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an appropriate change of variables to Legendre polynomials, whereas the
system for general freeform case is obtained applying a similar procedure to
spherical harmonics. Numerical comparisons with standard systems, such
as Forbes and Zernike polynomials, are performed and discussed.
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1. Introduction

The number and relevance of applications of aspheric and freeform optics is continuously in-
creasing, ranging from astronomy [1], industry [2], solar energy [3], biomedical optics [4], or
physiological optics [5], among others. The high complexity of optical surfaces found in bio-
logical systems such as the human eye [6], or the new advances in fabrication and testing of
freeform surfaces [7], are demanding precise, robust and efficient methods of specifying these
surfaces. Ideally, the shape specification should be physically meaningful and invariant for the
different stages of design, fabrication, testing or application. In optics, it is common to represent
the surface sagz as a function of the coordinatesz= f̃ (x,y). Often the configuration is nearly
rotationally symmetric and hence it is better to work in cylindrical coordinatesz= f (r,θ ). The
variety of systems of representations range from the pure sampling grid of points, localized
splines, or global or modal representations given by combinations of functions such as spheres,
conicoids, monomials, polynomials, etc. Specific methods of representation tailored for spe-
cific applications were also proposed, such as generalized Cartesian ovals [8] or solutions of
specific differential equations [9], among others. Due to the high relevance of spheres, the most
widely used characterizations of optical surfaces is the sum of a sphere (or conicoidC) plus an
aspherical partA usually given as a linear combination of termsz=C+A. In what follows we
will talk of conicoidsC which include the sphere as a particular case.

Typically the terms specifyingA are either monomials or polynomials. Historically, mono-
mials were used first due to their apparent simplicity, but as Forbes pointed out referring to
monomials [10], “the most widely used characterization of surface shape is numerically defi-
cient”, mainly due to their lack of orthogonality. Orthogonal systems of polynomials, such as
Zernike polynomials [11], Forbes polynomials [10, 12–15], etc., permit to overcome a series
of key issues ranging from numerical instabilities to effective tolerance specifications. Further-
more, basic linear algebra tells us that the two crucial properties of a good system of representa-
tion (sets of basis functions) are orthogonality and completeness. An additional, but less crucial
property is normality (norm unity for all basis functions). Orthogonality, that implies the linear
independence between the basis functions, implies also good numerical behavior, avoids redun-
dancy and ensures uniqueness of the representation, among other highly important properties.
In this context completeness is even more crucial as it means that the system can represent all
possible surface shapes, that is to insure that we have a real freeform system.

In this sense the most widely used methods of optical surface representation in the form of
z=C+A are essentially non orthogonal, even when they use Zernike polynomials, Forbes poly-
nomials or orthogonal systems to represent the departure from the sphere (or conicoid), simply
because the conicoid itself is not orthogonal toA. Here our goal was to solve this problem to
obtain a system of representation in whichC is orthogonal toA (of course the basis functions
of A are orthogonal as well). This implies thatC is one of the basis functions of the system.
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To this end, we divided the main goal into the following specific objectives: (1) to develop
a general theoretical framework to obtain this type of systems, initially restricted to rotational-
ly symmetric surfacesz= f (r); (2) to obtain and implement a complete orthogonal system, in
which the first basis function is a conicoid; (3) to generalize the above results to non-rotationally
symmetric surfaces which is essential to obtain true freeform systems; and (4) to test numerical-
ly our new systems and perform direct comparisons with previous methods. The next Sections
are organized accordingly.

2. Basis for rotationally symmetric surfaces

In this section we introduce the general framework of our theory, restricted to rotationally sym-
metric surfaces defined by an equation of the formz= f (r), r ∈ [0,1], wherer andz are cylin-
drical coordinates. We design an orthogonal system forL2

