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Abstract: Falls are one of the leading causes of mortality among the older population, being 

the rapid detection of a fall a key factor to mitigate its main adverse health consequences. In 

this context, several authors have conducted studies on acceleration-based fall detection using 

external accelerometers or smartphones. The published detection rates are diverse, 

sometimes close to a perfect detector. This divergence may be explained by the difficulties in 

comparing different fall detection studies in a fair play since each study uses its own dataset 

obtained under different conditions. In this regard, several datasets have been made publicly 

available recently. This paper presents a comparison, to the best of our knowledge for the first 

time, of these public fall detection datasets in order to determine whether they have an 

influence on the declared performances. Using two different detection algorithms, the study 

shows that the performances of the fall detection techniques are affected, to a greater or 

lesser extent, by the specific datasets used to validate them. We have also found large 

differences in the generalization capability of a fall detector depending on the dataset used for 

training. In fact, the performance decreases dramatically when the algorithms are tested on a 

dataset different from the one used for training. Other characteristics of the datasets like the 

number of training samples also have an influence on the performance while algorithms seem 

less sensitive to the sampling frequency or the acceleration range. 
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1- Introduction 

Fall incidents are a major public health problem among the older adults. Falls and the 

subsequent long lie period are associated with severe adverse health consequences [1-3].  The 

Centers for Disease Control and Prevention [4] quantify the direct medical cost of falls among 

older adults over US$30 billion per year in the United States. Every 17 seconds an older adult is 

treated in a hospital emergency department for injuries related to a fall [5]. In this context, 

there is a need for robust fall detectors that trigger an alert when a fall is detected [6-9]. 

Several techniques for fall detection have been investigated. Igual et al. [6] classified the 

existing fall detection studies into 2 categories: context-aware systems [10] and acceleration-

based wearable devices [11]. One of the characteristics of acceleration-based studies is that 

they report high detection rates. For example, sensitivity and specificity are reported 

respectively as 97.5% and 100% by Kangas et al. [12], 94.6% and 100% by Bourke et al. [13], 
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98.6% and 99.6% by Yuwono et al. [14]; and 100% and 100% by Abbate et al. [15]. Other fall 

detection studies provide similar performances [16,17]. It should be noted that the detection 

rates provided by all these studies are very high. However, many authors on this field have 

noticed strong difficulties when comparing different acceleration-based studies [6,18]. This is 

due to the fact that each study uses its own dataset composed of simulated falls and ADL. 

Therefore, it is not clear whether the declared results are influenced by the specific dataset 

used and it is not possible to perform a fair comparison since the datasets used to provide a 

measure of the detection performances are different in each study. 

In this regard, several authors have identified the need for having public datasets [19,20]. 

Some efforts have been performed in this direction since several datasets were made publicly 

available in the recent years: DLR [21] published in 2011, MobiFall [22] available in 2013 and 

tFall [20] uploaded in 2014 (the study of Fudickar et al. [23] cites another public dataset but it 

seems that it cannot be downloaded currently). Although these three datasets can be freely 

accessed, there is no study focused on comparing them. Therefore, some important questions 

are still without response: Can the public datasets be used indistinctly?, Are there any 

differences among them?, Is the performance of the fall detection algorithms affected by the 

specific selected dataset? 

In this regard, the general goal of this paper is to compare in a fair play the existing public 

datasets (figure 1). For that purpose, the following specific objectives are stated: 

1) To check whether or not the performance of a given algorithm depends on the selected 

dataset.  

2) To compare the generalization capability of the public datasets. Generalization capability 

refers to the ability of a system trained under some conditions to work under different 

conditions. 

3) To determine whether some of the datasets’ parameters affect the performance of the 

fall detection algorithms. 

 

Figure 1 – General schema of the study. 
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2- Materials and methods 

2.1 Datasets 

As a result of an extensive literature search, we could identify three public datasets 

presenting acceleration samples of falls and ADL: DLR [24], MobiFall [25] and tFall [26]. These 

three datasets were collected by different research institutions, each conducting the 

experiments in a particular fashion. These datasets were selected since, to the best of our 

knowledge, they are the only ones that are publicly available to the scientific community. 

