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Abstract—The wide availability of sequenced biological data
has challenged the conventional methods and tools used in
molecular biology to compute the conservation index. The in-
creasing size of input datasets is making the time cost of current
conservation methods unaffordable.
We propose a new software tool that combines several estimation
methods applied to the conservation computation process with
parallelization and divide-and-conquer techniques substantially
improving its performance without affecting its accuracy.
We have also made an in-depth analysis of the impact of
different methods and parameter selection on the alignment
process applied prior to the conservation analysis of datasets.
We have used sets of mitochondrial DNA sequences with different
levels of heterogeneity and length, to provide a full case study.
The software tool and the datasets are freely available at
http://www.zaramit.org/conservation index
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I. INTRODUCTION

Conservation analysis of biological sequences has led the
scientific community to some meaningful advances on several
fields of study. For decades researchers have been studying
mitochondrial DNA (mtDNA). Human mtDNA (hmtDNA) was
the first significant part of the human genome to be sequenced
[1], and thereafter it has been a key element on a multitude of
biological studies such as forensics [2], medical studies of mi-
tochondrial diseases [3] and evolutionary studies of the human
species [4]. mtDNA not only has a lower relative degradation
than nuclear DNA (nDNA) [5], but also the mutation rate of
the former exceeds approximately by a factor of 10 the one of
nDNA [6].

In genetics, a mutation can be classified as nonneutral,
which includes harmful and advantageous ones; or neutral
based on its effect on fitness. According to the neutral model
of molecular evolution, harmful mutations (also known as
deleterious) are removed by negative selection while those
classified as neutral are kept (advantageous mutations occur
so rarely that they can be ignored). The positions with the
highest functional importance in hemoglobin are those where
heme is bounded and there is a remarkable conservation of
the amino acids occupying these sites over millions of years
of evolutionary history [7]. By contrast, other positions in the
protein show a much higher rate of substitution. If the degree
of functional constraint dictates how conserved a position is,
then identifying conserved regions of a protein is tremendously
useful [8].

Over the last decades, the scientific community has experi-
enced an increasing rate of the biological data available, even
more with the incorporation of the so-called next generation
sequencing methods [9]. When tried to apply traditional meth-
ods and tools to these large datasets, overflow problems were
uncovered, requiring new algorithmic techniques to handle this
new scenario. Thus, many of those methods, like the ones used
to calculate the conservation index, can take advantage of par-
allelization and divide-and-conquer techniques. Consequently,
their performance will increase for small datasets and it will
make them suitable to be applied to new large datasets.

The analysis of the conservation index of a set of sequences
requires all of them to have the same length, i.e. to be
aligned. This procedure is really common on evolutionary
studies given the nature of the biological sequences: usually
not every sequence of one set has the same length—sequences
may suffer specific mutations called insertions or deletions,
better known as indels, in some of their sites or sections (with
higher impact in the noncoding DNA regions). The various
heuristic methods one can apply to align the dataset may
lead to different alignments from the same input, yielding
an unknown effect on the calculation of the conservation of
residues for each site.

In this paper we present a new software tool designed to
calculate the conservation index of an input dataset of aligned
sequences. The key values of our proposal are the combination
of different methods into a single tool and the application
of parallelization techniques to dramatically improve their
performance. Furthermore, we have deeply studied the impact
of the alignment in identifying the conservation of residues
(nucleotides or amino acids). The alignment method selected
along with its parameters can make the results highly variable
[10]. Our results proving this statement are based on the
analysis of different sets of aligned sequences—the differences
between these sets are not only based on the type of residue,
but also on the taxonomic classification of each of them, i.e.
on the basis of shared characteristics.

II. BACKGROUND

Conservation analysis is one of the most widely used meth-
ods for predicting functionally important residues in protein
sequences [11]. In the last couple of decades there have been
significant scientific advances based on the association of some
nonneutral mutations to different types of cancer [12], [13]
such as breast [14], gastric [15], lung [16], pancreatic [17] or
prostate [18]. Nonneutral mutations have been also associated



to other diseases such as Alzheimer’s [19], diabetes [20],
Parkinson’s [21] and different cardiovascular ones [22], [23].

