
Repositorio de la Universidad

Trabajo Fin de Grado

Desarrollo de un autopiloto de un quadcopter

Escuela de Ingeniería y Arquitectura

Universidad de Zaragoza --- Zaguan http://zaguan.unizar.es

Trabajo Fin de Grado

Desarrollo de un autopiloto de un quadcopter

Autor

Diego Luis Marco

Directores

José Luis Villarroel Salcedo

Luis Montano Gella

Escuela de Ingeniería y Arquitectura

 Zaragoza, Noviembre de 2015

http://zaguan.unizar.es

Desarrollo de un autopiloto de un quadcopter.

A mis padres y hermana, por su apoyo incondicional.

i

ii

RESUMEN

DESARROLLO DE UN AUTOPILOTO DE UN QUADCOPTER

Los drones o UAV son unas de las tecnoloǵıas más de moda en estos últimos años. El

auge de esta tecnoloǵıa se debe a la reducción de su precio y a las múltiples aplicaciones

que se han desarrollado.

En este Trabajo Fin de Grado se va a diseñar e implementar un autopiloto para un

dron de gama media, el F450. Este autopiloto, además de estabilizar el vuelo, va a tener

2 funcionalidades diferentes: seguimiento de referencias en posición mediante órdenes de

un control de navegación y seguimiento de referencias en velocidad dadas por un mando

de radiofrecuencia. Lo que se busca es obtener una primera experiencia con multihélices

para permitir posteriores desarrollos más complejos.

Para conseguir estos objetivos se han realizado simulaciones mediante la herramienta

matemática Matlab-Simulink para poder validar los controladores diseñados. Estas simu-

laciones son vitales para hacernos a la idea de lo complejo que es el sistema y conseguir

conocerlo perfectamente antes de empezar a utilizar el quadcopter real.

Se analiza el hardware impuesto, como sensores o sistemas de comunicaciones, y se

integra para obtener un sistema lo más robusto y completo posible. Además se ha realizado

un sistema de tiempo real basado en tareas, estando éste implementado sobre el sistema

operativo de SYS/BIOS. El procesador utilizado es el F2812 que es un microcontrolador

de gama media (150 MHz, 32 bits, arquitectura harvard, CPU en coma fija...). Procesador

y sistema operativo aśı como el entorno de desarrollo utilizado son de Texas Instruments.

Se ha implementado el control de velocidad y se han conseguido realizar pequeños

vuelos en interior, consiguiendo la estabilización del quadcopter en el aire.

iii

iv

Índice general

1. Introducción 1

1.1. Contexto y estado del arte . 1

1.2. Objetivos . 4

1.3. Organización de la memoria . 4

2. Plataformas hardware y software 7

2.1. Hardware . 7

2.1.1. Estructura mecánica . 7

2.1.2. DSP F2812 . 8

2.1.3. Sensores . 8

2.1.4. ESCs y Motores . 9

2.1.5. Bateŕıa y regulador de tensión . 9

2.1.6. Xbee . 9

2.1.7. Mando y receptor de radiofrecuencia 10

2.1.8. Multiplexor . 10

2.2. Software . 10

2.2.1. Code Composer Studio . 11

2.2.2. SYS/BIOS . 11

3. Análisis y diseño 13

3.1. Modelo del quadcopter . 13

3.2. Diseño del control de posición . 15

3.3. Diseño del control de velocidad . 17

3.3.1. Control PD sobre velocidades . 18

3.3.2. Control PD sobre ángulos . 19

4. Implementación 21

4.1. Diseño del software . 21

4.1.1. Tareas . 23

v

vi Índice general

4.1.2. Servidores . 24

4.2. Análisis de tiempo real . 25

4.3. Drivers software implementados . 26

4.3.1. Receptor de radiofrecuencia . 26

4.3.2. Ultrasonidos . 27

4.3.3. IMU . 27

4.3.4. Xbee . 28

4.3.5. ESCs + Motores . 28

5. Pruebas en el quadcopter 29

6. Conclusiones 31

A. Magnitudes f́ısicas del quadcopter. 33

Bibliograf́ıa 36

Caṕıtulo 1

Introducción

1.1. Contexto y estado del arte

Un dron es un veh́ıculo aéreo no tripulado reutilizable. Éste a través de múltiples

sensores es capaz de mantener un vuelo controlado y sostenido mediante la propulsión de

sus hélices o por un motor de explosión o reacción.

Los primeros drones surgieron en 1916, los cuales eran controlados mediante radiofre-

cuencia y su uso era el de afinar punteŕıa de la artilleŕıa antiaérea.

Figura 1.1: Uno de los primeros drones de la historia, el Queen Bee. [5]

La evolución de los drones fue de la mano de la evolución de los misiles hasta el punto

de que la diferencia más significativa entre estos dos fuera que los drones son reutilizables.

En la actualidad tenemos drones de muy diferentes configuraciones como drones con

forma de avión, helicóptero o multirotor (como en el caso que nos ocupa, que es un

quadrotor).

También cabe destacar la diferencia en cuanto a tamaños, por ejemplo, el PD 100-PRS

de Prox Dynamics tiene un peso de 18 g y una hélice de 120 mm y en cambio el MQ-9

1

2 Caṕıtulo 1. Introducción

Reaper mide 86 m de largo y es usado por los ejércitos de Estados Unidos, Reino Unido

o España. Éste tiene un precio de 30 millones de euros.

(a) Dron PD 100-PRS de Prox Dy-
namics. [4]

(b) MQ-9 Reaper.

Figura 1.2: La variedad de tipos de drones.

Sin embargo, no todos los drones son utilizados con fines militares, hoy en d́ıa existen

much́ısimos drones de uso civil.

Sus aplicaciones son muy diversas, desde propósitos profesionales como pueden ser la

búsqueda de personas desaparecidas, cartograf́ıa aérea, prevención de incendios, seguridad

en eventos, control de cultivos o usos más lúdicos, como podŕıan ser filmaciones o su uso

recreativo.

La parte más compleja del quadcopter, y que suele ser común en muchos de ellos, es el

autopiloto, que es la parte central de este TFG. Existen pocos autopilotos en el mercado

hoy d́ıa y la gran mayoŕıa de ellos son de código cerrado.

Por ejemplo, uno de los autopilotos más usados es el Naza M lite de DJI de código

cerrado. Este autopiloto es, dentro del grupo de los más económicos, de los que mejores

prestaciones ofrecen. Integra 4 sensores que son necesarios para poder realizar el control

de estabilización. Estos son: un giróscopo, un acelerómetro, una brújula magnética y

un barómetro. También tiene la posibilidad de incorporarle un GPS para mejorar su

localización. Puede llegar a alcanzar velocidades de ascenso o descenso de ± 6 m/s, un

ángulo de inclinación de 45◦ y una velocidad de inclinación de 200◦/s. Si se incluye el

GPS tiene una localización con un error en vertical de 0.8 m y en horizontal 2.5 m.