2.1.1 DLR dataset 

This dataset was made publicly available by the Institute of Communications and 

Navigation of the German Aerospace Center (DLR). The dataset was collected from 16 male 

and female subjects aged between 23 and 50 and annotated manually by an observer. In total 

it contains about 4.5 hours of labeled falls and activities (table 1). Each participant performed a 

different number of ADL and falls. To capture the motion data, the Xsens MTx inertial 

measurement unit with a single tracker placed on the belt was used. The data were sampled at 

100 Hz and the measurement unit had an acceleration range of at least 7g. 

2.1.2 MobiFall dataset 

This dataset was developed by the Biomedical Informatics & eHealth Laboratory of the 

Technological Educational Institute of Crete. The MobiFall dataset contains data from 11 

volunteers: 6 males and 5 females (age range: 22 to 36). Nine participants performed falls and 

ADLs, while two performed only the falls. On the one hand, each participant performed four 

types of falls which were repeated 3 times per subject. On the other hand, nine types of ADL 

were simulated (table 1). Specifically, a Samsung Galaxy S3 device with the LSM330DLC inertial 

module (3D accelerometer and gyroscope) was used to capture the motion data. The device 

was located in a trouser pocket freely chosen by the subject in any random orientation. The 

range of the accelerometer was 2g and the data were acquired at 100 Hz. 

2.1.3 tFall dataset 

This dataset was developed by the EduQTech (Education, Quality and Technology) group 

of the University of Zaragoza. Ten people were involved in the data collection process (7 males 

and 3 females, whose ages ranged from 20 to 42). The simulation set consisted of 8 different 

types of falls (table 1). Each fall was repeated 3 times per subject. The ADL collection process 

was carried out under real-life conditions. ADL were recorded in the subjects’ real world 

environment while they performed their daily lives. Each subject was monitored during at least 

one week. Only ADL over a given threshold (1.5g) were recorded. At the end of the experience, 

an average number of about 800 records per subject (6 seconds length) were obtained. The 

data were acquired using Samsung Galaxy Mini phones at 50 Hz and with a range of 2g. In the 

fall study, participants carried a phone in both their two pockets. 
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  DLR MobiFall tFall 
Ex

p
e

ri
m

e
n

ts
 

No. subjects 16 11 10 

Device Xsens MTx Samsung Galaxy S3 Samsung Galaxy Mini 

Position Belt Pocket Pocket 

Types of falls Not specified 
Forward-lying, front-knees-

lying, sideward-lying and 
back-sitting-lying 

Forward, forward straight, 
backward, lateral left and 
right, sitting on empty air, 
syncope and forward fall 

with obstacle 

Types of ADL 

Sitting, standing, walking, 
running, jumping and 

lying 

Standing, walking, jogging, 
jumping, stairs up, stairs 

down, sitting on a chair, step 
in a car and step out a car 

Real-life activities 

Sa
m

p
le

s 

No. ADL 1077 831 7816 

No. falls 53 132 503 

Sampling 
frequency 

100 Hz 100 Hz 50 Hz 

Acc. range 7g 2g 2g 

Table 1 – Features of the public fall detection datasets. 

2.2 Fall detection algorithms used to compare the datasets 

It is clear that the comparison can depend on the algorithm. Therefore, we have selected 

two algorithms representing different approaches to fall detection. 

The first one is the well-known Support Vector Machine (SVM) classifier [27]. By means of 

the kernel trick, it maps the inputs to another space in which an optimum hyperplane is found 

separating two classes, falls and ADL in our case. After training, the classification of a new 

input relies only on a small subset of the training inputs called the support vectors. Thus, SVM 

builds a sparse model. We have selected the popular kernel based on Radial Basis Functions 

(RBF). The inputs are time windows of acceleration shape, with the peak in the middle, and 

sampled at a given frequency. Then, given two acceleration patterns      and     , the 

distance        between them is obtained as: 

                       
  

  

 
(1) 

The kernel between two inputs is the RBF: 

            
       (2) 

After sampling with period  ,    is approximated as: 

                       

 

 (3) 

On the other hand, we have also considered a novelty detector based on a nearest 

neighbor (NN) rule [28]. In this case, the system only models the normal activities, ADL. Falls 

are detected as movements that depart from the normal ones. NN is a pure data driven 
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method. Given a set of exemplars   , the training set, for a new acceleration shape a, the 

distance to the nearest neighbor is: 

       
 

        (4) 

If     is higher than a threshold, θ, the new input is considered a fall since it is very 

different from the normal movements stored in the exemplar set. 

