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Abstract

In this paper new finite difference (FD) and Runge–Kutta schemes for Compu-

tational Aero Acoustics (CAA) that minimize the total dispersion and dissipation

errors arising in the spatial and temporal discretization process are derived. The

available parameters in the spatial discretization as well as in the time marching

Runge–Kutta scheme are selected so that they minimize a measure of the total

dispersion and dissipation errors for linear wave propagations. These schemes are

fourth-order accurate in space with finite differences and a resolution with number

of points greater or equal to nine together with fourth-order six-stage low stor-

age Runge–Kutta methods for the time integration. The new schemes are tested

on a one dimensional convection equation involving long-range sound propagation,

and on one-dimensional Euler problems. The numerical results obtained with these

test problems indicate an important improvement in accuracy and in numerical effi-

ciency when they are compared with other low dispersive and low dissipative explicit

schemes recently published.

Key Words: Computational Aero Acoustics; Low dispersion and dissipation; Fi-

nite difference schemes; Low storage Runge–Kutta methods; Optimization

AMS classification: 65C20; 65M20; 76Q05

1 Introduction

In the field of Computational Aero-Acoustics (CAA) the prediction of sound far from

its source implies the need of accurate and stable numerical algorithms. As it has been

widely recognized [3, 19, 21] stable and high order convergent schemes do not guarantee
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a good behavior in the numerical approximation of aero acoustics problems. The main

reason is that acoustic waves are non-dispersive and non-dissipative in their propagation

and can travel long distances in all directions. Consequently, the numerical schemes must

be designed by minimizing the dispersion and dissipation errors in long-time integrations.

Note that in standard computational fluid dynamics (CFD) codes a dissipation (in many

cases artificial) is included to stabilize the schemes and therefore such schemes are not

suitable for CAA problems. In addition, to minimize the dispersion and dissipation errors

for the required range of frequencies, large stability limits of the time advancing scheme

are also necessary to control the error propagation and also low storage algorithms to

improve the efficiency of high dimensional problems must be taken into account.

The construction of optimized time advancing Runge–Kutta (RK) schemes have been

considered by several authors [1, 4, 5, 6, 10, 12, 13, 20] which propose a number of low

dispersive and low dissipative RK algorithms in standard or in low storage form.

Concerning the spatial discretization, standard schemes have at least second or fourth-

order of accuracy and for symmetric stencils they pay special attention to dispersion error.

So, in a number of papers [10, 16, 17, 18, 22] Pade or compact type, finite volume (FV) and

finite difference (FD) schemes have been proposed by choosing the available parameters

so that they minimize the dispersion error. Recently, Bogey and Bailly [3] have optimized

central FD schemes with a number of points greater or equal to nine for spatial derivation

by minimizing their dispersion and dissipation errors in a range of wavenumbers. Such

optimal schemes have algebraic order four and permit calculate linear waves with about

four points per wavelength for an accuracy limit, and they are shown to be more accurate

and efficient than the standard FD schemes of high order. These authors also have

optimized RK algorithms with five and six-stages for time advancing by minimizing their

dispersion and dissipation errors for the same range of wavenumbers. These optimized

RK algorithms have algebraic order two, and they are shown to be more efficient than the

standard fourth-order RK method. Next, Berland et al. [2] have optimized a fourth-order

six-stage low storage RK algorithm that has similar properties to RK algorithms given

in [3] for linear operators, and in addition it is more adequate for nonlinear problems

because of its high algebraic order.

All optimal time advancing RK schemes given in [2, 3, 4, 5, 12] have in common that

they are derived by minimizing some measures of the dispersion and dissipation errors

introduced by the temporal discretization with some additional stability bounds. Clearly

these schemes make sense when applied to very accurate space discretizations. However,

the dispersive and dissipative behavior of a discretization scheme depends on the total

dispersion and dissipation errors introduced by the spatial and temporal discretizations.

This fact led to Ramboer et al. [19] to consider the errors of both discretizations and to
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derive some six-stage RK time advancing schemes by selecting the free parameters of the

time advancing scheme such that minimize the total dispersion and dissipation errors for

two specific spatial discretizations: fourth-order FV (finite volume) compact central and

third-order FV upwind discretizations.

In this paper, new six-stage RK time advancing schemes coupled with new symmet-

ric FD spatial discretizations are derived taking into account the total dispersion and

dissipation errors introduced by both discretizations. Hence, the spatial and temporal

discretizations are optimized simultaneously in contrast with the optimization carried out

by other authors [2, 3, 12]. The main difference with the optimization carried out in [19] is

that we select also the free parameters of the spatial discretization so that they minimize

the total dispersion and dissipation errors. The motivation is to provide explicit numeri-

cal schemes according to accuracy and stability requirements usually demanded in CAA.

The paper is organized as follows: In section 2 we analyze the dispersion and dissipation

errors for schemes constituted by finite differences for the spatial derivation and Runge–

Kutta algorithms for the time integration (FD-RK schemes). In section 3 we present the

optimization process and we derive optimized FD-RK schemes by minimizing their total

dispersion and dissipation errors. These schemes are fourth-order central FD with a num-

ber of points greater or equal to nine and fourth-order six-stage RK algorithms. In section

4 we construct the fourth-order six-stage RK algorithms in low storage form. In section

5 some numerical experiments are presented comparing the accuracy and the efficiency of

the new optimized FD-RK schemes with other low dispersive and low dissipative explicit

schemes given in [2] and [3]. The final section is devoted to conclusions.

2 Dispersion and dissipation for FD-RK schemes

In this section we review briefly some results on the Fourier analysis of FD-RK schemes

when applied to the linear scalar wave test equation for u = u(t, x)

∂u

∂t
+ c

∂u

∂x
= 0, x ∈ R, t ≥ 0, (1)

with a given initial condition u(0, x) = Φ(x) where c > 0 is the velocity of the wave.

For the spatial discretization we will consider central finite difference schemes δx with

a (2N + 1)-point stencil of type

δxu(t, xℓ) =
1

∆x

N∑

j=−N

aj uℓ+j, uk = u(t, xk), (2)

where ∆x is the mesh spacing and xj = j∆x. Usually, the real coefficients aj are taken

such that the approximation (2) is of order p, i. e.

∂xu(t, xℓ)− δxu(t, xℓ) = O (∆xp) , p ≥ 1, (3)
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and therefore the coefficients aj must satisfy the following linear conditions:

N∑

j=−N

jsaj = δ1,s, s = 0, 1, . . . , p, (4)

where δp,q is the Kronecker delta defined by δ1,s = 0, s 6= 1 and 1 otherwise. It can be

easily seen that the maximum attainable order by a symmetric (2N +1)-point stencil FD

is (N + 1) for N even and N otherwise.

By using the spatial discretization (2), the semidiscretization of the convective equa-

tion (1) is

∂tuj +
c

∆x

N∑

ℓ=−N

aℓ uj+ℓ = 0, j = 0,±1, . . . (5)

First, we present the results of some numerical experiments. So, we display in Figure

1 the numerical solution obtained by solving exactly the semidiscretization of the wave

equation (1) given by 



∂uj + cδxuj = 0, t ∈ [0, 400],

uj(0) = Φ(xj),
(6)

for the maximum order (2N + 1)-point symmetric schemes (2) for N = 3, 4, 5 with c = 1,

and the Gaussian initial condition Φ(x) = Φ1(x) = 0.5 exp(−x2/9), ∆x = 1, xj = j,

j = −50, . . . , 450 at the time instant t = 400 together with the exact solution of the wave

equation. Note that the exact solution is a Gaussian type wave that moves from left to

right with constant velocity c = 1 preserving its shape, so that u(x, t) = Φ1(x− t).
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t=400

Figure 1: Numerical solution of the linear wave test equation semidiscretized with (2N +

1)-point central symmetric schemes for N = 2, 3, 4.
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Figure 2: Numerical solution of the wave test equation, Sine-Gaussian initial condition,

semidiscretized with (2N + 1)-point schemes for N = 4, 5.

From Figure 1, it follows that for in the case of the fourth-order discretization, the

spatial dispersion errors introduce strong changes in the shape of the wave and that these

changes are smaller when the order increases, but in any case they are not negligible.

In Figure 2 we present the solutions obtained taking a Sine-Gaussian initial condition

given by Φ(x) = Φ2(x) = sin(πx/2) exp (−x2/9) for ∆x = 1, xj = −50, . . . , 250, where
the time interval is [0, 200]. Now, since the problem is more difficult due to the spectral

contents of Φ2(x), we have taken the higher order spatial symmetric discretizations of

orders 8 and 10 corresponding to 9 and 11 points respectively. Now even with the high

order spatial discretizations the profile of the wave is destroyed.

In order to explain the behavior of the spatial difference schemes, we apply to (1) and

(5) the spatial Fourier transforms given in the continuous and discrete case respectively

by

û(k, t) =

∫
∞

−∞

e−ikx u(x, t) dx, û(k, t) = ∆x

j=+∞∑

j=−∞

e−ikxj u(xj, t),

obtaining

∂tū(k, t) + ick ū(k, t) = 0, ∂tû(k, t) + ick∗ û(k, t) = 0,

k ∈ R, k ∈ [−π/∆x, π/∆x],

where k∗ represents the numerical (complex) wavenumber of the FD scheme (i.e., an

approximation to the the exact wavenumber k) which is given by

k∗ = − i

∆x

N∑

ℓ=−N

aℓ e
i(ℓ k∆x). (7)
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For a given N , the quantity k∗∆x is usually called the effective or numerical wavenum-

ber and as follows from (7) is a function of the exact wavenumber k∆x. Further, for a

discretization with order p, exact and effective wavenumbers agree up to order (∆x)p+1

and (k∗∆x)/(k∆x) → 1 as ∆x → 0+. However when k∆x ≤ π separates from 0, the

dispersion error may become very large. In Figure 3 we show the behavior of (k∗∆x) as

a function of (k∆x) for 2N + 1 = 5, 7, 9, 11 when k∆x ∈ [0, π]. In all cases (k∗∆x) has a

unique maximum kmax∆x in this interval and this implies that clearly those waves with

k ≥ kmax will be badly represented by the spatial discretization. In other words, for the

(2N+1)-point stencil finite difference scheme of maximum order, the spectral components

of the initial condition Φ(x) with wavenumbers k ≥ kmax are not suitably represented by

the discretization (2).

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

k ∆ x

k*
 ∆

 x

Actual wavenumbers − Effective wavenumbers

5 points, order 4
7 points, order 6
9 points, order 8
11 points, order 10
    

Figure 3: Numerical scaled wavenumbers versus actual scaled wavenumbers.

In addition to this, it has been remarked by several authors [22] that the requirement

k ≤ kmax is not enough to ensure a good dispersion behavior of the spatial discretization

because even for k . kmax the error in the numerical wavenumber can be large. Then,

Tam et al. [22] introduced the additional condition

k ≤ kc = max {k ≥ 0, |k − k∗| ≤ ε}, (8)

where ε is a small quantity that in some practical calculations has been taken empiricallly

as ε = 10−3 because it leads to a reasonable dispersion error. In Table 1 we present the

values of kmax and kc for the high order symmetric FD (2N + 1)-points schemes with

N = 2, 3, 4, 5.
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Table 1: Dispersion values, kmax and kc, for (2N + 1)-points schemes with N = 2, 3, 4, 5

2N + 1 order kmax kc

5 4 1.37 0.69

7 6 1.59 0.97

9 8 1.73 1.16

11 10 1.84 1.32

Taking into account the values in Table 1 it is possible to explain the numerical results

of the above examples. In the first example, since the spectral contents of Φ1(x) is the right

half of a Gaussian type function centered at k = 0, the methods with 11 points are able to

deal accurately most of the relevant spectral contents of Φ1(x) (see Figure 4). Nevertheless

in the second example, since the Fourier contents is a Gaussian type function centered

around π/2 all the considered methods cannot include the relevant spectral contents of

Φ2(x) and then it is not a suitable discretization for this function. To cope with problems

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

k

u(
k)

Initial condition 1
Initial condition 2

Figure 4: Spectral contents of Φi(x).

where the spectral contents of the solution is not close to the origin, several authors have

proposed discretizations (2) with order smaller than the maximum order attainable and

using the available parameters to get larger values of kmax and kc. This idea was used

by Tam and Webb [22] to derive two 7- and 9-point stencil discretizations called DRP

(dispersion relation preserving methods) and more recently Bogey and Bailly [3] have

constructed other 9-, 11- and 13-points discretizations. In Table 2 we collect the dispersion

properties of these methods together with the standard symmetric finite difference ones.

Next, Figures 5 and 6 show the profiles of the semidiscrete and exact solutions at the

final time in the above two examples for several optimized schemes. It must be noticed
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Table 2: Dispersion values, kmax and kc, for some standard and optimized difference

schemes.

method 2N + 1 order kmax kc

Symmetric FD 5 4 1.37 0.69

Symmetric FD 7 6 1.59 0.97

Symmetric FD 9 8 1.73 1.16

Symmetric FD 11 10 1.84 1.32

Tam-Webb 7 4 1.73 1.45

Tam-Webb 9 6 1.77 1.28

Bogey-Bailly 9 4 1.10 1.50

Bogey-Bailly 11 4 1.98 1.66

Bogey-Bailly 13 4 2.14 1.92

that in the second example, the 13-point discretization preserves quite accurately the

shape of the wave.

