL2,

and thereby collecting cholesterol from peripheral tissues and

increasing HDL levels [44]. In these WT mice, HDL was enriched

in phosphatidylcholine (PC) (Fig. 1C), which is the substrate for

the LCAT activity [45], indicating that squalene is favoring the

secretion of an HDL enriched in LCAT and with an appropriate

endowment of PC to facilitate its action and thereby reverse

cholesterol transport and without changes in the LCAT activators

APOA1 or APOA4 [46]. Since secretion of LCAT is associated

with APOA1 [47], these changes would not be possible in its

absence, as in the case of Apoa1-deficient mice. In Apoe-deficient

mice, it would not be possible either, due to the high content of

remnant and intermediate density lipoproteins characteristics of

this model [31]. For this reason, in these mice important amounts

of APOA1 and APOA4 were observed in VLDL and LDL

(Fig. 1P and Q), suggesting incomplete liberation of nascent HDL

from chylomicrons/VLDL according to the hypothesis of HDL

secretion as part of those lipoparticles [48] and in agreement with

the postprandial time follow-up of APOA4 distribution [49]. In

this setting, squalene would promote a maturation of HDL by

transferring these APOS to the HDL fraction. Overall, squalene is

exerting important effects on these lipoproteins depending on their

inherent metabolic characteristics present in the studied model.

The increase in HDL-cholesterol levels found in this study was

also accompanied by a significant increase in serum arylesterase

activity in WT and Apoa1-deficient mice consuming squalene, in

Table 3. Effect of dietary squalene supplementation on plasma parameters in male Apoa1-deficient mice.

Control (n = 7) Squalene 1 g/kg (n = 7)

Total cholesterol (mM) 0.860.4 0.960.3

HDL-cholesterol (mM) 0.460.1 0.660.1*

Triglycerides (mM) 0.660.2 0.560.1

Glucose (mM) 2062.0 2260.6*

Non-esterified fatty acids (mM) 0.560.1 0.560.1

Arylesterase activity (6103 IU/L) 4863 5162*

Results are shown as mean values with their standard deviations. Statistical analysis was carried out using Mann Whitney U test.
* p,0.05 vs control.
doi:10.1371/journal.pone.0104224.t003

Table 4. Effect of dietary squalene supplementation on plasma parameters in male Apoe-deficient mice.

Control (n = 13) Squalene 0.25 g/kg (n = 13) Squalene 1 g/kg (n = 14)

Total cholesterol (mM) 2366 2862** 2168‘‘

HDL-cholesterol (mM) 0.960.2 0.860.3 1.160.2*‘

Triglycerides (mM) 3.461.3 3.760.9 3.461.4

Glucose (mM) 2263 2463 2163‘

Non-esterified fatty acids (mM) 1.560.3 1.760.3** 1.460.6

Arylesterase activity (6103 IU/L) 7766 7865 7864

Results are shown as mean values with their standard deviations. Statistical analysis was carried out using Mann Whitney U test.
*p,0.05,
**p,0.01 mean values were significantly different from those of the control diet, and
‘p,0.05,
‘‘p,0.01 mean values were significantly different between 0.25 and 1 g/kg squalene doses.
doi:10.1371/journal.pone.0104224.t004
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HDL-PON1 and Pon1 mRNA expression in WT mice and in