Además tiene 3 modos diferentes de vuelo: manual, automático (donde tiene un control

de estabilización de ángulos) y el modo con GPS.

Existe un autopiloto de código abierto, muy conocido, que es Ardupilot. Éste incorpora

también barómetro, giróscopo, acelerómetro, brújula digital y GPS. Este software abierto

te permite el control y navegación mediante posiciones del GPS de múltiples robots como

son los mostrados en la figura:

1.1. Contexto y estado del arte 3

Figura 1.3: Posibles robots para controlador Ardupilot. [1]

¿Por qué diseñar uno propio viendo que en el mercado disponemos de distintas solu-

ciones? La razón es que se busca tener un control total de todo lo que ocurre en el dron

y esto pasa por construir desde cero el autopiloto. Además se consigue poder implemen-

tar controles más sofisticados ya que se controlan todas las variables que influyen en el

quadrotor y se pueden probar nuevas estructuras de control.

Este proyecto se lleva a cabo dentro del grupo de Robótica, Percepción y Tiempo Real

de la Universidad de Zaragoza. Éste es uno de los grupos de investigación del Instituto

Universitario de Investigación en Ingenieŕıa de Aragón (I3A) y es considerado Grupo

de Investigación por el Gobierno de Aragón. Dicho grupo tiene las siguientes ĺıneas de

trabajo:

Localización y Mapeado Simultáneo.

Visión por Computador y Percepción.

Comunicaciones y redes ad-hoc.

Exoesqueletos y procesamiento de bioseñales.

Aprendizaje: en robótica, optimización Bayesiana, interfaces cerebro-ordenador...

Robótica Móvil. Planificación y navegación.

Uno de los objetivos del grupo es pasar de la robótica móvil terrestre a la aérea. Por

ello se realiza este TFG como comienzo de esa nueva ĺınea de investigación.

Una de las aplicaciones que se quiere conseguir a largo plazo es la búsqueda de personas

atrapadas bajo una alud. Un dron o varios peinarán la zona en busca de una señal emitida

por un gadget que llevará el montañero.

Otro de los proyectos es la reconstrucción de un mapa 3D de una cueva a través de

sensores laser incluidos en el dron.

Para conseguir todo esto, se comienza consiguiendo controlar el dron.

4 Caṕıtulo 1. Introducción

1.2. Objetivos

El objetivo principal es diseñar e implementar un prototipo de autopiloto que controle

el movimiento de un quadcopter FlameWheel450.

Figura 1.4: Dron F450 de DJI.

No se busca crear un autopiloto comercial si no tener una primera experiencia en la

problemática de control y estabilización del vuelo de un multihélice.

El autopiloto tendrá dos modos de vuelo, lo que supone dos subobjetivos:

Control de movimiento del quadcopter mediante referencias de posición, es decir,

que pueda alcanzar cualquier localización en el espacio y puedan dichas posiciones

ser usadas como waypoints1 para controles superiores sobre este autopiloto.

Reproducir el uso clásico del quadcopter. Esto significa que, a través de un mando

de radiofrecuencia, se pueda manejar el dron imponiéndole referencias de velocidad

sin tener ningún control de la posición en la que está más que la realimentación

visual del usuario.

1.3. Organización de la memoria

Este trabajo está dividido en 5 caṕıtulos, siendo el primero de ellos esta introducción,

que se detallan a continuación:

Plataforma hardware y software: Se utiliza un harware y software impuesto por el

grupo de investigación de robótica. En este apartado se analiza y explica cómo se ha

integrado cada uno de los componentes que se incluyen en el quadcopter. Además se

explican la plataforma software utilizada junto con el sistema operativo de tiempo

real.

1Puntos de referencia calculados para dividir una trayectoria compleja, que el quad debe seguir, en
varias trayectorias sencillas.

1.3. Organización de la memoria 5

Análisis y diseño: En este caṕıtulo se analiza el modelo matemático del quadcopter

y se explica las estructuras de control utilizadas.

Implementación: Este apartado es el grueso del trabajo. Es aqúı donde se explica

cómo se ha implementado todo el harware en el DSP utilizado y las distintas fun-

cionalidades que el software desarrollado nos ofrece. Además se analiza el sistema

de tiempo real verificando su determinismo temporal.

Pruebas en el quadcopter: Durante el transcurso del trabajo se han realizado muchas

pruebas a partir de las simulaciones previas a éstas. En este apartado se describen

algunas de las más significativas.

Conclusiones: Al final del presente trabajo se recogen las conclusiones obtenidas de

este TFG.

6 Caṕıtulo 1. Introducción

Caṕıtulo 2

Plataformas hardware y software

En este caṕıtulo se describe y explica cómo se ha integrado el hardware en el sistema,

la plataforma software utilizada y el sistema operativo que tenemos en el DSP.

2.1. Hardware

En la siguiente imagen se puede ver un esquema del hardware utilizado y sus conexiones

con el sistema:

Figura 2.1: Diagrama de bloques del hardware.

2.1.1. Estructura mecánica

La estructura mecánica donde se coloca todo el hardware se ha comprado a DJI [11].

Son cuatro barras reticuladas que forman la estructura principal del quadcopter. Dos son

7

8 Caṕıtulo 2. Plataformas hardware y software

de color rojo y dos de color blanco. El rojo indica la parte delantera del quadcopter ya

que es totalmente simétrico.

Contiene también dos placas centrales donde va situada toda la electrónica principal

del dron. En la placa inferior tiene integradas pistas para la alimentación y masa. Además

incluye 4 patas y 4 hélices. Las hélices son diferentes 2 a 2 ya que el ángulo de ataque de

hélices contiguas debe ser el contrario.

Figura 2.2: Estructura quad. [3].

2.1.2. DSP F2812

Es un microcontrolador espećıfico para el procesado digital de señales en tiempo real.

Por ello dispone de una frecuencia de bus de 150MHz, la cual es suficientemente alta.

Tiene arquitectura harvard1 con 2 buses de datos de 32 bits y uno de programa de 22

bits.

Algunas de las caracteŕısticas más usadas del micro son los Event Managers para

leer sensores y actuar sobre los motores y la comunicación serie SCI, la cual sirve para

comunicarse con los sensores que lo permitan y por donde se manda la telemetŕıa. Las in-

terrupciones vectorizadas con prioridades se utilizan para guardar los datos de los sensores

justo cuando han llegado.

2.1.3. Sensores

Los sensores son necesarios a la hora de tener un sistema de control ya que debemos sa-

ber el estado de las variables controladas. Para la realización de este proyecto disponemos

de dos sensores:

1La arquitectura harvard se basa en tener separado el banco de memoria de programa y de datos
accediendo a ellos por buses diferentes.