2.1 Dispersion and dissipation of the spatial FD scheme

Comparing the exact solution of the linear wave equation (1) with the initial condition

u(x, 0) = eikx given by

uex(x, t) = eik(x−ct), (9)

and the corresponding to the semidiscretization (5)

usd(xj , t) = ei(kxj−k∗ct), j = 0,±1, . . . , (10)

the dispersion and dissipation errors introduced by the spatial discretization are

usd(xj , t)

uex(xj , t)
= ei(k−k∗)ct = eIm(k∗)ct

︸ ︷︷ ︸
dissipation

ei(k−Re(k∗))ct
︸ ︷︷ ︸
dispersion

. (11)

If we denote

φs(z) := k∆x− Re(k∗∆x) = z −
N∑

j=1

(aj − a−j) sin(jz), (12)

ds(z) := Im(k∗∆x) = −a0 −
N∑

j=1

(aj + a−j) cos(jz), (13)

equation (11) can be expressed as

usd(xj , t)

uex(xj , t)
=
[
eds(z) eiφs(z))

] ct
∆x . (14)
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Figure 5: Numerical solution of the wave test equation, Gaussian initial condition, with

optimized schemes with N = 3, 4.

Thus, the spatial dispersion error is: φs(z), the spatial dissipation error is: 1− eds(z), and

the central FD scheme is dispersive of order q and dissipative of order r if

φs(z) = O
(
zq+1

)
, ds(z) = O

(
zr+1

)
, z → 0. (15)

If we consider symmetric FD schemes, then the coefficients satisfy

a0 = 0, aj = −a−j , j = 1, . . . , N, (16)

and in this case it follows from (7) that k∗ is real and the schemes are zero-dissipative,

i. e.

ds(z) = 0, φs(z) = z − 2

N∑

j=1

aj sin(jz). (17)

2.2 Dispersion and dissipation of the time advancing RK scheme

To advance the solution U(t) = (uj(t)) of a general differential system in ODE’s

∂tU = F (t, U), (18)

from the time level tn to the next time level tn+1 = tn + ∆t we will use explicit s-stage

RK schemes [9] defined by the Butcher tableau
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Figure 6: Numerical solution of the wave test equation, Sine-Gaussian initial condition,

with optimized schemes with N = 5, 6.

c A

bT
=

0 0
c2 a21 0
...

...
. . .

. . .
cs as,1 · · · as,s−1 0

b1 · · · bs−1 bs

(19)

with c = Ae, e = (1, . . . , 1)T ,b ∈ R
s. These coefficients bj , cj, and ajk are real constants

that define the method. The step from Un at the time level tn to Un+1 at the time level

tn+1 can be written as

Un+1 = Un +∆t

s∑

i=1

bi Fi,

Fi = F (tn + ci ∆t, Un +∆t
i−1∑

j=1

ai j Fj), i = 1, . . . , s.

(20)

For autonomous equations F (t, U) = ΛU with a linear operator Λ, the algorithm (20)

becomes

Un+1 = R(∆tΛ)Un, (21)

where R(ζ) is the so called amplification function of (19) given by

R(ζ) = 1 + ζbT (I − ζA)−1e, ζ ∈ C. (22)
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For explicit s-stage RK schemes the amplification function is a polynomial of degree ≤ s

given by

R(ζ) = 1 +
s∑

ℓ=1

γℓ ζ
ℓ, (23)

with γℓ = bT Aℓ−1 e, and it satisfies

|R(−ix)| = |R(ix)|, argR(−ix) = − argR(ix), ∀x ∈ R. (24)

Note that if the RK scheme (19) has linear order p then γℓ = 1/ℓ!, ℓ = 1, . . . , p, and

(23) is an approximation to the exponential function eζ at the origin at least of the same

order.

In order to illustrate the behavior of standard RK time integrators, we start considering

the application of the classical four-stage fourth-order RK4 method with a fixed step size

to the semidiscretization (6) with initial condition Φ(x) = Φ1(x). Concerning the choice

of the step size recall that when a scalar linear problem y′ = λy is integrated by a one

step method, the solution satisfies y(tn +∆t) = eλ∆ty(tn) whereas the numerical solution

satisfies yn+1 = R(λ∆t)yn, where R(z) is given by (23). Note that all eigenvalues of the

semidiscretization (6) are pure imaginary simple ±iw and then to satisfy the stability

requirement we should have |R(iw∆t)| ≤ 1 for all w ∈ [0, ckmax]. On the other hand it is

well known that the (imaginary) stability interval of the fourth-order RK is [−2
√
2, 2
√
2],

thus if we take the DRP spatial discretization of Tam and Webb [22] with 9-points and

order 6, according to Table 2, 1.77∆t ≤ 2
√
2 which implies ∆t ≤ 1.597. Figure 7 shows the

profiles of the numerical and exact solution with ∆t = 1.597 at the final time level. This

example shows large phase and amplitude errors in the numerical solution. In addition,

similar experiments with ∆t = 1 show smaller but not negligible errors and to get accurate

solutions, time steps of ∆t ≃ 0.5 are necessary. These experiments imply that in the

standard RK4 stepsizes much smaller than the stability limit are necessary to preserve

the dissipation and dispersion properties of this wave type solutions.

Now observe that as remarked above for all wavenumber k the discrete function (eikxj)

is an eigenfunction of the linear operator Λ defined by (5) corresponding to the eigenvalue

−ick∗. Hence the Fourier wave uj(t) = βk(t) e
ikxj , j = 0,±1, . . . will be a solution of (5)

iff

∂tβk(t) = −ick∗βk(t), (25)

and the exact solution of (5) with Un = (eikxj) is

Un+1
ex = e−ick∗∆t Un. (26)

By linearity, the corresponding solution (numerical solution) of the RK scheme will be

Un+1
RK = R(−ick∗∆t)Un. (27)
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Figure 7: Numerical solution of the wave test equation, Gaussian initial condition, with

DRP sixth-order spatial discretization and classical fourth-order RK for time discretiza-

tion.

As a consequence of (26) and (27) the dispersion and dissipation errors introduced by

the temporal discretization at the wavenumber k are defined by

Un+1
RK

Un+1
ex

=
R(−ick∗∆t)

e−ick∗∆t
= |R(−iθ)|e− Im(θ)

︸ ︷︷ ︸
dissipation

ei(Re(θ)+argR(−iθ))
︸ ︷︷ ︸

dispersion

, (28)

where θ = ck∗∆t, and they are given, respectively, by

φt(θ) = Re(θ) + argR(−iθ), dt(θ) = 1− |R(−iθ)|e− Im(θ). (29)

For the case of symmetric FD schemes, θ is real (Im(k∗) = 0) and equations (28)–(29)

reduce to

Un+1
RK

Un+1
ex

=
R(−ick∗∆t)

e−ick∗∆t
= |R(iθ)|︸ ︷︷ ︸

dissipation

ei(θ−argR(iθ))
︸ ︷︷ ︸
dispersion

, (30)

φt(θ) = θ − argR(iθ), dt(θ) = 1− |R(iθ)|. (31)

This analysis has led in the last decade to the construction of special RK time ad-

vancing schemes taking into account instead of the usual order-stability properties the

following ones:

C1) Stability: |R(iw∆t)| ≤ 1 for all w ∈ [0, ckmax].

18



C2) Dissipation error: |1− R(iw∆t)| small for all w ∈ [0, ckc].

C3) Dispersion error: | argR(iw∆t)− w∆t| small for all w ∈ [0, ckc].

C4) Maximum linear and non linear order. In the linear case defined by the maximum p

such that R(z)− ez = O(zp+1), and in the non linear case by Butcher’s conditions.

C5) Low storage implementation.

The last requirement C5) has been introduced because in practical calculations (typi-

cally 2D and 3D-dimensional problems of CAA) the number of spatial grid points and

consequently the dimensionality of the system can be very high.

Therefore, as remarked by several authors (see e.g. [5], [7], [8], [20], [23], [14], [15]),

effective integrators for practical problems must use the minimum number of registers.

Advancing a step Un → Un+1 with a s-stage RK method in a problem of dimension m

requires, in general, the storage of s + 1 vectors of dimension m and there are problems

which arise in the semi discretization of some PDEs in which m is very large. This

fact implies that the efficiency of the Runge–Kutta method depends strongly on the

number of registers used in the computation and therefore methods with minimum storage

requirements are preferred. Thus, for a given number of stages s, we want to consider

minimum storage methods, i.e. that can be implemented with two m-registers, having

the best stability and accuracy properties.

The simplest minimum storage one-step method is Euler’s method (Un+1 = Un +

∆tf(tn, U
n), n = 0, 1, . . .) that requires only twom-registers and consequently the simplest

s-stage minimum storage method results of a repeated application of Euler’s method with

step sizes cj∆t, j = 1, . . . , s with
∑s

j=1 cj = 1, however their accuracy is not enough in

many applications. Within the minimum storage schemes (two registers of size m), the

(W )-schemes of Williamson [23] have been very popular in Computational Aero Acoustics

(CAA) problems in the last years. These (W )-schemes can be defined by the algorithm:

Data: V 1 = 0, U1 = yn

Result: yn+1 = Us+1

for j = 1 to s do

V j+1 = αj V
j + f(tn + cj∆t, U j)

U j+1 = U j +∆t βj+1 V
j+1

end
Algorithm 1: Williamson scheme
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U1 ← yn

U2 ← U1 + b1V
2

...

Us ← Us−1 + bs−1V
s

Un+1 = Us + bsV
s+1

−→

−→

...

−→

V 2 ← ∆tf(tn, U
1)

V 3 ← ∆tf(tn +∆c2, U
2 + α2V

2)

...

V s+1 ← ∆tf(tn +∆cs, U
s + αsV

s)

Here, αj , βj+1, j = 1, . . . , s are the 2s free parameters, but noting that V 1 = 0, then

α1 is redundant and it is usual to choose α1 = 0.

Thus Stanescu and Habashi [20] have derived several (W )-schemes with amplification

functions obtained by Hu et al. [12] that minimize the dissipation and dispersion errors

for the linear wave test equation (1). Other fourth-order (non linear) (W )-schemes with

minimum local error were derived by Carpenter and Kennedy [8]. More recently, (W )-

storage schemes addressed to problems in the field of CAA have been proposed in [1], [2].

The advantage of Williamson schemes over Euler’s compositions is that s-stageWilliamson

methods have 2s − 1 free parameters and then allow us to obtain better accuracy and

stability properties than in s-stage Euler’s compositions.

Alternative families of minimum storage schemes, proposed by van der Houwen ([11],

Eq. 2.2.4’) and referred to as (vdH)-schemes, have been considered also to derive different

low storage methods. They have been extensively studied by Kennedy, Carpenter and

Lewis [13] to obtain optimal schemes of several orders having in mind the semidiscretiza-

tion of Navier-Stokes equations including also local error control by embedded pairs (of

course with additional storage requirements). Also Calvo et al. [4], [5] have obtained

some optimal (vdH)-methods for acoustic problems. The next algorithm shows this class

of schemes:

Data: V 1 = 0, U1 = yn

Result: yn+1 = Us+1

for j = 1 to s do

V j+1 = f(tn + cj∆t, U j +∆t γj V
j)

U j+1 = U j +∆t bj V
j+1

end
Algorithm 2: van der Houwen scheme
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U1 ← yn

U2 ← U1 + b1V
2

...

Us ← Us−1 + bs−1V
s

Un+1 = Us + bsV
s+1

−→

−→

...

−→

V 2 ← ∆tf(tn, U1)

V 3 ← ∆tf(tn + c2∆t, U2 + γ2V
2)

...

V s+1 ← ∆tf(tn + cs∆t, Us + γs−1V
s)

It must be noticed that the s-stage (vdH)-schemes have also 2s − 1 free parameters

(γ1 = 0) and therefore have the same flexibility than the Williamson methods, although

it can be seen that the (vdH)- and (W )-families do not contain the same RK methods.

Recently, by using the Shu-Osher form, two new general families of low storage explicit

Runge–Kutta methods have been given by Ketcheson [14], [15], and Calvo et al. [7].

Algorithm 2 expressed in Butcher’s notation is defined by the tableau of coefficients

(19) with

aj,j−1 = bj−1 + γj−1, j = 2, . . . , s,

ajℓ = bℓ, j − 1 ≤ ℓ ≤ s− 2.
(32)

Since the requirements C1)–C3) depend only on the amplification function R(z) = 1+
∑s

j=1 γjz
j , of the considered RK method, many authors have derived “optimal” methods

for several values of the number of stages s. Thus Hu et al. [12] obtained optimal methods

for s = 4, 5, 6. Also Bogey and Bailly [3] have derived optimal methods combined with

spatial stencils with 9-, 10- and 11-points. In the same line Calvo et al. [4], [5] have

derived optimal methods for s = 5, 6.