HDL-PON1 in Apoe-deficient mice consuming 1 g/kg of squa-

lene. Human PON1 is synthesized in the liver and secreted into

the blood, where it is mainly associated with HDLs [50],

hydrolyzes oxidized phospholipids and protects against the

development of atherosclerosis [51,52]. HDL’s ability to prevent

oxidative modifications of LDL has been attributed to PON1

[53,54]. The observed rise in this enzyme activity could likely

explain the decreased ROS content in VLDL, LDL and HDL

together with PON2 due to the changes observed for Pon2 and

Pon1 in WT mice. In the case of Apoa1-deficient mice, no changes

were found either in HDL-PON1 or in hepatic Pon1 expression,

but Pon2 and Pcyox1 mRNA were significantly decreased (data

not shown), so increased serum arylesterase activity and decreased

Pcyox1 in liver could explain the decrease in LDL- and HDL-

ROS content of mice lacking Apoa1 consuming squalene. In the

latter mice, HDL-PON1 was not changed and together with

absence of APOA1, the changes induced by squalene on HDL

were inefficient to decrease MDA levels (Fig. 2E). On the other

hand, when HDL-PON1 increased by squalene such as in WT

and in Apoe-deficient mice receiving 1 g/kg, there were significant

decreases in MDA levels. Overall, these results indicate that

squalene is exerting an antioxidant action mediated by inducing

PON1 content of HDL and that this action requires the presence

of APOA1. In this regard, squalene behaves like compounds from

pomegranate juice, which decreased oxidative stress in diabetic

patients by increasing PON1 association with HDL and stimulat-

ing its enzyme activity [55,56]. However, as squalene has been

reported to own antioxidant properties as a quencher of singlet

oxygen [57] and as an in vitro highly effective oxygen scavenging

agent [12], a direct involvement of this molecule cannot be

discarded. Furthermore, it has been reported to elicit antioxidant

defense proteins [58]. Thus, the mechanisms whereby squalene

protects against oxidative damage in lipoproteins need to be

further studied.

A well-controlled study was conducted in elderly hypercholes-

terolemic patients using a 12 mg/kg/day dose of squalene for 20

weeks. Despite the fact that this dose alone did not modify plasma

cholesterol levels, when combined with a low dose of pravastatin, it

potentiated the hypolipidemic properties of the statin [59]. These

Figure 1. Effect of squalene on lipoproteins from the three experimental models. Plasma was obtained following 11 weeks of consuming
control or squalene- enriched semipurified diets and after a four-hour fast. Two independent pools of all mice per experimental group were prepared,
except for Apoe-deficient mice, where three plasma pools were utilized. Lipoproteins were separated by FPLC, and collected fractions analyzed for
total cholesterol (A, G, L), esterified cholesterol (B, H, M), phosphatidylcholine (C, I, N), sphingomyelin (D, J, O), APOA1 (E, P) and APOA4 (F, K, Q).
Representative profiles are shown from WT mice, left panels (control and squalene pools consisting of plasma from 6 and 7 mice, respectively),
Apoa1-deficient mice, middle panels (n = 7 for control and n = 7 for squalene plasma pool) and Apoe-deficient mice, right panels (n = 13 for control,
n = 13 for 0.25 g/kg and n = 14 for 1 g/kg squalene plasma pool). Fraction numbers 1–6 corresponded to VLDL/chylomicron remnants, 7–13 to low
density lipoproteins, 14–21 to cholesterol-rich HDL and 22–27 to cholesterol-poor HDL (pHDL).
doi:10.1371/journal.pone.0104224.g001
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data together with the described properties found in this work are

promising aspects to go further and clarify some of the emerging

caveats regarding dose, experimental model and administration

matrices.

In conclusion, the increase in plasma HDL-cholesterol and

PON1 levels and the decrease in ROS in VLDL, LDL and HDL

seem to be the mechanisms whereby squalene exerts its beneficial

activity, hence it could be a contributor to the beneficial effects of

Figure 2. Effect of squalene on antioxidative parameters from the three experimental models. ROS levels in lipoprotein fractions from
control and squalene treated mice expressed as arbitrary fluorescence units after incubation of lipoprotein fractions during 24 h with 29,79-
dichlorofluorescein diacetate A) 0.8 mg LDL or VLDL, and 60 ng HDL from WT mice; B) 0.8 mg LDL and 60 ng HDL from Apoa1-deficient mice; C) 1.5 mg
LDL or VLDL, and 60 ng HDL from Apoe-deficient mice. Each pool was assayed in triplicate. Individual plasma malondialdehyde levels from WT (D),
Apoa1-(E) and Apoe-deficient mice (F). HDL-PON1 levels from WT (G), Apoa1-(H) and Apoe-deficient mice (I) with their representative Western blots.
Each pool was assayed in triplicate. Results are shown as means 6 SD. *p,0.05, **p,0.01 according to corrected unpaired t Welch’s test.
doi:10.1371/journal.pone.0104224.g002