ν [0,1] with measuredν = rdr, in
which the first element of the system is a specified conicoidC that, in the following, we denote
by q0(r) for convenience. The remaining elements of the system, the elements of the set A,
are denoted byqn(r), n= 1,2,3, . . . The functionsqn(r), n= 1,2,3, . . ., are constructed using
three essential ingredients: (i) an arbitrary orthonormal system{pn(x)}n=0,1,2,..., with respect
to a certain measuredµ = ρ(x)dx in an interval[c,d], (ii) the selected conicoidq0(r) and (iii) a
convenient change of variablex= ϕ(r), ϕ : [0,1]→ [c,d]. A similar method based on a change
of variables was successfully applied before to obtain orthogonal Zernike-like sytems on non-
circular apertures [16], polygons and polygonal facets [17]. The resulting orthogonal system
consists of functions{q0(r),q1(r),q2(r), . . .} defined in the interval[0,1] that are orthogonal
with respect to the measuredν = rdr. Moreover, the functionsq1(r),q2(r), . . . have also norm
unity. Rougly speaking, the idea is the following: we useϕ(r) to replace the first elementp0

of the system{pn(x)}n=0,1,2,... by q0(r). To preserve the orthogonality of the new system, we
must chooseϕ(r) appropriately. In the remaining of this section we develop this idea and give
an important example.

Let {pn(x)}n=0,1,2,... be an orthonormal basis ofL2
µ [c,d] with p0(x) = p0 constant and mea-

suredµ = ρ(x)dx. This means that

δm,n =
∫ d

c
pn(x)pm(x)ρ(x)dx, n,m= 0,1,2, . . . (1)

After a (at this moment unknown) change of variableϕ : [0,1]→ [c,d]; x= ϕ(r), with ϕ(0)= c,
ϕ(1) = d andϕ ′(r)> 0 in (0,1), we find

δm,n =

∫ 1

0
pn(ϕ(r))pm(ϕ(r))ρ(ϕ(r))ϕ ′(r)dr, n,m= 0,1,2, . . . (2)

We observe that, when we define

qn(r) :=Cnpn(ϕ(r))w(r), w(r) :=

√
ρ(ϕ(r))ϕ ′(r)

r
, (3)

with Cn = 1 for n= 1,2,3, . . ., andC0 arbitrary at this moment; we find that the functionsqn(r),
n= 1,2,3, . . . are orthonormal in[0,1] with respect to the measuredν = rdr. It is worth to note
that the variabler in the denominator ofw(r) is not dangerous as the numerator behaves as
r whenr → 0, as we see in the first line of (4). To complete our basis, we need to introduce
a first elementq0(r), the arbitrary conicoid, assuring that it is orhogonal to all the elements
qn(r), n= 1,2,3, . . . This is achieved by choosing the functionϕ(r) as the unique solution of
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the boundary value problem:





ρ(ϕ(r))ϕ ′(r) =

1

C2
0 p2

0

rq2
0(r),

ϕ(0) = c, ϕ(1) = d.
(4)

Since the first-order differential equation in Eq. (4) can be directly solved by integration, the
unique solutionx= ϕ(r) of Eq. (4) is implicitly defined by the equation

∫ x

c
ρ(t)dt =

1

C2
0 p2

0

∫ r

0
sq2

0(s)ds, (5)

when we take

C2
0 =

∫ 1

0
sq2

0(s)ds

/[
p2

0

∫ d

c
ρ(t)dt

]
. (6)

It is obvious that the left hand side of Eq. (5) is an increasing function ofx and the right hand
side of Eq. (5) is an increasing function ofr. Then,ϕ(r) is a monotonic function withϕ ′(r)> 0.

Thus, we have that the set{qn(r)}n=0,1,2,... is a quasi-orthonormal basis ofL2
ν [0,1] (orthonor-

mal except for the fact that||q0||2r =C2
0) with

qn(r) =
q0(r)
C0p0

Cnpn(ϕ(r)), n= 0,1,2, . . . (7)

Moreover,{qn(r)}n=0,1,2,... is complete inL2
ν [0,1]. For any functionF(r) ∈ L2

ν [0,1], we define

f (x) :=
F(ϕ−1(x))
w(ϕ−1(x))

, (8)

that belongs toL2
µ [c,d]:

|| f ||2ρ =
∫ b

a
| f (x)|2ρ(x)dx=

∫ 1

0
| f (ϕ(r))|2ρ(ϕ(r))ϕ ′(r)dr =

∫ 1

0
|F(r)|2rdr = ||F ||2r . (9)

