

Trabajo Fin de Grado

Sistema de integración de eventos sobre tecnología

en Zaragoza

Autor

Andrés Julián López

Director

Francisco Javier Zarazaga Soria

Escuela de Ingeniería y Arquitectura

2015

1

Sistema de integración de eventos sobre tecnología en

Zaragoza

Resumen

El presente proyecto tiene como objetivo ofrecer un punto de encuentro en el que

acceder a toda la información acerca de eventos sobre tecnología en la ciudad de

Zaragoza. Para conseguir este objetivo, es necesario poder recopilar información de

fuentes de datos externas. Estas fuentes de datos son las webs de aquellas entidades

que organizan eventos tecnológicos en Zaragoza. Algunas entidades ofrecen muchas

facilidades para que podamos obtener cierta información estructurada de su web

como es el caso del Ayuntamiento de Zaragoza que ofrece una API para tal fin. Y otras

no ofrecen tantas facilidades y es necesario recurrir a técnicas como el web-scraping

desde una página web más o menos estructurada para extraer información de dichos

eventos.

Otro aspecto a tener en cuenta es que resulta inviable tomar en consideración a todas

las entidades que organizan eventos en Zaragoza, y es por ello, que se ofrecerá

también una vía para permitir que terceros nos den a conocer sus eventos. Para ello,

se ha especificado un sencillo protocolo de comunicación que utiliza la popular red de

microblogging Twitter como canal. Mediante este protocolo, cualquier tercero, ya sea

humano o máquina, será capaz de hacernos llegar eventos que de otra manera

pasarían desapercibidos para nuestro sistema. Con esta aproximación, se consigue que

esta plataforma no se encuentre cerrada a unos pocos organizadores, sino que

cualquiera pueda publicar aquí sus eventos.

Finalmente, y no por ello menos importante, se ofrece al público una interfaz web en

la que cualquiera pueda tener al alcance del ratón una visión rápida sobre los eventos

que tienen lugar en Zaragoza en las próximas fechas. Esta interfaz esta accesible a

través de la URL http://ztic.unizar.es

http://ztic.unizar.es/

2

Índice

0. Resumen ejecutivo ... 4

1. Contexto del TFG .. 5

2. Motivación y objetivos ... 6

3. Trabajo desarrollado... 7

3.1. Análisis de las fuentes de información. ... 7

3.1.1. Ayuntamiento de Zaragoza ... 7

3.1.2. Betabeers .. 7

3.1.3. Twitter ... 7

3.2. Diseño e implementación de la estructura de datos de eventos 8

3.2.1. Tabla evento .. 8

3.2.2. Tabla organizador .. 9

3.3. Desarrollo del crawler de datos. .. 9

3.3.1. Extraction .. 9

3.3.2. Transformation .. 11

3.3.3. Load ... 13

3.4. Desarrollo de la interfaz de visualización de eventos. .. 14

3.4.1. Estructura de la web ... 14

3.4.2. Componentes de Symfony .. 16

3.5. Despliegue de la aplicación .. 17

3.5.1. Hardware y Sistema Operativo ... 17

3.5.2. Servidor Web ... 17

3.5.3. Ejecución automática .. 17

3.5.4. Debugging y logs ... 18

4. Tecnologías utilizadas ... 19

4.1. Apache2 ... 19

4.2. Symfony2 ... 19

4.3. Scrapy ... 20

4.4. MySQL .. 20

4.5. Twitter .. 21

5.- Lecciones aprendidas y conclusiones .. 22

3

6.- Estructura de los anexos ... 23

7.- Bibliografía ... 24

Anexo I. Publicación de eventos en Twitter ... 25

Datos necesarios ... 25

Formato del tweet .. 25

Ejemplo de tweet .. 25

Anexo II. Tutorial para la creación de un nuevo crawler de datos 26

Anexo III. Diagrama de componentes .. 30

Anexo IV. Ejemplo de formato de la web ... 31

Anexo V. Manual de uso de la web .. 32

4

0. Resumen ejecutivo
Desde hace un par de años en la ciudad de Zaragoza se vienen organizando múltiples

eventos relacionados con las Tecnologías de la Información y las Comunicaciones

(Betabeers, etopia, Cachirulo Valley, Agile Aragón, ...). Cada uno de ellos cuenta con su

propio canal de comunicación para informar a los interesados en participar (páginas

web propias, cuentas de Twitter, etc). El objetivo de este Trabajo Final de Grado es

desarrollar un punto de encuentro que posibilite un canal unificado de comunicación

no invasivo sobre los sistemas que actualmente hay en marcha.

Para ello, es preciso recopilar información sobre dichos eventos tomándola

directamente desde sus fuentes de origen o mediante intermediarios. Estos

intermediarios son agentes ajenos a los organizadores del evento, pero que publican

información sobre dicho evento.

Una vez recopiladas las fuentes de nuestros eventos, tenemos que adaptar y

transformar esa información en bruto recibida. El objetivo es ofrecer un modelo de

datos común a todos los eventos recopilados independientemente del origen que

éstos tengan.

Finalmente, hay que ofrecer a los usuarios una interfaz sencilla de consulta en la que

consultar los eventos próximos que sucedan en la ciudad de Zaragoza. Esta interfaz

esta accesible a través de la URL http://ztic.unizar.es

http://ztic.unizar.es/

5

1. Contexto del TFG
En la ciudad de Zaragoza, así como en otras ciudades, se ha detectado un interés

creciente por las nuevas tecnologías. Este interés ha hecho que surjan multitud de

eventos relacionados e integrados en el ámbito de las conocidas como TIC (Tecnologías

de la Información y la Comunicación).

Estos eventos se suelen organizar desde entidades independientes tales como

asociaciones culturales, empresas, comunidades de desarrolladores, entidades

públicas (ayuntamiento, casas de juventud, …). Cada una de estas entidades tiene su

propio medio de difusión de actividades y eventos. En el contexto actual, no existe una

plataforma común en la que se agrupen estos eventos que comparten una temática

más o menos relacionada.

No obstante si hay algo que tienen en común: el medio de difusión, aunque no el

canal. Todos estos eventos se encuentran publicados en internet, “si no, no existen”.

Cada uno de los organizadores de estos eventos, tiene su propia forma de publicar sus

eventos. La forma de comunicación de eventos por cada organizador es

completamente distinta. Desde la utilización de modelos de datos estructurados,

proporcionando incluso una API, hasta la publicación de eventos a través de entradas

nuevas en una web, o incluso, mediante tweets.

6

2. Motivación y objetivos
Este proyecto tiene como objetivo ofrecer un punto de acceso en la Web en la que

poder conocer todos los eventos de tecnología que suceden en Zaragoza. Para ello, el

sistema debe de ser capaz de recopilar información de diversas fuentes y unificarla de

forma sencilla para el usuario.