To measure the quality of a method defined by R(z) = 1 +
∑s

j=1 γjz
j , it has been

usual to compare the following quantities

S = max{z > 0, |R(iz)| ≤ 1},
Ld = max{z > 0, ||R(iz)| − 1| ≤ 10−3},
Lϕ = max{z > 0, | arg(R(iz))− z| ≤ 10−3}.

(33)

In Table 3 the values of these parameters corresponding to several methods are presented.

In Figure 8 we display the profiles of the exact and numerical solutions of example 1

for the six-stages fourth-order RK method of Calvo et al. given in [4] at the final time

level. As can be seen, the shape of the wave is reproduced properly even with a large

time stepsize ∆t = 1.0

To end this section let us note that in the frame of implicit RK schemes there are

methods such as Gauss ones that possess the best properties of stability and dissipation
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Table 3: Values of S, Ld and Lϕ parameters for several RK methods

method order order (lin.) stages S Ld Lϕ

Classic 3 3 3 1.73 0.40 0.49

Classic 4 4 4 2.83 0.73 0.68

Hu et al. 2 2 4 2.85 0.85 0.86

Hu et al. 2 2 5 3.54 1.72 1.35

Hu et al. 3 4 6 1.75 1.41 1.27

Calvo et al. 3 3 5 3.48 0.91 1.09

Calvo et al. 4 4 5 3.48 1.25 0.91

Calvo et al. 4 4 6 3.82 2.00 1.14

Allampalli 3 4 7 5.67 1.28 1.07

Gauss 2 2 1 ∞ ∞ 0.23

Gauss 4 4 2 ∞ ∞ 0.95

(S = Ld = ∞) although they have a non zero dispersion error that depends on s. For

example, the fourth-order Gauss method has Lϕ = 0.95.

In Figure 9 we display the profiles of the exact and numerical solutions of example

1 for the two-stage Gauss method with order four at the final time level. Now, if the

spatial discretization has good dissipation and dispersion properties, the time integrator

reproduces quite accurately the shape of the solution with the step size ∆t = 1. However

the main drawback of Gauss methods for CAA problems is its implicitness that entails a

very high computational cost.

2.3 Dispersion and dissipation of the FD-RK scheme

The total dispersion and dissipation errors introduced by the FD-RK scheme are obtained

by comparing the numerical solution of the semidiscretization (5) at the time level tn+1

and un
j = eik(xj−c tn)

un+1
j = R(−ick∗∆t) eik(xj−c tn), j = 0,±1, . . . , (34)

with the exact solution of (1) with u(x, 0) = eikx

uex(xj , t
n+1) = e−ick∆t eik(xj−c tn), j = 0,±1, . . . , (35)

and writing the total errors as the product of the spatial errors with the temporal errors
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Figure 8: Numerical solution of the wave test equation, Gaussian initial condition, with

DRP sixth order spatial discretization and Calvo et al. [4] optimized six stages, fourth-

order RK for time discretization.

un+1
j

uex(xj , tn+1)
=

R(−ick∗∆t)

e−ick∆t
=

R(−ick∗∆t)

e−ick∗∆t︸ ︷︷ ︸
temporal errors

e−ick∗∆t

e−ick∆t︸ ︷︷ ︸
spatial errors

. (36)

Using the notation: α =
c∆t

∆x
for the CFL number and z∗ = k∗∆x, (36) can be written

as

un+1
j

uex(xj , tn+1)
= |R(−iαz∗)|︸ ︷︷ ︸

total dissipation

ei[αz+argR(−iαz∗)]
︸ ︷︷ ︸
total dispersion

, (37)

where

z∗ =
N∑

j=1

(aj − a−j) sin(jz)− i

(
a0 +

N∑

j=1

(aj + a−j) cos(jz)

)
, (38)

and the total dispersion and dissipation errors are given, respectively, by

φTot(α, z) = αz + argR(−iαz∗), dTot(α, z) = 1− |R(−iαz∗)|. (39)

Again, for symmetric FD schemes z∗ = z − φs(z) is real and equations (37) and (39)

reduce to
un+1
j

uex(xj, tn+1)
= |R(iαz∗)|︸ ︷︷ ︸

total dissipation

ei[φt(αz∗)+αφs(z)]︸ ︷︷ ︸
total dispersion

, (40)

23



380 385 390 395 400 405 410 415 420
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

u

9 points, order 6 + Gauss of order 4

True solution

Numerical solution

t= 400,  ∆ t = 1.0

Figure 9: Numerical solution of the wave test equation, Gaussian initial condition, with

DRP sixth-order spatial discretization and fourth-order Gauss RK for time discretization.

and we define

φTot(α, z) = φt(αz
∗) + α φs(z), dTot(α, z) = 1− |R(iαz∗)|. (41)

Next we illustrate the spatial, temporal and total errors for two FD-RK schemes. First

of all we combine the standard eigth-order nine-points symmetric FD scheme (SFD9) with

the classical four-stage fourth-order RK time advancing algorithm (RK4). In this case

there is no dissipation error in the spatial discretization and the total dissipation error is

due to the time advancing algorithm. For the dispersion error, we display in Figure 10

the (scaled) spatial, temporal and total errors for z = k∆x ∈ [0, π/2] and α = 1. It can

be seen that for z = k∆x ≤ 0.75 the effect of the spatial error φs(z) on the total error

φTot(1, z) is negligible but for z = k∆x > 0.75 the spatial error is comparable or even

greater than the temporal error and taking into account that both have the same sign

both errors have a cumulative effect on the total error.

As a second scheme we combine the same spatial discretization with the six-stage

low-dissipation and low-dispersion RK scheme (RKHu6) given by Hu et al. [12]. By the

symmetry of the spatial scheme only the temporal dissipation is responsible for the total

dissipation error and we focus on the dispersion errors. In Figure 11 we display the spatial,

temporal and total errors for z = k∆x ∈ [0, π/2] and α = 1. In this case a smaller total

error φTot than in the previous case is obtained but the small temporal error φt achieved

in the optimization of the time advancing scheme RKHu6 is compensated by the large

spatial error φs. However, the computational cost of the scheme RK4 is reduced by a
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factor of 2/3 with respect to computational cost of the scheme RKHu6. In Figure 12 we

show the spatial, temporal and total errors for the scheme SFD9-RK4 at a CFL number

α = 2/3 so that both schemes have the same computational cost, and it can be seen that

both schemes have a comparable total error φTot.

These examples show that in the linear error analysis it is crucial to consider the total

errors to achieve optimal schemes.
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Figure 10: Dispersion errors (scaled by 1/π) for SFD9-RK4 at α = 1.

3 Optimization of the FD-RK schemes

In this section new FD-RK schemes are derived by minimizing the total dispersion and

dissipation errors.

For the spatial discretization we will consider symmetric FD schemes (16) using 2N+1

grid points with N = 4, 5, 6, and accuracy order four. In view of (4), the available

coefficients aj satisfy the conditions

a0 = 0,

N∑

j=1

jaj =
1

2
,

N∑

j=1

j3aj = 0. (42)

and the coefficients a1 and a2 can be expressed in terms of aj , j = 3, . . . , N which will

be used as free parameters in the optimization process.
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Figure 11: Dispersion errors (scaled by 1/π) for SFD9-RKHu6 at α = 1.
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Figure 12: Dispersion errors (scaled by 1/π) for SFD9-RK4 at α = 2/3.
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For time advancing we will use low storage six-stage explicit RK methods with order

four. In the application to linear differential equations they are characterized by the

amplification function

R(ζ) = 1 + ζ +
1

2!
ζ2 +

1

3!
ζ3 +

1

4!
ζ4 + β5 ζ

5 + β6 ζ
6, (43)

with the free parameters β5 and β6.

Now the resulting schemes, denoted by SFD2N+1-RK6 with N = 4, 5, 6, depend on

the free parameters a3, . . . , aN , β5 and β6 which will be determined by minimizing the

following error measure

∫∫

D

[(
φTot(α, z)

π

)2

+ d2Tot(α, z)

]
dα dz, (44)

where the integration region is defined by D = {(α, z) | α ∈ (0, 1], z ∈ [zmin, zmax]} for

some given zmin and zmax. Further we impose the stability condition

|R(iαz∗)| < 1, α ∈ (0, 1], z ∈ (0, zmax], (45)

with z∗ given by (38).

We notice that the main difference of (44) with error measures considered by other

authors (for example [2, 3, 12, 19]) is the use of the total dispersion and dissipation

errors on a two-dimensional region associated to spatial and temporal discretizations. The

constraint (45) was imposed in order to obtain optimized schemes which are stable on the

range of wavenumbers in which the dispersion and dissipation behavior is acceptable in

terms of accuracy.

Here we chose the wavenumbers limits zmin = π/16 and zmax = π/2 which amounts

to consider waves between 32 points per wavelength and 4 points per wavelength, respec-

tively, and for the scheme with N = 6 we also use zmax = 3π/5 as in [3]. The coefficients

β5, β6 and aj obtained for the optimized FD-RK schemes are given in Tables 4 and 5.

To compare the dispersive and dissipative behavior of the new optimized schemes we

consider some FD-RK schemes recently published in the scientific literature [2, 3] which

have been optimized independently in space and in time. The optimized spatial FD

schemes derived in [3] together with the fourth-order six-stage RK algorithm derived in

[2], and they will be referred as FDo9p-RKB6, FDo11p-RKB6 and FDo13p-RKB6. Fig-

ures 13–18 show the total dispersion and dissipation errors: φTot(α, z)/π and dTot(α, z)

depicted as a function of z = k∆x (0 ≤ z ≤ zmax) at a CFL number α = 1. These

figures show that the new optimized schemes have generally a better dispersive and dis-

sipative behavior than those optimized independently in space and in time, in particular

for wavenumbers near to z = π/2.
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Next a quantitative comparison of schemes by taking dispersion and dissipation error

bounds: |φTot(α, z)/π| ≤ 10−3 and |dTot(α, z)| ≤ 10−4 is given. These limits indicate

the maximum wavenumbers z = k∆x properly calculated which can also be expressed in

terms of the number of points per wavelength Np = 2π/k∆x with respect to the grid-size

∆x. They are reported in Table 6 for the schemes considered in the comparison at a CFL

number α = 1. For the same (2N + 1)-points stencil, the new optimized schemes have

generally better accuracy limits in phase than the schemes optimized independently in

space and in time. In addition, waves with four points per wavelength at α = 1 are taken

into account only by the schemes SFD11-RK6(a) and SFD13-RK6(a).

Table 4: Coefficients of the optimized SFD2N+1-RK6(a) schemes with zmax = π/2

N = 4 N = 5 N = 6

β5 = 0.00785313645903 β5 = 0.00785780000000 β5 = 0.00785812800000

β6 = 0.00092656241553 β6 = 0.00094507900000 β6 = 0.00094851200000

a1 = 0.84332103556666 a1 = 0.88131666666666 a1 = 0.90280686066667

a2 = −0.24646064685333 a2 = −0.29651333333333 a2 = −0.32759725333333
a3 = 0.06024952338000 a3 = 0.09657000000000 a3 = 0.12294034000000

a4 = −0.00778707800000 a4 = −0.02315000000000 a4 = −0.03812260000000
a5 = 0.00292000000000 a5 = 0.00835681000000

a6 = −0.00095450400000

Table 5: Coefficients of the optimized SFD13-RK6(b) scheme with zmax = 3π/5

β5 = 0.00784952503800

β6 = 0.00099024688453

a1 = 0.91934276215510

a2 = −0.35241708459276
a3 = 0.14520000000000

a4 = −0.05177590000000
a5 = 0.01379215888197

a6 = −0.00199429789657
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Table 6: Dispersion and dissipation limits in wavenumbers z = k∆x and in points per

wavelength Np = 2π/k∆x with respect to the grid-size ∆x at α = 1.

Dispersion |φTot/π| ≤ 10−3 Dissipation |dTot| ≤ 10−4

k∆x 2π/k∆x k∆x 2π/k∆x

FDo9p-RKB6 1.43 4.39 1.88 3.34

FDo11p-RKB6 1.44 4.38 1.82 3.45

FDo13p-RKB6 1.40 4.49 1.80 3.49

SFD9-RK6(a) 1.46 4.31 1.65 3.81

SFD11-RK6(a) 1.63 3.85 1.74 3.61

SFD13-RK6(a) 1.74 3.61 1.75 3.56

SFD13-RK6(b) 1.89 3.32 1.51 4.16

4 Construction of the low storage RK methods

In this section we analyze the low-storage explicit RK methods with s = 6 stages and

non linear algebraic order 4 given in the previous section. These schemes satisfy the order

conditions

bTe = 1, bT c = 1/2, bT c2 = 1/3, bTAc = 1/6,

bTc3 = 1/4, bT (c ·Ac) = 1/8, bTAc2 = 1/12, bTA2c = 1/24.
(46)

In addition to the equations given by (46), the coefficients of (32) also satisfy the two

additional conditions

bTA3c = β5, bTA4c = β6, (47)

obtained in the optimization process of the previous section.