As {pn(x)}n=0,1,2,... is complete inL2
µ [c,d], we have that

f (x) =
∞

∑
n=0

cnpn(x), almost everywhere in[c,d], (10)

with

cn :=
∫ d

c
pn(x) f (x)ρ(x)dx=

1
Cn

∫ 1

0
qn(r)F(r)rdr, n= 0,1,2,3, . . . (11)

Then,{qn(r)}n=0,1,2,... is a complete system inL2
ν [0,1], since for any functionF(r) ∈ L2

ν [0,1],
we have

F(r) = w(r) f (ϕ(r)) =
∞

∑
n=0

cnw(r)pn(ϕ(r)) =
c0

C0
q0(r)+

∞

∑
n=1

cnqn(r). (12)
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Solution for normalized Legendre polynomials

The normalized Legendre polynomials [18]

pn(x) =

√
2n+1

2
1
2n

n

∑
k=0

(
n
k

)2

(x−1)n−k(x+1)k, p0(x) =
1√
2
, (13)

are an orthonormal basis ofL2[−1,1] with respect to the weight functionρ(x) = 1. We take the
following conicoid:

q0(r) = b

√
1− s

L2r2

a2 , (14)

with s= ±1. If s= 1 andb > 0, q0 is the portion of an ellipse with semiaxesa andb in the
upper half-plane between the angles arctan(b

√
a2−L2/a) and π/2, and with 0< L < a. If

s= 1 andb < 0, q0 is the portion of an ellipse with semiaxesa and−b in the lower half-
plane between the angles−π/2 and−arctan(b

√
a2−L2/a), and with 0< L < a. If s= −1

and b > 0, q0 is the portion of a hyperbola with semiaxesa and b in the upper half-plane
between the angles arctan(b

√
a2+L2/a) and π/2, and ifs= −1 andb< 0, q0 is the portion

of a hyperbola with semiaxesa and−b in the lower half-plane between the angles−π/2 and
−arctan(b

√
a2+L2/a). In any case, from Eq. (5),

x+1=

∫ x

−1
dt =

2

C2
0

∫ r

0
t

(
b2− s

b2

a2L2t2
)

dt =
b2r2

C2
0

[
1− s

L2

a2

r2

2

]
. (15)

We obtain the value ofC0 from Eq. (6),

C0 =
1
2

√
2b2− s

b2

a2L2. (16)

Thus,

x= ϕ(r) =
2r2

2a2− sL2

[
2a2− sL2r2]−1. (17)

Therefore, we have that the set

qn(r) = 2Cnsign(b)

√
2a2−2sL2r2

2a2− sL2 pn

(
2r2

2a2− sL2

[
2a2− sL2r2]−1

)
, n= 0,1,2, . . . ,

(18)
is a quasi-orthonormal basis ofL2

ν [0,1] with dν = rdr and any functionF(r) ∈ L2
ν [0,1] can be

written as

F(r) =
c0

C0
b

√
1− s

L2r2

a2 +
∞

∑
n=1

cnqn(r), (19)

with cn, C0 andqn(r) given in Eqs. (11), (16) and (18) respectively.
In Table 1 we can find the first five functionsq0(r),q1(r), . . . ,q4(r). The graphs of these

functions (up ton= 4) are illustrated in Fig. 1 for a elliptical cap,r ∈ [0,1], s= 1, b= 1 and
a= L = 3/4.

Observation 1. In optics, it is standard to express rotationally symmetric surfaces in terms of
their deviation from the sagittal representation. If we consider as first term

q0(r) =
cL2r2

1+
√

1− εc2L2r2
, (20)
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Table 1. First five functions of the new quasi-orthonormal basis{qn(r)}n=0,1,2,... (see Eq.

