










residues from the calcium coordinating box or disulfide bond-
forming cysteines, some simulations show stable evolutions
along timewhile, for others, the conformational stability appears
to be significantly affected. These results are not obvious and could
not be easily predicted by standard trained methods (67–71).

In order to define quantitative criteria for a global comparison
of the conformations visited by different types ofmutants during
MD simulations we performed PCA of each trajectory, and the
structural differences among the corresponding average struc-
tures were calculated using the TM-score (Fig. 1). The presence
of clusters of mutants structurally different from the rest of var-
iants suggests the possibility of grouping mutants according to
the extent of the instability introduced by the amino acid substi-
tution. The PC representations depicted in Figure 2, correspond-
ing to destabilizing mutants most of whom are associated to FH
(Supplementary Material, Table S2), graphically confirms the in-
stability caused by these mutations. In contrast, Figure 3 shows
several examples of stable evolutions around the average struc-
ture, including mutations such as C209(188)W in an important
structural locus, which reaffirms the need for specific mutation
testing versus general predictions based on structural location.

FH mutations in the LDL-r LA5 domain due to loss
of conformational stability or binding competence

Amain goal of thiswork is to devise a quantitativeway of identify-
ing SNPmutations that could destabilize the structure of the LDL-r
LA5-binding domain and to group different types of mutations

according to the extent of destabilizing effects. Analysis of the
meta-trajectories of the 227 mutants allows comparing, within a
single Eigensystem, the conformational subspaces more probably
visited by each mutant. The clusters in Figure 4 provide an object-
ive classification of the SNPs according to their effect in structural
stability, and hence their possible pathogenicity (see also in Sup-
plementary Material, Table S2 a color-coded classification of the
destabilizingeffect of eachmutant).Of the 50knownFHmutations,
33 appear distributed in the three unstable clusters, indicating that
loss of conformational stability explains two-third of FH pheno-
types. According to our simulations, there appear to be hotspots
in the structure of the LDL-r LA5domainwhere SNPs aremore like-
ly to lead to substitutions compromising the conformational stabil-
ity—e.g. C197, E201, C204, D221, C222, D224, D227 and E228
(Supplementary Material, Fig. S8). Conversely, some positions are
unlikely to derive in unstable mutant proteins due to SNP—e.g.
A199, L205, G219, N230 or A232.

On the other hand, 17 FHmutations (SupplementaryMaterial,
Table S2) are classified as stable, and the individual analysis of
their trajectories (see examples in Supplementary Material, Fig.
S7) confirms they do not significantly alter the conformational
behavior of the LA5 domain. This is a clear indication that they
will cause FH by a different mechanism. The simplest reason
that can explain their relationship with FH is that those muta-
tions impair the interaction of LA5 with its binding partners, ei-
ther other domains from the LDL-r or other proteins involved in
cholesterol homeostasis. There are three known partners of LA5:
the β-propeller domain of the LDL-r, and the apolipoproteins Apo

Figure 2. Continued

1238 | Human Molecular Genetics, 2016, Vol. 25, No. 6

 at U
niversidad de Z

aragoza-Facultad de M
edicina- H

em
eroteca on A

pril 19, 2016
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 



B and Apo E present in LDL and/or VLDL particles. At low pH (8),
LA5 interactswith the β-propeller domain through residuesH211,
S212,W214, D217, G219, D221 and K223, clustered in the LA5 con-
vex face (Fig. 5). Recent structural data from our group (50) have
determined that the interaction between LA5 and key interacting
helices of Apo E and Apo B also involves essentially residues
at the convex face (W214, G218, G219, D221 and D227 in the com-
plexes with Apo B and Apo E, plus E201 in the complex with Apo

E). Those two sets of residues define a common patch in the con-
vex face (Fig. 6A) that very likely constitutes the binding site used
by LA5 to interactwith different partners. In fact, the homologous
LDL-r domains LA3 and LA4 use a structurally equivalent patch to
recognize yet another partner, the receptor-associated protein
(RAP) (6).

The 17 FHmutations in the stable cluster occur in 11 residues
(P196, S198, E201, C209, H211, W214, C216, D221, D227, E228 and

Figure 3.Dynamical evolution of LA5mutants in the PCA space (non-destabilizingmutations). The MD trajectories are followed along time by projecting the structures at

each time step into the space described by the first three PCs. Each subchart is a two-dimensional density plot of the projections of the structures into PC1 versus PC2, PC1

versus PC3 and PC2 versus PC3. The color scale goes from red (no occupancy) to blue (high occupancy), passing through intermediate scales of yellow and green. For

accessing the more descriptive animations please visit the corresponding files for each simulation in the Supplementary Material, Videos S6–S10.