Since we have a set of ten nonlinear equations (46)–(47) for the eleven coefficients

(b1, . . . , b6, γ1, . . . , γ5), one parameter is free, and therefore some additional requirements

can be imposed for its determination. Here, we use this degree of freedom to solve

numerically the nonlinear system (46)–(47) by taking into account standard requirements

in the derivation of practical RK methods:

• The weights satisfy |bi| ≤ 2, i = 1, . . . , 6.

• The nodes satisfy ci 6= cj, ∀ i 6= j and 0 ≤ ci ≤ 1, i = 1, . . . , 6.

• Minimize the Euclidean norm of the leading term of the local error of the advanc-

ing approximation, i.e. ‖τ (5)‖2 =
∑∣∣∣C(5)

j

∣∣∣
2

, where C
(5)
j are the coefficients of the
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elementary differentials of order five in the local error expansion in powers of the

step size ∆t.

We have taken a fine grid in the free parameter and we have tested the first two

requirements at each point. From the avalilable points, we have started a minimization

process of the third condition and finally the coefficients obtained for the low-storage RK

algorithms associated to the optimized schemes of the previous section are given in Tables

7–10.

Table 7: Coefficients of the low-storage RK algorithm for the SFD9-RK6(a) scheme

c1 = 0 b1 = 0.11542410418395 γ1 = 0.18457589581605

c2 = 0.30000000000000 b2 = 0.14337328928437 γ2 = 0.12830567193128

c3 = 0.38710306539960 b3 = 0.34923156739002 γ3 = 0.10871574089416

c4 = 0.71674470175250 b4 = −0.52556842961887 γ4 = 0.60238704717262

c5 = 0.68484757841209 b5 = 0.49748516677020 γ5 = 0.27184007546667

c6 = 0.85178577347634 b6 = 0.42005430199034

Table 8: Coefficients of the low-storage RK algorithm for the SFD11-RK6(a) scheme

c1 = 0 b1 = 0.10974285720869 γ1 = 0.18025714279131

c2 = 0.29000000000000 b2 = 0.13448959704914 γ2 = 0.13857764418235

c3 = 0.38281009844018 b3 = 0.38294944978031 γ3 = 0.08426505141729

c4 = 0.71144695545543 b4 = −0.60216813067103 γ4 = 0.66860432485845

c5 = 0.69361809822556 b5 = 0.49945631650501 γ5 = 0.30908387736075

c6 = 0.83355396723287 b6 = 0.47552991012788

Table 9: Coefficients of the low-storage RK algorithm for the SFD13-RK6(a) scheme

c1 = 0 b1 = 0.11287033711698 γ1 = 0.19025714279131

c2 = 0.30000000000000 b2 = 0.14141097168321 γ2 = 0.13989004259688

c3 = 0.38412249685471 b3 = 0.36534072934351 γ3 = 0.08964556109275

c4 = 0.71682746513089 b4 = −0.54871438354286 γ4 = 0.66668799693474

c5 = 0.69170177030185 b5 = 0.47533937806862 γ5 = 0.31691629028663

c6 = 0.84138638015875 b6 = 0.45375296733053
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Figure 13: Total dispersion errors at α = 1.
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Figure 14: Total dissipation errors at α = 1.
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Figure 15: Total dispersion errors at α = 1.
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Figure 16: Total dissipation errors at α = 1.
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Figure 17: Total dispersion errors at α = 1.
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Figure 18: Total dissipation errors at α = 1.
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Table 10: Coefficients of the low-storage RK algorithm for the SFD13-RK6(b) scheme

c1 = 0 b1 = 0.11542109063167 γ1 = 0.20457890936833

c2 = 0.32000000000000 b2 = 0.14461329419966 γ2 = 0.12109473781601

c3 = 0.38112912264734 b3 = 0.36393100640076 γ3 = 0.11419683938110

c4 = 0.73816223061319 b4 = −0.43062100269419 γ4 = 0.50989197038198

c5 = 0.70323635891988 b5 = 0.33271255388848 γ5 = 0.31562989999482

c6 = 0.84168684242120 b6 = 0.47394305757361

5 Numerical experiments

In order to test the effectiveness of the optimized low storage RK schemes derived in

the above section, we use several model problems with linear and nonlinear wave prop-

agation. In particular, we have considered a one dimensional convection equation in-

volving long-range sound propagation, and two Euler model problems. The new opti-

mized schemes have been compared with the schemes FDo9p-RKB6, FDo11p-RKB6

and FDo13p-RKB6 developed in [2, 3].

5.1 One dimensional convection equation

In our first numerical experiments we have considered the two basic problems studied by

Bogey and Bailly in [3]. The aim is to check the long-range propagation of two initial

disturbances by the one-dimensional convective wave equation (1) with c = 1 given by

u(x, 0) = sin

(
2πx

a∆x

)
exp

(
− log(2)

( x

b∆x

)2)
,

where the parameters a and b are a = 8 and b = 3 for the case I and a = 4 and b = 9 for

the case II.

As remarked in [3] these choices of a and b have been made for the spectral contents

of u(x, 0). Thus in case I the spectral content of u(x, 0) is a Gaussian function centered

around k∆x = π/4 with wavenumbers k∆x ∈ (0, π/2) whereas in case II the Gaussian

function is centered around k∆x = π/2.

For the case I the initial disturbance is propagated over 800∆x which corresponds to

100 times the dominant wavelength. Figures 19–24 show the results obtained with the

schemes of 9, 11 and 13 points, respectively, for a CFL number α = 1. Figures 19, 21 and

23 show the solution computed with the numerical schemes whereas Figures 20, 22 and

24 show the total errors given by |uex−unum|. The solution obtained with the schemes of

9 points (Figure 19) shows dispersion of the initial disturbance for both schemes. In this

case the total errors (Figure 20) of the scheme FDo9p-RKB6 are slightly smaller than the
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total errors of the scheme SFD9-RK6(a). On the other hand, the results obtained with

the 11 and 13-points schemes are different (Figures 21–24). Now the solutions obtained by

using the schemes developed in [2, 3] are clearly distorted, whereas the solutions obtained

by using the new optimized schemes superpose fairly on the exact solution. It is worth to

remark that the total errors presented by the new optimized schemes are at least 2.5 times

smaller than the total errors presented by the schemes developed in [2, 3]. These results

are in agreement with the better dispersive properties of the new optimized schemes as

analyzed in section 3. It should also be noted that the scheme SFD13-RK6(a) is more

accurate than the scheme SFD13-RK6(b) for this problem.

Case II is a test model to investigate if wavenumbers z = k∆x ≃ π/2 are properly

calculated with about four points per wavelength. As remarked in [3] these waves often

appear in Large Eddy Simulation (LES) procedures. Now the initial disturbance is prop-

agated over a distance of 200∆x which corresponds to 50 times the wavelength. Figures

25–28 show the results obtained with the schemes of 11 and 13 points for a CFL number

α = 1. The schemes of 9 points do not result accurate enough to solve this problem. The

Figures 25 and 27 show the solution computed with the numerical schemes and the Fig-

ures 26 and 28 show the total errors (|uex−unum|), as in the case I. The solutions obtained

with the schemes developed in [2, 3] are clearly dispersed and dissipated. The solution

obtained with the SFD11-RK6(a) scheme is also dispersed and dissipated though its total

errors are approximately two times lower than the total errors presented by the FDo11p-

RKB6 scheme. In this problem, the solution is only properly calculated by using the new

SFD13-RK6(a, b) schemes. The solution computed by the SFD13-RK6(a) scheme is in

phase with the exact one and it results slightly dissipated, whereas the solution computed

by the SFD13-RK6(b) scheme is the most accurate for this problem.
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Figure 19: Solution at α = 1 for the schemes SFD9-RK6(a) and FDo9p-RKB6.
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Figure 20: Errors at α = 1 for the schemes SFD9-RK6(a) and FDo9p-RKB6.
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Figure 21: Solution at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 22: Errors at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 23: Solution at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 24: Errors at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 25: Solution at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 26: Errors at α = 1 for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 27: Solution at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.

5.2 One dimensional Euler model problems

In our second test problem we consider the one-dimensional linearized Euler equations

(around u0, ρ0, p0)




ρt

ut

pt


 +




u0 ρ0 0

0 u0
1

ρ0
0 γp0 u0







ρx

ux

px


 = 0. (48)

Here ρ is the density, u the velocity and p the pressure. Using the transformation

(ρ, u, p)→ (r, v, w) given by

ρ =
r + w

c2
+ v, u =

w − r

c ρ0
, p = r + w, (49)

the PDE system (48) can be written in the diagonal form




rt

vt

wt


 +




u0 − c 0 0

0 u0 0

0 0 u0 + c







rx

vx

wx


 = 0, (50)

where c =
√

γp0
ρ0

is the speed of sound, and therefore exact solutions can easily be com-

puted for numerical comparison. We consider the case of subsonic regime, 0 < u0 < c,

for the computations carried out with the FD-RK schemes. The computation domain is
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Figure 28: Errors at α = 1 for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.

taken large enough, −250 ≤ x ≤ 250, so that boundary conditions do not need to be

implemented. The system (48) is solved with ∆x = 1, α = 1, and the time step size is

determined from the CFL number as ∆t = α∆x/(u0 + c). The values of the coefficients

are given by u0 = c/10, γ = 1.4, p0 = 1, ρ0 = 1, and the initial perturbation used is





ρ(x, 0) = 1

u(x, 0) = 0

p(x, 0) = e−(x/4)2 sin (2πx/5)

(51)

The results shown below are obtained after 200 time steps so that tend = 200∆t =

153.66. Figures 29 and 31 show the density and Figures 30 and 32 show the errors on the

density corresponding to the right travelling acoustic wave (it travels at a speed of u0+ c)

for the schemes of 11 and 13 points. Here the 9-points schemes do not give accurate

solutions in this time interval. As it can be observed in these figures, the FDo11p-RKB6

and FDo13p-RKB6 schemes present important oscillations behind the acoustic wave.

This is due to their total dispersion errors (see Figures 15 and 17). In general, the new

optimized schemes show a better dispersive and dissipative behavior than the schemes

proposed in [2, 3]. In addition, the errors of the acoustic wave for the new optimizations

are smaller in amplitude than those of the schemes proposed in [2, 3]. In particular, the

schemes of 13 points present lower trailing oscillations behind the acoustic wave than the

schemes of 11 points. In addition, the most accurate results for this problem are given by
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the SFD13-RK6(b) scheme.

Finally we consider a nonlinear test problem, the one-dimensional Euler equations




ρt

ut

pt


 +




u ρ 0

0 u
1

ρ

0 γp u







ρx

ux

px


 = 0. (52)

The initial perturbation used is a Gaussian pressure pulse at the center of the domain

given by





ρ(x, 0) = 1

u(x, 0) = 0

p(x, 0) =
1

γ
+∆p e−βx2

(53)

where γ = 1.4, β = 0.05 and ∆p = 0.035. The computation domain is taken large

enough, −400 ≤ x ≤ 400, so that boundary conditions do not need to be implemented.

The system (52) is solved in dimensionless form with α = 1, c = 1, and the time step is

determined from the CFL number as c∆t = α∆x. The time integration is propagated

up to tend = 150 for several values of the grid-size ∆x. For numerical comparison we

have computed a reference solution by using thirtieth-order thirty-one-point standard

finite differences for spatial derivation and the six-stage RK algorithm RKB6 with the

CFL number α = 0.01 for time integration as in [2]. The initial perturbation and the

computed reference solution for the pressure are shown in Figures 33 and 34, respectively.

The error is evaluated as

error =
N∑

i=1

|pref(xi)− pnum(xi)|, (54)

where N is the number of mesh points and pref the reference solution.

Figures 35 and 36 show the errors as a function of the grid-size ∆x (in logarithmic

scale) for the schemes of 9, 11 and 13 points. As it can be observed, for a grid-size ∆x

lower than 0.5, the order of accuracy defines the slope of the error curve. In this case all

the schemes considered here present accuracy of fourth-order. On the other hand, when

∆x is greater than 0.5, the slope of the error curve appears influenced by the dispersion

and dissipation errors. Finally, we have observed that for this problem the most accurate

results are given by the schemes SFD13-RK6(a) and FDo11p-RKB6.

6 Conclusions

A class of optimized explicit methods constituted by symmetric FD schemes for spatial

derivation and low storage RK algorithms for time integration is proposed. The methods
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Figure 29: Density for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 30: Errors on the density for the schemes SFD11-RK6(a) and FDo11p-RKB6.
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Figure 31: Density for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 32: Errors on the density for the schemes SFD13-RK6(a, b) and FDo13p-RKB6.
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Figure 33: Initial pressure for the 1D Euler equations.
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Figure 34: Reference pressure computed at t = 150 for the 1D Euler equations.
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Figure 35: Propagation error as a function of ∆x for the schemes of [2, 3].
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Figure 36: Propagation error as a function of ∆x for the new schemes.
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are characterized by the minimization of an error measure which takes into account the

total dispersion and dissipation errors associated to spatial and temporal discretizations.