(18)) obtained from the normalized Legendre polynomials andq0(r) = b
√

1−sL2r2

a2 .

n qn(r)

0 b

√
1−s

L2r2

a2

1 −2
√

3sign(b)

√
a2−sL2r2

(2a2−sL2)3/2

(
2sL2r4−4a2r2+2a2−sL2)

2

2
√

5sign(b)

√
a2−sL2r2

(2a2−sL2)5/2

×
(

6s2L4r8−24sL2a2r6−6
(
s2L4−2sL2a2−4a4

)
r4+12a2

(
sL2−2a2

)
r2+

(
sL2−2a2

)2)

3

−2
√

7sign(b)

√
a2−sL2r2

(2a2−sL2)
7/2

×
(
20s3L6r12−120s2L4a2r10−30sL2

(
s2L4−2sL2a2−8a4

)
r8+40a2

(
3s2L4−6sL2a2−4a4

)
r6

+12
(
s3L6−4s2L4a2−6sL2a4+20a6

)
r4−24a2

(
sL2−2a2

)2
r2−

(
sL2−2a2

)3
)

4

6sign(b)

√
a2−sL2r2

(2a2−sL2)
9/2

×
(
70s4L8r16−560s3L6a2r14−140s2L4(s2L4−2sL2a2−12a4)r12+280sL2a2(3s2L4−6sL2a2−8a4)r10

+10(9s4L8−36s3L6a2−132s2L4a4+336sL2a6+112a8)r8−40a2(9s3L6−36s2L4a2+8sL2a4+56a6)r6

−20(sL2−2a2)2(s2L4−2sL2a2−18a4)r4+40a2(sL2−2a2)3r2+(sL2−2a2)4
)

with 0 < L2 ≤ 1/(εc2) if ε > 0, and as initial orthonormal basis the normalized Legendre
polynomials given in Eq. (13), we obtain a new quasi-orthonormal basis{qn(r)}n=0,1,2,... of
L2

ν [0,1] with dν = rdr given by

qn(r) =

√
2q0(r)
C0

Cnpn(ϕ(r)), n= 0,1,2, . . . , (21)

with

C2
0 =

8
[
(1− εc2L2)3/2−1

]
+3εc2L2(4− εc2L2)

12ε3c4L2 , Cn = 1, n= 1,2,3, . . . (22)

and

ϕ(r) = 2
8
[
(1− εc2L2r2)3/2−1

]
+3εc2L2r2(4− εc2L2r2)

8
[
(1− εc2L2)3/2−1

]
+3εc2L2(4− εc2L2)

−1, (23)
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Fig. 1. Graphs of the first five functions of the new quasi-orthonormal basis
{qn(r)}n=0,1,2,... (see Eq. (18)) obtained from the normalized Legendre polynomials and

q0(r) = b
√

1−sL2r2

a2 , with s= 1, b= 1 anda= L = 3/4 using different scale:q0 (orange),
q1 (red),q2 (blue),q3 (green),q4 (brown).

that is,

qn(r) = 2
√

6Cn
c3L3r2

1+
√

1− εc2L2r2

√
ε3

8
[
(1− εc2L2)3/2−1

]
+3εc2L2(4− εc2L2)

× pn

(
2

8
[
(1− εc2L2r2)3/2−1

]
+3εc2L2r2(4− εc2L2r2)

8
[
(1− εc2L2)3/2−1

]
+3εc2L2(4− εc2L2)

−1

)
, n= 0,1,2, . . .

(24)

This is a significantly less compact expression as compared to Eq. (18).

The theory developed in this section only applies to rotationally symmetric surfaces specified
by an equation of the formz= f (r), with r ∈ [0,1]. In the following section we generalize the
theory to arbitrary surfaces defined in cylindrical coordinates(r,θ ,z), specified by an equation
of the formz= f (r,θ ).

3. Basis for freeform surfaces

In this section we formulate a more general theory to approximate arbitrary surfacesz= f (r,θ )
defined over the unit disk(r cosθ , r sinθ ) ∈ D. We design an orthogonal system forL2

ν (D) with
measuredν = rdrdθ in which the first element of the system is a specified rotationally symmet-
ric surfaceq0

0(r). The remaining elements of the systemqm
n (r,θ ), n= 1,2,3, . . ., are constructed

using again the three essential ingredients used in the previous section: (i) an arbitrary orthogo-
nal systempm

n (x,θ ), n,m(n) = 0,1,2, . . ., of L2
µ([c,d]× [0,2π ]) with measuredµ = ρ(x)dxdθ ,