2.1. Hardware 9

El primero es el sensor Ping de Parallax que mide distancia hacia un objeto situado

enfrente de él. Su rango de medida es desde 2 cent́ımetros a 3 metros. Su funcionamiento

es muy sencillo, si pones un pulso en su patilla central, él te devuelve uno proporcional a

la distancia que mide. Ésta se recoge con el Input Capture2.

El segundo es el IMU (unidad de medida inercial) modelo 9 Degrees Of Freedom - Ra-

zor IMU, el cual es el sensor principal de esta aplicación. Realmente es un conjunto de 3

sensores diferentes que contiene: un giróscopo, una brújula magnética y un acelerómetro.

Cada uno de ellos proporciona una medida para cada eje (XYZ). Estos sensores propor-

cionan la velocidad angular, el polo norte magnético y la aceleración respectivamente.

Además contiene un micro (AtMega328) que calcula los ángulos y emite una trama de

caracteres con los datos por SCI.

2.1.4. ESCs y Motores

Los ESC son controladores electrónicos de velocidad de motores. El modelo utilizado

es 30A OPTO ESC de DJI. Se necesita uno por cada motor, donde éstos a través de un

PWM que es mandado por el DSP generan la tensión y corriente necesarias en las tres

fases que alimentan el motor para conseguir la velocidad. Los motores son el modelo 2212

920KV Brushless Motor de DJI. Su velocidad máxima es de 15416 rpm.

2.1.5. Bateŕıa y regulador de tensión

La bateŕıa utilizada es el modelo Turnigy 5.0. Dicha bateŕıa es de 4 celdas y tiene una

carga mı́nima de 14,8 voltios. Su capacidad es de 5000 mAh, lo que conlleva un vuelo

medio entre 10 y 12 minutos. Pesa 552 g y tiene unas dimensiones de 149 x 49 x 33 mm.

También se utiliza un regulador de tensión de 5V para alimentar el DSP y después

éste alimenta los sensores a 3,3 V.

2.1.6. Xbee

Es un módulo de comunicación serie inalámbrica. Sirve para poder comunicarse con el

dron desde un ordenador. Como caracteŕıstica más destacable tiene la distancia máxima

a la que se pueden enviar datos siendo en interiores o núcleos urbanos de 550 m y en

campo abierto hasta 40 km.

Su velocidad de transmisión de datos es de 24 mil bits por segundo, suficiente para las

comunicaciones realizadas.

2Funcionalidad del F2812 que a través del Event Manager es capaz de medir el tiempo de un pulso.

10 Caṕıtulo 2. Plataformas hardware y software

2.1.7. Mando y receptor de radiofrecuencia

El mando de radiofrecuencia es el modelo T6J de Futaba. Emite a 2.4 GHz y dispone

de 6 canales de transmisión. Éste tiene dos sticks, el derecho con autoretorno en las

dos direcciones y el izquierdo con autoretorno sólo en la horizontal, siendo la vertical la

utilizada para la potencia total del quadrotor.

Figura 2.3: Controles del mando de radiofrecuencia. [2] .

El receptor de radiofrecuencia es el modelo R2006GS y dispone también de 6 canales

recibiendo a 2.4 GHz.

2.1.8. Multiplexor

El multiplexor modelo 4-Channel RC Servo Multiplexer está diseñado para aplicacio-

nes como la que se quiere utilizar. Es capaz de multiplexar dos entradas de 4 canales a

través de un 5 o canal y obtener la salida que se seleccione con este último.

A la hora de testear el sistema y realizar pruebas de vuelo se tiene la posibilidad de,

rápidamente, cambiando el switch auxiliar, cambiar al autopiloto industrial que se tiene

instalado en el quadcopter. Éste es el autopiloto Naza M Lite detallado en la sección 1.1.

Por lo tanto es una medida de seguridad para la realización de pruebas.

2.2. Software

El software que se explica en este caṕıtulo no es el desarrollado en este TFG si no la

plataforma usada de programación y el sistema operativo de tiempo real utilizado.

2.2. Software 11

2.2.1. Code Composer Studio

Es un entorno de desarrollo integrado de aplicaciones de Texas Instruments y es de

los más completos en el ámbito de los procesadores digitales. Tiene editor, debugger,

compilador y linker.

Se pueden programar microprocesadores tales como MSP430, Stellaris, C6000, C55x

o C28x. Se ha utilizado la versión 5.4.

2.2.2. SYS/BIOS

SYS/BIOS es un núcleo de tiempo real de Texas Instruments. Está integrado en Code

Composer Studio y es de código abierto. Permite una planificación del procesador basada

en prioridades fijas y herencia de prioridad y tiene herramientas de análisis de tiempo real

como: tiempos de cómputo, gráficos de ejecucción, carga del procesador, instrumentaliza-

ción del programa... Elementos que forman SYS/BIOS son: las interrupciones hardware,

interrupciones software, tareas, servidores o semáforos. [6]

12 Caṕıtulo 2. Plataformas hardware y software

Caṕıtulo 3

Análisis y diseño

El sistema real con el que se parte es el FlameWheel 450 [11]. Un dron de cuatro

hélices con alimentación eléctrica y de 70 cm de longitud que se puede ver en la figura

1.4. Para realizar el control es necesario obtener su modelo matemático.

3.1. Modelo del quadcopter

El modelo del quadcopter se basa en las ecuaciones obtenidas en [7]:

Roll⇒ φ̈ = θ̇ψ̇
(Iyy − Izz)

Ixx
+

L

Ixx
U2 +

Iyy
Ixx

θ̇p (3.1)

Pitch⇒ θ̈ = φ̇ψ̇
(Izz − Ixx)

Iyy
+

L

Iyy
U3 −

Ixx
Iyy

φ̇p (3.2)

Yaw⇒ ψ̈ =
1

Izz
U4 +

Jr
Izz

ṗ (3.3)

Z⇒ Z̈ = −g + (cos θ cosφ)
1

m
U1 (3.4)

X⇒ Ẍ = (sinψ sinφ+ cosψ sin θ cosφ)
1

m
U1 (3.5)

Y⇒ Ÿ = (− cosψ sinφ+ sinψ sin θ cosφ)
1

m
U1 (3.6)

X, Ẋ, Ẍ: Posición en la dirección de avance del quadcopter. La “cabeza”del quad-

copter es la parte en la que sus brazos son rojos. La derivada es la velocidad lineal

en el eje X y la segunda derivada es la aceleración lineal en dicho eje.

13

14 Caṕıtulo 3. Análisis y diseño

Y , Ẏ , Ÿ : Posición en la dirección transversal del quadcopter. La izquierda de su “ca-

beza”es el sentido positivo. La derivada de Y es su velocidad y la segunda derivada

la aceleración en este eje.