This new approach allows to optimize the spatial scheme and the time advancement

method simultaneously, in opposition to approaches followed by other authors. Opti-

mizations were done on fourth-order symmetric FD schemes with 9, 11 and 13 points in

combination with six-stage fourth-order explicit RK algorithms. Analysis of total dis-

persion and dissipation errors and evaluation of accuracy limits demonstrate the better

dispersive properties of the new optimized methods when they are compared with the

optimized schemes of [2, 3]. The numerical experiments carried out with 1D convec-

tion equations and 1D Euler model problems confirm the improvements in accuracy and

efficiency of the new optimizations.

7 Future work

In the case of explicit RK methods we will investigate low-storage schemes when they

are applied to solve differential problems related with the property of Total Variation

Diminishing (TVD). When a RK method is used to solve an IVP:

U ′(t) = F (U(t)), U(t0) = U0 (55)

resulting from an application of the method of lines to a Cauchy problem for a PDE, it

yields approximations Un = (Un,1, . . . , Un,N)
T to the exact solution U(n∆t) at tn = n∆t,

where ∆t > 0 denotes the temporal step-size.

The property of TVD is

‖Un+1‖TV ≤ ‖Un‖TV (56)

where ‖ · ‖TV is the seminorm defined by

‖Un‖TV =
∑

j

|Un,j+1 − Un,j |. (57)

The main goal is the construction of high-order TVD Runge–Kutta schemes with the

property of low-storage while preserving the TVD property.

Other research related with low-storage Runge–Kutta schemes is the analysis and

study of new embedded pairs. It is well known that using a fixed step size policy is usually

less efficient than allowing the step size to vary each step. Modern explicit Runge–Kutta

methods have an error estimator that makes it possible to determine suitable step sizes

to adjust dynamically the length of the step size in terms of the behavior of the local

solution.
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Abstract

The approaches to Classical and Quantum Mechanics are quite different in many

aspects, the most striking one being the linear structure which is present in the

Hilbert space H and which is considered usually as one of the most relevant aspects

of the formalism. There are also suggestive similarities, as has been noted often (see

[31, 32, 41, 49]) but they have been approached mainly from the algebraic point of

view. Our goal in this paper is to describe an alternative description of Quantum

Mechanics which is formally analogue to the description of nonrelativistic Classical

Mechanics from a geometrical perspective. We will also discuss the main advantages

of this new approach, and the most significative differences. We also present two

applications to physically relevant examples: the ability to discuss independence of

quantum observables (in the context of entanglement witnesses) and a Hamiltonian

description of Ehrenfest equations for molecular systems.

1 Introduction

The aim of this paper is to summarize the most relevant aspects of a geometrical

formulation of Quantum Mechanics, which is being developed since the last seventies and

has been the main line of research of the author in the last five years. For the sake of

simplicity, we will consider only the case of finite dimensional systems, although from a

formal point of view, most of the results presented here can be extended to the infinite

dimensional case. The original references to the results presented in this work can be

found in [2, 3, 4, 7, 8, 24, 28, 29, 30] and are due to several people, who were kind enough
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to share part of their knowledge and time with the author along these years. He would

like that this work serve also as a small tribute for all of them.

The origins of the construction, though, go back to the end of the seventies, and

has been developed by many different researchers. Just to mention the most relevant

references ordered chronologically, let us refer to former interesting approaches as [48],

the seminal work by Kibble [39], the works by Cantoni ([19, 20, 21, 22, 23]), by Cirelly

and co-workers ([25, 26, 27]), the more physically oriented approach by Heslot [37], Bloch’s

paper ([11]), the work by Anandan[5, 6], and then Ashtekar and Schilling [9]. There are

several interesting works by Brody and coworkers ([14] is the one closer to the work

presented here, although other results, more oriented to Statistical Mechanics such as

[13, 15, 16, 17, 18] are also relevant) and also from Spera and coworkers ([10, 47]) .

Abstracting from all these works, let us begin our study in a very general framework. If

we want to describe a physical system, what would the minimal mathematical apparatus

we need? From a fairly general point of view, the minimal mathematical structure we can

think of contains:

• a space of states, which we denote as S and which encodes the information that we

consider relevant to describe the physical system in an unambiguous way,

• a space of observables, that we denote as O, and which encodes the set of possible

representations of physical magnitudes,

• and finally, a way of representing the measurement process, i.e., a pairing O×S → R

which assigns a real number to any magnitude and a given state.

• If we want to describe some sort of evolution, we must define also a differential (or

difference, if the system is discrete) equation whose solutions define the trajectories

of the physical system.

For instance, in the case of the the Hamiltonian (or Lagrangian) nonrelativistic Clas-

sical Mechanics, the situation is very well known:

• The states of the physical system are described by a phase space which contains

the set of positions and momenta of the system (or the set of positions and the

set of velocities if we are considering a Lagrangian description). Depending on

the situation, S takes some extra structure, which is used to provide a tensorial

description of the dynamics and the rest of the tools we use. Thus, we can find

the form of a vector space, a cotangent bundle, a symplectic, a Poisson (or even,

in a more general framework, a Dirac) manifold. Also, Riemannian metrics may be

introduced in order to describe special systems.
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• The set of observables corresponds to the set of functions defined on the phase space,

the corresponding pairing being the evaluation of the functions on the corresponding

point.

• The dynamics can be introduced in several equivalent ways, which encode within

the different structures introduced, the content of Newton equations. In the case of

Hamiltonian Mechanics, dynamics arises as the integral curves of the Hamiltonian

vector field associated to a special function, called the Hamiltonian and denoted

as h, which represents the energy of the system. If we denote as {·, ·} the Poisson

bracket defined on the set of functions of S and associated to the tensor chosen we

can write the vector field representing the dynamics in an intrinsic way as

Xh = {h, ·} (1)

That is a brief summary of the mathematical description of a classical system. What

about a quantum one? The usual approaches to Quantum Mechanics present a situation

quite different to the above. The standard presentations, split the description in two

“pictures”, one where the primary object are the physical states (the Schrödinger picture)

and one where the main objects are the physical observables (the Heisenberg picture).

Let us review very quickly both of them from the perspective above:

• In the Schrödinger picture of Quantum Mechanics,

– the states of the physical system are considered to belong to a Hilbert space H,

or rather, to the corresponding projective space, i.e. the space of complex rays

in H, since all the points differing by a phase are considered physically equiv-

alent, and the norm of the states must be equal to one, since it is probabilistic

in nature.

– On the other hand, the physical magnitudes are modelled as self-adjoint op-

erators defined on H, i.e., modulo the complex unit, the set of observables is

identified with the Lie algebra u(H) of the unitary group U(H) associated to

the Hilbert space H.

– The pairing is defined as the quadratic function

O × S → R; (A, |ψ〉) 7→ 〈ψ|Aψ〉
〈ψ|ψ〉 ,

even if the measure process is still a challenging problem (see [50, 51] and

references therein).
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– Dynamics is introduced on H via the Schrödinger equation, defining the evo-

lution as the solutions of the differential equation:

i~
∂|ψ(t)〉
∂t

= H|ψ(t)〉, (2)

where H is the Hermitian operator which represents the energy of the system.

• In the Heisenberg picture of Quantum Mechanics, that we can present following the

algebraic approach by Segal [46] or Haag and Kastler [36], we find that:

– The physical magnitudes are the primary object and are supposed to define the

real part of a C∗–algebra A (see [33] for a classical presentation of the concept),

– the states of the physical system are defined as positive linear functionals ρ on

A, normalized by the condition

Trρ = 1

– The pairing is defined via the trace operation (see [34] for the theorem proving

the result in general)

O × S → R; (A, ρ) 7→ Tr(ρA)

– Dynamics is introduced on A via the Heisenberg equation, defining the evolu-

tion as the solutions of the differential equation:

i~
∂A(t)

∂t
= (A(t)H −HA(t)), (3)

where again H denotes the Hamiltonian operator.

We can notice then that the approaches to Classical and Quantum Mechanics are quite

different in many aspects, the most striking one being the linear structure which is present

in the Hilbert space H and which is considered usually as one of the most relevant aspects

of the formalism. There are also suggestive similarities, as has been noted often (see

[31, 32, 41, 49]) but they have been approached mainly from the algebraic point of view.

Our goal in this paper is to describe an alternative description of Quantum Mechanics

which is formally analogue to the description of nonrelativistic Classical Mechanics from a

geometrical perspective. We will also discuss the main advantages of this new approach,

and the most significative differences. We also present two applications to physically

relevant examples: the ability to discuss independence of quantum observables (we will

use the concept in the context of entanglement witnesses) and a Hamiltonian description

of Ehrenfest equations for molecular systems, which allows, for instance, to define a simple
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measure, which is preserved by the dynamics, and which allows us to formulate a rigorous

extension to Statistical Mechanics (see [2, 4]).

The structure of the paper is as follows. In Section 2 we introduce the geometrical

construction for a quantum mechanical system on a pure state for both the Schrödinger

and the Heisenberg pictures, and prove that they are actually related by the momentum

mapping of the action of the unitary group on the Hilbert space. Both approaches are

then equivalent and we are able to define the equivalence explicitly. Section 3 is devoted

to the analysis of the mixed states: we will see how we can use the geometrical structures

of the dual of the Lie algebra of the unitary group of the Hilbert space, to endow the set

with tensorial objects which are analogue to the ones introduced in the case of pure states.

Finally, the last two sections present two simple applications where the geometrical for-

malism introduced provide us with tools which have no analogue in the usual description of

Quantum Mechanics. In particular, in Section 4 we introduce a notion of independence of

operators which is not available in the usual framework because of the lack of a consistent

non-commutative calculus. We exemplify it by proving the independence of two entangle-

ment witnesses defined on mixed states and used vastly in Quantum Information Theory.

Finally, Section 5 presents a recent application of the geometric formalism introduced to

define a Hamiltonian formalism for the Ehrenfest description of mixed quantum-classical

systems (used often to describe, in an approximate way, molecular systems). We will see

how the symplectic description we introduce for quantum dynamics allows us to combine

the description of a quantum system with the description of a classical system and couple

their dynamics together.

2 Geometric formulation of Quantum Mechanics

As we just mentioned, the aim of this section is simply to provide a tensorial charac-

terization of Quantum Mechanics which is similar to the description of geometric Classical

Mechanics. We will proceed step-by-step and study the construction first at the level of

a pure-state description and later at a general level. Therefore, the first sections refer

mainly to the Schrödinger representation, even if we will discuss some aspects of the

Heisenberg approach also.

2.1 Representation of pure states

To introduce the real manifold point of view, we start by replacing the Hilbert space

H with its realification HR := MQ. In this realification process the complex structure on

H will be represented by a tensor J on MQ as we will see.

The natural identification is then provided by choosing a basis {|zk〉} in H and splitting

the corresponding coordinates into their real and imaginary parts:
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|ψ〉 =
∑

k

ψk|zk〉 ψk → ψRk + iψIk

Then,

{ψ1, · · · , ψn} ∈ H 7→ {ψR1 , · · · , ψRn , ψI1 , · · ·ψIn} ≡ (ΨR,ΨI) ∈ HR.

Under this transformation, the Hermitian product becomes, for ψ1, ψ2 ∈ H

〈(Ψ1
R,Ψ

1
I), (Ψ

2
R,Ψ

2
I)〉 = (〈Ψ1

R,Ψ
2
R〉 + 〈Ψ1

I ,Ψ
2
I〉) + i(〈Ψ1

R,Ψ
2
I〉 − 〈Ψ1

I ,Ψ
2
R〉).

To consider HR just as a real differential manifold, the algebraic structures available

on H must be converted into tensor fields on HR. Consider first the tangent and cotangent

bundles TH and T ∗H and the following structures:

• The complex structure of H is translated into a tensor

J : MQ →MQ,

satisfying J(ΨR,ΨI) = (−ΨI ,ΨR) for any point (ΨR,ΨI) ∈MQ. It is immediate to

verify that in this case

J2 = −I.

• The linear structure available in MQ is encoded in the vector field ∆

∆ : MQ → TMQ ψ 7→ (ψ, ψ).

• With every vector we can associate a vector field

Xψ : MQ → TMQ φ→ (φ, ψ)

These vector fields are the infinitesimal generators of the vector group MQ acting

on itself.

• The Hermitian tensor 〈·, ·〉 defined on the complex vector space H, can be written

in geometrical terms as

〈Xψ1
, Xψ2

〉(φ) = 〈ψ1, ψ2〉.

On the “real manifold” the Hermitian scalar product may be written as

〈ψ1, ψ2〉 = g(Xψ1
, Xψ2

) + i ω(Xψ1
, Xψ2

),

where g is now a symmetric tensor and ω a skew-symmetric one.

The properties of the Hermitian product ensure that:
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• the symmetric tensor is positive definite and non-degenerate, and hence defines a

Riemannian structure on the real vector manifold.

• the skew-symmetric tensor is also non degenerate, and is closed with respect to the

natural differential structure of the vector space. Hence, the tensor is a symplectic

form (see also [42])

As the inner product is sesquilinear, it satisfies

〈ψ1, iψ2〉 = i〈ψ1, ψ2〉, 〈iψ1, ψ2〉 = −i〈ψ1, ψ2〉.