(ii) the surfaceq0
0(r) and (iii) a convenient change of variablex= ϕ(r), ϕ : [0,1]→ [c,d]. Then,

the resulting orthogonal system consists of functions{q0
0(r),q

n
m(r,θ ), . . .}, n,m(n) = 1,2, . . .,

defined in the unit diskD that are orthogonal with respect to the measuredν = rdrdθ . More-
over, the functionsqn

m(r,θ ), . . ., n,m(n) = 1,2, . . . are also orthonormal. In the remaining of this
section we accomplish this task and give a particular solution.
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Let {pm
n (x,θ )}n,m(n)=0,1,2,... be an orthonormal basis ofL2

µ([c,d]× [0,2π ]) with p0
0(x,θ ) =

p0
0 constant and measuredµ = ρ(x)dxdθ . We want to find a quasi-orthonormal basis

{qm
n (r,θ )}n,m(n)=0,1,2,... of L2

ν (D), dν = rdrdθ , with q0
0(r) predetermined. We have

δn,n′δm,m′ =
∫ d

c
ρ(x)dx

∫ 2π

0
dθ pm

n (x,θ )p
m′
n′ (x,θ ), n,m(n) = 0,1,2, . . . (25)

After a (at this moment unknown) change of variablex = ϕ(r) with ϕ(0) = c, ϕ(1) = d and
ϕ ′(r)> 0 in (0,1), we find

δn,n′δm,m′ =
∫ 1

0
ρ(ϕ(r))ϕ ′(r)dr

∫ 2π

0
dθ pm

n (ϕ(r),θ )p
m′
n′ (ϕ(r),θ ), n,m(n) = 0,1,2, . . . (26)

We observe that, when we define

qm
n (r,θ ) :=Cm

n pm
n (ϕ(r),θ )w(r), w(r) :=

√
ρ(ϕ(r))ϕ ′(r)

r
, (27)

with Cm
n = 1 for (n,m) 6= (0,0) andC0

0 arbitrary at this moment, we find that the functions
qm

n (r,θ ), n,m(n) = 0,1,2, . . ., are orthonormal inD with respect to the measuredν = rdrdθ . To
complete our basis, we need to introduce a first elementq0

0(r) assuring that it is orthogonal to all
the other elementsqm

n (r,θ ), n,m(n) = 0,1,2, . . ., (n,m) 6= (0,0). This is achieved by choosing
the functionϕ(r) the unique solution of the boundary value problem Eq. (4) given by Eq. (5).

Then, we have that the set{qm
n (r,θ )}n,m(n)=0,1,2,... is a quasi-orthonormal system ofL2

ν(D)
with

qm
n (r,θ ) =Cm

n w(r)pm
n (ϕ(r),θ ), (28)

q0
0(r) predetermined and

(C0
0)

2 =

∫ 1

0
s(q0

0(s))
2ds

/[
(p0

0)
2
∫ d

c
ρ(t)dt

]
. (29)

The system{qm
n (r,θ )}n,m(n)=0,1,2,... is complete inL2

ν(D). The proof is similar to the proof of
the one dimensional case given in Section 2. Therefore, for anyF(r,θ ) ∈ L2

ν(D), we have that

F(r,θ ) =
c0

0

C0
0

q0
0(r)+

∞

∑
n,m(n)=0

(n,m) 6=(0,0)

cm
n qm

n (r,θ ), (30)

with

cm
n :=

1
Cm

n

∫ ∫

D
qm

n (r,θ )F(r,θ )rdrdθ , n,m(n) = 0,1,2,3, . . . (31)

Solution for spherical harmonics

Forn= 0,1,2, . . ., consider the spherical harmonic functions [19]

pm
n (x,θ ) =

√
(2− δm,0)(2n+1)(n−m)!

4π(n+m)!