Even though a wide number of methods have been pro-
posed during the last fifty years [24], there is no universally
agreed upon technique [11]. The discrepancies among these
methods can be clustered in different steps of the analysis. Usu-
ally, the analysis process is divided in two stages: estimation
of frequencies of residues and calculation of the conservation
score. For the first stage, some methods use a mathematical
approach whilst others infer phylogenetic trees as the basis
for this estimation process. For the latter, there are methods
that apply entropy-based or variance-based approaches, and
there are alternatives that use substitution matrices to perform
the conservation calculus. Besides, there is another subset of
methods that take into account the similarity between residues
by grouping them into several classes prior to the estimation
of the frequencies [8].

We could not find any paper that studied the need of
parallel algorithms to analyze conservation. As aforementioned
in the introduction, these tools were designed for a rather
small set of biological sequences but, as the number of
available sequences increases, their execution time is becoming
unaffordable. Thus, it is required to implement parallelization
and divide-and-conquer techniques to create a new set of
conservation tools that do the same analysis, performing in
really affordable execution times even for large input datasets.

As for conservation methods, there are several alignment
methods as well. Their main goal is to arrange biological
sequences so as to be able to compare them. The core of
the alignment process is the score function, which differs
for each method. Basically, this score function computes and
minimizes the penalty value of different gap distributions at the
input dataset. Moreover, this artificial element has associated
a penalty factor when estimating the conservation score. Thus,
the more accurate the alignment, the lesser the effect of the gap
penalty factor will be in the conservation estimation. Besides,
the performance of alignment methods is strongly affected not
only by the size of the set of sequences, i.e. the number of
sequences and their length, but also by the similarity between
them. Furthermore, there is an obvious trade-off between
accuracy and computing times: the more accurate, the higher
the execution time of the alignment process.

III. METHODS

Conservation index (also known as conservation score)
is considered to be a reliable metric for quantifying residue
conservation. It is estimated on a column-by-column basis and
helps scientists find out functionally important positions.

A valid conservation analysis for a set of biological
sequences is made up of two main stages: estimation of
frequencies and calculation of conservation score. The former
estimates the number of times each residue appears in every
position of each sequence. The latter returns a position-specific
value, which represents how likely a mutation is expected to
take place in that position. Finally, the representation of this
analysis can be performed using different approaches.

We developed a new tool for carrying out conservation
analyses that was implemented using Python (version 3.4).

This decision was based on the widespread use of Python in
bioinformatics as well as the Biopython project [25], which
include a wide range of modules to manage biological informa-
tion. Furthermore, due to Python’s design philosophy, which
emphasizes code readability, the scientific community could
easily comprehend and extend the implemented algorithms.

Next, we provide a deeper description of the main aspects
that affect the design and implementation of the proposed
conservation analysis tool.

Data Structures

First, we studied the major data structure alternatives for
the frequency storage during the conservation analysis. The
methods we have chosen are almost constantly accessing the
frequencies’ data structure (at least once for every single
residue and position of the input alignment). Hence, this
decision had a key role on the final performance of our
software tool. Two alternatives were considered: i) a dictionary
of lists; and ii) a list of dictionaries.

TABLE I. EXECUTION TIME & MEMORY USAGE OF 10000 RUNS OF
THE INITIALIZATION ALGORITHM USING DIFFERENT DATA STRUCTURES.