By varying θ, the Receiver Operating Characteristic (ROC) curve is obtained. In this curve, 

we selected the point that maximized the geometric mean of the sensitivity and specificity, 

which has been chosen as the figure of merit (see section 2.5). We performed the same 

operation on SVM, but this time varying the distance to the hyperplane to draw the ROC. 

The training of the SVM was performed with the library Scikit-Learn [29]. For NN, we 

implemented our own code in Python. 

2.3 Datasets’ preprocessing 

The datasets have been preprocessed in order to feed the fall detection algorithms with 

the data in the same format: 6 s time windows, labeled as ADL or falls, with the acceleration 

peak in the middle. The peak is always higher than 1.5 g. This is the format suitable for the 

algorithms explained in section 2.2, although actually, only the central portion of width 1 s was 

used. 

The acceleration magnitude was calculated for the datasets. Then, we extracted all the 6 s 

time windows having a maximum of the acceleration magnitude in the middle. For DLR, which 

includes long timelines with several activities, the window was labeled with the activity tag 

associated to the peak. No ADL with a peak in the acceleration magnitude lower than 1.5g was 

considered for further processing. 

As a result, we obtained 1077 ADL samples and 53 fall samples for the DLR dataset; 831 

ADL samples and 132 fall samples for the MobiFall dataset and 7816 ADL samples and 503 fall 

samples for the tFall dataset. The most relevant features of each dataset are summed up in 

table 1. It is worth highlighting that both MobiFall and tFall were collected using smartphones 

while DLR was recorded with a sensor unit. Since the features of each dataset are different, to 

perform a fair comparison, a balanced comparison has been also included as explained in the 

next section. 

2.4 Dataset comparison 

In order to fulfill the objectives of the study (section 1), different experiments have been 

performed. In this section, we briefly describe them and the specific objective to which they 

relate, see table 2. 

- Goal 1: To check whether or not the performance of a given algorithm depends on the 

selected dataset. 

- Experiment 1 (section 3.1): Measurement of the algorithms’ performance when fed with 

the different datasets. For a comprehensive comparison,  two different experiments have 

been performed (table 2, experiment 1): 
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o Raw datasets (section 3.1.1): Firstly, the fall detection algorithms have been trained 

and validated using the raw datasets as they were recorded (original number of 

samples, frequency and range). 

o Tailored datasets (section 3.1.2): Secondly, for a fair comparison, the datasets have 

been tailored to compare them under the same conditions regarding the number of 

samples used for training, the sampling frequency and the acceleration range. All 

these parameters have been set to the same values (the most restrictive ones 

among all three datasets). The most restrictive numbers of ADL and fall samples 

used for training are determined by the MobiFall and DLR datasets, respectively. 

The tFall dataset was recorded at the lowest frequency (50 Hz). Thus, DLR and 

MobiFall were sub-sampled to have also the data at 50 Hz. Additionally, the 

minimum range (2g) is given by both tFall and MobiFall. Therefore, the DLR dataset, 

originally at 7g, was saturated to this value. 

- Goal 2: To compare the generalization capability of the public datasets. 

- Experiment 2 (section 3.2): The algorithms have been tested with a particular dataset and 

trained with the other two, in two separate processes. In this way, we can examine the 

generalization capability of the datasets used for training. As in the previous case, two 

comparisons have been performed (table 2, experiment 2): 

o Raw datasets (section 3.2.1): The datasets used for training and validation were the 

original ones. 

o Tailored datasets (section 3.2.2): The number of samples used for training, the 

frequency and the range of the datasets have been set to the values of those 

parameters in the most restrictive datasets (similar to the tailored comparison in 

experiment 1). 

- Goal 3: To determine whether the datasets’ parameters affect the performance of the fall 

detection algorithms. 

- Experiments 3 (section 3.3): Several experiments have been conducted (table 2, 

experiment 3) to quantify the effect of varying the sampling frequency (section 3.3.1), the 

acceleration range (section 3.3.2) and the number of samples used for training (section 

3.3.3): 

o Sampling frequency (section 3.3.1): The effect on the performance of using a dataset 

sampled at 100 Hz or 50 Hz has been measured. Both DLR and MobiFall datasets 

have been used in the experiment since they were recorded at 100 Hz. These 

datasets were sub-sampled to have also the data at 50 Hz. Then, the algorithms were 

trained and validated with both sets and the results compared. 