Para ello hay que realizar un estudio previo sobre cuáles son los principales

organizadores de eventos de Zaragoza. Posteriormente, se deben seleccionar aquellos

que aporten más eventos y que a su vez sean muy relevantes. Una vez seleccionadas

todas las fuentes, hay que hacer una segunda selección sobre aquellas fuentes que

ofrezcan a través de internet y públicamente información periódica y fidedigna acerca

de sus eventos (hay algunos casos en los que no se lleva a cabo el mantenimiento de

esta información que generalmente se encuentra desactualizada).

Una vez seleccionadas las fuentes, el siguiente paso es analizar la forma en que está

estructurada la información de cada una de ellas. Hay que estudiar qué datos ofrecen

acerca de los eventos, cuáles de ellos nos van a resultar interesantes y cuáles no. De

este modo, construimos nuestro modelo de datos para conseguir formar uno que

aporte el nivel de información suficiente a los usuarios acerca de los eventos.

Una parte importante de este proyecto consiste en otorgar la mayor independencia

posible a todos los componentes por los que estará formado este proyecto.

Básicamente, consta de tres componentes principales:

 Procesos ETL (Extract-Transform-Load): Es el encargado de obtener la

información, transformarla y adaptarla para posteriormente almacenarla.

 Proceso storage: Es el proceso de almacenar localmente la información para

que esté siempre disponible, y para poder recuperar eventos pasados.

 Proceso view: Es el proceso encargado de mostrar a los usuarios los datos

contenidos en el storage de forma que les resulten útiles.

La decisión de separar los tres modelos, tiene la finalidad de proporcionar una fácil

escalabilidad del sistema en un futuro. De este modo será posible cambiar cualquiera

de los tres elementos sin que los otros se vean afectados. Se consigue que así sea

posible añadir nuevas fuentes de datos sin necesidad de correcciones ni adaptaciones

en el resto de los componentes. También es posible de este modo cambiar la

presentación al usuario o incluso, presentar la información de varias formas, como por

ejemplo mediante web o mediante una API pública.

7

3. Trabajo desarrollado

3.1. Análisis de las fuentes de información.

La primera labor para realizar un trabajo de estas características, consiste en recopilar

información acerca de publicadores de eventos sobre los que se puedan recolectar

datos sobre eventos. De esta forma vamos analizando qué sitios en Zaragoza pueden

resultarnos interesantes para recoger eventos.

Tras una serie de reuniones con profesores y alumnos del Grado en Ingeniería en

Informática, y el acceso a algunas otras entidades a través del Director de este TFG, se

establecieron las dos entidades que se consideraban representativas para formar parte

de este proyecto:

3.1.1. Ayuntamiento de Zaragoza

El Ayuntamiento de Zaragoza ofrece en su web información sobre muchos de los

eventos que se organizan en la ciudad. Además ofrece gratuitamente un API muy

completa en la que publican información sobre la ciudad. Esta API forma parte del

proyecto de Datos Abiertos del Ayuntamiento de Zaragoza y ofrece datos como la de

todo tipo como: datos climáticos, sobre contaminación, taxis libres en la ciudad, etc. y

entre ellos la agenda, que es el que nos interesa para este caso.

Además, se permitiría que los organizadores de eventos que no tuvieran página web

publicada, pudieran tener algún método para hacernos saber sus eventos.

3.1.2. Betabeers

Como dice su propia web, "Betabeers es una comunidad de desarrolladores que

organizan encuentros mensuales para compartir conocimientos sobre tecnología y

Startups". En Zaragoza organizan eventos mensualmente. En su propia web ofrecen un

listado de todos los eventos que organizan. Incluso los que se encuentran organizados

por ciudades. Para cada evento nos muestra el título, la fecha y horarios en el que se

organizará, la dirección en la que tendrá lugar y una descripción sobre la temática del

mismo. Ofrecen un esquema de información fijo y repetitivo.

3.1.3. Twitter

Adicionalmente a estas dos entidades, se ha identificado que Twitter se usa

habitualmente por muchas personas para comunicar información sobre actividades y

eventos. La popular plataforma de microblogging ofrece muchas posibilidades, a la

hora de intercambiar información de forma sencilla. La idea es aprovechar la potencia

de esta plataforma para que los organizadores de eventos que quieran que un nuevo

evento que organizan aparezca reflejado en esta plataforma puedan hacerlo de una

forma sencilla. De este modo podemos conseguir que eventos que de otra forma no se

podrían capturar, tengan una forma sencilla de informarnos sobre eventos y que se

encuentren publicados aquí.

8

3.2. Diseño e implementación de la estructura de datos de eventos

La base de datos que recopila los eventos tiene una estructura muy básica. Consta de

dos tablas llamadas evento y organizador donde se guarda la información sobre los

eventos y los organizadores de eventos respectivamente. Todos los campos, a

excepción de las claves primarias, son no obligatorios. Esto es así, porque al tratarse de

información obtenida de fuentes distintas, es imposible exigir que todos los campos

sean obligatorios para todos los eventos.

EL siguiente esquema muestra el diagrama Entidad-Relación de la Base de Datos.

FIGURA 1: ESQUEMA ENTIDAD-RELACIÓN DE LA BASE DE DATOS

A continuación, se explican los campos de las dos tablas:

3.2.1. Tabla evento

 titulo. Es el título administrativo y clave primaria y guarda el título del evento

recogido de la web. Aunque en otros contextos, no sería el campo más indicado

para utilizar como clave, aquí es la mejor forma que tenemos de identificar

unívocamente un evento y que además no se repita.

 tituloVisible. Es el título no administrativo, que aunque a priori es igual que el

título, permite a los administradores de la web corregir o modificar el título del

evento que será visible en la web, sin que esto afecte al comportamiento que

tiene la clave primaria de título.

 fecha. Indica la fecha en la que tendrá lugar el evento, o en caso de ser un

evento que dura varios días, la fecha de inicio.

 fechaFin. Es la fecha en la que finaliza el evento, en caso de eventos de varios

días.

 horaInicio. La hora a la que dará comienzo el evento.

 horaFin. La hora en la que está prevista la finalización del evento.

 link. Enlace a alguna web que contenga información más detallada sobre el

evento.

 direccion. La dirección en la que tendrá lugar el evento.

9

 organizador. Referencia a la otra tabla que contiene información sobre el

organizador del evento.

3.2.2. Tabla organizador

 nombre. Nombre del organizador y clave primaria de la tabla.

 url. Contiene un link a la web de la entidad, organismo, asociación, … que

organiza el evento.

 nombreVisible. Nombre a mostrar en la web del organizador del evento. Sigue

los mismos principios que tituloVisible de la tabla evento, solo que aquí

además, permite cambiar el nombre de un organizador permitiendo que los

eventos pasados y futuros capturados mantengan la asociación con el mismo

organizador.

3.3. Desarrollo del crawler de datos.

Para conseguir extraer información de sitios web necesitaremos utilizar lo que se

conoce como crawler. Un crawler o araña web es un software encargado de recorrer

de manera automática páginas web para obtener información o mantener una copia

de los datos de la web1. En este caso tendremos que obtener información sobre

eventos de tecnología de Zaragoza. Es la parte del sistema que se encarga de realizar el

proceso ETL. A continuación, se detalla cada parte del proceso ETL.