Human Molecular Genetics, 2016, Vol. 25, No. 6 | 1239

 at U
niversidad de Z

aragoza-Facultad de M
edicina- H

em
eroteca on A

pril 19, 2016
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw004/-/DC1
http://hmg.oxfordjournals.org/


C231), 7 ofwhich are surface exposed and contiguous, defining an
extended but overlapping version of the binding site (Fig. 6B).
Three of the four remaining residues, C216 and C231 forming
the C-terminal most disulfide bridge, plus E228 at the calcium
cage, are also surface exposed at one end of the convex face
and appear to constitute a prolongation of the known binding
site (Fig. 6B). Only D227 is buried. As expected,most substitutions
at this residue are greatly destabilizing (Supplementary Material,
Table S2), but its replacement by similarly charged glutamic acid,
although reported to cause FH, does not lead to structural pertur-
bations during the simulations. The likely cause of the FH charac-
ter of D227(206)E is that its reduced Ca++ affinity impairs folding
(13). Except for this mutation, the rest of the 17 non-destabilizing
FH SNPs in the LA5 domain affect binding site residues. Thus, the
pathogenicity of these mutations seems related to disruption of
LA5-binding compatibility with other proteins. The underlying
structural reasons can be either that the substitution abolishes
important contacts with partner-binding residues—e.g. W214
(193)S (8)—or that the newly introduced residuemodifies the ster-
ic or physicochemical compatibility of the interacting patches
[e.g. H211(190)D, Y, L (8,72)].

Frommolecular dynamics to a strategy for computational
diagnosis in conformational diseases

Our results indicate that 33 out of the 50 known FH mutations
at the LA5 domain are destabilizing and that, of the remain-
ing 17 non-destabilizing mutations, 16 occur in residues at the

surface-binding site. As it appears, computational estimations
of conformational instability from short-range MD simulations,
combined with experimental knowledge of the LA5 domain
interacting residues, makes possible to anticipate the disease
phenotype that has been observed in 49 of the 50 SNPs known
to be related to FH. This result shows that our method has a re-
markably high sensitivity (true positives rate) of 0.98 for classify-
ing FH-causing SNPs. We have also tried to provide ameasure for
the specificity of the method (true negatives rate), but the lack of
sequence data on neutral mutations (see legend of Supplemen-
tary Material, Table S2) impedes it.

Wewould like to propose a FH computational diagnosis for all
possible SNPs in module LA5 that considers both the degree of
conformational instability in the simulations and the possible
impairment of the interacting region (Supplementary Material,
Table S2). Of all the possible SNPs—i.e. 256 non-synonymous
SNPs coding for 227 different single amino acid substituted var-
iants—only 22% have been found in FH individuals (dot tagged
mutants in Supplementary Material, Fig. S1). These variants are
labeled as deleterious in Supplementary Material, Table S2. For
the remaining 177 mutations not reported in genetic variation
databases, those belonging to any of the three unstable clusters
are also classified as deleterious. For those in the stable cluster,
we have considered evaluating their possible binding impairing
effects using qualitative structural criteria—e.g. steric and
physicochemical differences between the wild-type and substi-
tuted residues. However, such a fine evaluationwould be too pre-
liminary given the limited structural information available for

Figure 3. Continued
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LA5/partner complexes, e.g. the structure of the LDL-r complete
extracellular region (8) is of low resolution, and the interactions
of LA5 with Apo B and E peptides are only defined in part (50)

because the exact conformation of those peptides in the com-
plexes is not known. Therefore, we have provisionally evaluated
all mutations taking place in binding site residues as ‘deleterious’,
whichmay increase the number of false-positives in this subset of
our predictions. Our phenotype predictions in Supplementary
Material, Table S2 can be compared with predictions calculated
using different methodologies, such as PMUT (68), and a consen-
sus approach, CONDEL (69), integrating the predictions made
using SIFT (67,73), polyphen-2 (71) and mutation assessor (70,74).
We have also included the predictions obtained using polyphen-
2 (71), and the calculation of stability changes upon mutation ob-
tainedwith FoldX (75). The comparison reveals clear discrepancies
among the different predictions, and stability estimations in key
structural loci, such as in cysteines or in Ca++-binding residues—
e.g. inC197(176)S or E228(207)Daswell as inmanyothermutations
in the LA5 structure (Supplementary Material, Tables S2 and S3).
Thus, depending on the predictive approachused, the conclusions
drawn would be different. Moreover, the true positive rates ob-
tained with PMUT, CONDEL and polyphen-2 for the classification
of FH-causing mutations are 42, 76 and 80%, respectively (Sup-
plementary Material, Tables S2 and S3), which shows that our
structure-based method outperforms all these sequence-based
approaches. Furthermore, we are not only able to correctly pre-
dict almost all FH-causing mutations, but also to differentiate
mutations that cause the disease through the structural instabil-
ity of the LA5 domain, and others associated to residues in the
interaction site with other partner proteins and LDL particles.
Though undoubtedly our approach is more computationally ex-
pensive and requires more data processing and analysis than
others available for predicting deleteriousness of mutations
(67–71,73,74), general advances in computation speed and specif-
ic improvement in MD simulations (76–78), together with the
emergence of online services for performing client-based and
high-throughput MD simulations (79–81), may facilitate the gen-
eralization of the approach presented here in the near future.