This implies

g(Xψ1
, Xψ2

) = ω(JXψ1
, Xψ2

).

We also have that J2 = −I, and hence that the triple (J, g, ω) defines a Kähler structure

(see [25, 27]). This implies, among other things, that the tensor J generates both finite

and infinitesimal transformations which are orthogonal and symplectic.

The choice of the basis also allows us to introduce adapted coordinates for the realified

structure:

〈zk, ψ〉 = (qk + ipk)(ψ),

and write the geometrical structures introduced above as:

J = ∂pk
⊗ dqk − ∂qk ⊗ dpk g = dqk ⊗ dqk + dpk ⊗ dpk ω = dqk ∧ dpk

Note 1. If we represent the points of H by using complex coordinates we can write the

Hermitian structure by means of zn = qn + ipn:

h =
∑

k

dz̄k ⊗ dzk,

where of course

〈Xψ1
|Xψ2

〉 = h(Xψ1
, Xψ2

),

the vector fields now being the corresponding ones on the complex manifold.

In an analogous way we can consider a contravariant version of these tensors. The

coordinate expressions with respect to the natural basis are:

• the Riemannian structure G =
∑n

k=1

(

∂
∂qk

⊗ ∂
∂qk + ∂

∂pk
⊗ ∂

∂pk

)

,

• the Poisson tensor Ω =
∑n

k=1

(

∂
∂qk ∧ ∂

∂pk

)

• while the complex structure has the form

J =
n
∑

k=1

(

∂

∂pk
⊗ dqk − ∂

∂qk
⊗ dpk

)
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2.1.1 Example I: the Hilbert space of a two level quantum system

For a two levels system we will consider an orthonormal basis on C
2, say {|e1〉, |e2〉}. We

introduce thus a set of coordinates

〈ej|ψ〉 = zj(ψ) = qj(ψ) + ipj(ψ) j = 1, 2.

In the following we will use zj or qj, pj omitting the dependence in the state ψ as it

is usually done in differential geometry.

The set of physical states is not equal to C2, since we have to consider the equivalence

relation given by the multiplication by a complex number i.e.

ψ1 ∼ ψ2 ⇔ ψ2 = λψ1 λ ∈ C0 = C − {0}.

And besides, the norm of the state must be equal to one. These two properties can be

encoded in the following diagram:

C
2 π //

  B
BB

BB
BB

B S2

S3

τH

>>}}}}}}}}

where S2 and S3 stand for the two and three dimensional spheres, and the projection τH is

the Hopf fibration. The projection π is associating each vector with the one-dimensional

complex vector space to which it belongs. Thus we see how this projection factorizes

through a projection onto S3 and a further projection given by the Hopf fibration, which

is a U(1)–fibration.

The Hermitian inner product on C2 can be written in the coordinates z1, z2 as

〈ψ|ψ〉 = z̄jz
k〈ek|ej〉 = z̄jz

j .

Equivalently we can write it in real coordinates q, p and obtain:

〈ψ|ψ〉 = p2
1 + p2

2 + (q1)2 + (q2)2

We can also obtain these tensors in contravariant form if we take as starting point

the Hilbert space H = C2. If we repeat the steps above, we obtain the two contravariant

tensors:

G =
∂

∂qk
⊗ ∂

∂qk
+

∂

∂pk
⊗ ∂

∂pk
Λ =

∂

∂qk
∧ ∂

∂pk
.

Other tensors encode the complex vector space structure of H = C2:

• the dilation vector field ∆ = q1 ∂
∂q1

+ p1
∂
∂p1

+ q2 ∂
∂q2

+ p2
∂
∂p2

,

• and the complex structure tensor J = dp1 ⊗ ∂
∂q1

− dq1 ⊗ ∂
∂p1

+ dp2 ⊗ ∂
∂q2

− dq2 ⊗ ∂
∂p2

.
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2.2 The complex projective space

Another important aspect of the Hilbert space description of Quantum Mechanics is

the study of the global phase of the state. It is a well known fact that physical states

are independent of the global phase of the element of the Hilbert space that we choose to

represent them. In the formulation as a real vector space, we can represent the multipli-

cation by a phase on the manifold MQ as a transformation whose infinitesimal generator

is written as:

Γ =
∑

k

(

pk
∂

∂qk
− qk

∂

∂pk

)

. (4)

The meaning of this vector field is simple to understand if we realize that a phase change

changes the angle of the complex number representing the state, when considered in polar

form (i.e. in polar coordinates {ri, θi}i=1,··· ,n, Eq. (4) becomes just

Γ =
∑

k

∂

∂θk
.

Then, from a geometrical point of view we can use Eq. (4) in two ways:

• Computing its integral curves, which are the different states which are obtained

from an initial one by a global phase multiplication.

• Acting with the vector field on functions ofMQ (which will represent our observables)

providing us with the effect of the global phase transformation on the observables.

We can also consider another important vector field, which encodes the linear space

structure of the tangent bundle TMQ. In order to avoid singularities let us eliminate the

zero section of the bundle TMQ and denote the resulting space by T0MQ. We remind the

reader that MQ is just the realification of a complex vector space and, as such, we can

encode its linear structure in the dilation vector field, which reads:

∆ : MQ → T0MQ; ψ 7→ (ψ, ψ) (5)

In the coordinate system (qk, pj), it takes the form

∆ = qk
∂

∂qk
+ pk

∂

∂pk
(6)

We are particularly interested in the relation of the vector fields ∆ and Γ. In particular:

Lemma 1. ∆ and Γ define a foliation on the manifold MQ.

Proof. It is simple to relate ∆ with Γ via the complex structure, in the form:

Γ = J(∆). (7)

Then it is straightforward to prove that both vector fields commute.
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We thus have an integrable distribution defined on the manifold MQ. We can thus

define the corresponding quotient manifold identifying the points which belong to the

same orbit of the generators Γ and ∆. Notice that, from the physical point of view, this

corresponds to the identification of points in the same ray of the Hilbert space.

Definition 1. The resulting quotient manifold, denoted as P, defined as

π : MQ → P (8)

is called the complex projective space and its points represent the physical pure states

of a quantum system. We will denote by [ψ] the point in P which is the image by π of a

point ψ ∈MQ:

P ∋ [ψ] := π(ψ) ψ ∈MQ (9)

2.3 The observables

Our aim now is to provide a representation of the physical magnitudes, such as the

energy or the angular momentum, in terms of the geometric objects introduced in the

previous section. There are several possibilities, but we will consider only the simplest

one from the mathematical point of view, and, at the same time, the most meaningful

one from a physical point of view.

We know that in the usual formulation of Quantum Mechanics, physical observables are

represented by linear operators on the Hilbert space H, which are self-adjoint with respect

to the inner product. The information which is physically relevant, though, corresponds

to the expectation value associated to each observable (the pairing we introduced in the

introduction), at each normalized state |ψ〉 ∈ H:

A 7→ fA(ψ) =
1

2
〈ψ|Aψ〉 |ψ〉 ∈ H 〈ψ|ψ〉 = 1 (10)

If we think in the point |ψ〉 as an element of the differentiable manifold MQ instead, the

function fA turns out to be a quadratic function defined on MQ. For arbitrary operators,

the function fA is complex-valued. Hermitian operators give rise thus to quadratic real

valued functions. We will denote:

Definition 2. We will represent as F(MQ) the set of all possible quadratic functions

on MQ and as FR(MQ) the subset of real functions associated to the set of Hermitian

operators.

An interesting issue is how to characterize, by using the quadratic functions F(MQ),

the algebraic structures the set of operators in endowed with and which are physically

relevant, for instance, in Heisenberg approach
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2.3.1 The algebraic structures

We know that on the set End(H) there are three relevant ones:

• an associative product

· : End(H) × End(H) → End(H) (A,B) 7→ AB (11)

• its symmetric part

◦ : End(H) × End(H) → End(H) (A,B) 7→ A ◦B = AB +BA (12)

which defines a structure called Jordan algebra (see [38, 40]). The definition is as

follows:

Definition 3. A commutative algebra (A, ◦) over a field K is called a Jordan

algebra if

(x ◦ y) ◦ (x ◦ x) = x ◦ (y ◦ (x ◦ x)) ∀x, y ∈ A

It can be easily proved that (End(H, ◦) defines a Jordan algebra.

• and its skew-symmetric part,

[·, ·] : End(H)×End(H) → End(H) (A,B) 7→ [A,B] := −i(AB−BA) := −i[A,B]−,

(13)

which defines a Lie algebra structure on End(H), where we recall that

Definition 4. A Lie algebra is a vector space g over a field K endowed with a

bilinear operation [·, ·], which is skewsymmetric and satisfies the Jacobi identity, i.e.,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 ∀x, y, z ∈ g.

Notice that we introduce the imaginary unit in order to make it an inner operation

in the subspace of Hermitian operators.

The Jordan and the Lie structures can be combined together to define a Lie-Jordan

structure (see [40]):

Definition 5. A Lie-Jordan algebra is a real vector space L endowed with a Jordan

structure ◦ and a Lie structure [·, ·] which satisfy:

• the Lie bracket defines derivations of the Jordan product, i.e. [a, b ◦ c] = [a, b] ◦ c +

b ◦ [a, c] for all a, b, c ∈ L

• the associator of the Jordan structure can be obtained from the Lie bracket, i.e. for

all a, b, c ∈ L, (a ◦ b) ◦ c− a ◦ (b ◦ c) = ~2[b, [c, a]] where ~ ∈ R.
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The set of physical magnitudes is the subset of End(H) defined by Hermitian operators.

Modulo a multiplication by the imaginary unit, that subset corresponds to u(H), the Lie

algebra of the unitary group U(H). Being a linear subspace, we can restrict easily the

three operations above to the set, and define the corresponding operations on the Lie

algebra. Moreover, u(H) may be identified with its dual u∗(H) by the (regular) scalar

product defined as

〈·|·〉 : u(H) × u(H) → R; 〈A|B〉 =
1

2
TrAB, ∀A,B ∈ u(H).

The corresponding isomorphism

ζ : u(H) → u∗(H) (14)

allows us to export the geometric and algebraic structures existing in each space, into the

other. We can therefore consider the canonical Lie-Poisson structure of the dual u∗(H) as a

tensor on the space of observables (and therefore we can consider Hamiltonian dynamics),

or extend the Jordan structure defined on u(H) (since it is contained in End(H) ) into its

dual.

In particular we can define two tensors

[R(Â, B̂)](ξ) = 〈ξ, A ◦B〉u∗ = Tr(ξ(AB +BA)) ∀A,B ∈ u(H) (15)

and

[Λ(Â, B̂)](ξ) = 〈ξ, [A,B]〉u∗ = −iTr(ξ(AB − BA)) ∀A,B ∈ u(H). (16)

where we represent as Â and B̂ the linear functions defined on u∗ which correspond to the

elements A.B ∈ u(H) respectively. Notice that these R is the tensor defined on u(H) by

the operation defined in Eq. (12) when restricted to u(H) ⊂ End(H) and transferred to

u∗(H) via the isomorphism ζ . On the other hand, the tensor Λ is the tensor defining the

Lie-Poisson structure on u∗(H). Notice that these two tensors are the geometric objects

which directly encode Heisenberg formalism, which is defined on u(H) in a natural way,

or, via the isomorphism ζ , on u∗(H).

Having defined contravariant tensors on MQ to encode in a Kähler structure the Her-

mitian product of the Hilbert space, it makes sense to consider the action of those objects

on the set of functions. It is immediate to verify that the tensors allow us to implement,

at the level of quadratic functions, the three structures above

Lemma 2. Consider two functions fA, fB ∈ F(MQ). Then, the action of the tensors G

and Ω define inner operations which encode the algebraic structures of the set of linear

operators on the Hilbert space H:

G(dfA, dfB) = {fA, fB}+ = fA◦B Ω(dfA, dfB) = {fA, fB} = f[A,B] (17)
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If we combine both tensors, we are able to reproduce, at the level of F(MQ), the

identity:

AB =
1

2
(AB +BA) +

1

2
(AB −BA) =

1

2
A ◦B +

i

2
[A,B],

which becomes a new binary operation on ⋆ : F(MQ) × F(MQ) → F(MQ):

fA ⋆ fB := fAB =
1

2
{fA, fB}+ +

i

2
{fA, fB}. (18)

Considering the three operations introduced so far, we can reproduce completely the

algebraic structures of the space of operators on H. We can summarize them in the

following result:

Theorem 1. The set of quadratic functions F(MQ) endowed with the product ⋆ and the

complex conjugation turns out to be a C∗–algebra. The construction is tensorial since it

is built on the pair of tensors G and Ω defined on MQ.

The conclusion thus is that we are able to reconstruct, at the level of F(MQ), all

the structures necessary to implement Heisenberg formalism. From that point of view,

F(MQ) can be considered to be the geometrical framework of Heisenberg’s formalism,

and the tensors G and Λ the geometrical structures to encode the dynamics and the

indetermination relations.