Data Structure Size Execution Time (s) Memory Usage (MB)

Dict of Lists
10K items

x = 1.72 x = 8.48
σ = 0.01 σ = 0.18

20K items
x = 3.67 x = 9.10
σ = 0.01 σ = 0.10

30K items
x = 5.64 x = 9.71
σ = 0.01 σ = 0.15

40K items
x = 7.59 x = 10.04
σ = 0.01 σ = 0.10

50K items
x = 9.56 x = 10.71
σ = 0.01 σ = 0.14

60K items
x = 11.52 x = 11.32
σ = 0.01 σ = 0.02

70K items
x = 13.48 x = 11.82
σ = 0.01 σ = 0.10

80K items
x = 15.45 x = 12.47
σ = 0.01 σ = 0.09

90K items
x = 17.45 x = 12.61
σ = 0.02 σ = 0.00

List of Dicts
10K items

x = 47.86 x = 14.03
σ = 0.09 σ = 0.18

20K items
x = 100.34 x = 20.43
σ = 0.18 σ = 0.17

30K items
x = 140.06 x = 26.26
σ = 0.12 σ = 0.17

40K items
x = 193.12 x = 32.38
σ = 0.05 σ = 0.17

50K items
x = 247.23 x = 38.47
σ = 0.12 σ = 0.16

60K items
x = 299.67 x = 44.66
σ = 0.15 σ = 0.16

70K items
x = 354.21 x = 50.63
σ = 0.73 σ = 0.16

80K items
x = 406.24 x = 56.82
σ = 0.80 σ = 0.14

90K items
x = 419.79 x = 62.98
σ = 0.41 σ = 0.16

We tested both structures with a naive algorithm where
each structure was created and initialized with zeros. We



measured both execution time and memory usage for 10000
runs, and the outcome is shown in Table I. According to those
results, using a dictionary of lists was the best option for both
metrics.

Estimation of frequencies

The first step on the process to compute the conservation
index is to estimate the residue frequencies. The methods
chosen for this stage are totally compatible with the ones that
will be used in the next one. Moreover, we selected two of
the most consistent methods: weighted and unweighted. The
former assigns a specific weight to each sequence based on its
similarity with the rest of the aligned set, aiming to compensate
for over-representation among multiple aligned sequences. The
latter allocates the same weight to every sequence, considering
each one equally significant.

Calculation of conservation score

Once all the frequencies are estimated, we can compute
the conservation index. We selected two well-known and most
used techniques: entropy-based and variance-based methods.
There are several proposals for entropy-based methods [24], so
we chose the one with better qualities in terms of simplicity
of the computation process and accuracy of the results. On
one hand, the entropy-based method returns a value that will
reach its minimal value when all residues at a given site
have equal frequencies. On the other hand, the variance-based
method maximizes the returned value at the site occupied by
an invariant residue whose overall frequency is minimal.

Parallelization

As we have claimed, one of the major benefits of our tool
is the incorporation of parallelism, making it suitable even
for large input alignments. The main idea underneath was
to take advantage of the assumption of independence among
sites of the input alignment, splitting the input into subsets
of subsequences and generating one processing element per
subset.

Regarding its implementation, a deep analysis of the par-
allel algorithms and their execution was performed. One of
the fundamental elements to take into account was Python’s
Global Interpreter Lock (GIL), which showed a limitation in
threads performance, especially in CPU-intensive algorithms.
This limitation was due to the fact that GIL restricts to one the
number of threads that can be running in the interpreter at once.
Thus, the only situation in which it is suitable to simulate a
parallel execution with threads is when the algorithm has a lot
of blocking operations such as I/O or network communication.
However, our method doesnt belong to this sort of problems.
The alternative was to use Python’s multiprocessing module,
which creates independent processes instead of a multithread-
ing scheme. It suited perfectly our needs and it was the tool
we used to implement the parallelization of our application.

Report generation

The last stage of our application is the generation of a
report containing the most valuable information about the
conservation analysis. There are several parameters the user

Fig. 1. Example overview of a basic report.