{
Pm

n (x)cos(mθ ), 0≤ m≤ n,

Pm
n (x)sin(mθ ), −n≤ m< 0,

(32)

wherePn
n (x) are the associated Legendre polynomials [20]

Pm
n (x) =

(−1)m

2nn!
(1− x2)m/2 dn+m

dxn+m(x2−1)n, p0
0(x,θ ) =

1
2
√

π
. (33)
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They are an orthonormal basis ofL2
µ([−1,1]× [0,2π ]) with measuredµ = dxdθ . We choose

the conicoidq0
0(r) given in Eq. (14) as first approximation of the surface. Then, from equation

Eq. (5), and using the value ofC0
0 given in Eq. (29), we haveϕ(r) given in Eq. (17). Therefore,

the set{qm
n (r,θ )}m=−n,...,n

n=0,1,2,... is a quasi-orthonormal basis ofL2
ν(D) with dν = rdrdθ ,

qm
n (r,θ ) = 2Cnsign(b)

√
2a2−2sL2r2

2a2− sL2 pm
n

(
2r2

2a2− sL2

[
2a2− sL2r2]−1,θ

)
(34)

and, in particular,q0
0(r) = b

√
1− sL2r2/a2.

Figure 2 shows the first functions (up ton= 4, andm≥ 0) for r ∈ [0,1], θ ∈ [0,2π ], s= 1,
a= b= 1 andL = 1/2.

 

 

  

  

 

   

 

    

 

     

 

 

 

  

 

Fig. 2. First functionsqm
n (r,θ ) (see Eq. (34)) for the case of the spherical harmonics and

q0
0(r) =

√
1− r2/4. The rows represent the ascending order fromn = 0 to n = 4, the

columns are the positive values ofm from m= 0 tom= n.

4. Implementation and examples

For the numerical implementation and testing of the new basis proposed in Sections 2 and 3,
we consider a Gaussian surface, as it is expected to require higher order expansions to obtain
reasonable accuracies. In the first test, we use a rotationally symmetric Gaussian surface to
compare with Forbes polynomials for the 1D case. The second test considers the same sym-
metric Gaussian surface to establish a comparison with our new basis in 2D, and the basis in
1D and Zernike polynomials. Finally, in the third test we use a non-symmetric elliptic Gaussian
surface to compare our 2D system with Forbes and Zernike polynomials. In all the examples,
we use the least square approximation for computing the coefficients.
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Example 1. In order to check the accuracy of the approximation supplied by the basis{qn(r)}
n=0,1,2,... given in Eq. (18) and compare with Forbes’ approximations, we consider the following
Gaussian surface of revolution (see Fig. 3),

f (r) =
1√
2π

(
e−

r2
2 −1

)
, r ∈ [0,1]. (35)

-2

-1

1

2

-0.1-0.2-0.3

r

z

Fig. 3. Gaussian surface of revolution Eq. (35) given in Example 1.

For Forbes’ approximation, we implement both,Qcon
m andQbfs

m polynomials [10, 12]. On the
one hand, Forbes’ approximation usingQcon

m polynomials [10] reads

F(r)≃ cr2

1+
√

1− εc2r2
+u4

M

∑
m=0

amQcon
m (u2), (36)

wherec andε are, at this moment, free parameters,u is the normalized radial coordinate given

by u = r/rmax, rmax= L is the aperture size, andQcon
m (x) = P(0,4)

m (2x− 1) with P(α ,β )
m (x) the

Jacobi polynomials of parameters(α,β ) = (0,4). Following Forbes’ algorithm, the values ofc
andε in the first term on the right hand side of Eq. (36) can be approximated byc≃−0.398942
andε ≃ −8.646945. Then, the first term in Eq. (36) is a hyperbola. On the other hand, we
considerQbfs

m polynomials [10,12]. In this case

F(r)≃ cbfsr2

1+
√

1− c2
bfsr

2
+

u2(1−u2)√
1− c2

bfsr
2

M

∑
m=0

amQbfs
m (u2), (37)

wherecbfs is the curvature of the best-fit sphere,rmax= L andu= r/rmax. PolynomialsQbfs
m (x)

can be generated using a non-standard recurrence relation [12, 15] that involves a set of or-
thogonal polynomials. For this example, the best-fit curvaturecbfs can be approximated by
−0.306394.

Finally, we consider our expansion defined by Eq. (19), with{qn(r)}n=0,1,... the new quasi-

orthonormal basis given in Eq. (18),C0 =
1
2[2b2− sb2

a2 L2]1/2 andcn defined in Eq. (11). As the
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first order approximation is given by Eq. (14), in order to get a first close-fitting approximation,
we must translate the original function, that is,f (r)+b, in such a way that both functions are
coincident atr = 0. For this function, we considers= 1, a= b= 1/cbfs in Eq. (14).