Z, Ż, Z̈: Posición respecto a la altura del quad. Su derivada es la velocidad y la

segunda derivada la aceleración en el eje Z.

θ, θ̇, θ̈: Ángulo Roll que corresponde a la rotación del eje X. Su derivada es la

velocidad ángular y la segunda derivada la aceleración angular.

φ, φ̇, φ̈: Ángulo Pitch que corresponde a la rotación del eje Y. Su derivada es la

velocidad ángular y la segunda derivada la aceleración angular.

ψ, ψ̇, ψ̈: Ángulo Yaw que corresponde a la rotación del eje Z. Su derivada es la

velocidad ángular y la segunda la aceleración angular.

En la siguiente figura se pueden ver representados dichos ejes y ángulos.

Figura 3.1: Representación de ejes y giros.

También aparecen términos f́ısicos en las ecuaciones:

Ixx, Iyy, Izz: Son los términos correspondientes a la inercia y aparecen representados

con I y el sub́ındice que corresponde al eje respecto al que es tomada. Éstas han

sido calculadas a través de las ecuaciones A.6, A.7 y A.10.

L: Longitud de un brazo del quadcopter.

Jr: Momento de inercia de los rotores. Se calcula siguiendo la ecuación A.11.

p: Perturbación que se genera por la diferencia de velocidades ángulares de los

motores para una misma referencia debido a su no idealidad. También aparece su

derivada.

3.2. Diseño del control de posición 15

m: Masa total del quadcopter.

g: Gravedad terrestre.

Los datos númericos de estos términos junto con sus cálculos aparecen en el anexo A.

Por último faltan las acciones del sistema. La suma o resta de velocidades de los

motores hace que el quadcopter se mueva en una dirección o en otra.

Estas acciones son U1, U2, U3 y U4 que permiten controlar los movimientos en cada

eje y vienen relacionadas con las velocidades de los motores de la siguiente manera:

U1 corresponde a la potencia del quadrotor en global, sumando los 4 motores. Siendo

Ti la fuerza vertical que ejerce cada motor:

U1 = T1 + T2 + T3 + T4 (3.7)

U2 es la utilizada para el movimiento en el eje Y:

U2 = −T1 + T2 + T3 − T4 (3.8)

U3 se utiliza para el movimiento en el eje X:

U3 = −T1 − T2 + T3 + T4 (3.9)

U4 se utiliza para el giro sobre el eje Z siendo Q el momento de arrastre de cada hélice:

U4 = −Q1 +Q2 −Q3 +Q4 (3.10)

Donde:

Ti = Ctρ(Aωi)
2 (3.11)

Qi = CqρA
2ω3

i (3.12)

Siendo Ct y Cq constantes aerodinámicas dependientes de la estructura de la hélice, ρ

la densidad del aire, A el área de barrido de la hélice y ωx la velocidad ángular de cada

motor. El cálculo de Ct y Cq se puede ver en las ecuaciones A.12 y A.13 de la sección A.

3.2. Diseño del control de posición

El control de posición se utiliza para la realización de trayectorias definidas por coorde-

nadas (X Y Z) a alcanzar junto con el ángulo Yaw para dirigir la “cabeza” en la dirección

16 Caṕıtulo 3. Análisis y diseño

que se quiera. Por lo tanto serán éstas las variables a controlar.

Se realiza un control por espacio estados ya que al estar todas las variables relacionadas

en las ecuaciones se realiza un control múltiple del conjunto de las variables.

Se elige un control por prealimentación de la consigna con integrador. La realimenta-

ción del estado permite estabilizar el sistema y ajustar el régimen transitorio del control

(tiempo de respuesta, sobreoscilación, acciones máximas), y la prealimentación de consig-

na y el integrador eliminan el error de posición de la variable correspondiente en régimen

permanente. [8]

El esquema de control queda de la siguiente manera:

Figura 3.2: Esquema de control de prealimentación con integrador.

La señal r(k) es la referencia, que la componen: X, Y, Z y ψ, e(k) el error y u(k) la

acción. Y(k) es la salida realimentada que la forman: X, Y, Z y ψ, y x(k) el estado siendo

éste todas las variables de estado: X, Ẋ, Y , Ẏ , Z, Ż, θ, θ̇, φ, φ̇, ψ y ψ̇. K es el instante

en el que se encuentra el bucle de control.

Por lo tanto la acción queda de la siguiente manera:

u = −LS · x+ LC · r + LR · e (3.13)

Donde LC , LR y LS se han calculado utilizando la técnica de asignación de polos [8] a

partir de las especificaciones dinámicas del control como tr=1 s. El periodo de muestreo

elegido es T=0.1 ms.

Lc =


−0,0259 71,1233 0 0

0 0 0 −4,4593

0 0 4,5023 0

0,9220 −0,0025 0 0

 (3.14)

3.3. Diseño del control de velocidad 17

Lr =


16,3053

0

0

−0,0009

 (3.15)

Ls1 =


0 0 0 0 −0,0259 −0,0016

5,5731 0,4939 0 0 0 0

0 0 5,6268 0,4987 0 0

0 0 0 0 0,922 0,1572

 (3.16)

Ls2 =


71,1233 8,0094 0 0 0 0

0 0 0 0 −4,4593 −1,9856

0 0 4,5023 2,0057 0 0

−0,00250 −0,0001 0 0 0 0

 (3.17)

Ls =
(
Ls1 Ls2

)
(3.18)

Como se puede ver en la figura 3.3 se alcanzan las referencias marcadas para el dron:

(a) Escalón en X e Y de 0.5 m. (b) Escalón en Z de 0.5 m. (c) Escalón en Yaw de 0.4 m.

Figura 3.3: Control de posición.

3.3. Diseño del control de velocidad

El control de velocidad permite generar movimientos sin especificar destino y utilizar el

autopiloto desde un mando de radiocontrol del quadcopter. Las variables que se controlan

en este apartado son las velocidades lineales en los ejes X e Y y la velocidad angular en

el eje Z.

Se han estudiado varias posibilidades para realizar este control:

18 Caṕıtulo 3. Análisis y diseño

3.3.1. Control PD sobre velocidades

El siguiente esquema de control utiliza un modelo modificado del usado en la tesis de

Peter Corke [9]. En ella realiza un control de posición con la diferencia respecto a los demás

controles de que relaciona posición y velocidad lineal con ángulos y velocidades angulares.

Se modifica para hacer un control de velocidad pero sigue teniendo esa caracteŕıstica

principal.

Figura 3.4: Esquema de control sobre velocidades.

Siendo las referencias: Ẋ, Ẏ y ψ̇ y las salidas o estado realimentado: Ẋ, Ẏ , θ, θ̇, φ, φ̇

y ψ̇. Ka es la constante referente al ángulo y Kȧ a la velocidad ángular.