Figure 3. Relationship between hepatic gene expression and plasma cholesterol in wild type mice. Direct correlations among Pcyox1
and Pon2 gene expression (A), or plasma cholesterol (B), and Lcat and Pon1 gene expression (C). Association analyses were carried out using
Spearman’s test for non- parametric distributions.
doi:10.1371/journal.pone.0104224.g003
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the virgin olive oil intake on the prevention against cardiovascular

diseases. This squalene action is conditioned by the genetic

background of APOA1 and APOE, characteristics that modulate

the maturation’s state of secreted HDL, the ability to secrete

functional LCAT or the changes in HDL-PON1. In addition,

formulation of dietary squalene in terms of dose and accompa-

nying elements in the alimentary matrix should be carefully

considered to facilitate reproducible results.

Materials and Methods

Animals
Male wild-type (WT) and Apoe-deficient mice on C57BL/6J

genetic backgrounds were obtained from Charles River (Charles

River Laboratories, Barcelona, Spain). Apoa1-deficient mice on

C57BL/6J genetic background were generously provided by Dr.

Nobuyo Maeda from University of North Carolina at Chapel Hill.

To establish groups with similar initial plasma cholesterol, blood

samples were taken from the facial vein after four-hour fasting. All

animals were housed in sterile filter-top cages in rooms maintained

under a 12-h light/12-h dark cycle in the Servicio de Biomedicina y
Biomateriales, University of Zaragoza. All had ad libitum access to

food and water and the study protocol was approved by the Ethics

Committee for Animal Research of the University of Zaragoza.

Diets
All male mice were fed chow semipurified diets and divided into

control group (n = 6 for WT, n = 7 for Apoa1- and n = 13 for Apoe-

deficient mice) and squalene-treated animals (n = 7 for both WT

and Apoa1-deficient mice), these latter receiving 1 g squalene/kg

body weight, except for the Apoe-deficient animals, in which

squalene-treated animals were given two different doses of the

compound: 0.25 (n = 13) or 1 g (n = 14) squalene/kg body weight.

All diets were prepared weekly and stored in an N2 atmosphere at

220uC. Fresh food in excess was provided daily, and the

differences of amount provided and the remaining per cage were

recorded daily, divided into number of animals and used to assess

the average food intake. The animals were fed the experimental

diets for 11 weeks, being well tolerated.

Biochemical determinations
After the experimental period, animals were sacrificed by

suffocation with CO2, blood (0, 7–1 ml per mouse) was collected

via cardiac puncture and centrifuged at 3000 rpm for 5 minutes at

4uC to obtain plasma. Total plasma cholesterol and triglyceride

concentrations were measured in a microtitre assay, using Infinity

commercial kits (Thermo Scientific Madrid, Spain). Plasma HDL-

cholesterol was quantified in the supernatant after precipitation of

apoB particles with phosphotungstic acid–MgCl2 (Roche, Barce-

lona, Spain). Glucose and non-esterified fatty acids were deter-

mined using kits from BioSystems (Barcelona, Spain) and Wako

(Madrid, Spain). Paraoxonase was assayed as arylesterase activity

by the rate of phenylacetate hydrolysis, as described previously

[60]. APOA1 and APOA4 were quantified by ELISA using

specific polyclonal antibodies (Biodesign and Santa Cruz Biotech-

nology), as described previously [61]. Malondialdehyde was

assayed following Conti’s spectrofluorimetric method [62]. Plasma

lipoprotein profile was determined in 100 ml of pooled plasma

samples from each group by fast protein liquid chromatography

(FPLC) gel filtration [63] using a Superose 6B column (GE

Healthcare), and the cholesterol, phosphatidylcholine and sphin-

gomyelin contents in each fraction were measured as described

[49].