Fig. 2. Example overview of a detailed report.

can select in order to get the report that better fits its needs:
a threshold to highlight only those sites that cross it, and the
detail level of the report. Currently the application offers two
different report levels: basic and detailed. The first one includes
the consensus sequence of the input alignment and the list of
sites that cross the chosen threshold with their conservation
distribution. The second one includes the same information of
the basic report, extending the list of sites to all the sites of
the input alignment. An example overview of a basic report
is shown in Figure 1. On the other hand, Figure 2 show an
example overview of a detailed report for the same case.

IV. RESULTS AND DISCUSSION

This section has a twofold division. First, we show all the
information, tests performed and results of the execution time
speedup obtained with our new tool. Secondly, we provide all
the details of the studies made to test the influence of the
alignment process on the conservation analysis.

A. Performance evaluation: Sequential vs Parallel approach

Sequences datasets: The performance tests were carried
out using 9 subsets extracted from a set of all the complete
hmtDNA sequences stored at GenBank [26], a comprehensive
and well-known database that contains publicly available bi-
ological sequences. Before the extraction, the whole dataset
was aligned using MAFFT [27] in its auto configuration (–
auto). Furthermore, these subsets contained not only different
number of sequences but also different lengths (number of
residues per sequence). All the sequences and fragments were
selected randomly with Python’s random module.

Experimental setup: We developed two versions of the
same algorithm for the conservation analysis. The first version
of this algorithm was based on a sequential approach whereas
the second one did so on a parallel approach and thus,
used every available CPU. We tested both versions for all
the possible combinations of methods available, both at the
frequency estimation and the conservation score computation



stages. We also run the tests several times to add statistical
significance to our results.

The purpose of this experiment was to measure the im-
provement in time cost of the parallel version versus the
sequential one. Hence, we wanted to estimate an upper bound-
ary of the theoretical speedup in order to assess how close
were we to the best solution possible. Given the applied
divide-and-conquer technique to achieve the best parallelism
implementation possible, the ideal speedup is equal to the
number of cores or processors the CPU has. It is important
to emphasize that this upper boundary is unreachable because
we were only parallelizing the estimation of frequencies and
the conservation score computation. Thus, there were still
fragments of the algorithm that were sequentially executed.

All the tests were executed on an Intel(R) Core(TM) i5-
4440 CPU @ 3.10GHz with 16G (2x8) DIMM DDR3 1600
MHz machine running Debian 8.1, Python 3.4 and BioPython
1.65.

Results evaluation: The performance tests carried out
proved that the execution time of both approaches was more
sensitive to a ten-fold increment of the sequences length
(number of residues per sequence) than by the same increment
in the number of sequences (See Table II and Table III). Yet,
regarding to the memory requirements, this increment was
almost constant regardless of the number of sequences (See
Table IV and Table V).

TABLE II. EXECUTION TIME (S) OF THE SEQUENTIAL VERSION OF
THE ALGORITHM USING 1 CORE.

entropy variance

Dataset unweight. weight. unweight. weight.

100s 100n x = 0.12 x = 0.13 x = 0.12 x = 0.13
σ = 0.00 σ = 0.00 σ = 0.00 σ = 0.01

100s 1000n x = 0.18 x = 0.28 x = 0.20 x = 0.29
σ = 0.03 σ = 0.04 σ = 0.00 σ = 0.06

100s 10000n x = 0.82 x = 1.80 x = 0.99 x = 1.92
σ = 0.32 σ = 0.38 σ = 0.02 σ = 0.56

1000s 100n x = 0.19 x = 0.30 x = 0.20 x = 0.31
σ = 0.04 σ = 0.04 σ = 0.01 σ = 0.06

1000s 1000n x = 0.73 x = 1.72 x = 0.91 x = 1.87
σ = 0.32 σ = 0.39 σ = 0.03 σ = 0.57

1000s 10000n x = 6.22 x = 16.04 x = 8.08 x = 17.61
σ = 3.19 σ = 3.87 σ = 0.22 σ = 5.67