3.3.1. Extraction

Es el proceso que consiste en obtener información desde Internet. Para ello hay que

filtrar para reducir al máximo el número de peticiones.

Ayuntamiento de Zaragoza

El Ayuntamiento de Zaragoza ofrece información acerca de eventos que tienen lugar

en Zaragoza. Estos eventos, se encuentran publicados a través de sus web, sobre la

que podríamos utilizar la misma técnica que la empleada para Betabeers. Pero al

Ayuntamiento de Zaragoza ofrece también una API pública en la que se pueden

consultar, a parte de otros datos sobre la ciudad, la información sobre los eventos.

Ofrecen los datos en distintos formatos, entre ellos JSON, que ha sido elegido para

este proyecto por su sencillez y reducida verbosidad.

Realizando una consulta sobre la API nos devuelve todos los eventos de la ciudad de

Zaragoza, ya sean futuros, actuales o pasados. Esta consulta, se puede parametrizar, se

pueden realizar filtros, se puede especificar el formato de salida de los datos, y se

puede limitar el número de eventos que se listan. Hay que parametrizar la consulta

para conseguir que liste todos los eventos, porque sin parámetros solo lista 50

eventos.

1
 https://es.wikipedia.org/wiki/Ara%C3%B1a_web

https://es.wikipedia.org/wiki/Ara%C3%B1a_web

10

Betabeers

Para obtener información de Betabeers se ha aprovechado su página oficial

(http://betabeers.com). En su web tienen una sección donde se listan los eventos de

Betabeers en cada ciudad. En el apartado de Zaragoza se listan todos los eventos que

se celebran en esta ciudad. El listado de eventos se encuentra paginado, por lo que es

necesario pasar páginas para poder listar todos los eventos.

Para poder listar todos los eventos es preciso recorrer todas las páginas del apartado

eventos de Zaragoza. Para conseguirlo, se utiliza un mecanismo de screen scrapping2

que permite recorrer todos los links de la web que hagan matching con una expresión

regular. Además tiene en cuenta las páginas ya visitadas para no volver a pasar por una

página ya analizada. De esta forma, conseguimos que, al pasar a la segunda página del

listado, no siga el link que vuelve a la primera página.

Twitter

Los dos rastreadores anteriores sirven como punto de partida para permitir que el

sistema continúe creciendo. Pero por muchas webs que podamos rastrear, nuestro

sistema siempre estará incompleto. Siempre existirá una web que no hayamos tenido

en cuenta, o un eorganizador que no tenga un sitio web. Para ello, se ha creído

conveniente desarrollar un mecanismo para permitir que terceros (humanos o

máquinas) sean capaces de hacernos saber sus eventos.

Para ello se ha especificado un sencillo protocolo de comunicación unidireccional que

permita la publicación de eventos por parte de terceros. Se trata de un protocolo

unidireccional ya que sólo permite a terceros enviar eventos sin necesidad de

interacción por nuestra parte. De hecho ni siquiera recibirán ningún tipo de

acknowledgement (ACK) para confirmarles que hemos parseado su Tweet. La

codificación del protocolo es pública a través de la web y permite que en un solo

Tweet se codifiquen los campos mínimos necesarios para crear un evento. Estos

campos son: título, fecha, hora, dirección y link a alguna URL que amplíe información

sobre el evento. Los campos se encuentran separados por el carácter | (pipe) y el

Tweet debe contener el Hastag #ZTic para que sea capturado por nuestro sistema.

Los datos de Twitter se extraen mediante una librería de Python que nos permite

realizar consultas y manejar nuestra cuenta de Twitter a través de una API. Para poder

utilizar esta librería es necesario tener una cuenta de Twitter y registrarse en su página

de Developers3 como desarrollador. Así conseguimos obtener los tokens y las keys

para utilizar la API. Para listar los eventos se utiliza el método GetSearch que nos

permite realizar una búsqueda en texto sobre Twitter. De este modo, buscamos los

eventos que contengan el Hastag #ZTic para buscar los eventos que sigan el patrón que

2
 https://es.wikipedia.org/wiki/Screen_scraping

3
 https://dev.twitter.com/

https://es.wikipedia.org/wiki/Screen_scraping
https://dev.twitter.com/

11

nos permite añadir eventos sugeridos por los usuarios de Twitter, como se explica en

el Anexo I.

Cuando realizamos una búsqueda, la consulta nos devolverá todos los eventos de

Twitter que contengan dicho Hastag (limitado a 100 tweets). Hay que tener en cuenta

que nos devolvería tanto tweets nuevos, como tweets que ya hayamos procesado

previamente. Los tweets, tienen un identificador único llamado “id”. Gracias a este id,

podemos filtrar la búsqueda para que nos muestre sólo tweets con id mayor que un id

dado. Para poder utilizar esta funcionalidad, necesitamos de un mecanismo que nos

permita recordar cuál fue el último elemento procesado. La forma elegida para

preservar este id es guardar en un fichero de texto el id del último tweet procesado

por nuestra aplicación. De este modo, en la siguiente consulta se mostrarán sólo los

tweets posteriores al último procesado por la aplicación.

3.3.2. Transformation

Es el proceso mediante el cual la información recopilada es adaptada para que encaje

con nuestro modelo de datos. Este proceso conlleva aplicar técnicas de:

 Filtrado de datos, para limpiar resultados que no se han podido filtrar en el

proceso de extracción

 Conversión de datos, transformando formatos o tipos de datos

 Unión y división de campos.

Ayuntamiento de Zaragoza

En el ayuntamiento de Zaragoza, a través de su API, conseguimos un documento

JSON4. En este documento, se encuentran mezclados eventos de tecnología con

eventos de otra índole. El principal problema de esta API es que los datos no guardan

una estructura definida. Es decir, no todos los eventos tienen los mismos campos, ni

siquiera existe una guía donde se explique el significado de cada campo de un evento.

Aunque los nombres de los campos son más o menos intuitivos, en algunos casos hay

que analizar el contenido del campo para conseguir saber realmente a qué hacen

referencia. Además tenemos que tratar de rellenar todos los campos que tenemos

asociados a nuestro evento en nuestra base de datos, para que la información que

ofrezcamos sea lo más completa posible.

Como los eventos se encuentran mezclados, a priori es muy difícil separar los eventos

tecnológicos de los eventos no relacionados. Existe un campo multivaluado de evento

llamado “temas” en el que se incluyen todos los temas a los que va asociado un

evento. El problema es que no existe documentación acerca de los diversos temas que

pueden caracterizar al evento, a pesar de que cada tema, lleva asociado un título y un

ID. Para ello, el primer paso fue listar todos los temas de todos los eventos evitando

4
 https://es.wikipedia.org/wiki/JSON

https://es.wikipedia.org/wiki/JSON

12

repeticiones. Los eventos que tiene actualmente publicados el Ayuntamiento de

Zaragoza superan los 35.000 y algunos de ellos datan de hace más de cinco años. Una

vez obtenido el listado, y analizando los temas se concluyó que el único tema al que

podían ir asociados estos eventos es a uno llamado “Tecnología y Ciudadanía”. Este fue

un proceso inicial de configuración del sistema. En el caso de acceder a canales de

eventos de otras entidades sería necesario seguramente hacer un procedimiento

análogo.