Reactive oxygen species (ROS) content in lipoproteins
The presence of ROS was assessed by measuring the conversion

of 2,7-dichlorofluorescein diacetate into fluorescent dichlorofluor-

escein [64] in FPLC-isolated fractions corresponding to the

different lipoproteins [65]. Briefly, LDL or VLDL (0.8 mg

cholesterol for wild-type and Apoa1-deficient mice, and 1.5 mg

cholesterol for Apoe-deficient mice) and HDL (60 ng cholesterol)

were incubated at 37uC with 2 mg dichlorofluorescein in 2.5 ml of

0.1% sodium azide and PBS up to a total volume of 240 ml. After

24 h of incubation, fluorescence was measured at an excitation

wavelength of 485 nm and an emission wavelength of 535 nm

[65]. To study the protective action of HDL against oxidation,

LDL particles were incubated in the presence of its HDL, and

fluorescence was measured.

Western blotting
HDL fractions (30 mg of protein) were loaded onto 12% SDS-

PAGE gels, electrophoresed, and transferred as previously

described [25]. Protein bands were detected using a rabbit

polyclonal anti-PON1 antibody raised against a mouse oligopep-

tide (CYKNHRSSYQTRLNAFREVTP) at dilution 1/1,000 [66].

As secondary antibody, a donkey anti-rabbit conjugated with

IRdye 680RD (926-68073 LI-COR Biosciences, Lincoln, NE,

USA) at 1/15,000 dilution was used. Image was captured and

analyzed using an Odyssey Clx (LI-COR).

RNA isolation
At sacrifice, the livers were immediately removed and frozen in

liquid nitrogen. RNA from each liver was isolated using Tri-

reagent (Ambion, Austin, TX, USA). DNA contaminants were

removed by TURBO DNAse treatment using the DNA removal

kit from Ambion. RNA was quantified by absorbance at A260/280.

Table 5. Effect of squalene on hepatic gene expression in male wild-type mice.

Gene Control (n = 6) Squalene (n = 7)

Lcat 1.060.2 1.460.7*

Pon1 1.160.5 1.560.4**

Pon2 1.160.5 1.460.6*

Pcyox1 1.060.3 1.260.5

Data (mean 6 SD) represent arbitrary units normalized to the Cyclophilin B, Cyclophilin A and Tbp expressions for control and treated mice according to RT-qPCR.
Statistical analysis was carried out by Mann-Whitney-U test,
*p,0.05,
** p,0.01.
doi:10.1371/journal.pone.0104224.t005
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The integrity of the 28 S and 18 S ribosomal RNAs was verified by

agarose gel electrophoresis.

Quantification of mRNA
The differences in mRNA expression of genes involved in

cholesterol metabolism or antioxidant defense were studied by

quantitative real-time RT-qPCR analysis using equal amounts of

DNA-free RNA from each animal. First-strand cDNA synthesis

was generated using the First Strand Synthesis kit (Thermo

Scientific, Madrid, Spain). Reverse transcriptase-quantitative

polymerase chain reactions (RT-qPCR) were performed using

the Sybr Green PCR Master Mix (Applied Biosystems, Foster

City, CA, USA). The primers were designed using Primer Express

(Applied Biosystems) and checked by BLAST analysis (NCBI) to

verify gene specificity as well as to get amplification of the cDNA

and not of genomic DNA. The sequences were published [67–69].

Real time RT-qPCR reactions were carried out in a Step One

Real Time PCR System (Applied Biosystems) following the

standard procedure. The relative amount of all mRNAs was

calculated using the comparative 22DDCt method and normalized

to the reference Cyclophilin B, Cyclophilin A and TATA box

binding protein, Tbp mRNA expressions [68].

Statistical analysis
Results are expressed as means 6 SD. Unless otherwise stated,

non parametric Mann-Whitney U-test for comparison between

pairs was used for unpaired observations. Association between

variables was assessed by Spearman correlation test. All statistical

tests were performed with the package SPSS version 15.0 (SPSS

Inc, Chicago, IL, USA), and a value of p,0.05 was considered

statistically significant.
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