10000s 100n x = 0.86 x = 1.93 x = 1.01 x = 2.05
σ = 0.37 σ = 0.42 σ = 0.02 σ = 0.62

10000s 1000n x = 6.20 x = 16.10 x = 8.02 x = 17.61
σ = 3.23 σ = 3.87 σ = 0.17 σ = 5.71

10000s 10000n x = 60.69 x = 158.84 x = 79.58 x = 175.27
σ = 31.86 σ = 38.37 σ = 2.59 σ = 56.88

These performance tests also showed, as expected, that if
the dataset to analyze was rather small (100 sequences and up
to 1000 residues or 1000 sequences and up to 100 residues),
using the parallel version instead of the sequential one resulted
in an actual degradation of performance (See Table II and Table
III). This is due to the additional infrastructure required to
manage the parallelism. As the number of sequences and/or
the length of each one of them increased, which is to be ex-
pected in the foreseeable future, the performance improvement
achieved with the parallel version of the algorithm increased.
On one hand, the increase in the number of sequences is

already a reality[26]. On the other hand, as the computational
power keeps growing over the years, it does not seem a reckless
idea to think that these algorithms could be used to analyze
DNA sequences instead of mitochondrial ones—the human
genome has an approximate length of 3.2 billion base pairs
but researchers usually work with fragments of around 150,000
residues, which is a ten-fold increment.

As shown in Table VI the experimental speedup is really
low for small datasets. In this case, the estimation of both
frequencies and conservation represents a small percentage of
the total execution time. In contrast, as both the number of
sequences and its length grow, the algorithm spends more time
with these two tasks, that is, they represent a higher percentage
of the total execution time. As a result, the experimental
speedup approximates the theoretical one.

B. Alignment influence on conservation analysis

Sequence datasets: In order to analyze the influence of
the alignment process on the conservation analysis we used
several sets of complete mtDNA sequences downloaded from
GenBank. We used three source sets of 400 mtDNA sequences:
the first one formed only by hmtDNA sequences, the second
one including primate sequences (pmtDNA) but not hmtDNA,
and the last one composed by mammal sequences (mmtDNA)
but neither pmtDNA nor hmtDNA. The statistics of the three
sets are shown in Table VII.

Furthermore and in order to perform an in-depth analysis,
we extracted the ND2 gene and its translation to protein se-
quence from all the datasets, taking advantage of the biological
information that GenBank provides with each sequence. Then
we generated six new datasets, three formed by all the ND2
gene fragments of each dataset, and three with all the protein
sequences. The statistics of this datasets are displayed in Table
VIII and Table IX.

Experimental setup: For this experiment, the alignment
tools were not selected based on a thorough analysis of

TABLE III. EXECUTION TIME (S) OF THE PARALLEL VERSION OF THE
ALGORITHM USING 4 CORES.

entropy variance

Dataset unweight. weight. unweight. weight.

100s 100n x = 0.33 x = 0.43 x = 0.33 x = 0.43
σ = 0.04 σ = 0.04 σ = 0.01 σ = 0.06

100s 1000n x = 0.34 x = 0.45 x = 0.33 x = 0.44
σ = 0.05 σ = 0.04 σ = 0.01 σ = 0.0

100s 10000n x = 0.53 x = 0.83 x = 0.62 x = 0.89
σ = 0.08 σ = 0.11 σ = 0.01 σ = 0.17

1000s 100n x = 0.33 x = 0.44 x = 0.33 x = 0.44
σ = 0.05 σ = 0.04 σ = 0.00 σ = 0.06

1000s 1000n x = 0.45 x = 0.75 x = 0.54 x = 0.85
σ = 0.09 σ = 0.12 σ = 0.01 σ = 0.18

1000s 10000n x = 2.21 x = 5.00 x = 2.63 x = 5.32
σ = 0.95 σ = 1.10 σ = 0.06 σ = 1.59

10000s 100n x = 0.58 x = 1.09 x = 0.66 x = 1.19
σ = 0.17 σ = 0.22 σ = 0.01 σ = 0.30