Betabeers

En Betabeers todo lo que hemos extraído en el punto anterior es una página en HTML

donde se encuentran todos los eventos de una de las páginas. En cada página aparece

un listado de 20 o menos eventos.

Procesar el documento en HTML como texto plano resulta bastante complejo, porque

se trata de un código muy verboso. Y, además, tiene unas reglas gramaticales que no

todas las webs cumplen haciendo aún más dificultoso el proceso. Por suerte, Scrapy

(entorno de desarrollo utilizado y que se explica más adelante) posee una

funcionalidad que permite extraer partes de un documento HTML realizando una

búsqueda por XPath[2].

Gracias a la búsqueda por XPath, podemos encontrar los bloques que contienen

los eventos individualmente, e incluso, nos permite iterar sobre todos ellos. De esta

forma, entramos en un bucle en el que tenemos una variable que contiene el código

HTML de cada evento. A partir de ahí, vamos extrayendo los datos del evento (título,

fecha, dirección, link,...) a excepción de la hora de finalización del evento y el año del

evento.

La hora de finalización y el año del evento se encuentran dentro de la página del

propio evento. Para poder capturar estos datos, es necesario seguir en enlace

capturado en el párrafo anterior. De este modo, conseguimos un nuevo documento

HTML en el que se encuentra toda la información sobre el evento antes capturada, y

además, la hora de finalización del evento, la fecha ampliada con el año y una

descripción sobre los temas a tratar durante el evento. El procedimiento a seguir para

capturar la hora de finalización y año es similar al del resto de datos, solo que en este

nuevo documento HTML no es necesario iterar. Por lo que basta con encontrar el

XPath adecuado y ya tenemos la hora de finalización.

La mayoría de los campos obtenidos, no se encuentran listos para ser consumidos. Hay

que realizar algunos ajustes para que sea posible estandarizarlos al formato de nuestro

modelo de datos:

 El título es un campo de texto, que se queda como está.

 Fecha y horas de inicio y finalización. Se encuentran todos en una misma

cadena de texto. Hay que separar las horas de inicio y fin y ponerlas en formato

http://www.w3.org/TR/xpath/

13

adecuado para la consulta SQL. En la fecha es necesario convertir el mes, que

se encuentra en formato texto en castellano a su número correspondiente.

 La dirección y el link no es preciso modificarlos.

 El organizador del evento, en este caso se introduce estáticamente ya que es

siempre el mismo: Betabeers.

Twitter

En la parte de extracción de Twitter habíamos conseguido que los tweets se filtren por

el hastag #ZTic y que se muestren sólo los no procesados previamente. A pesar de ello,

tenemos que conseguir que la aplicación capture sólo los eventos que cumplen con el

formato de mensajes especificado en el Anexo I.

En este caso se trata de un formato de eventos muy simplificado que tan sólo contiene

título, fecha, hora, dirección y link. No obstante, es necesario verificar que los

contenidos proporcionados son consistentes. Por ejemplo, que la fecha del evento se

encuentre en un rango adecuado (de hoy a dentro de un año), que la URL sea

coherente, etc.

3.3.3. Load

La forma de almacenar los eventos es igual para todos los orígenes de datos. Los datos

se almacenan en una base de datos MySQL formando una estructura sencilla en la que

se relacionan eventos con organizadores como se explica en el Apartado 3.2.

14

3.4. Desarrollo de la interfaz de visualización de eventos.

3.4.1. Estructura de la web

Hasta ahora simplemente habíamos recopilado los datos en una base datos MySQL. La

base de datos, no es claramente una forma atractiva de mostrar los eventos

recopilados al usuario. Es por ello, que hay que crear un frontend que permita a los

usuarios acceder al catálogo de eventos de una forma sencilla. La forma elegida para

esta visualización es mediante la web. Por tanto, se pretende crear una interfaz

sencilla que permita a los usuarios visualizar todos los eventos que haya recopilado

nuestra aplicación.

Un esquema del aspecto de la web:

FIGURA 2: ESQUEMA BÁSICO DE LA WEB

La estructura de la web se plantea con una interfaz y navegación muy sencillas. Las

páginas principales contendrán listados con eventos. Los componentes que contiene el

sitio web son los siguientes:

Página de inicio

La página de inicio será la página principal donde se mostrarán por orden cronológico

todos los eventos futuros y los eventos que hayan tenido lugar en los 15 días a la fecha

de la visita de la página.

Página de eventos pasados

Se trata de una página de apariencia similar a la página de inicio que permita consultar

todos los eventos pasados a modo de histórico.

15

Página de organizadores

Una página donde aparecen todos los organizadores de eventos que existen

registrados en el sistema. Ofrece a los usuarios un link a la página del organizador (si

existe) y haciendo click en el título del organizador nos lleva a la página de eventos de

organizador. Cuando nos encontramos en esta página, en el menú principal junto al

enlace a Organizadores aparece un desplegable que nos lista todos los organizadores

y, si hacemos click sobre uno de ellos nos lleva a la página de eventos de dicho

organizador.

Página de eventos de organizador

Esta página nos muestra todos los eventos que han sido publicados por un mismo

organizador. En el menú principal aparece un nuevo elemento cuando nos

encontramos en esta página con el nombre del organizador y al hacer click nos lleva a

su sitio web.

Menú principal

Una barra superior nos muestra los diferentes apartados de la página web. Los enlaces

disponibles son: Inicio, Organizadores y Anteriores. Se trata de un menú dinámico y

cambia según la página de la web en la que nos situemos. Cuando nos encontramos en

una página de las que figuran en el menú, dicho elemento aparece resaltado para

facilitar la navegación.

Evento

Es uno de los componentes principales. Este elemento aparece en todas las páginas

que muestran eventos. Se trata de un cuadro que contiene los elementos principales

de un evento. El título aparece destacado, y al hacer click sobre éste nos lleva a la

página web externa del evento. Aparecen también los campos dirección, que nos lleva

a la ubicación del evento en Google Maps; y los campos fecha y horario, que al hacer

click nos generan una plantilla para añadir a nuestro calendario de Google Calendar el

evento.

Pie de página

El pié de página se ha utilizado para acceder a otras secciones de la web que no

interesan tanto al público en general. En concreto se ha añadido una sección de

“Acerca de ZTic” donde se explica brevemente el proyecto y una sección titulada

“Publicar eventos desde Twitter” que explica el protocolo a seguir para publicar un

evento en la web desde Twitter.