2.3.2 Example II: the algebraic structures for a two level quantum sys-

tem

Let us continue the analysis of the case of a two level quantum system that we began in

Example 2.1.1. By using the Pauli matrices

{

σ0 =

(

1 0

0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)}

as Hermitian operators to construct functions 〈ψ|A|ψ〉, we obtain the real quadratic func-

tions

(q1)2 + p2
1 + (q2)2 + p2

2, q1q2 + p1p2, q1p2 − p1q
2, (q1)2 + p2

1 − ((q2)2 + p2
2).

It is not difficult now to compute the Poisson brackets of these quadratic functions to

find that they are the Hamiltonian for the infinitesimal generators of the u(2) algebra.

We may also compute explicitly the Jordan brackets, as for instance

{(q1)2 + p2
1 + (q2)2 + p2

2, q
1q2 + p1p2}+ = 4(q1q2 + p1p2).

Similar results are obtained with the other functions. The result we want to point out is
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Lemma 3. The function (q1)2 + p2
1 + (q2)2 + p2

2 acts, with respect to the Jordan bracket,

as the identity operator except for a normalization factor.

We also find

{q1q2 + p1p2, q
1q2 + p1p2}+ = 4((q1)2 + p2

1 + (q2)2 + p2
2).

And analogously for the other quadratic functions. We have

Lemma 4. The product of all functions (in the family above) with themselves produce a

multiple of the quadratic isotropic function.

We also can obtain easily

{q1q2 + p1p2, q
1p2 − p1q

2}+ = 0 = {q1q2 + p1p2, (q
1)2 + p2

1 − ((q1)2 + p2
1)}+

The additional relevant property is that the Hamiltonian vector field are Killing vec-

tors. In terms of brackets this amounts to:

{f, {g, h}+} = {{f, g}, h}+ + {g, {f, h}}+

This condition, plus the compatibility between the Jordan and the Poisson brackets

{{f, g}+, h}+ − {f, {g, h}+}+ = ~
2{g, {h, f}}

where ~ ∈ R represents the Planck constant, imply that the two brackets combined define

a Lie-Jordan algebra.

In particular, by considering generic quadratic functions of two complex coordinates,

we find a complex valued quadratic function whose real and imaginary parts are quadratic

functions of the previous type. All in all, the result is:

Lemma 5. Complex valued quadratic functions close on a C∗–algebra with respect to the

Hermitian bracket.

Thus we have found that Hermitian operators are associated with Hamiltonian vector

fields which are also Killing. As a matter of fact, this property characterizes functions on

C2 which are associated with Hermitian operators.

2.3.3 Functions on the projective space and their algebraic structures

It is important to notice that the functions defined by Eq. (10) correspond to expectation

values of physical observables when restricted to the suitable set of points. But in order to

represent true physical magnitudes, they must correspond to functions which are constant
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along the fibers of the fibration π : MQ → P. Those functions, meaningful from a physical

point of view, correspond to

eA =
〈ψ|Aψ〉
〈ψ|ψ〉 (19)

These are thus functions on MQ which are in one-to-one correspondence with the

functions on the projective space P. Obviously, they are no longer quadratic; but this

is a natural property taking into account that the projective space P has lost the linear

structure of MQ to become just a differentiable manifold.

Nonetheless, it is still possible to reconstruct the algebraic structures we introduced

above by defining a pair of suitable tensors. Consider then the action of the tensors Ω

and G on the set of functions of the form given by Eq. (69). We know that the functions

are projectable under π : MQ → P, but it is simple to understand that the product is

not, since the tensors are derivations of degree 2, i.e., the Lie derivative of the tensors

with respect to the dilation vector field ∆ defined in Eq. (5) is

L∆G = −2G; L∆Ω = −2Ω.

Thus, in order to make it projectable, we must rescale it by a factor of degree two, and

define for instance:

{eA, eB}P(ψ) := GP(deA, deB)(ψ) = 〈ψ|ψ〉{eA, eB}+ (20)

{eA, eB}P := ΩP(deA, deB) = 〈ψ|ψ〉{eA, eB} (21)

2.3.4 Example III: the projective space for a two level quantum system

Extending the example presented in Sections 2.1.1 and 2.3.2, we can consider now the

corresponding projective space and the corresponding tensors. It is important to remark

that while forms can not be projected, contravariant tensor fields can. This is the reason

why we introduced the contravariant tensors Λ and G. Thus by considering

G =
∂

∂q1
⊗ ∂

∂q1
+

∂

∂p1
⊗ ∂

∂p1
+

∂

∂q2
⊗ ∂

∂q2
+

∂

∂p2
⊗ ∂

∂p2
,

we can define a projectable tensor as:

GP = 〈ψ|ψ〉G− Γ ⊗ Γ − ∆ ⊗ ∆ =

= ((q1)2 + (q2)2 + p2
1 + p2

2)

(

∂

∂q1
⊗ ∂

∂q1
+

∂

∂p1
⊗ ∂

∂p1
+

∂

∂q2
⊗ ∂

∂q2
+

∂

∂p2
⊗ ∂

∂p2

)

−
∑

lm

(

pl
∂

∂ql
− ql

∂

∂pl

)

⊗
(

pm
∂

∂qm
− qm

∂

∂pm

)

−
∑

lm

(

qlqm
∂

∂ql
⊗ ∂

∂qm
+ plpm

∂

∂pl
⊗ ∂

∂pm

)

(22)
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Analogously we can introduce

ΩP = 〈ψ|ψ〉Ω− Γ⊗∆−∆⊗ Γ = ((q1)2 + (q2)2 + p2
1 + p2

2)

(

∂

∂q1
∧ ∂

∂p1
+

∂

∂q2
∧ ∂

∂p2

)

−

−
∑

lm

(

pl
∂

∂pl
+ ql

∂

∂ql

)

⊗
(

pm
∂

∂qm
− qm

∂

∂pm

)

−
∑

lm

(

pl
∂

∂ql
− ql

∂

∂pl

)

⊗
(

pl
∂

∂pl
+ ql

∂

∂ql

)

=

(23)

The next step is to consider the projectable quadratic functions. If we consider the

basis of the Hermitian operators given by the Pauli matrices, we find:

eσ0
= 1 eσ1

=
q1q2 + p1p2

(q1)2 + (q2)2 + p2
1 + p2

2

eσ2
=

q1p2 − p1q
2

(q1)2 + (q2)2 + p2
1 + p2

2

eσ3
=

(q1)2 + p2
1 − (q2)2 − p2

2

(q1)2 + (q2)2 + p2
1 + p2

2

We find that only the functions associated with {σ1, σ2, σ3} define non-trivial functions

on the complex projective space. Of course, their associated vector fields generate the

algebra of SU(2).

We can compute now the action of the tensor GP on these functions and obtain:

GP(deσ0
, df) = 0 ∀f

GP(deσ1
, deσ1

) = e0 − 4e2σ1

GP(deσ2
, deσ2

) = e0 − 4e2σ2

GP(deσ3
, deσ3

) = 4(e0 − e23)

GP(deσ1
, deσ2

) = −4(eσ1
eσ2

)

In an analogous way, other products can be computed. We obtain thus:

Lemma 6. The action of GP on the set of projectable functions corresponds to

GP(deA, deB) = eA◦B − eA.eB.

This implies that for A = B we have

GP(eA, eB) = eA2 − e2A,

i.e. we find the variance, the quadratic deviation from the mean value.

As a conclusion we obtain the physical origin of the construction:

Corollary 1. GP is directly related to the indetermination relations.
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2.3.5 Characterizing the physical magnitudes

The final issue is to be able to identify which quadratic functions are actually related to

physical magnitudes. In principle, there may exist quadratic functions on MQ which are

not associated to any physical magnitude. The complete characterization requires to take

into account both tensorial objects. Indeed, the fact that the two algebraic structures

(Jordan and Poisson) of the set End(H) are compatible and define a Lie-Jordan struc-

ture, ensures that the Hamiltonian vector fields, besides preserving the Poisson structure,

preserve also the symmetric structure and therefore are Killing vector fields. We can char-

acterize completely those vector field associated to physical magnitudes, precisely because

of that property:

Proposition 1 ([27]). The Hamiltonian vector field Xf (defined as Xf = Ω̂(df)) is a

Killing vector field for the Riemannian tensor G if and only if f is a quadratic function

associated with an Hermitian operator A, i.e. there exists A = A† such that f = fA.

2.3.6 The spectral information

Finally, we can consider the problem of how to recover the eigenvalues and eigenvectors

of the operators at the level of the functions of MQ. We consider the expectation value

functions associated to the operators as:

A 7→ eA(ψ) =
〈ψ|Aψ〉
〈ψ|ψ〉 .

Then,

• eigenvectors correspond to the critical points of functions eA, i.e.

deA(ψa) = 0 if and only if ψa is an eigenvector of A.

We notice that the invariance of eA under multiplication by a phase U(1) implies

that critical points form a circle on the sphere of normalized vectors if the eigenvalue

is not degenerate.

• the corresponding eigenvalue is recovered by the value eA(ψa)

Thus we can conclude that the Kähler manifold (MQ, J, ω, g) contains all the informa-

tion of the usual formulation of Quantum Mechanics on a complex Hilbert space.

Up to now we have concentrated our attention on states and observables. If we con-

sider observables as generators of transformations, i.e. we consider the Hamiltonian flows

associated to the corresponding functions, the invariance of the tensor G implies that the

evolution is actually unitary. It is, therefore, natural, to consider the action of the unitary

group on the realification of the complex vector space.
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2.4 The momentum map: geometrical structures on u∗(H)

The unitary action of U(H) on H induces a symplectic action on the symplectic

manifold (MQ, ω). By using the association

F : MQ × u(H) → R (ψ,A) 7→ 1

2
〈ψ|iAψ〉 = fiA(ψ),

we find, with FA := fiA : MQ → R, that

{F (A), F (B)} = iF ([A,B]).

Thus if we fix ψ, we have a mapping F (ψ) : u(H) → R. With any element ψ ∈ H we

associate an element in u∗(H). The previous map defines a momentum map (see [43])

µ : H → u∗(H) µ(ψ) = |ψ〉〈ψ|, (24)

which provides us with a symplectic realization of the natural Poisson manifold structure

available in u∗(H).

Analogously, we can consider the projected action:

FP : P × u(H) → R ([ψ], A) 7→ eiA(π−1([ψ])). (25)

In the following we will omit the imaginary unit when referring to the function unless it

is necessary.

Again,

FP([ψ]) : u(H) → R,

associates an element of the dual space u∗(H) with any point [ψ] ∈ P. This yields the

momentum map corresponding to the action (25) that we can write:

µP : P → u∗(H) µP([ψ]) =
|ψ〉〈ψ|
〈ψ|ψ〉 := ρψ (26)

Therefore, we have proved:

Lemma 7. The projective space P is in one-to-one correspondence with the subset D1(H) ⊂
u∗(H) of elements which are rank-one projectors, i.e., with the subset of elements {ρk}
which satisfy

ρ2
k = ρk Trρk = 1 (27)

If we denote the linear function on u∗(H) associated with the element iA ∈ u(H) by

Â, we have

µ∗(Â) = fA. (28)
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Analogously, for the projected action we have

µ∗
P(Â) = eA. (29)

It is possible to show that the contravariant tensor fields on MQ associated with the

Hermitian structure are µ–related with a complex tensor on u∗(H):

µ∗(G+ iΩ) = R + iΛ.

Clearly the tensors representing the algebraic structures on each set are related by:

G(µ∗Â, µ∗B̂) + iΩ(µ∗Â, µ∗B̂) = µ∗(R(Â, B̂) + iΛ(Â, B̂)),

and analogously

GP(µ∗
PÂ, µ

∗
PB̂) + iΩP(µ∗

PÂ, µ
∗
PB̂) + µ∗

PÂ ◦ µ∗
PB̂ = µ∗

P(R(Â, B̂) + iΛ(Â, B̂)).

2.5 The dynamics

At this stage, we can incorporate dynamics into the picture. Although several ap-

proaches are possible, we will consider just the simplest one. Thus, we will consider the

definition of a dynamical system on MQ instead of on P, aiming to construct the geomet-

rical analogue of Schrödinger equation. In a similar way, we will discuss the analogue of

Heisenberg equation by using the tensors which we have constructed on u∗(H).

Consider then the Poisson structures defined by the tensor Ω (defined by Eq. (17))

on the set of quadratic functions and the tensor Λ defined by Equation and the function

associated to the Hamiltonian operator:

fH(ψ) =
1

2
〈ψ|Hψ〉.

• We can consider now the one-parameter family of diffeomorphisms associated with

the corresponding Hamiltonian vector field:

XH = ~
−1Ω(dfH , ·). (30)

This object is, by construction, a vector field defined on the manifold MQ. This

vector field encodes Schrödinger equation in our geometric language, as we can see

immediately.

Let us consider again the simplest quantum situation defined on Cn. As a real

manifold, MQ ∼ R2n. Consider then a Hamiltonian H : Cn → Cn which is usually

written as a matrix:

H =









H11 H12 . . . H1n

...
... . . .

...