10000s 1000n x = 2.17 x = 5.05 x = 2.59 x = 5.39
σ = 0.99 σ = 1.12 σ = 0.09 σ = 1.65

10000s 10000n x = 18.48 x = 45.95 x = 23.15 x = 49.79
σ = 9.19 σ = 10.72 σ = 0.63 σ = 15.82



TABLE IV. MEMORY USAGE (MB) OF THE SEQUENTIAL VERSION OF
THE ALGORITHM USING 1 CORE.

entropy variance

Dataset unweight. weight. unweight. weight.

100s 100n x = 18.86 x = 18.88 x = 18.85 x = 18.88
σ = 0.06 σ = 0.07 σ = 0.06 σ = 0.02

100s 1000n x = 19.58 x = 19.60 x = 19.29 x = 19.34
σ = 0.14 σ = 0.07 σ = 0.06 σ = 0.17

100s 10000n x = 27.67 x = 27.80 x = 26.93 x = 26.05
σ = 0.23 σ = 0.80 σ = 0.07 σ = 0.81

1000s 100n x = 18.86 x = 18.88 x = 18.86 x = 18.89
σ = 0.07 σ = 0.06 σ = 0.06 σ = 0.02

1000s 1000n x = 19.59 x = 19.59 x = 19.30 x = 19.57
σ = 0.14 σ = 0.13 σ = 0.06 σ = 0.15

1000s 10000n x = 27.99 x = 27.86 x = 27.12 x = 26.51
σ = 0.23 σ = 0.95 σ = 0.06 σ = 0.70

10000s 100n x = 18.87 x = 18.98 x = 18.86 x = 18.95
σ = 0.10 σ = 0.07 σ = 0.07 σ = 0.06

10000s 1000n x = 19.59 x = 19.82 x = 19.29 x = 19.82
σ = 0.23 σ = 0.23 σ = 0.07 σ = 0.26

10000s 10000n x = 28.43 x = 28.33 x = 27.64 x = 27.62
σ = 0.27 σ = 1.15 σ = 1.12 σ = 0.44

TABLE V. MEMORY USAGE (MB) OF THE PARALLEL VERSION OF THE
ALGORITHM USING 4 CORES.

entropy variance

Dataset unweight. weight. unweight. weight.

100s 100n x = 19.91 x = 19.93 x = 19.90 x = 19.93
σ = 0.06 σ = 0.06 σ = 0.05 σ = 0.02

100s 1000n x = 20.78 x = 20.80 x = 20.62 x = 20.64
σ = 0.09 σ = 0.06 σ = 0.06 σ = 0.10

100s 10000n x = 29.58 x = 29.62 x = 28.97 x = 27.92
σ = 0.14 σ = 0.86 σ = 0.10 σ = 0.80

1000s 100n x = 19.90 x = 19.99 x = 19.89 x = 19.98
σ = 0.07 σ = 0.08 σ = 0.05 σ = 0.06

1000s 1000n x = 20.78 x = 20.82 x = 20.63 x = 20.67
σ = 0.10 σ = 0.06 σ = 0.05 σ = 0.10

1000s 10000n x = 29.65 x = 29.73 x = 29.06 x = 28.31
σ = 0.12 σ = 0.93 σ = 0.10 σ = 0.66

10000s 100n x = 19.90 x = 21.44 x = 19.90 x = 21.44
σ = 0.63 σ = 0.63 σ = 0.08 σ = 0.89

10000s 1000n x = 20.80 x = 21.44 x = 20.61 x = 21.43
σ = 0.35 σ = 0.34 σ = 0.09 σ = 0.43

10000s 10000n x = 30.18 x = 30.10 x = 29.31 x = 29.33
σ = 0.30 σ = 1.12 σ = 1.16 σ = 0.48

the state of the art on the corresponding field. Instead, we
chose them based on their extended usage by the scientific
community and their applicability on medium-sized datasets.
Hence, we used MAFFT [27], Clustal Omega [28] and Muscle
[29]. We extended MAFFT with three really common and
extended different parameter settings: MAFFT –auto, MAFFT
–linsi and MAFFT –parttree. The first one is the default option
when running MAFFT; the second performs an accuracy-
oriented alignment; and the third one realizes a performance-
oriented alignment.

