000048682 001__ 48682
000048682 005__ 20200221144332.0
000048682 0247_ $$2doi$$a10.1038/srep23848
000048682 0248_ $$2sideral$$a94665
000048682 037__ $$aART-2016-94665
000048682 041__ $$aeng
000048682 100__ $$aLedesma-Garciá, L.
000048682 245__ $$aRedox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes
000048682 260__ $$c2016
000048682 5060_ $$aAccess copy available to the general public$$fUnrestricted
000048682 5203_ $$aBacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction.
000048682 536__ $$9info:eu-repo/grantAgreement/ES/DGA/B18$$9info:eu-repo/grantAgreement/ES/MICINN/BIO2011-24003$$9info:eu-repo/grantAgreement/ES/MICINN/BIO2013-42978-P$$9info:eu-repo/grantAgreement/ES/MICINN/CSD2007-00005
000048682 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000048682 590__ $$a4.259$$b2016
000048682 591__ $$aMULTIDISCIPLINARY SCIENCES$$b10 / 63 = 0.159$$c2016$$dQ1$$eT1
000048682 592__ $$a1.691$$b2016
000048682 593__ $$aMultidisciplinary$$c2016$$dQ1
000048682 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000048682 700__ $$0(orcid)0000-0002-0752-2755$$aSánchez-Azqueta, A.
000048682 700__ $$0(orcid)0000-0001-8743-0182$$aMedina, M.$$uUniversidad de Zaragoza
000048682 700__ $$aReyes-Ramírez, F.
000048682 700__ $$aSantero, E.
000048682 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000048682 773__ $$g6 (2016), 23848 [12 pp]$$pSci. rep.$$tSCIENTIFIC REPORTS$$x2045-2322
000048682 8564_ $$s399518$$uhttps://zaguan.unizar.es/record/48682/files/texto_completo.pdf$$yVersión publicada
000048682 8564_ $$s111526$$uhttps://zaguan.unizar.es/record/48682/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000048682 909CO $$ooai:zaguan.unizar.es:48682$$particulos$$pdriver
000048682 951__ $$a2020-02-21-13:45:53
000048682 980__ $$aARTICLE