Las acciones son las siguientes:

U1 = Potencia directamente impuesta desde el mando. (3.19)

U2 = −((Ẏref − Ẏ) · ky + θ · kθ + θ̇ · kθ̇) (3.20)

U3 = ((Ẋref − Ẋ) · kx − φ · kφ − φ̇ · kφ̇) (3.21)

U4 = ((ψ̇ref − ψ̇) · kψ̇) (3.22)

Se consiguen muy buenos resultados en simulación con este esquema pudiéndose con-

trolar perfectamente las velocidades lineales en X e Y y la velocidad angular en el eje

Z.

3.3. Diseño del control de velocidad 19

(a) Velocidad en X con refe-

rencia 3.

(b) Velocidad en Y con refe-

rencia 3.

(c) Yaw con referencia 0.

Figura 3.5: Simulaciones del control PD de velocidad.

3.3.2. Control PD sobre ángulos

Como segunda opción se realiza un control sin usar las velocidades, controlando di-

rectamente los ángulos. No es un control de velocidad exactamente pero es equivalente ya

que si se le impone un ángulo al quadcopter, éste irá a una velocidad determinada cons-

tante. El utilizar ángulos ante velocidades se debe a la dificultad que conlleva calcular

la velocidad lineal a partir de las aceleración proporcionada por el IMU. Es un control

proporcional-derivativo que sigue el esquema de la figura 3.6 y las siguientes ecuaciones:

Figura 3.6: Esquema de control PD.

Siendo las referencias: θ, φ y ψ̇ y las salidas realimentadas: θ, θ̇ φ, φ̇ y ψ̇.

U1 = Potencia directamente impuesta desde el mando. (3.23)

U2 = −((θRef − θ) · kpθ − θ̇ · kdθ) (3.24)

U3 = (φRef − φ) · kpφ − φ̇ · kdφ (3.25)

20 Caṕıtulo 3. Análisis y diseño

U4 = (ψ̇Ref − ψ̇) · kdψ (3.26)

Se consigue controlar los ángulos Roll, Pitch y velocidad angular de Yaw. Ante una

referencia de 0.2 rad para los ángulos y de 0.1 rad/s para ψ̇, las salidas son las siguientes:

(a) Ángulo Roll. (b) Ángulo Pitch. (c) Velocidad angular Yaw.

Figura 3.7: Simulaciones del control PD sobre ángulos.

Caṕıtulo 4

Implementación

Se ha decidido implementar un sistema de tiempo real frente a uno secuencial clásico

debido al determinismo temporal necesario para este tipo de controles.

Un sistema de tiempo real es el cual la exactitud de éste no depende sólo del resultado

lógico computacional si no también del momento en el que los resultados son generados

[10].

Se identifican las actividades a realizar junto con sus caracteŕısticas:

Gestión del IMU. Manda una trama cada 13 ms y se lee a través de la comunicación

serie SCI.

Control del sistema. Se realiza con un periodo de muestreo de 13 ms.

Gestión del ultrasonidos. Se necesita un dato cada 25 ms.

Env́ıo de comandos al dron. Se interrumpirá y se recogerá el dato.

Obtener las referencias impuestas por el mando de radiocontrol. Llega una nueva

referencia cada 13 ms.

4.1. Diseño del software

La estructura del software está basada en tareas. Es la herramienta que proporciona

SYS/BIOS para los sistemas de tiempo real. Cada una de estas tareas tiene una primera

parte de inicialización de las funcionalidades que se van a usar, un bucle infinito donde

se encuentra el código en si de la tarea y una primitiva bloqueante, la cual en este caso

son los semáforos. Se asignan tareas a cada actividad con requisitos temporales distintos

o funcionalidades muy diferentes.

Se distinguen varios tipos de tareas dependiendo de cuando se activan:

21

22 Caṕıtulo 4. Implementación

Tareas periódicas: Éstas se ejecutan cada un cierto tiempo definido constante.

Tareas esporádicas: Son activadas mediante una interrupción del sistema. Puede

ser por un est́ımulo externo, y por tanto son interrupciones hardware, o interno, lo

que corresponde a una interrupción software.

Las tareas necesitan permiso para ser ejecutadas y éste se lo proporcionan los semáfo-

ros. Cuando una tarea está lista debe esperar a la señal de un semáforo que tiene asociado

que le dé permiso para ejecutarse. La manera más utilizada para activar las tareas es

mediante un reloj cuyo funcionamiento es el siguiente:

Se dispone del reloj interno del sistema (1), siendo éste la referencia para cualquier

otro reloj implementado. A partir de éste se crea un reloj con la frecuencia que se desee

para cada una de las tareas que se quieran implementar. Cada vez que hay un tick, se

produce una interrupción software 3) activando el semáforo 4) y si la tarea también está

lista 5), ésta pasará a ejecución 6).

Figura 4.1: Diagrama de accionamiento de tareas. [6]

Otra de las maneras utilizadas para activar el semáforo es a través de interrupciones

hardware.

Estas tareas, además de tener unos tiempos que deben cumplirse y un semáforo que les

dé permiso para empezar a ejecutarse, tienen asignadas unas prioridades. Estas prioridades

determinan cual de ellas debe ejecutarse en primer lugar, sin importar que otra tarea esté

4.1. Diseño del software 23

ejecutándose. Por ello puede darse el caso de que esté ejecutandose una tarea, se le dé

permiso a otra de mayor prioridad y por lo tanto ésta le quite el procesador, ejecutándose

y después devolviéndoselo una vez que ha acabado. Por ello se debe elegir bien el orden

de prioridad de las tareas.

En la siguiente figura se puede ver el funcionamiento interno de las tareas: cuando

un sémaforo le da permiso a una nueva tarea ésta pasa a preparado. Si el procesador

está listo se ejecuta, lo que no quiere decir que vaya a acabar toda su ejecución ya que

en cualquier momento llega otra de mayor prioridad y esta pasará a espera. Cuando el

procesador vuelva a estar libre, se ejecutará de nuevo hasta que acabe y entonces pasará

a terminado.

Figura 4.2: Diagrama de funcionamiento de las tareas. [6]

4.1.1. Tareas

Se han creado 5 tareas:

Enviar comunicaciones al ordenador: Es una tarea periódica la cual env́ıa datos

de telemetŕıa al ordenador. Se crea un reloj que lanza el semáforo cada segundo. No

son datos relevantes en el control y por eso es la tarea de menor prioridad.

En esta tarea simplemente se leen los datos de los servidores y se env́ıan mediante

el Xbee.

Recepción de datos del IMU: Tarea principal del programa donde se reciben

los datos del IMU cada 13 ms. Éste interrumpe el sistema cada vez que manda

un caracter y cuando se han recogido todos, se activa el semáforo. A continuación

se ejecuta el control y se calculan las acciones necesarias para controlar el dron.