The fit error obtained with the three approximations Eq. (19) (proposed here), Eq. (36)
(ForbesQcon

m polynomials) and Eq. (37) (ForbesQbfs
m polynomials) for the same number of

terms (N = 7, M = 6 andM = 6 respectively, that is, 8 terms for the three cases) and for
L = rmax= 1, are compared in Fig. 4.

In Fig. 5 we compare the relative error provided by equations Eq. (19) (new basis proposed
in Section 2) and Eqs. (36) and (37) (Forbes polynomials) in theL2−norm for the same number
of terms. Our basis functions provide lower errors than ForbesQcon

m polynomials, but not with
respect to ForbesQbfs

m polynomials.

Example 2. In order to check the accuracy of the approximation supplied by the basis
{qm

n (r,θ )} n,m(n)=0,1,2,... for the freeform case given in Eq. (34), we implement the same ex-
ample as in the 1D case, but now we consider the approximation problem in 2D,

f (r,θ ) =
1√
2π

(
e−

r2
2 −1

)
, r ∈ [0,1], θ ∈ [0,2π). (38)

We approximate this function by using the new quasi-orthonomal basis{qm
n (r,θ )}n,m(n)=0,1,...

given in Eq. (34) but choosingq0
0(r) in Eq. (14) the sphere withs= 1,a= b= 1/cbfs andL = 1,

q0
0(r) =

√
(cbfs)−2− r2:

f (r,θ )≃ c0

C0

√
(cbfs)−2− r2+

N

∑
n,m(n)=0

(n,m) 6=(0,0)

cm
n qm

n (r,θ ), (39)

with C0 =
[ π

2

(
2c−2

bfs +1
)]1/2

andcm
n defined in Eq. (31).

Here we compare with the approximation obtained with Zernike polynomials (ZPs) [11]

f (r,θ ) ≃
N

∑
n=0

n

∑
m=−n

c̃m
n Zm

n (r,θ ), c̃m
n =

1
π

∫ 2π

0

∫ 1

0
Zm

n (r,θ ) f (r,θ )rdrdθ , (40)

and with the approximation obtained with Forbes polynomials (37). The results are similar to
the ones obtained in Fig. 5 for the 1D case in comparison with Forbes polynomials. Our method
compares favorably with ZPs for 2D.

We consider now the non-symmetric two-dimensional Gaussian type surface (see Fig. 6),

f (r,θ ) = 2−e−r2(cos2 θ+2sin2 θ), r ∈ [0,1], θ ∈ [0,2π). (41)

In Fig. 7 we compare the root mean square errors (RMSE) provided by Forbes in [14, Eq.
(2.2)], [15, Eq. (1.1)],

f (r,θ ) ≃ cr2

1+
√

1− c2r2
+

1√
1− c2r2

{
u2(1−u2)

N

∑
n=0

a0
nQ0

n(u
2)

+
M

∑
m=1

um
N

∑
n=0

[am
n cosmθ +bm

n sinmθ ]Qm
n (u

2)

}
, u=

r
rmax

,

(42)
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Fig. 4. Plots of the fit error obtained using our basis functions and Forbes polynomials,
Qcon

m andQbfs
m , for the same number of terms, eight, for the three cases.

with c≃ 0.261082,rmax = 1, and the new quasi-orthonomal basis{qm
n (r,θ )}n,m(n)=0,1,... given

in Eq. (34), but choosingq0
0(r) the portion of a hyperboloid with semiaxesa andb like Eq.

(14) withs=−1 andL = 1, q0
0(r) = b

√
1+ r2/a2. The least square fitting provides the values
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Fig. 5. Relative errors in the approximation of the function Eq. (35) using our approxima-
tion (see Eq. (19)) and Forbes’ approximations (see Eqs. (36) and (37)) in theL2−norm for
the same number of terms.

x

y

z

Fig. 6. Non-symmetric elliptical gaussian surface given in Eq. (41).

a≃ 0.653754 andb≃ 1.02225. Moreover, using the idea given by Forbes, we also approximate
the function using the new quasi-orthonomal basis in Eq. (34) where nowq0