Figure 4. Clustering of LA5 mutants according to the extent of conformational

instability. For the meta-trajectory of the concatenation of the last 10 ns of the

227 simulations, the average Mahalanobis distance among all pairs of

simulations was used to assess the difference in the subspaces explored by

each mutant in the PCA N-dimensional space (25-dimensions). Based on those

distances, a complete-link-based clustering algorithm was used, and an

abstract representation of the four more representative clusters is shown. The

clusters are color-coded: green (stable mutants), orange (unstable mutants),

magenta (very unstable mutants) and red (highly unstable mutants). For each

cluster, we show in parenthesis the number of mutants found in persons with

FH (in red) and the total number of mutants. The dispersion observed in each

cluster corresponds to the variability observed for the average Mahalanobis

distance of each simulation and the rest of the simulations included in the

corresponding cluster, which correspond to branching nodes representing these

trajectories in the clustering dendrogram.

Figure 5.The binding region of the LDL-r LA5 domain. The structure of the LDL-r LA5 domain and the interaction region. (A) The LA5 domain in the context of the structure

of the complete LDL-r extracellular region (PDB id: 1N7D). The LA5 domain is shown in surface representation colored in white, highlighting in red the 11 residues where

the 17 mutations not affecting the conformational stability of the domain occur. (B) A close look of the LA5 domain and the 11 residues bearing FHmutations that do not

destabilize the domain.We highlight the upper convex region of the LA5 domain, which according to recent experimental evidence (50), is responsible for the interaction

of the domain with LDL and VLDL particles, in addition to forming the self complex shown in (A). From the residues highlighted in red, we also include their name and

position in the sequence. Of the 11 residues showed, only residue D227 is buried.
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Our analysis also indicates that, together with LDL-r destabil-
izing mutations, a significant percentage of FH phenotypes are
related to impairment of structural regions mediating protein/
protein interactions (e.g. LR5/β-propeller domain or LR5/apoB).
In this respect, a complete picture of the interactions formed by
the different domains of the LDL-r among them and with VLDL,
LDL, PCSK9, RAP or additional partners yet to be discovered is
lacking. Comprehensive high-throughput and high-resolution
interactome structural predictions will eventually become avail-
able, but meanwhile much experimental work remains to be
done. Besides, a structural and thermodynamic understanding
of how the LDL-r interactions are affected by the specific and
changing solution conditions in the different cellular compart-
ments visited along its functional cycle is also needed (5–7,13–
15,46–48,50,82–84). Although the structural distortions caused
by mutations in the isolated LA5 domain, as identified with our
approach, need not be identical to those taking place in the con-
text of the whole LDL-r, the strong experimental evidence show-
ing the structural independence of LA domains (8,30) suggests
those distortions are likely to be very similar. Nevertheless, in
cases where differences occur they will impose an upper limit
to the predictive accuracy of the method. It is also important to
emphasize that the evaluation and improvement of the specifi-
city of this or any other predictive method will benefit from the
search for, and documentation of, non-pathogenic mutations.

In this work, we have provided a clear structure/stability view
of the complete mutational landscape of the LA5 domain, with a
quantitative classification of the conformational instability
caused by all biologically accessible SNP amino acid substitu-
tions. We hope that these data would be useful for planning ex-
perimental work to measure the real extent of the structural
instability associated to yet-to-study putative destabilizing mu-
tations, and for designing screening devices for the efficient diag-
nosis of FH. By extension, the method here illustrated may be
applied to studying how SNP may affect the structure and func-
tion of other proteins associated to other pathologies.