Se guardan los datos del sensor en los servidores para ser utilizados en las demás

tareas.

24 Caṕıtulo 4. Implementación

Env́ıo de pulso al ultrasonidos: Se produce una interrupción software cada 25

ms mediante otro reloj que activa el semáforo. En esta tarea se env́ıa el pulso que

necesita el ultrasonidos para devolvernos la medida.

Recepción de pulso del ultrasonidos: Cuando el ultrasonidos nos devuelve el

pulso en el cual está impĺıcita la medida salta una interrupción que activa el semáfo-

ro.

En esta tarea se ejecuta una función que recoje la medida y que lo guarda en el

servidor de los sensores. La altura no es necesaria para el control de velocidad im-

plementado pero se utiliza para dar robustez al sistema detectando en que momento

se está en tierra y cuando en el aire.

Conversión de los pulsos del receptor RF a referencias Mediante interrupción

recoge los pulsos de todos los canales, los convierte en referencias válidas para el

control y los guarda en los servidores correspondientes.

4.1.2. Servidores

Para la comunicación entre tareas con los servidores, se utiliza un mutex con herencia

de prioridad para proteger el acceso a las variables compartidas (GateMutexPri).

Se han creado 3 servidores:

Sistema: En este servidor se guarda el estado del sistema. Se han definido distintas

estructuras de variables como son: el propio del quadcopter, de los motores, del

switch... En el caso del estado propio del quadcopter tenemos 4 posibilidades: tierra,

aire, despegando y aterrizando. El estado de los motores puede ser ON u OFF y el

estado del switch, manual o automático.

Esta información es necesaria para saber que funciones realizar en cada tarea. Uno

de los ejemplos más claros puede ser que si no estamos en tierra, no se pueda cambiar

el modo de funcionamiento (de control de posición a control de velocidad) ya que

podŕıa acarrear problemas en el vuelo que se está realizando.

Sensores: En este segundo servidor se guardan todos los datos que nos proporcionan

los sensores. Este servidor está dividido en dos, uno para el IMU y otro para el

ultrasonidos.

Radiofrecuencia: Por último está el servidor de radiofrecuencia donde la tarea que

captura los datos del mando escribe en él y la tarea del IMU donde se encuentra el

control los lee para convertirlos en referencias.

4.2. Análisis de tiempo real 25

4.2. Análisis de tiempo real

Figura 4.3: Diagrama de tareas y servidores.

Para garantizar que los resultados sean generados en el momento adecuado es necesario

calcular el tiempo que tarda cada tarea en ejecutarse y cuanto tiempo tarda en leer y

escribir en los servidores. Además deberemos saber si se cumplen sus plazos de respuesta

sin excepción. Por ello se realiza una planificación de las tareas:

Tarea Prioridad C T=D BHP

IMU 5 914 µs 13 ms 7,68 µs
RF 4 59,8 µs 13 ms 7,25 µs

US Pulso 3 2,346 µs 25 ms 7,25 µs
US 2 12 µs 25 ms 3,6 µs

COM 1 3,99 µs 1000 ms -

Cuadro 4.1: Tabla de planificación de las tareas.

Donde C es el tiempo de computo, T el periodo, D el plazo de respuesta y BHP es el

bloqueo por herencia de prioridad.

W (Ti) =
i−1∑
j=1

dDi

Pj
e · Cj +Bi < Di (4.1)

26 Caṕıtulo 4. Implementación

W (IMU) = 0,921ms < 13ms. (4.2)

W (RF) = 0, 981ms < 13ms. (4.3)

W (USPulso) = 1, 957ms < 25ms. (4.4)

W (US) = 1, 965ms < 25ms. (4.5)

W (COM) = 75, 56ms < 1000ms. (4.6)

Como se puede observar, los plazos de respuesta de este sistema de tiempo real se cumplen

muy holgadamente, gracias a este DSP tan potente. Además se calcula la utilización del

procesador, donde se puede comprobar que no se utiliza ni un 10 %:

U =
n∑
j=1

Cj
Pj

= 7, 5 % (4.7)

4.3. Drivers software implementados

A continuación se explican los drivers que se han diseñado e implementado en el F2812

para integrar el distinto hardware utilizado:

4.3.1. Receptor de radiofrecuencia

El mando de radiofrecuencia emite un tren de pulsos donde cada uno de estos corres-

ponde a un canal del mando. El receptor divide el tren de pulsos en 5 canales diferentes.

Para ello se utiliza el Event Manager del F2812 que nos permite a través de la fun-

cionalidad llamada Input Capture recoger este valor del pulso. Se utiliza uno para cada

canal.

El proceso es el siguiente: el Input Capture se programa para que dé una interrupción

cada vez que haya un flanco en la señal de entrada, que en este caso es un pulso. La

primera interrupción se tiene con un flanco positivo y se guarda el valor del timer en ese

momento. Se espera a que llegue la siguiente interrupción, que es cuando ha habido un

flanco negativo, y se vuelve a guardar ese valor del timer. Se hace la resta y los cálculos

4.3. Drivers software implementados 27

correspondientes y obtenemos el tiempo de duración del pulso. Los pulsos tienen una

duración entre 1 y 2 ms. Esto se realiza con los 5 canales.

4.3.2. Ultrasonidos

El ultrasonidos necesita un pulso de 2 µs como mı́nimo por su patilla central para

devolver la medida por esa misma patilla. Por lo tanto lo que se debe hacer es establecer

ese pin como salida, darle el pulso e inmediatamente cambiar ese pin a entrada y utilizar

de nuevo un Input Capture. Aśı de la manera explicada en el párrafo anterior se puede

medir el tiempo del pulso. La distancia sigue la siguiente fórmula:

Distancia en cm = (tiempo en ticks) · 853 · 34,32

2
(4.8)

Donde el 853 corresponde del paso de ticks a ms, el 34.32 es la velocidad del sonido

en el aire y el 2 hace referencia a que hay recorrido de ida y vuelta del sonido y sólo se

quiere medir uno.

4.3.3. IMU

El IMU originalmente te ofrece unas tramas predefinidas que son los ángulos calculados

por el mismo o los datos de los sensores. Se necesita una mezcla de ambas. El software

que el IMU tiene integrado te permite enviarle un comando e indicarle que trama quieres

recibir. Una de las opciones es recibir una de las tramas, mandar el comando y esperar

a la siguiente trama para completar los datos y repetir este proceso una y otra vez. Esto

hace el sistema el doble de lento y por lo tanto se desestima ya que el control requiere un

periodo de muestreo muy pequeño.

La otra opción es reprogramar el IMU para obtener la trama que deseamos en el

menor tiempo posible. Se reprograma a través de la plataforma de Arduino consiguiendo

la trama deseada y además se aumenta la velocidad de transmisión consiguiendo los datos

cada 13 ms.