The effect on tFall dataset could not be measured since this dataset was originally 

recorded at 50 Hz, which is even below the minimum recommended by some 

authors [30]. 

o Acceleration range (section 3.3.2): The effect on the performance of using a dataset 

acquired with an accelerometer with range of 7g has been compared with the same 

dataset saturated at 2g. The DLR dataset has been selected since its range covers the 

extension of the study. tFall and MobiFall datasets could not be evaluated since their 

records were originally acquired at 2g. 
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o Number of training samples (section 3.3.3): The effect on the performance of the 

algorithms when varying the number of ADL samples used for training (from 50 to 

1450) has been quantified. A similar experiment has been performed by varying the 

number of falls used for training (between 50 and 300 samples). In this last case, only 

the SVM algorithm was used since the semisupervised NN method does not use falls 

for training. This experiment has been performed using tFall since it is the only 

dataset that has a number of records high enough to perform both comparisons. 

Exp. 
No.* 

Experiment description Train Validation 

1 

Effect of the 
datasets on 
algorithms’ 
performance 
(section 3.1) 

Raw datasets 
(section 3.1.1) 

Raw DLR Raw DLR 

Raw MobiFall Raw MobiFall 

Raw tFall Raw tFall 

Tailored datasets  
(section 3.1.2) 

Tailored DLR Tailored DLR 

Tailored MobiFall Tailored MobiFall 

Tailored tFall Tailored tFall 

2 

Dataset 
generalization 
capability 
(section 3.2) 

Raw datasets 
(section 3.2.1) 

Raw DLR 
Raw tFall 

Raw MobiFall 

Raw DLR 
Raw MobiFall 

Raw tFall 

Raw MobiFall 
Raw DLR 

Raw tFall 

Tailored datasets 
(section 3.2.1) 

Tailored DLR 
Tailored tFall 

Tailored MobiFall 

Tailored DLR 
Tailored MobiFall 

Tailored tFall 

Tailored MobiFall 
Tailored DLR 

Tailored tFall 

3 

Effect of 
dataset 
parameters 
on algorithms’ 
performance 
(section 3.3) 

Sampling 
frequency 
(section 
3.3.1) 

DLR 
DLR sampled at 100 
Hz 

DLR sampled at 100 
Hz 

DLR sampled at 50 Hz DLR sampled at 50 Hz 

MobiFall 

MobiFall sampled at 
100 Hz 

MobiFall sampled at 
100 Hz 

MobiFall sampled at 
50 Hz 

MobiFall sampled at 
50 Hz 

Acceleration Range 
(section 3.3.2) 

DLR with maximum 
acc 2g 

DLR with maximum 
acc 2g 

DLR with maximum 
acc 7g 

DLR with maximum 
acc 7g 

No. 
training 
samples 
(section 
3.3.3) 

Training 
ADL 
variation 

tFall varying the no. 
of ADL 

Remaining falls and 
ADL in tFall 

Training 
falls 
variation 

tFall varying the no. 
of falls  

Remaining falls and 
ADL in tFall  

* Number of the experiment 

Table 2 – Dataset comparison 
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2.5 Figure of merit for the comparison 

 As the figure of merit to measure the performances of the algorithms, we have used the 

geometric mean of the sensitivity (SE) and the specificity (SP), which is calculated with the 

formula 5. For a perfect detector the geometric mean has a value of 1.  

       (5) 

 This figure of merit is independent of the size of the datasets. This is a convenient 

property since the ADL and fall sets are clearly unbalanced. In all the experiments, 5 cross-

validation has been used when obtaining the algorithm performances, therefore, getting the 

mean and the associated standard deviation. 

 For testing the statistical significance of the difference in performance between two 

different situations, we have estimated a p-value using a one-side t-test for independent 

samples (section 3.1) and dependent samples (section 3.2). For the particular case of 

determining the relation between the performance and the number of training samples 

(section 3.3.3), we have fitted different kinds of functions to the experimental data, obtaining 

an estimation of the parameters and their standard deviations. All these calculations have 

been done using the Scipy package for Python [31].    