Once we aligned all the aforementioned datasets with the
different tools and parameters chosen, we generated their cor-
responding conservation analysis for all the different methods
available. We also included different thresholds in order to
provide a complete study of almost any possible scenario. The

TABLE VI. EXPERIMENTAL SPEEDUP.

entropy variance

Dataset unweight. weight. unweight. weight.

100s 100n 0.32 0.27 0.32 0.27

100s 1000n 0.48 0.56 0.52 0.59

100s 10000n 1.52 2.05 1.90 2.22

1000s 100n 0.51 0.60 0.54 0.61

1000s 1000n 1.47 2.03 1.83 2.19

1000s 10000n 2.98 3.40 3.30 3.52

10000s 100n 1.60 1.71 1.52 1.79

10000s 1000n 2.97 3.39 3.21 3.47

10000s 10000n 3.49 3.69 3.69 3.75

TABLE VII. STATISTICS FROM THE THREE SOURCE SETS OF
COMPLETE MTDNA SEQUENCES DOWNLOADED.

Seqs. Num. seqs. Length mean (bp) Length StDev (bp)

hmtDNA 400 16568.99 ±2.58

pmtDNA 400 16687.24 ±280.09

mmtDNA 400 16492.28 ±340.54

following evaluation has been made crossing all the results of
the same unaligned dataset individually.

Results evaluation: One of the first things to notice was
that, as expected, when aligning sequences from a wide range
of species like the ones in the primate or the mammal set,
the accuracy of the alignment decreased. This was clearly
noticeable looking at the original length of the complete
mtDNA sequences in Table VII and then comparing them with
the alignments’ length in Table X; as the sequences to be
aligned were less similar between each other (they belonged
to organisms of different species) the number of gaps inserted
increased. Regarding the nucleotides sequences of the ND2
gene, these differences were not that obvious (See Table VIII
and Table XI).

This is why we performed an in-depth analysis, to take
a closer look into those sets of sequences in order to find
more subtle differences, and we did find them. The gaps
were inserted at different positions regarding the alignment
tool. Therefore, if we are interested in accuracy, we should
take this into account and choose MAFFT –linsi or Clustal
Omega as our alignment tool. However, if we are more concern
about execution time, we should clearly choose MAFFT –
auto or MAFFT –parttree, which had a 44-fold or greater
improvement in execution time compared to MAFFT –linsi.
These conservation analyses not only let us find out there
were important differences between the alignments regarding
the positions of gaps but they also showed us there were
some positions where, regarding the alignment tool chosen,
conservation varied. We have included some of these cases in
Table XII.

One of the differences we found was that regarding the
alignment tool used, some gaps were inserted in different po-
sitions. An example of this behavior was the case of pmtDNA
sequences using unweighted frequencies and entropy-based
conservation with a 0.99 threshold: Clustal Omega had inserted
gaps in positions 264 and 265 whereas MAFFT (MAFFT
–auto, MAFFT –linsi and MAFFT –parttree) had inserted
gaps in positions 252 to 254. Another subtle difference was
that there were positions where the conservation was really



TABLE VIII. STATISTICS FROM THE ND2 GENE FRAGMENTS OF THE
THREE SOURCE SETS OF MTDNA SEQUENCES DOWNLOADED.

Seqs. Num. seqs. Length mean (bp) Length StDev (bp)

hmtDNA 400 1042.00 ±0.00

pmtDNA 400 1042.28 ±1.64

mmtDNA 400 1042.42 ±2.29

TABLE IX. STATISTICS FROM THE ND2 PROTEIN SEQUENCES
DOWNLOADED.