Figura 4.4: Trama del IMU.

Esta trama es enviada mediante SCI. Se dispone de unas funciones para la comunica-

ción SCI de [6].

28 Caṕıtulo 4. Implementación

4.3.4. Xbee

La comunicación inalámbrica del quadrotor con el ordenador se realiza mediante el

Xbee. Con ésta podemos mandar datos de telemetŕıa del dron al ordenador para anali-

zarlos como también se le pueden dar órdenes al quadcopter desde el ordenador.

Donde más se han utilizado estas funciones son en los entornos de pruebas, después se

podrá utilizar para mandar cierta información sobre el estado del quadcopter como nivel

de bateŕıa o alguna otra información que pueda ser relevante.

El Xbee integrado en el quad va conectado a la segunda SCI que dispone este DSP.

Su modo de funcionamiento es igual al utilizado por el IMU usando también las funciones

que estaban ya implementadas.

4.3.5. ESCs + Motores

Para el movimiento de los motores se necesita enviar un PWM de unos valores y

frecuencia determinados. El rango de velocidad de los motores es: con 1 ms de PWM se

tiene velocidad nula y con 2 ms se tiene su velocidad máxima que es de 1618 rad/s. La

frecuencia del PWM puede variar entre 50 y 450 Hz. La diferencia de una frecuencia u

otra depende de la velocidad de refresco que se quiera de este PWM ya que el control

le va a cambiar su valor cada 13 ms. Si hay un PWM cada 15 ms, puede darse el caso

de que no se haya actualizado este valor hasta 28 ms después. Por ello se ha puesto una

frecuencia de 400 Hz para que su refresco sea prácticamente inmediato.

Para realizar el PWM también se utilizan los Event Manager, pero en este caso se

utiliza su función de Output Compare. A través de un timer y dos registros se puede

generar una onda PWM de la siguiente manera:

El timer comienza a contar y se pone a 1 el valor del PWM. Cuando llega al valor

que ha sido puesto en el registro de comparación la onda se pone a 0 obteniendo el estado

positivo del PWM. Por último el estado negativo acabará cuando se llegue al registro de

periodo donde comienza de nuevo este proceso.

Por lo tanto con el registro de comparación del timer se establece el valor del PWM

de 1 a 2 ms y con el registro de periodo la frecuencia que éste tiene.

Caṕıtulo 5

Pruebas en el quadcopter

Probar el quadcopter real no es tan trivial como parece. La potencia que éste tiene

y el peligro de sus hélices conlleva realizar las pruebas de una manera muy controlada.

Además mientras no se tiene el control ajustado, éste puede hacer movimientos realmente

bruscos que pueden producir alguna aveŕıa o llegar a hacer daño a alguien.

Por lo tanto sólo una vez que en las simulaciones funciona todo perfectamente se

procede a probar los controles en el quadcopter.

Como se ha explicado, sólo se ha implementado el control de velocidad. Ante la difi-

cultad de estimar la velocidad con el sensor IMU, se utiliza el control sobre los ángulos

Roll y Pitch y la velocidad ángular de Yaw. Éste control aparece en la sección 3.3.2.

Dado que el modelo es aproximado, las constantes utilizadas en simulación no sirven,

pero si que dan una idea de como es una en proporción a la otra. Si se prueba directamente

se puede ver que no responde como debeŕıa siendo imposible su control. Por ello se deberá

comenzar una serie de pasos previos hasta conseguir volar totalmente suelto.

Se limitan todos sus movimientos excepto un giro. Ésto es, impidiéndole su desplaza-

miento en los ejes X e Y, estando atado al techo y al suelo y con un pequeño recorrido en

el eje Z.

Además se le impide el giro en el ángulo Yaw y en uno de los otros dos ángulos, para

poder ajustar primero solamente un ángulo. Se comienza intentando ajustar el ángulo

Pitch.

29

30 Caṕıtulo 5. Pruebas en el quadcopter

Figura 5.1: Sistema de limitación de ángulos.

La manera de ajustar las constantes Kp y Kd es emṕırica. Hay varios métodos de ajuste

de controladores PD utilizandose el mismo que en simulación, el método de oscilación. Se

incrementa la constante proporcional hasta ver que comienza a oscilar. Es en ese momento

cuando se incrementa la Kd hasta que éste deja de oscilar.

El primer paso es que con una referencia de 0 rads éste se estabilice sobre el eje

permitido. Una vez que es bástante estable y responde ante perturbaciones (pequeños

golpes que intentan desestabilizarlo) se procede a intentar ajustar el ángulo Roll.

Se repite el proceso cambiando el ángulo que se deja libre. Cuando esté también

controlado, se ajusta la velocidad angular en eje el Yaw.

El ángulo Yaw se controla en velocidad. Éste es el más sencillo de controlar.

Una vez que se tienen todos los ángulos controlados, se debe cambiar el escenario de

pruebas.

La primera opción era seguir con la estructura de la primera prueba pero permitiéndole

los tres giros. Al estar suspendido sobre una cuerda, el sistema se vuelve inestable aunque

se prueben los dos controles independientes ajustados juntos.

Por ello se coloca el quadcopter en el suelo, atado a 3 puntos en el suelo permitiéndole

despegar hasta 1 metro de altura. Como medida de seguridad se tendrá una caña que sólo

lo sujetará si se ve que pierde el control, si no la caña no ejercerá ninguna fuerza sobre el

quadcopter.

Con este nuevo sistema se consigue despegar y estar estable en el aire siendo un

grand́ısimo avance para esta primera experiencia con drones.

El siguiente paso seŕıa volarlo totalmente suelto. Se deja como continuación para futu-

ros TFGs seguir con la mejora de estos controles, consiguiendo vuelos totalmente libres,

como también el otro subobjetivo principal, que es el control de posición del quadcopter

para navegación autónoma.

Caṕıtulo 6

Conclusiones

El objetivo principal de este TFG ha sido el diseño e implementación de un autopiloto

junto con la estabilización de vuelo.

Se plantearon inicialmente dos subobjetivos muy ambiciosos: el control de posición del

quadcopter para navegación autónoma y el control en velocidad para recrear el uso clásico

del quadcopter telemanipulado.

Se ha diseñado el control de posición y validado en simulaciones pero no se ha llegado

a implementar debido a las limitaciones de nuestro hardware.

Se necesita realimentar variables de estado que no se disponen. Los sensores que se

han integrado nos proporcionan ángulos, velocidades angulares y aceleraciones. Para este

tipo de control se necesitan las velocidades lineales y las posiciones. Se han integrado las

aceleraciones para obtener las velocidades pero debido al ruido del sensor y también a la

dinámica tan inestable del quadcopter ha sido imposible estimar con suficiente precisión

las velocidades y por lo tanto las posiciones.