3- Results 

3.1 Effect of different datasets on the performance 

This section presents the results of comparing the performances of the algorithms when 

fed with the different datasets.  

3.1.1 Raw datasets 

Table 3 presents the geometric means associated with both NN and SVM algorithms when 

using the raw datasets. Table 4 shows the p-values when comparing the geometric means of 

the different datasets for the same algorithms. 

At the view of these tables, it is possible to appreciate that the SVM fall detector provides 

similar results for the three datasets, the differences not being statistically significant. 

However, the NN fall detector presents better performance when tested with the tFall or 

MobiFall datasets, while the results provided when tested with the DLR decrease the 

performance by 6.3% and 6.8% respectively. As shown in table 4, this difference is statistically 

significant (p-value is lower than 0.01). 

 
NN SVM  

 
GM Std GM Std 

DLR 0.8925 0.0279 0.9777 0.0263 

MobiFall 0.9576 0.0205 0.9841 0.0206 

tFall 0.9528 0.0130 0.9715 0.0113 

Table 3 – Geometric means and associated standard deviations obtained when training and validating 
the algorithms using the raw datasets. 
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  MobiFall-tFall DLR-tFall DLR-MobiFall 

NN 0.3375 0.0027 0.0018 

SVM 0.1384 0.3229 0.3425 

    
 

Table 4 – p-values for the comparisons of the performances of the raw datasets by pairs in both NN and 
SVM. 

3.1.2 Tailored datasets 

When both NN and SMV algorithms are fed with the tailored datasets (equal number of 

training samples, frequency and range), their performances (table 5) are not as homogeneous 

as in the previous case. On the one hand, the NN algorithm presents a statistically significant 

variation in the performance when the DLR dataset is used (table 6). In this case, the 

performance of the algorithm decreases. Meanwhile, the results provide by tFall and MobiFall 

do not present remarkable differences. 

On the other hand, the performance of the SVM algorithm presents statically significant 

differences when the tFall dataset is used (p-value lower than 0.05 as shown in table 6). The 

performance decreases by 2.91 % on average, while MobiFall and DLR do not present 

considerable variations.  

 
NN SVM 

 
GM Std GM Std 

DLR 0.8957 0.0362 0.9772 0.0270 

MobiFall 0.9555 0.0198 0.9705 0.0213 

tFall 0.9462 0.0155 0.9455 0.0172 

Table 5 – Geometric means and associated standard deviations obtained when training and validating 
the algorithms using the tailored datasets. 

  MobiFall-tFall DLR-tFall DLR-MobiFall 

NN 0.2170 0.0159 0.0084 

SVM 0.0388 0.0315 0.3359 

    
 

Table 6 – p-values for the comparisons of the performances of the tailored datasets in both NN and SVM. 

3.2 Comparison of the generalization capability 

This section presents the results of comparing the generalization capability of the datasets. 

In this regard, the algorithms are validated with a specific dataset and trained with the other 

two in separate processes. Section 3.2.1 presents the algorithms’ performance when raw 

datasets are used, while in section 3.2.2 the algorithms are trained and validated with tailored 

datasets. 

3.2.1 Raw datasets 

The performances of the algorithms using the raw datasets are shown in table 7, while the 

p-values associated with the comparisons are represented in table 8. In this case, the 

performances present great variations depending on the training and validation datasets. 

When the NN or SVM fall detectors are trained with tFall and DLR datasets and validated 

with MobiFall, it is possible to appreciate that the tFall-trained algorithm presents better 



10 
 

generalization capability since it clearly outperforms the DLR-based one. Similarly, when both 

tFall and MobiFall are used for training and DLR is used for validating, the tFall-trained 

algorithms present better performance than the MobiFall ones. The differences in both cases 

are statistically significant since the corresponding p –values remain low (less than 0.01). 

When tFall is used for validation and the NN and SVM algorithms are trained with both 

MobiFall and DLR, the MobiFall-based detector generalizes better for the SVM algorithm and 

the reverse situation occurs when the NN performance is examined. Both results are 

statistically significant according to their corresponding p-values (table 8). 

We can see that in all cases the performance provided by the tFall-trained algorithm 

clearly outperforms the rest of the results. 