Conclusions
Examination on the entire SNP mutational space of the LDL-r LA5
domain using relaxation molecular dynamics simulations allows
to accurately classify each possible mutation as either compatible

with the native structure or as destabilizing. Comparison of this
classification with the known SNPs associated to FH disease
phenotype clearly reveals two types of FHmutations: those caus-
ing a stability defect and those impairing binding interactions
with LDL-r-associated proteins. The data generated here delin-
eate the space of putative pathogenic mutations in an important
LDL-r domain and may help experimentalist to develop more
comprehensive FH screening methods, and may contribute to
a better understanding of FH from a structural perspective. On
a larger scale and with sufficient computation power, it seems
possible tomake a full computational diagnosis for FH by consid-
ering both the degreeof conformational instability in simulations
of the LDL-r and related proteins, and the possible impairments
of their interacting regions. Importantly, the structural approach
followed by us can be applied to predict the deleteriousness of
genetic variations in other small proteins without relying in the
evolutionary assumptions characteristic of most current meth-
ods based on sequence analysis. An obvious challenge in apply-
ing this method to larger proteins is that they will require more
computation power due to their larger size and also to the larger
number of possible SNPs. An additional challenge may apply in
the formof slower relaxation kinetics for large proteins (85), espe-
cially if they exhibit full thermodynamic cooperativity (86).

Materials and Methods
LA5 domain coding sequence, structure and complete
SNP mutational map generation

From theprotein sequence of the complete humanLDL-r accessible
in Uniprot (35) (ID: LDLR_HUMAN, AC: P01130), we extracted the
DNA-coding sequence for the LA5 domain by accessing the entry
for this gene in the Ensembl database (87) (ID: ENSG00000130164).
The protein sequence for the LA5 domain corresponds to resi-
dues 195–233 in the sequence of the complete receptor, while
the X-ray structure of the domain used as the starting point for
MD simulations and structural analysis (PDB id: 1AJJ), includes
residues 196–232. Thus, we just extracted the coding sequence
for amino acids 196–232, leaving out the codons for the N- and
C-terminal serine and valine. The DNA sequence was then pro-
cessed with an ad hoc script for generating all the biologically
accessible mutants arising from the substitution of a single

Figure 6. The consensus-binding region of the LDL-r LA5 domain comparedwith the region bearing non-destabilizing FHmutations. (A) The residues in the convex face of

the LDL-r LA5 domain known to participate in interactions with other domains from the LDL-r (8) or from Apo B and Apo E (50), are highlighted. (B) The residues that bear

some mutations related to FH that do not destabilize the domain and are classified in the stable cluster, are highlighted. Ten out of the 11 residues in which the 17 non-

destabilizing known mutations are distributed at the surface, can be viewed simultaneously. Only residue D227 is buried.
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nucleotide (Supplementary Material, Fig. S1). All the non-syn-
onymous SNPs were identified—i.e. 256 non-synonymous SNPs
coding for 227 different single-residue substituted protein var-
iants—and the corresponding mutations in the structure of LA5
domain were generated using the program SCWRL (51), for find-
ing the best rotamers of the mutated residue. Then, the mutants
were given a specific code (Supplementary Material, Table S2) to
be further processed before running the MD simulations.

Setting up the systems for molecular dynamics
simulation production

Each of the 227mutants, plus thewild-type LA5 domain, was sol-
vated in a cubic water box with approximately 5500 TIP3 water
molecules, and neutralized with Na+Cl− counter ions using the
solvate package in VMD (88). We setup a thorough procedure
for preparing the systems previous to running the production
MD simulations, including multiple cycles of step-descending
minimization/equilibration steps in a preparation phase of
∼5 ns, which encompasses: (a) short CPT dynamics of water mo-
lecules with the protein atoms fixed to eliminate possible poten-
tial strains in the water box, (b) slow release of the protein atoms
by imposing decreasing elastic restraints and (c) very slow heat-
ing of the systems to the final simulation temperature (310K)
using a gradient temperature ramp. The 5 ns preparation phase
guaranteed the stabilization of the temperature and total energy
of the systems. Then, 20 ns production MD simulations were run
for each mutant using the CHARMM (89) force field (version
c34b1) in NAMD (90). The simulations were run using Langevin
dynamics, with periodic boundary conditions and Particle Mesh
Ewald for modeling long-range electrostatic interactions with a
cutoff distance of 14 Å. The Nosé–Hoover thermostat was used
for pressure coupling of the system and the friction coefficients
were set to 0.5 and 60 ps–1 for protein atoms, andwatermolecules
and ions, respectively. The simulations were run mainly in the
cluster of the Red Española de Supercomputación: marenostrum
at the Barcelona Supercomputing Center and CaesarAugusta at
the Institute for Biocomputation and Complex Systems Physics
(BIFI), and also at the Terminus and Memento clusters at BIFI. The
trajectories were analyzed with VMD (88) and a set of ad hoc TCL
and Perl scripts.