Se plantea como futuro trabajo la integración de otros sensores capaces de obtener

velocidades lineales y posiciones como también, utilizando el control diseñado, implemen-

tarlo sobre el sistema de tiempo real creado.

Respecto al control en velocidad y estabilización del vuelo, se han conseguido realizar

vuelos cortos. Éste es un primer paso muy importante para conseguir un autopiloto com-

pleto y ha sido como primera experiencia muy gratificante debido a que se ha conseguido

poner en vuelo el dron a pesar de los innumerables problemas que han surgido por la

dinámica tan compleja del quadcopter y al desarrollar un sistema tan completo como es

éste ya que contiene hardware, software, tiempo real e ingenieŕıa de control.

31

32 Caṕıtulo 6. Conclusiones

Apéndice A

Magnitudes f́ısicas del quadcopter.

Las magnitudes f́ısicas del quadcopter se han medido o calculado a partir de otras. En

este anexo se recogen las más significativas junto con sus cálculos.

En la sección 3.1 se hace referencia a los términos Ixx, Iyy y Izz que son la diagonal

principal del tensor de inercia. Siendo éste:

J =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 (A.1)

En la figura siguiente aparece representado el modelo simplificado de inercias seguido

para los cálculos:

Figura A.1: Modelo de inercias del dron.

Iii =

∫
M

d2
i dm (A.2)

33

34 Apéndice A. Magnitudes f́ısicas del quadcopter.

Y por tanto su cálculo es el siguiente:

Ixx1 = (0,5·mvarilla·r2
varilla)+(

2

12
·mrotor·l2rotor)+(

1

12
·mvarilla·l2varilla)+(0,5·mcilindro·r2

cilindro)

(A.3)

Ixx2 = 2 · (1

12
·mrotor · l2rotor +mrotor · (drotor)2) + 2 · (1

12
·mesc · (a2

esc + b2
esc) (A.4)

Ixx3 = mesc · (lvarilla/4)2) + 2 · (1

12
·mesc · (l2esc + b2

esc) +mesc · (
lvarilla

4
)2) (A.5)

Siendo:

Ixx = Ixx1 + Ixx2 + Ixx3 (A.6)

Como en el modelo para el cálculo de inercias es un quadcopter simétrico:

Iyy = Ixx (A.7)

Ahora Izz:

Izz1 = (0,5 ·mcilindro · r2
cilindro) + (

2

12
·mvarilla · l2varilla) + 4 · (0,5 ·mrotor · r2

rotor (A.8)

Izz2 = (d2
rotor) ·mrotor) + 4

1

12
·mesc · (l2esc + a2

esc) +mesc · (
lvarilla

4
)2 (A.9)

Donde:

Izz = Izz1 + Izz2 (A.10)

Otra de las variables que aparecen directamente en el modelo de la sección 3.1 es Jr:

Jr = número de aspas ·mhélice ·
r2

hélice

4
(A.11)

En la ecuación 3.11 aparecen los términos Ct y Cq que dependen de la aerodinámica

de la hélice. El primero de ellos se calculó experimentalmente de la siguiente manera:

Cuando el quadcopter está en equilibrio en el aire se cumple esta ecuación:

35

mg = 4 · Ct · ρ · A · r2
hélice · (ω)2 (A.12)

La velocidad ángular se puede estimar sabiendo el PWM que es mandado al quadcop-

ter, por lo tanto la única variable que queda es Ct.

La otra constante aerodinámica que tenemos es CQ que se calcula en función de Ct:

CQ = Ct

√
Ct
2

(A.13)

Después de dichos cálculos se recogen todas las magnitudes del quadcopter en la si-

guiente tabla:

Magnitud Valor Unidad

mvarilla 0.0705 kg
mcilindro 0.885 kg
mrotor 0.056 kg
mesc 0.03 kg
mtotal 1.5 kg
rvarilla 0.015 m
lvarilla 0.25 m
rrotor 0.015 m
lrotor 0.025 m
drotor 0.14 m
rcilindro 0.075 m
lcilindro 0.1 m
lesc 0.045 m
aesc 0.025 m
besc 0.007 m
Ixx 0.0056 kgm2

Iyy 0.0056 kgm2

Izz 0.0081 kgm2

número de aspas 2 unidades
mhélice 0.015 kg
rhélice 0.013 m
Jr 1, 267 · 10−4 kgm2

g 9.81 m/s2

Abarridohélice 0.053 m2

ρ 1.184 kg/m3

Ct 8, 326 · 10−6 adimensional
CQ 6, 775 · 10−8 adimensional

Cuadro A.1: Colección de magnitudes f́ısicas.

36 Apéndice A. Magnitudes f́ısicas del quadcopter.

Bibliograf́ıa

[1] Ardupilot. www.ardupilot.com.

[2] Controles del mando de radiofrecuencia.

[3] Estructura quad. www.electronicarc.com.

[4] Sergeant rupert frere rlc, crown copyright/mod 2013.

[5] Uav o drone, la historia de un arma diseñada para la guerra.

http://www.erepublik.com/es/article/uav-o-drone-la-historia-de-un-arma-dise-

ada-para-la-guerra-2516757/1/20, 2015.

[6] Alan Burns y Andy Wellings. Sistemas de tiempo real y lenguajes de programación

3a edición. 2003.

[7] Beatriz Frisón. Modelado y control de un helicóptero de cuatro motores. Universidad

de Zaragoza, CPS, 2008/2009.

[8] Luis Moreno, Santiago Garrido, y Carlos Balaguer. Modelado y control de sistemas

dinámicos. 2003.

[9] Paul Pounds, Robert Mahony, y Peter Corke. Modeling and control of a quad-rotor

robot. Australian National University, Canberra, Australia.

[10] J. Stankovic. Misconceptions of real-time computing. 1988.

[11] Referencia web del producto adquirido en DJI. Https://www.dji.com/product/flame-

wheel-arf/feature.

37

	Introducción
	Contexto y estado del arte
	Objetivos
	Organización de la memoria

	Plataformas hardware y software
	Hardware
	Estructura mecánica
	DSP F2812
	Sensores
	ESCs y Motores
	Batería y regulador de tensión
	Xbee
	Mando y receptor de radiofrecuencia
	Multiplexor

	Software
	Code Composer Studio
	SYS/BIOS

	Análisis y diseño
	Modelo del quadcopter
	Diseño del control de posición
	Diseño del control de velocidad
	Control PD sobre velocidades
	Control PD sobre ángulos

	Implementación
	Diseño del software
	Tareas
	Servidores

	Análisis de tiempo real
	Drivers software implementados
	Receptor de radiofrecuencia
	Ultrasonidos
	IMU
	Xbee
	ESCs + Motores

	Pruebas en el quadcopter
	Conclusiones
	Magnitudes físicas del quadcopter.
	Bibliografía