16

3.4.2. Componentes de Symfony

Para el desarrollo de la web se ha empleado Symfony ya que permite una gran

versatilidad. Gracias a Symfony, podemos crear plantillas sobre componentes de la

web que podremos reutilizar en todas las páginas que compondrán la web. De este

modo, podemos utilizar la misma cabecera en todas las páginas a modo de menú.

El modelo web de Symfony consta de los siguientes componentes principales:

Router

Es el encargado de mapear las peticiones GET de una ruta con el controlador que debe

ejecutar la acción. Se encarga de saber qué controlador nos va a renderizar la página

que hemos solicitado o devolver error en caso de que no exista. Por ejemplo si

pedimos GET /organizadores llamará al controlador que se encarga del renderizado de

la página que nos lista los organizadores.

Doctrine

Es un mapeador objeto relacional de PHP que nos permite consultar los eventos de la

base de datos. Aporta gran versatilidad al código ya que, una vez configurado

correctamente el mapeo, permite tratar las consultas sobre la base de datos como

objetos de PHP. Así podemos fácilmente seguir la relación entre evento y organizador

de una forma sencilla.

EventsController

Es el controlador y se encarga de preparar la respuesta a una petición web. Se encarga

de llamar al render de una página estática, como puede ser la página de “Qué es ZTic”

o bien de realizar consultas sobre la base de datos para que pasando el resultado de la

consulta al render junto con la plantilla, genere el código HTML de la web que hemos

solicitado.

Plantillas twig

Son la forma de dar forma al documento HTML generado. Permite gran modularidad

de dos formas distintas:

 Podemos reutilizar partes del documento que vayan a ser comunes a varias

secciones de la web, como es el caso del header y el footer. En este caso, el

header y el footer se encuentran en todas las secciones de la web. De modo

que se incorporan a la plantilla base para que todas las demás hereden esta

base.

 Podemos reutilizar una misma plantilla para dibujar varias secciones de la web

incluyendo elementos variables en la plantilla. En este caso, se puede observar

que el formato de la sección de eventos pasados, es igual que la sección de

eventos futuros, y que solo cambia el contenido y el título. De este modo, el

controlador se encargará de pasar a la plantilla los eventos correspondientes y

17

el título y tendrán el mismo aspecto el listado de eventos pasados que de

eventos futuros.

3.5. Despliegue de la aplicación

El despliegue de la aplicación también forma parte de este proyecto. Esta aplicación

requiere estar ejecutándose periódicamente en una máquina real. Además requiere de

una serie de componentes software para hacer funcionar aplicación.

3.5.1. Hardware y Sistema Operativo

Para ello, el Departamento de Sistemas de la Universidad de Zaragoza nos aprovisionó

una máquina. Se trata en concreto de una máquina virtual de 2 cores, 2GB de RAM y

25 GB de disco duro. Como sistema operativo se ha seleccionado Debian por ser un SO

Linux, muy robusto y estable.

3.5.2. Servidor Web

Como servidor web, se ha elegido Apache2. Se trata de un servidor HTML de código

abierto muy extendido potente y flexible. Se configura de forma muy sencilla, para

sites básicos, aunque permite configuraciones más complejas. En este caso, ha sido

necesario configurar el ServerName que sirve para indicarle a Apache qué nombre DNS

debe de escuchar para este sitio. Este parámetro se utiliza especialmente en

configuraciones multi-site, es decir, alojar varias webs en un mismo servidor. Además

ha habido que activar el módulo mod_rewrite que permite la reescritura de URLs.

Gracias a esta reescritura de URLs podemos ocultar a los usuarios detalles acerca de la

estructura de ficheros de la web, permitiendo que el router de Symfony se encargue

de hacer de forma transparente las llamadas a los ficheros que componen las páginas.

3.5.3. Ejecución automática

Para permitir la ejecución automática del crawler, se ha configurado el cron[1] del

sistema para que lance los procesos rastreadores de la siguiente manera:

Un proceso es llamado todas las noches y se encarga de buscar actualizaciones en las

webs. Se utiliza la franja nocturna previendo que habitualmente sea el momento que

menos carga soportan las webs externas sobre las que recopilamos información.

Además, las webs normalmente hacen públicos sus eventos con suficiente antelación

para que las personas interesadas en ellos, puedan enterarse, organizarse y asistir. Por

este motivo no es necesaria una mayor periodicidad a la hora de rastrear eventos.

Otro proceso se encarga de rastrear Twitter cada hora en busca de nuevos eventos.

Los eventos publicados en Twitter se rastreen cada hora porque hay que tener en

cuenta que la naturaleza de éstos eventos. Cuando alguien publique en Twitter un

evento, éste puede tener lugar en pocas horas, o incluso estar teniendo lugar en el

https://es.wikipedia.org/wiki/Cron_%28Unix%29

18

momento. Por esta razón, los eventos publicados en Twitter tienen una periodicidad

mayor que los publicados en la web.

Además, la API de Twitter en su versión gratuita pone un límite a la cantidad de

operaciones que se pueden realizar con ella. Entre muchas otras cosas, tiene un límite

de búsquedas que se pueden realizar por hora y otro de resultados de búsqueda que

lista por hora. De este modo, realizando una búsqueda por hora, también nos

garantizamos el exprimir al máximo la API de Twitter y evitando que algún Tweet se

nos pueda quedar oculto por el camino debido a que hemos excedido las limitaciones

de uso de la API de Twitter.

3.5.4. Debugging y logs

Para permitir detectar posibles fallos de la aplicación, ya sean internos (p.ej.: errores

de programación) o externos (p.ej.: cambios en el diseño de las webs externas) es

necesario guardar un registro de las salidas de los rastreadores. Estos rastreadores se

ejecutan en background por lo que la única manera de analizar su comportamiento es

mediante el uso de logs. Los procesos rastreadores, tienen redirigida su salida estándar

y de errores a ficheros en directorio de logs del sistema (/var/log/ztic).

Esta solución, aunque muy útil, genera unos ficheros que pueden llegar a ocupar

mucho espacio si no se tratan adecuadamente. Para solucionar este problema, se ha

utilizado la herramienta de UNIX logrotate que simplifica la llamada “rotación de logs”.

Esta rotación de logs consiste en limpiar ficheros de log antiguos para evitar que

crezcan indefinidamente. En este caso, se ha optado por almacenar los logs durante 12

semanas (casi 4 meses). Además, se genera un nuevo fichero de log por cada semana y

los ficheros anteriores se comprimen para reducir su tamaño. De este modo,

tendremos un fichero de log en texto plano correspondiente a la semana actual y once

ficheros de log correspondientes a las 11 semanas anteriores.

19

4. Tecnologías utilizadas

4.1. Apache2

Apache[3] es un servidor HTTP multiplataforma y de código abierto. Tiene su propia

licencia de software llamada Licencia Apache 2.0 que es muy similar a una licencia de

software libre, sólo que ésta no exige compartir el código en versiones modificadas.

Apache es usado por más de la mitad de sitios web activos actualmente[4].