Additionally, the performances of the MobiFall-trained algorithms validated with the tFall 

dataset are lower than those obtained when validating them with the DLR dataset. The same 

happens with the DLR-trained algorithms: the validation with tFall always presents worse 

performance. This is a symptom that tFall is a harder dataset to generalize on. 

  
NN SVM  

Validation Train GM Std GM Std 

DLR 
tFall 0.8435 0.0129 0.8566 0.0142 

MobiFall 0.7791 0.0134 0.6557 0.0560 

MobiFall 
tFall 0.8135 0.0307 0.8902 0.0147 

DLR 0.7746 0.0259 0.4502 0.1870 

tFall 
MobiFall 0.6367 0.0126 0.6132 0.0212 

DLR 0.6774 0.0075 0.3968 0.0512 

Table 7 – Geometric means and their standard deviations when validating using a raw dataset different 
from the one used for training.  

Validation Train NN p-value SVM p-value 

DLR tFall - MobiFall 0.0006 0.0004 

MobiFall DLR-tFall 0.0002 0.0036 

tFall MobiFall-DLR 0.0045 0.0006 

Table 8 – p-values for the comparisons of the performances of the raw datasets in both NN and SVM, 
when measuring the generalization capability. 

3.2.2 Tailored datasets 

When tailored datasets are used to train the algorithm, the generalization capability of the 

different datasets (table 9) shows a trend similar to that of the previous section. When DLR is 

used for validation and tFall and MobiFall for training, the tFall dataset provides better 

generalization capability. Similarly, this dataset also generalize better than DLR when the 

algorithms are validated on MobiFall. The statistical analysis shows that the results are 

significant (table 10). 

In fact, all comparisons performed are statistically significant (p-values much lower than 

0.01). Therefore, the results present great variations depending on the datasets used for 

training and validation. 
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NN SVM  

Validation Train GM Std GM Std 

DLR 
tFall 0.8373 0.0124 0.8598 0.0168 

MobiFall 0.7112 0.0411 0.6963 0.0770 

MobiFall 
tFall 0.8132 0.0329 0.8525 0.0222 

DLR 0.7779 0.0241 0.4753 0.1857 

tFall 
MobiFall 0.6373 0.0103 0.5917 0.0247 

DLR 0.6747 0.0110 0.3973 0.0779 

Table 9 – Geometric means and their standard deviations when validating using a tailored dataset 
different from the one used for training.  

Validation Train NN p-value SVM p-value 

DLR tFall - MobiFall 0.0018 0.0039 

MobiFall DLR-tFall 0.0007 0.0065 

tFall MobiFall-DLR 0.0002 0.0007 

Table 10 – p-values for the comparisons of the performances of the tailored datasets in both NN and 
SVM, when measuring the generalization capability. 

        3.3 Effect of datasets’ parameters on the performance 

This section presents the effect on the algorithms’ performance of varying the sampling 

frequency, the acceleration range and the number of samples used for training. 

 3.3.1 Sampling frequency 

The results of training and validating the algorithms using datasets with different sampling 

frequencies are shown in table 11, while the p-values of the comparisons are presented in 

table 12. No statistically significant differences are observed between the performance at 50 

Hz or at 100 Hz for neither DLR nor MobiFall since their geometric means range in the same 

intervals (table 12). In this case, having data samples at 50 Hz does not have an influence on 

the performance. 

 
DLR MobiFall  

 
NN SVM  NN SVM 

 
GM Std GM Std GM Std GM Std 

50 Hz 0.8925 0.0279 0.9777 0.0263 0.9576 0.0205 0.9841 0.0206 

100 Hz 0.8910 0.0271 0.9652 0.0258 0.9580 0.0198 0.9854 0.0192 

Table 11 – Geometric means and their standard deviations when using the same datasets sampled at 
two different frequencies. 

 
NN SVM 

DLR p-valor 0.2580 0.1121 

MobiFall p-valor 0.2925 0.0910 

Table 12 – p-values for the comparison of the performances of both NN and SVM algorithms, when using 
the same datasets sampled at 100 Hz and at 50 Hz. 
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3.3.2 Accelerometer range 

Table 13 represents the performances of the algorithms when using different acceleration 

ranges (2g and 7g) in the DLR dataset. It can be observed that the NN algorithm provides 

better performance for the wider range. The difference, although moderate, is statistically 

significant (p-value lower than 0.05). 