Seqs. Num. seqs. Length mean (bp) Length StDev (bp)

hmtDNA 400 347.00 ±0.00

pmtDNA 400 346.90 ±0.44

mmtDNA 400 346.95 ±0.69

similar but using some alignment tools, the score was greater
than the given threshold, whilst with others, the score was
slightly lower than this threshold. This behavior was found,
for example, while studying the results for the mmtDNA set
using unweighted frequencies and entropy-based conservation
with a 0.99 threshold; with MAFFT –linsi and Clustal Omega
position 7 had a conservation score of 0.9895 and thus, it
were not included in the appropriate report. Finally, there was
another important difference: we found out that there were
some sites where the conservation score had really different
values. For example, in the case of mmtDNA sequences using
weighted frequencies and entropy-based conservation with a
0.99 threshold, position 320 had a conservation index of
1.00 using Muscle, 0.9847 using Clustal Omega and 0.8180
using MAFFT. This last type of difference proved that the
alignment tool has a really important influence when analyzing
conservation of a set of biological sequences and thus, the
decision of which one to use is more complex than it may
seem at first glance.

V. CONCLUSION

We have presented a new software application to estimate
the conservation index of an alignment of biological sequences.
It combines some of the best-published techniques to perform
a conservation analysis with the generation of readable and
useful reports. We have included parallelization and divide-
and-conquer techniques in the implementation process in order
to improve the performance of those techniques without affect-
ing the final accuracy. Moreover, our application is capable of
handling large sequence datasets in a feasible execution time.
This new software application can be executed in any OS that
supports Python 3.4 and BioPython 1.65.

Besides, we have performed an in-depth study about the
impact of the alignment process on the conservation analysis.
We have used several sets of mtDNA sequences with different
evolution distances, proving the correlation between the differ-
ences among alignment applications and parameter selection,
and their conservation score.

For future improvements we aim to include new methods in
all the stages involved in the conservation analysis, specifically
those related with phylogeny inference processes, and more
types of reports to make our tool more suitable for not
considered scenarios.

TABLE X. STATISTICS FROM THE THREE SOURCE SETS OF COMPLETE
MTDNA SEQUENCES ALIGNED USING DIFFERENT TOOLS.

Seqs. Alignment tool Execution Time (s) Length (bp)

hmtDNA MAFFT –auto 27.38 17226
MAFFT –linsi 48912.23 17215
MAFFT –parttree 4390.33 17231
Clustal Omega 26133.06 17206
Muscle 2480.37 17225

pmtDNA MAFFT –auto 111.49 23345
MAFFT –linsi 59695.85 23021
MAFFT –parttree 4027.77 23780
Clustal Omega 32445.27 23451
Muscle 2132.29 22957

mmtDNA MAFFT –auto 149.46 21884
MAFFT –linsi 57716.7 21398
MAFFT –parttree 2677.79 22105
Clustal Omega 28439.41 21978
Muscle 2079.46 21504

TABLE XI. STATISTICS FROM THE ND2 GENE OF THE THREE SOURCE
SETS OF SEQUENCES ALIGNED USING DIFFERENT TOOLS.

Seqs. Alignment tool Execution Time (s) Length (bp)

hmtDNA MAFFT –auto 6.86 1042
MAFFT –linsi 192.11 1042
MAFFT –parttree 3.11 1042
Clustal Omega 146.18 1042
Muscle 29.35 1042

pmtDNA MAFFT –auto 4.88 1050
MAFFT –linsi 215.52 1050
MAFFT –parttree 7.43 1050
Clustal Omega 160.64 1050
Muscle 54.71 1054

mmtDNA MAFFT –auto 6.56 1077
MAFFT –linsi 220.08 1077
MAFFT –parttree 3.64 1077
Clustal Omega 155.08 1077
Muscle 55.84 1106
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