Apache2 consta de un core con las funcionalidades básicas de servicio HTTP, pero

además tiene diversos módulos que le aportan nuevas funcionalidades. Uno de los

módulos más utilizados, incluido en este proyecto, es el módulo llamado mod_rewite

que permite la reescritura de direcciones, permitiendo ocultar al cliente detalles

acerca de la implementación de la página web y utilizar URLs más limpias.

4.2. Symfony2

Symfony[5][6] es un framework para construir aplicaciones web desarrollado en PHP.

Está pensado para desarrollar aplicaciones con MVC (Modelo - Vista - Controlador).

Utiliza un diseño modular basado en herencia que aporta gran flexibilidad para el

desarrollo de aplicaciones complejas.

https://en.wikipedia.org/wiki/Apache_HTTP_Server
http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-survey.html
http://symfony.com/pdf/Symfony_cookbook_2.7.pdf?v=4
http://symfony.com/pdf/Symfony_cookbook_2.7.pdf?v=4

20

4.3. Scrapy

Scrapy[7] es un framework escrito en Python para hacer crawlers de la web, aunque

también permiten información de APIs. Es de código abierto bajo licencia BSD. La

ventaja de scrapy es que utiliza python que ha demostrado ser un lenguaje muy

potente y ligero. Y además, cuenta con una herramienta que permite utilizar reglas

(rules) para seguir enlaces automáticamente y, muy importante, sin repetirlos. Esto

quiere decir que en podemos recorrer un sitio web completo, siguiendo todos los

enlaces que encuentre que apunten dentro de la misma web, sin pasar dos veces por

una misma página.

4.4. MySQL

MySQL[8] es un gestor de bases de datos multiusuario y multi-hilo. Se licencia bajo GPL

o con uso privativo. Se trata del segundo gestor de bases de datos más utilizado, sólo

por detrás de Oracle. Se trata de un gestor de bases de datos muy rápido en lecturas.

No resulta muy adecuado para sitios con gran concurrencia de escrituras.

https://en.wikipedia.org/wiki/Scrapy
https://en.wikipedia.org/wiki/MySQL

21

4.5. Twitter

Twitter[9] es una plataforma de microblogging. Permite que los usuarios publiquen

mensajes de una longitud inferior a 140 caracteres. Los mensajes son públicos y

pueden ser vistos tanto por usuarios registrados como por usuarios no registrados.

Aunque también permite enviar mensajes privados entre usuarios. Los mensajes se

pueden etiquetar a un tema mediante los conocidos como “Hastag” que consisten en

una almohadilla (#) seguida de una palabra.

https://es.wikipedia.org/wiki/Twitter

22

5.- Lecciones aprendidas y conclusiones
Como resultado de este proyecto, se ha conseguido una web pública en la que de

manera automática se recogen y publican eventos TIC en la ciudad de Zaragoza.

Durante todo el proceso de desarrollo de este sitio web, se ha adquirido una visión

sobre el mundo de internet en general y sobre los crawler de la web en particular.

Como resultado de la realización de este proyecto, he sido capaz de comprender cómo

funcionan a un nivel muy básico muchos de los sitios de Internet. Cómo es capaz que

un buscador sea capaz de servirnos en unas milésimas de segundo resultados de

búsqueda sobre una cantidad inmensa de sitios web. La respuesta está en los crawler.

Este proyecto, lejos de compararse en dimensiones con un buscador de Internet,

cumple con algunos de los requisitos que éstos tienen. Es decir, posee mecanismo para

recopilar información de manera automática de la web (sin intervención del ser

humano), esto es lo que viene siendo el crawler básico. Y además, posee un

mecanismo para “comunicar” al sistema manualmente un evento, a través de twitter.

Durante el proceso de desarrollo, se han debido de tomar diferentes decisiones que

han resultado en el diseño final de la infraestructura empleada para este proyecto. De

entre ellas, cabe destacar la tecnología empleada para crear la página web que

muestra los eventos. A priori, se pensó en utilizar Drupal como CMS para realizar una

web de una forma aparentemente más sencilla. Pero el problema que tiene Drupal es

que está muy cerrado a su propia estructura interna, y no resultaba nada sencillo

adaptar una fuente externa de información. Esta fuente externa de información es la

base de datos que almacena los eventos. Además, Drupal resulta demasiado complejo

para un proyecto como éste en el que premia la sencillez en el apartado web.

Otro aspecto que cabe destacar de este proyecto es la parte de recogida de

información de sitios web preexistentes. Los sitios web, habitualmente no

proporcionan ninguna información acerca de su estructura interna. Esto implica una

gran carga de análisis y de ingeniería inversa para conseguir averiguar la estructura

interna que sigue la web. Y también, en otros casos, hay que adivinar la forma de

conseguir lo que quieres. Es el caso, por ejemplo, de la web del Ayuntamiento que, a

pesar de que proporciona una API bastante versátil, no ofrece a priori, al menos según

la documentación, una forma de listar todos los eventos con una sola petición. La

petición estándar devuelve un máximo de 50 eventos por petición. Y, posee un

parámetro para poder solicitar un número determinado de eventos. De modo que

puedes pedir 70 o 127 eventos, pero no tiene un método publicado para obtenerlos

todos. La única manera de obtener todos los eventos, fue buscando un fallo de este

parámetro. El fallo consiste en solicitar -1 eventos, y así se consiguen listar todos los

eventos.

23

6.- Estructura de los anexos
Se van a enumerar los anexos existentes

- Anexo I : Publicación de eventos en Twitter

- Anexo II : Tutorial para la creación de un nuevo crawler de datos

- Anexo III : Diagrama de componentes

- Anexo IV : Ejemplo de formato de la web

- Anexo V : Manual de uso de la web

24

7.- Bibliografía

[1] Cron (Unix). (n.d.). Retrieved November 17, 2015, from

https://es.wikipedia.org/wiki/Cron_(Unix)

[2] XML Path Language (XPath)Version 1.0. (n.d.). Retrieved November 18, 2015,

from http://www.w3.org/TR/xpath/

[3] Apache HTTP Server. (2015, November 9). Retrieved November 17, 2015, from

https://en.wikipedia.org/wiki/Apache_HTTP_Server

[4] March 2015 Web Server Survey. (2015, March 1). Retrieved November 18,

2015, from http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-

survey.html

[5] The Symfony Cookbook. (2015). Symfony.

http://symfony.com/pdf/Symfony_cookbook_2.7.pdf?v=4

[6] Symfony. (2014, September 14). Retrieved November 18, 2015, from

https://es.wikipedia.org/wiki/Symfony

[7] Scrapy. (2015, July 29). Retrieved November 18, 2015, from

https://en.wikipedia.org/wiki/Scrapy

[8] MySQL. (2015, November 9). Retrieved November 18, 2015, from

https://en.wikipedia.org/wiki/MySQL

[9] Twitter. (2015, November 12). Retrieved November 18, 2015, from

https://es.wikipedia.org/wiki/Twitter

https://es.wikipedia.org/wiki/Cron_(Unix)
http://www.w3.org/TR/xpath/
https://en.wikipedia.org/wiki/Apache_HTTP_Server
http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-survey.html
http://symfony.com/pdf/Symfony_cookbook_2.7.pdf?v=4
https://es.wikipedia.org/wiki/Symfony
https://en.wikipedia.org/wiki/Scrapy
https://en.wikipedia.org/wiki/MySQL
https://es.wikipedia.org/wiki/Twitter

25

Anexo I. Publicación de eventos en Twitter
Si conoces algún evento que haya sido incluido en nuestra web y quieres hacerlo

público, puedes utilizar Twitter para darnos a conocer dicho evento. El tweet debe de

cumplir con unos requisitos para pueda ser capturado por nuestra aplicación. A

continuación te mostramos qué debes de hacer para que tu evento sea recogido

automáticamente por nuestra aplicación.