On the other hand, there is no statistically significant difference between the 

performance of the SVM algorithms with 2g and 7g ranges (table 14). 

 
NN SVM  

 
GM Std GM Std 

2g 0.8824 0.0365 0.9784 0.0233 

7g 0.8925 0.0279 0.9777 0.0263 

Table 13 – Geometric means and their standard deviations when using the DLR dataset saturated at two 
different maximum acceleration ranges. 

 
NN SVM 

p-valor 0.0380 0.3716 

Table 14 – p-values for the comparison of the performances of the DLR dataset with acceleration ranges 
of 2g and 7g in both NN and SVM. 

3.3.3 Number of samples 

When increasing the number of samples used for training in the tFall dataset, the 

performance of the algorithms improves. Figures 2 and 3 represent the effect on the 

performance of increasing the number of ADL samples for both algorithms NN and SVM, 

respectively. The performance shows an initial increase but saturates at some point. 

Therefore, the results have been fitted to an exponential function (equation 6). From table 15, 

we can see that both b and c parameters of the fitted exponential function are clearly positive, 

which indicates the growing trend. Thus, it is possible to state that the performance of the 

algorithms increases up to a point when more ADL are used for training.  

        
  
   (6) 

 

 a b c 
Mean Std Mean Std Mean Std 

NN 0.9080 0.0041 0.0405 0.0039 156.5833 24.2746 
SVM 0.9348 0.0034 0.0327 0.0033 110.4792 15.9995 

Table 15 – Values of the parameters of the exponential functions (formula 6, figures 2 and 3), which has 
been fitted to the performance values of both NN and SVM. 
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Figure 2 – Performance of the NN algorithm (solid line) trained with different number of ADL samples. 
The dashed line represents the exponential function to which the performance values have been fitted. 

 

Figure 3 – Performance of the SVM algorithm (solid line) trained with different number of ADL samples. 
The dashed line represents the exponential function to which the performance values have been fitted. 

Additionally, when the SVM algorithm is trained using a different number of fall samples 

in the tFall dataset, we can see in figure 4 that the performance follows a growing trend. In this 

case, the performance values do not show any sign of saturation, so they have been fitted to a 

linear function (dashed line of figure 4). The values of the parameters of this function are 

presented in table 16, clearly showing that the algorithm performance improves when the 

number of training samples increases, roughly 1 % per 100 samples.  
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Figure 4 – Performance of the SVM algorithm (solid line) trained with different number of fall samples. 
The dashed line represents the linear function to which the performance values have been adjusted. 

 a (slope) b  
Mean Std Mean Std 

SVM 9.99e-05 9.40e-06 0.9414 0.0018 

Table 16 – Values of the parameters of the linear function (    ), represented in figure 4, which have 
been fitted to the performance values of the SVM algorithm. 

4- Discussion 

In this study, we have compared different public datasets containing fall and ADL records, 

which was one of the remaining research efforts in the field of fall detection. 

It has been shown in section 3.1 that the dataset used for checking an algorithm has some 

influence on the performance. This is clearer for NN, while for SVM this trend is mild, and with 

p-values never less than 0.03. NN is a pure data driven method, which does not rely on any 

internal parameters or assumption about distributions. Thus, it seems reasonable that the 

results depend strongly on the dataset. 

It could be thought that the datasets are equivalent since the performance of SVM is very 

similar using any of them. However the results of section 3.2.1 indicate that this is not true. 

tFall generalizes far better than the other two. The datasets are different in terms of 

accelerometer characteristics, number of records, kinds of movements represented and 

placement of the device. The only a priori advantage of tFall with respect to both, DLR and 

MobiFall, is the number of samples. However, in section 3.2.2 we obtain the same conclusion 

when the datasets are tailored. In this case, one of the main effects that could remain is the 

variety of movements. It is likely that tFall includes many different types of ADL and falls. Eight 

types of falls are simulated in tFall, four types in MobiFall, while in DLR they are not specified. 