0(r) is the best-fit
sphere, and thens= 1, anda= b = (0.261082)−1. We also compare with ZPs Eq. (40). The
comparison is given using the number of terms (calculated coefficients) where we take the
best RMSE given by Forbes approximation (42) for different values ofN and M 6= 0 up to
2N+M = 10. We also compare with the ZPs approximation. Our basis functions provide lower
errors in comparison with Forbes approximation, and the difference decreases with the number
of terms considered. In comparison with ZPs approximation, our basis funcions provide lower
errors up to 10 terms, and ZPs provides lower errors from 15 terms, and also the difference
decreases with the number of terms considered.
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Fig. 7. RMSE in the approximation of the function Eq. (41) provided by the different ap-
proximations using the number of terms.

5. Discussion and conclusions

In summary, we developed a general, rigorous and powerful framework to obtain orthogonal
systems to represent freeform optical surfaces. The method consists of first selecting the de-
sired first basis functionq0, a sphere or conicoid in our case, and then choosing an appropriate
orthogonal system on the desired domain or support. For the case of rotational symmetry we
considered the interval[0,1] and the unit disk in general. For these 1D and 2D domains we
selected Legendre polynomials and spherical harmonics respectively, as the initial systems.
Then the method consists of finding a change of variablesϕ which transforms these systems
{pn}n=0,1,2,... into another orthogonal system{qn}n=0,1,2,... in which the first functionq0 is the
conicoid that we chose. Note that this theoretical framework is powerful enough to obtain or-
thogonal systems for different expressions of the conicoids: canonic expression of Eq. (14), or
the sag of Eq. (20) commonly used in optical design and testing. We also included the semidi-
ameterL of the surface explicitly, which permits to avoid the need of normalizing the radial
coordinater, that is necessary when using ZPs or similar systems. For the implementation and
examples we used the canonical expression for the sake of simplicity, since it allows more
compact expressions as compared to the sag equation.

Compared to other systems used in optics, this work is more general in different aspects.
Probably, ZPs form the most widely used orthogonal system in optics. It is the standard basis
for representing wave aberration (or optical path difference), and it is also used for representing
aspherical and freeform surfaces. This system includes the paraboloid of zero mean (defocus
termZ0

2 = 2r2−1, r ∈ [0,1]), but it requires to apply a higher order expansion to approximate
spheres or other conicoids. In fact, it is common to use ZPs,Zm

n to represent only the aspherical
terms in the formz= C+A whereC is the conicoid andA = ∑n,mam

n Zm
n ; am

n are the Zernike
expansion coefficients. The approach developed by Forbes [10] (actually he proposed two dif-
ferent approaches for mild and strong aspheres respectively) is similar in the sense that it splits
the surface sag into the same conic and aspherical partsz= C+A, but applying a smarterad
hocexpansionA= r4 ∑n fnQn(r2) whereQn are orthogonal. Among other advantages, extract-
ing the common factorr4 permits to reduce the order (and number) of Forbes polynomialsQn
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needed to approximateA. Nevertheless, the main difference of our approach is that the conicoid
is the first element of the system and hence it is orthogonal with the rest. In this sense we pro-
pose a fully orthogonal system as opposed to these partially orthogonal systems applied only to
the aspherical partA.

For the numerical implementation and testing we have chosen a Gaussian as it is expect-
ed to require higher order expansions (high values ofn) to obtain reasonable accuracies. Our
results with 1D (Legendre polynomials) and 2D (spherical harmonics) implementations pro-
vide results which compare favorably with Forbes polynomials and ZPs in the general freefor-
m two-dimensional case, whereas ForbesQbfs polynomials show a better performance in the
one-dimensional rotationally-symmetric case. We want to remark that the cases and implemen-
tations presented here are particular examples of a much more general theoretical framework.
In fact, it may be possible to consider a wide variety and types of initial surfaceq0 as well as to
use different types of polynomials, etc. The main restriction to obtain systems with analytical
expressions is that the integral equations, Eqs. (4) and (5), that we have to solve to obtain the
change of variables, must have an analytical solution. Nevertheless, we hope that the exam-
ples of conicoid-based orthogonal systems presented here are useful and general enough for
designing, manufacturing and testing freeform optical surfaces.
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