Datos necesarios
Para publicar un evento en Twitter y que sea capturado por nuestra aplicación el tweet

debe cumplir los siguientes requisitos:

 Debe contener el Hastag #ZTic.

 Se deben conocer del evento los siguientes datos:

o Título del evento

o Fecha en la que tendrá lugar el evento

o Hora del evento

o La dirección en la que tendrá lugar

o Un link a alguna URL que amplíe información sobre el evento

Si no conoces alguno de estos datos no podrás publicar el evento.

Formato del tweet
El tweet debe de seguir un formato en el que se deben de incluir todos los campos

mencionados en el apartado anterior. Los campos deben de seguir siempre el mismo

orden, pero el hastag puede aparecer en cualquier lugar. Como elemento separador

entre campos se debe utilizar símbolo | (pipe). El orden de los campos es el siguiente:

Título del evento | Fecha del evento (DD-MM-AAA) | Hora del evento

(HH:MM) | Dirección del evento | Link al evento

Es importante respetar los formatos de Fecha y Hora para que sean capturados

correctamente por la aplicación

Ejemplo de tweet
A continuación tienes un ejemplo de un tweet que pueda ser capturado por nuestra

aplicación:

Presentación ZTic|20/12/2015|12:00|María de Luna

3|http://www.unizar.es/ #ZTic

Otro ejemplo:

#ZTic Google en Zaragoza | 19/10/2015 | 18:00 | Echegaray y Caballero

10 | http://www.google.es/

26

Anexo II. Tutorial para la creación de un nuevo crawler de datos
A modo de ejemplo para la explicación, se muestra el código completo del crawler de

Betabeers y en la página siguiente se detallarán los elementos que son necesarios

modificar para crear un nuevo crawler.

from scrapy.http import Request
from scrapy.contrib.spiders import Rule, CrawlSpider
from scrapy.contrib.linkextractors.lxmlhtml import LxmlLinkExtractor
from ztic.items import ZticItem

class Betabeers(CrawlSpider):
 name = 'betabeers'
 allowed_domains = ['betabeers.com']
 start_urls = ['https://betabeers.com/community/events/?id=27&p=1']

 rules = [Rule(LxmlLinkExtractor(allow=(
 r'(.*)betabeers.com/community/events/\?id=27&p=(.*)',
)), callback='parse_events', follow=True),
]

 def parse_events(self, response):
 eventos = response.xpath('//div[@id="tab_box_events"]/ul').xpath('li')
 for sel in eventos:
 item = ZticItem()
 item['organizador'] = 'Betabeers';
 item['fecha'] =
sel.xpath('div[@style="float:left;width:80px"]/text()').extract()[1].strip()
 item['horaInicio'] =
sel.xpath('div[@style="float:left;width:80px"]/text()').extract()[2].strip()
 item['link'] = sel.xpath('div/a/@href').extract()[0].strip()
 item['titulo'] = sel.xpath('div/a/text()').extract()[0].strip()
 item['direccion'] =
sel.xpath('div[@style="float:left;width:75%"]/text()').extract()[1].strip()
 request = Request(item['link'], callback=self.parse_event)
 request.meta['item'] = item
 yield request

 def parse_event(self, response):
 item = response.meta['item']
 fecha = response.xpath('//div[@id="tab_box_info2"]/p/text()')[0].extract()
 item['horaInicio'] = fecha.split(',')[1].split('-')[0].strip()
 item['horaFin'] = fecha.split(',')[1].split('-')[1].strip()
 item['fecha'] = self.convierte_fecha(fecha.split(',')[0])
 yield item

 def convierte_fecha(self, cadena):
 campos = cadena.split()
 mes = {
 'enero':1,
 'febrero':2,
 'marzo':3,
 'abril':4,
 'mayo':5,
 'junio':6,
 'julio':7,
 'agosto':8,
 'septiembre':9,
 'octubre':10,
 'noviembre':11,
 'diciembre':12,
 }
 return str(campos[3]) + '-' + str(mes[campos[2]]) + '-' + str(campos[1])

27

En primer lugar hay que darle un nombre a la clase, conviene darle el mismo nombre

que a la araña (spider).

class Betabeers(CrawlSpider):
 name = 'betabeers'
 allowed_domains = ['betabeers.com']
 start_urls = ['https://betabeers.com/community/events/?id=27&p=1']

En estas líneas se realiza la configuración básica de nuestro spider:

 name. Es el nombre interno que scrapy detectará como nombre del spider. Se

recomienda darle el mismo nombre que a la clase.

 allowed_domains. Contiene un array con los dominios sobre los que scrapy

podrá seguir links. De esta forma evitamos que siga enlaces fuera de la web

que estamos rastreando.

 start_urls. Ahí debemos poner la(s) URL(s) sobre la(s) que queremos que

empiece a rastrear

 rules = [Rule(LxmlLinkExtractor(allow=(
 r'(.*)betabeers.com/community/events/\?id=27&p=(.*)',
)), callback='parse_events', follow=True),
]

Aquí configuramos las “rules” o reglas que debe seguir nuestro spider para rastrear:

 allow. contiene un array con una serie de expresiones regulares para indicarle

qué links puede seguir. Scrapy cuenta con un motor interno que evita que

volvamos a pasar dos veces por la misma URL, pero es muy importante que sea

la misma. En este caso de ejemplo, estamos permitiendo cualquier protocolo

(http/https) y la url con o sin www. al principio. El querystring ‘p’ hace

referencia en este caso al número de página, ya que en caso de haber muchos

eventos se encuentran separados en varias páginas. Hay que tener cuidado a la

hora de marcar la página de inicio, ya que si nos fijamos en start_urls hemos

utilizado el querystring p=1. En la web de betabeers si no ponemos el

querystring ‘p’ nos lleva a la página 1, pero cuando el spyder haya pasado a la

página 2, tendrá un enlace a la página 1 con querystring p=1, lo que resultaría

en recorrer la página 1 dos veces.

 callback. Es la función a la que se llamará para parsear el documento HTML. Se

llama una vez por cada página visitada.