Besides, tFall includes ADL from real-life, recorded while people wear a smartphone. In this 

situation, there are many more kinds of movements that cannot be thought in a laboratory 

environment, like using the phone to call, take off the trousers, etc. When MobiFall is used for 
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validation, training with tFall has also some advantage compared with DLR, since tFall and 

MobiFall registered movements with the sensor in the pocket. However, this fact cannot 

explain the difference between tFall and MobiFall when testing on DLR. 

It should also be noted that table 9 could also have been arranged by merging the two 

rows with the same training set and two different validation sets. Then, it would have become 

more apparent than tFall is the hardest dataset to generalize on. For instance, when training 

with MobiFall and testing with DLR the performance is 0.696, while it decreases to 0.592 when 

testing on tFall. This result is the contrary to what could be expected from sensor placement 

(the same in the pair MobiFall-tFall, different in the pair MobiFall-DLR). However, it could also 

be explained by the fact that tFall has a large variety of movements acquired in a real 

environment. Bagalà et al. [19] also pointed out a decrease in performance when testing 

algorithms in real circumstances. 

It is also worth highlighting the decrease in performance when a system is trained with a 

dataset and tested with a different dataset, as can be observed by comparing any of the tables 

in section 3.1 with those of section 3.2. Public datasets are an important step towards allowing 

the comparison and reproduction of studies on fall detection. However our results rise the 

question of whether it would be recommendable to train a fall detector for real use using 

these datasets, since the performance gets worse when generalizing to new acceleration 

patterns. This could lead to a dramatic decrease in performance when using the detectors in a 

real-world context, resulting in the rejection of the technology by its potential users. The 

personalization and adaptation of the system are key aspect to overcome this problem [20]. 

Regarding the influence of the accelerometer range, we have seen no clear difference 

between 7g and 2g in DLR. This contrast with previous studies [30,32] that recommend ranges 

above 2g. This can be due to the algorithms used. For threshold-based algorithms, the value at 

some particular point (peak, valley) is crucial for the classification. In the current study, the 

results rely on an integral measure, which does not depend so much on the value at a 

particular time. 

A similar result has been found for the influence of the frequency, since sampling at 100 

Hz is not better than sampling at 50 Hz. In most previous studies the sampling frequency is 

higher than 50 Hz [8]. Again this can depend on the algorithm, since the NN and SVM 

algorithms that we have presented use the raw acceleration values without performing any 

kind of filtering operations, in contrast with many previous works [13,32]. 

In the dataset with a higher number of records, tFall, we have seen the influence of the 

number of training records. Regarding the number of ADL,     , a saturation effect is 

observed and a 95% of the maximum performance is reached                   when 

         for NN or          for SVM. These values give a clue of the reasonable 

number of ADL needed, provided a variety of movements is represented.      is higher for 

NN, a result that is expected since NN is based on a set of exemplars. With respect to the 

number of falls, we have not seen any saturation effect even for          . Thus, it seems 

that the number of falls included in the dataset is still insufficient to train the detector, even 

though most published works include far less falls. 
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5- Conclusion 

The main contribution of this paper is the comparison and analysis of several datasets 

used in fall detection research. We have used two different classification algorithms and tested 

the datasets either with raw values or with tailored values in order to bring them to a baseline 

of similar conditions (accelerometer range, sampling frequency and number of records). As an 

overall conclusion of the paper, we recommend to test the algorithms using several datasets, 

since the results obtained with them are dissimilar and they seem to represent different kinds 

of movements. At best, algorithms should be trained with a dataset and validated with 

another to minimize the influence of the dataset on the results. This study has shown that in 

such situations the performances decrease considerably, which is an important point since this 

scenario is more representative of the real-world operation of the detectors. Among all the 

datasets analyzed, tFall is the one that generalizes better, including more records and types of 

falls. Nevertheless, datasets should include much more fall samples while the number of ADL 

included are enough. Recording movements from real life seems to be more suitable than 

recording them in the laboratory. Moreover, it would be good to have a dataset with 

movements of older people, the main target of fall detection systems. To the best of our 

knowledge, there is no acceleration dataset containing real data from older people that is 

publicly available to the scientific community. Forming this dataset is hard for falls, since it 

would require many volunteers for long periods to increase the probability of getting a real 

fall, but it is more feasible for ADL. Recording real data from a variety of sources will allow 

obtaining more realistic fall detection performances. 
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