Principal component analysis of individual MD trajectory
data and of meta-trajectories

PCA, a useful procedure for capturing correlations among vari-
ables, has been extensively used for analyzing MD trajectories
aiming at describing the ‘essential dynamics’ (54,58–61) of a sys-
tem. Performing PCA on MD data starts by aligning the trajectory
for removing the translational and rotational components of
movement (91). Then, the trajectory is centered to the reference
structure Sref—e.g. the initial or an average structure—by sub-
tracting the reference structure to the aligned snapshots, and it
is represented as a matrix of the type TC ¼ ½3N × F�, on which
the rows are the coordinates of the N residues of the system,
and the columns the number of frames or snapshots, F, of the tra-
jectory. Subsequently, the covariance or correlationmatrix is cal-
culated from the product of the trajectory matrix by its transposeP¼ ð1=3NÞTC � TT

C. The eigenvalue decomposition of the covari-
ance matrix renders a set of eigenvalues and orthogonal eigen-
vectors organized in the form Λ ¼ VT � Σ � V, where Λ is the
diagonal matrix of the eigenvalues ðλ1; λ2; :::; λ3N�6Þ and V is the
matrix of the 3N − 6 eigenvectors paired to the eigenvalues.
The eigenvalues are sorted in descending order with respect to

the amount of variance of the original data described by the pair-
ing eigenvectors.

Principal components representations of individual trajector-
ies were generated by projecting the coordinates in the Cartesian
space coming from the simulation into the eigenspace defined by
the first 3 eigenvectors, as shown in Figures 2 and 3 and Supple-
mentaryMaterial, Figure S7. On the other hand,wequantitatively
compared the PCA subspace explored by different mutants and
by the wild-type LA5 domain as follows. Using the VMD (88)
CATDCD utility, we concatenated into a meta-trajectory the last
10 ns of all the trajectories and then recalculated the complete
Eigensystem to obtain the projections of the frames of each
independent simulation into the meta-trajectory principal com-
ponents. This approach allows to describe all the different simu-
lations in a common PC space. Then, we quantitatively assessed
the effect of mutations on the structure of the LA5 domain by
calculating the distance among the subspaces explored by each
mutant and thewild-type domain. To do that we used the Maha-
lanobis distance (62) (MDpp′), a metric routinely used in the field
of multivariate statistics which, in contrast with the classic
Euclidean distance, accounts for the correlations on data and
is independent of data transformations. In the specific case
of PCA, the Mahalanobis distance between a pair of points p and
p′ in the PC space is defined as:

MDpp0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

i¼0

ðpro j pi � pro j p0
i
Þ2

λi

vuut

where projp(p′)i are the corresponding projections in the N-dimen-
sional PCA space, and λi is the corresponding eigenvalue for the
PCi. The MDpp′ normalizes the contributions of all the PCs accord-
ing to the percentage of variance described by the pairing eigen-
vector, providing a more realistic assessment of the distance
among points in the PCA space.

For obtaining the mean distance among trajectories inde-
pendently of their compliance (stability) or non-compliance
(instability) with the multivariate normal distribution, we set
a resampling strategy in which we resampled with replacement
a subset of snapshots—e.g. 5 ns for the 10 ns meta-trajectory—
from each trajectory, and calculated MDpp′ for all possible pairs
of points in the N-dimensional PCA space—e.g. 25 eigenvectors
describing 95% of the variance. We repeated this step 105 times
for each pair of simulations and obtained normal distributions
for the Mahalanobis distances among points in the trajectories,
with rather low-standard deviations. From this comparison, we
obtained the mean MDT1,T2 among whichever two trajectories.
After calculating the distance matrix among trajectories, we
performed a clustering—i.e. using a complete-link clustering
procedure—of the trajectories according to the PCA subspace
explored in each case. All the manipulation of MD data for
PCA analysis was performed with a set of ad hoc TCL and
Perl scripts, alongside with the PCAZIP package (http://mmb.
pcb.ub.es/software/pcasuite/pcasuite.html). We compressed
all the trajectories using PCAZIP, taking into consideration
only the backbone atoms of the LDL-r LA5 domain and retriev-
ing, in each case, the number of eigenvalues and eigenvectors
sufficient to describe 95% of the total variance in the system.
Using a tool from the PCAZIP package, we extracted all the me-
trics and data used in the statistical analyses in our study—e.g.
eigenvectors, projections etc. The processing of PCA data, and
all the resampling, clustering and statistical analyses were
done in the R statistical package (92) with a group of ad hoc
R scripts.
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Supplementary Material
Supplementary Material is available at HMG online.
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