28

 def parse_events(self, response):
 eventos = response.xpath('//div[@id="tab_box_events"]/ul').xpath('li')
 for sel in eventos:
 item = ZticItem()
 item['organizador'] = 'Betabeers';
 item['fecha'] =
sel.xpath('div[@style="float:left;width:80px"]/text()').extract()[1].strip()
 item['horaInicio'] =
sel.xpath('div[@style="float:left;width:80px"]/text()').extract()[2].strip()
 item['link'] = sel.xpath('div/a/@href').extract()[0].strip()
 item['titulo'] = sel.xpath('div/a/text()').extract()[0].strip()
 item['direccion'] =
sel.xpath('div[@style="float:left;width:75%"]/text()').extract()[1].strip()
 request = Request(item['link'], callback=self.parse_event)
 request.meta['item'] = item
 yield request

Esta es la función encargada de parsear el evento. En la primera línea de la función lo

que se hace es seleccionar el elemento que contiene el listado de eventos.

response contiene el documento HTML completo. En este caso busca en todo el

documento HTML mediante la función xpath() el elemento HTML <div> con

id=”tab_box_events” y dentro de él, elemento . Un vez seleccionado, busca todos

los elementos dentro del anterior . Cada uno de estos (list ítem) contiene

los datos necesarios para un evento. Al iterar sobre la variable eventos, la variable sel

para cada iteración contiene solamente el HTML contenido dentro de cada uno de los

 anteriores. De esta forma se simplifica mucho la búsqueda de elementos.

item será la variable que almacenará los campos de un evento. En primer lugar

tenemos que decirle de que tipo de Item se trata. En este caso, es de tipo ZticItem, que

se encuentra definido en el fichero “ítems.py”. A continuación, vamos rellenando los

campos que debe tener un evento. El organizador, se introduce esta vez

estáticamente, ya que siempre trabajamos con eventos de Betabeers. El resto de

campos se buscan mediante XPath en el HTML de cada .

Existen algunos campos que no se pueden obtener directamente del listado. Es el caso

del campo fechaFin. Para conseguir este campo, tenemos que seguir el enlace que nos

lleva a la página del evento. Esto se consigue mediante la antepenúltima línea. En esta

línea, mediante la función Request, le decimos como primer parámetro qué URL debe

visitar y como segundo parámetro callback la función que se encargará de parsear

dicha URL.

Finalmente, tenemos que añadir a la variable request el ítem que hemos ido

generando para que scrapy pueda pasárselo a la segunda función y finalmente para

que scrapy se encargue del postprocesado del ítem (almacenarlo en la Base de Datos).

29

 def parse_event(self, response):
 item = response.meta['item']
 fecha = response.xpath('//div[@id="tab_box_info2"]/p/text()')[0].extract()
 item['horaInicio'] = fecha.split(',')[1].split('-')[0].strip()
 item['horaFin'] = fecha.split(',')[1].split('-')[1].strip()
 item['fecha'] = self.convierte_fecha(fecha.split(',')[0])
 yield ítem

Esta función es la encargada de parsear la URL que hemos seguido del listado anterior

que contiene los detalles de un evento. El funcionamiento es similar al de la función

anterior, solo que ésta vez devolvemos el ítem y scrapy se encarga de buscar en el

fichero pipelines.py la función ZticPipeline() que se encarga del postprocesado del

elemento. En este caso, de almacenar el evento en la Base de Datos si no existía

previamente.

 def convierte_fecha(self, cadena):
 campos = cadena.split()
 mes = {
 'enero':1,
 'febrero':2,
 'marzo':3,
 'abril':4,
 'mayo':5,
 'junio':6,
 'julio':7,
 'agosto':8,
 'septiembre':9,
 'octubre':10,
 'noviembre':11,
 'diciembre':12,
 }
 return str(campos[3]) + '-' + str(mes[campos[2]]) + '-' + str(campos[1])

Finalmente, se muestra el ejemplo de una función auxiliar que puede venir en el

mismo fichero que puede ser muy útil para adaptar algunos datos obtenidos de la

web. En este caso, nos encargamos de adaptar las fechas al formato de MySQL y

convertir los meses que en la web están en texto en castellano a su número de mes.

30

Anexo III. Diagrama de componentes
Este diagrama muestra las relaciones que existen entre los diferentes componentes del

sistema. Las interacciones que existen son:

 La Base de Datos es atacada por el servidor HTTP en modo lectura.

 Scrapy y el parser de Twitter atacan a los servidores de las webs externas,

transforman los datos y finalmente, guardan en la Base de Datos los eventos.

 Cron se encarga de llamar a los procesos de Scrapy y Twitter parser para que se

ejecuten automáticamente con una periodicidad determinada.

31

Anexo IV. Ejemplo de formato de la web

32

Anexo V. Manual de uso de la web
Este anexo tiene como objetivo ofrecer un breve manual del usuario de la Web.

La web consta de básicamente de tres tipos de páginas:

 Páginas estáticas. Son las páginas de “Acerca de” y de “Cómo publicar en

Twitter”. Se trata de páginas con contenido estático en HTML que ofrecen

información acerca de los creadores y un breve manual de cómo publicar

eventos en Twitter, respectivamente. Ambas dos son accesibles desde el footer

de la página, presente en todas las páginas del sitio.

 Página de organizadores. Contiene un listado con todos los organizadores de

eventos registrados en el sistema. Debajo del título del organizador se muestra

un enlace a la URL de éste. El enlace a esta página lo podemos encontrar en el

menú superior de la web. Al hacer click sobre el título de un organizador nos

lleva a la página de eventos de dicho organizador.

 Páginas de eventos. Son páginas dinámicas que muestran listados de eventos.

Estas páginas son similares entre sí. Lo que las diferencia son los eventos que se

muestran en cada una. Los eventos se encuentran filtrados según la página en

que nos encontremos. Nos encontramos con tres tipos de filtros a los eventos:

o Página inicio o próximos eventos: nos muestra el listado de los eventos

que tuvieron lugar desde 15 días atrás y todos los eventos futuros. Esta

página la tenemos accesible desde el menú principal situado en la parte

superior de la web.

o Página de eventos anteriores: nos muestra el listado de los eventos que

ya han pasado y que se pueden consultar a modo de histórico. Tablién

disponemos de un enlace llamado “Anteriores” en la barra superior de

menú.

o Página de eventos de un organizador: nos muestra los eventos pasados

y futuros ordenados por fecha decreciente de todos los eventos

organizados por éste. En la barra superior aparece el título del

organizador y haciendo click sobre él nos lleva a la página web del

organizador.

Cada evento consta de cuatro partes diferenciadas:

o Título del evento, al hacer click sobre él, se abrirá en una pestaña nueva

a la página web externa del evento con información ampliada sobre

éste.

o Dirección del evento, al hacer click se abre en una pestaña nueva la

posición del evento en Google Maps.

o Fecha y horario del evento. Muestran la a fecha o el período que dure el

evento y la hora de inicio u horario. Si hacemos click nos crea una

33

plantilla de Google Calendar para agregar el evento a nuestro calendario

de Google.