Hn1 Hn2 . . . Hnn









.
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If we consider it as a matrix on the real vector space MQ, it reads:

H =



















Hq1q1 Hq1p1 Hq1q2 Hq1p2 . . . Hq1qn Hq1pn

Hp1q1 Hp1p1 Hp1q2 Hp1p2 . . . Hp1qn Hp1pn

...
...

...
... . . .

...
...

Hqnq1 Hqnp1 Hqnq2 Hqnp2 . . . Hqnqn Hqnpn

Hpnq1 Hpnp1 Hpnq2 Hpnp2 . . . Hpnqn Hpnpn



















.

The function fH in F(MQ) becomes thus:

fH =
1

2

(

q1, p1, q
2, p2, . . . , q

n, pn

)



















Hq1q1 Hq1p1 Hq1q2 Hq1p2 . . . Hq1qn Hq1pn

Hp1q1 Hp1p1 Hp1q2 Hp1p2 . . . Hp1qn Hp1pn

...
...

...
... . . .

...
...

Hqnq1 Hqnp1 Hqnq2 Hqnp2 . . . Hqnqn Hqnpn

Hpnq1 Hpnp1 Hpnq2 Hpnp2 . . . Hpnqn Hpnpn















































q1

p1

q2

p2

...

qn

pn





























,

where the matrix above is symmetric because H is Hermitian, since we have:

Hqkqk = Hkk = Hpkpk
,

Hqkpk
= 0 = Hpkqk ,

Hqjqk = Re(Hjk) = Hpjpk
,

Hqjpk
= −Im(Hjk) = −Hpjqk .

Then, the Hamiltonian vector field turns out to be:

XH = ~
−1
∑

k

(

∂fH
∂pk

∂

∂qk
− ∂fH
∂qk

∂

∂pk

)

.

And its integral curves are precisely the expression of Schrödinger equation when

we write it back in complex terms:

q̇1 = ~
−1(Hp1q1q

1 +Hp1p1p1 + . . .+Hp1qnqn +Hp1pn
pn),

ṗ1 = − ~
−1Hq1q1q

1 +Hq1p1p1 + . . .+Hq1qnqn +Hq1pn
pn),

...

q̇n = ~
−1(Hpnq1q

1 +Hpnp1p1 + . . .+Hpnqnqn +Hpnpn
pn),

ṗn = − ~
−1(Hqnq1q

1 +Hqnp1p1 + . . .+Hqnqnqn +Hqnpn
pn).
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We can write these equations as:

d

dt





























q1

p1

q2

p2

...

qn

pn





























= −~
−1

J



















Hq1q1 Hq1p1 Hq1q2 Hq1p2 . . . Hq1qn Hq1pn

Hp1q1 Hp1p1 Hp1q2 Hp1p2 . . . Hp1qn Hp1pn

...
...

...
... . . .

...
...

Hqnq1 Hqnp1 Hqnq2 Hqnp2 . . . Hqnqn Hqnpn

Hpnq1 Hpnp1 Hpnq2 Hpnp2 . . . Hpnqn Hpnpn















































q1

p1

q2

p2

...

qn

pn





























,

where

J =



















0 −1 0 0 . . . 0 0

1 0 0 0 . . . 0 0
...

...
...

... . . .
...

...

0 0 0 0 . . . 0 −1

0 0 0 0 . . . 1 0



















;

or, equivalently,

ψ̇(q, p) = −~
−1

JHψ(q, p),

where

ψ(q, p) =





























q1

p1

q2

p2

...

qn

pn





























(31)

is the real space representation of the state vector and J the complex structure.

This is precisely the real space expression of Schrödinger equation.

The most significative result is then:

Theorem 2. Schrödinger equation defines a Hamiltonian vector field on MQ.

• On the set u∗(H), dynamics is introduced directly as the Hamiltonian vector field

associated to the operator H , or, isomorphically, as the derivation

X̂H = ~
−1{Ĥ, ·} = Λ(dĤ, ·)

where Ĥ is the linear function on u∗(H) which corresponds to the operator H ∈
u(H). This vector field is representing Heisenberg formalism of quantum dynamics.

If we write the expression of the corresponding flow we obtain:

dÂ(t)

dt
= ~

−1{Ĥ, Â}. (32)
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We could also see that the integral curve above can be represented, isomorphically,

on the set F(MQ), as

~
d

dt
fA(t) = {fH , fA} = Ω(dfH , dfA). (33)

The most significative result is then:

Theorem 3. Heisenberg equation defines a Hamiltonian vector field on u∗(H).

• By our geometric construction is possible to prove, easily, that both formalisms are

equivalent. Indeed, by direct computation, we can prove that the momentum map

µ is equivariant with respect to the unitary action U(H) × H → H (as it is µP

with respect to U(H)×P → P) and the co-adjoint action of U(H) on u∗(H). Both

vector fields are therefore related via the momentum mapping given by Eq. (24),

i.e.,

µ∗(XH) = X̂H (34)

The conclusion is then:

Theorem 4. The dynamics of a closed quantum system is Hamiltonian with respect to

the canonical Poisson tensors defined on MQ or u∗(H). Besides, both Hamiltonian vector

fields are related by the momentum mapping µ associated to the canonical action of the

unitary group U(H).

3 The space of density states

3.1 General considerations

We know that the manifold P is not enough to represent all the possible physical

states of a system. Given one point ψk ∈ H−{0} which is associated to a point [ψk] ∈ P
and corresponds then via the momentum mapping µP to the rank-one projector ρψk

, we

know that

ρψk
(A) := 〈A〉 = Tr(ρψk

A) ∀A ∈ iu(H) (35)

This implies that the action on the physical magnitude can be written as

ρψk
(A) =

〈ψk|Aψk〉
〈ψk|ψk〉

= eA(ψk). (36)

But, as we know, arbitrary convex combinations of rank-one projectors also define

admissible physical states.
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Definition 6. The set of density states D(H) of the system corresponds to the subset

of u∗(H) obtained by convex combinations of rank-one projectors, i.e.,

D(H) =

{

ρ =
∑

k

pkρk| pk ≥ 0,
∑

j

pj = 1, ρk ∈ D1(H)

}

(37)

Equivalently, we can consider the following definition: an element ρ ∈ u∗(H) is a density

operator if and only if

Trρ = 1, ρ ≥ 0. (38)

This is the most general set containing the possible states of a quantum system defined

on a Hilbert space H, even if it can be presented in different ways (see [12, 34]).

We can also construct the set following the second characterization, following [35].

First, we introduce the space of all non-negatively defined operators, i.e. the space of all

those ρ ∈ gl(H) which can be written in the form

ρ = T †T T ∈ gl(H).

We will denote by PH this space of operators, which is a convex cone in u∗(H). By

imposing the condition Trρ = 1 we select in PH the convex body of density states D(H).

We have then the sequence

D(H) ⊂ PH ⊂ u∗(H).

We will also consider non-negative Hermitian operators and density states of rank

k (defined as those operators which have k non-vanishing eigenvalues) and denote the

corresponding spaces as Pk(H) and Dk(H) respectively. The complex projective space is

in one-to-one correspondence with D1(H). Indeed, any state in D(H) can be written as

a convex combination of distinct states ρ = λρ1 + (1− λ)ρ2, with 0 ≤ λ ≤ 1. We will call

extremal states those which can not be written in this form (i.e. as convex combination

of two ρ1 and ρ2). The extremal states are thus given by D1(H).

Under this framework, it is natural to consider the following GL(H)–action:

GL(H) × u∗(H) → u∗(H) (T, ξ) 7→ TξT †.

Then:

1. The Hermitian operators ξ1 and ξ2 belong to the same GL–orbit if and only if they

have the same number K+ of positive eigenvalues and the same number K− of

negative eigenvalues (counted with multiplicities).

2. Any GL–orbit intersecting the positive cone PH is contained in PH; so that PH is

stratified by the GL–orbits. These GL–orbits in PH are determined by the rank of

the operator, i.e. they are exactly Pk(H).
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3. When we restrict to the space of density states by imposing the condition Trρ = 1,

this GL–action will not preserve the states. It is however possible to define a new

action that maps D(H) into itself by setting

GL(H) ×D(H) → D(H) (T, ρ) 7→ TρT †

Tr(TρT †)
.

This action does preserve the rank of ρ and then the following proposition holds true:

Proposition 2. The decomposition of the convex body of density states D(H) into orbits

of the GL(H)–action ρ 7→ TρT †

Tr(TρT †)
is exactly the stratification

D(H) =

n
⋃

k=1

Dk(H),

into states of a given rank.

The boundary of the convex body of density states consists of states of rank lower than

n, i.e. ∂D(H) =
⋃n−1
k=1 Dk(H), and each stratum is a smooth submanifold in u∗(H). How-

ever, the boundary ∂D(H) is not smooth (for n > 2). For n = 2, the set of density states is

diffeomorphic to a 3-dimensional ball, as we will see later, while its boundary corresponds

to the set of rank-one projectors D1(C2), which are represented on the 3-dimensional ball

by the surface 2-dimensional sphere, which is, of course, a smooth manifold.

From a dynamical point of view, we can summarize the geometrical picture of the

evolution in the following theorem:

Theorem 5. Every smooth curve γ : R → u∗(H) through the convex body of density states

is tangent, at every point, to the stratum to which it belongs, i.e.

γ(t) ∈ Dk(H) ⇒ Tγ(t) ∈ Tγ(t)Dk(H).

Once this property is known, we can use the fact that the set is contained in the

set u∗(H), and restrict the geometrical objects to it. In particular, we can consider the

restriction of the Poisson tensor Λ and this allows to define a Hamiltonian vector field by

dρ̂(t)

dt
= ~

−1{Ĥ, ρ̂} = ~
−1Λ(dĤ, dρ̂), (39)

or analogously as

~
dfρ(t)

dt
= {fH , fρ} = Ω(dfH , dfρ) (40)

if we use the tensor Ω defined on MQ. This unitary dynamics associated with a Hermitian

Hamiltonian H is known as von Neumann equation.
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3.2 Example: States of a two level system

3.2.1 The geometrical objects

We will consider in some detail two examples. The first one is the two level system with

carrier space H = C2. We consider u(2) and u∗(2) and choose again as a basis the Pauli

matrices:

σ0 =

(

1 0

0 1

)

σ1 =

(

0 i

−i 0

)

σ2 =

(

0 1

1 0

)

σ3 =

(

1 0

0 −1

)

We can introduce coordinate functions with respect to them:

yµ(A) =
1

2
TrσµA.

In these coordinates, a generic Hermitian matrix A can be written as

A = y0σ0 + yrσr

The corresponding Poisson brackets for the canonical Lie-Poisson structure on the

dual of the Lie algebra read:

{y0, ya} = 0 {ya, yb} = 2ǫabcyc.

The expression of the Poisson tensor thus becomes:

Λ = 2

(

y1
∂

∂y2

∧ ∂

∂y3

+ y2
∂

∂y3

∧ ∂

∂y1

+ y3
∂

∂y1

∧ ∂

∂y2

)

It is also possible to construct the Riemann-Jordan tensor in the form:

R =
∂

∂y0

⊗s

(

y1
∂

∂y1

+ y2
∂

∂y2

+ y3
∂

∂y3

)

+

y0

(

∂

∂y0
⊗ ∂

∂y0
+

∂

∂y1
⊗ ∂

∂y1
+

∂

∂y2
⊗ ∂

∂y2
+

∂

∂y3
⊗ ∂

∂y3

)

where ⊗s means the symmetrized tensor product.

In order to characterize the rank of the tensors, we can consider the distributions

associated by them to the coordinate functions, i.e., the distributions generated as

h = span (Λ(dyj)) r = span (R(dyj)) j = 0, 1, 2, 3 (41)

It is easy to see that the Hamiltonian distribution is generated by

H1 = y3
∂

∂y2

− y2
∂

∂y3

, H2 = y1
∂

∂y3

− y3
∂

∂y1

, H3 = y2
∂

∂y1

− y1
∂

∂y2

,

while the distribution associated with the Riemann-Jordan tensor is

X0 = ya
∂

∂ya
+ y0 ∂

∂y0
Xa = ya

∂

∂y0
+ y0 ∂

∂ya
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It is clear that X0 is central and {Xa} are boosts of a four dimensional Lorentz group,

therefore their commutator will provide us with the Lie algebra of the rotation group:

[Xa, Xb] = ya
∂

∂yb
− yb

∂

∂ya
.

From the analysis of the dimension of these distributions at each point, we find that:

Lemma 8. The rank of Λ is zero if y2
1 + y2

2 + y2
3 = 0 and the rank is equal to 2 if

y2
1 + y2

2 + y2
3 > 0.

The situation is richer with R:

Lemma 9. The rank of R is

• zero if y2
0 + y2

1 + y2
2 + y2

3 = 0

• two if y0 = 0 and y2
1 + y2

2 + y2
3 > 0.

• three for y2
0 = y2

1 + y2
2 + y2

3

• four if y2
0 6= y2

1 + y2
2 + y2

3

3.2.2 The space of density states in two dimensions

As we have already seen in the previous sections the set of states is identified with a subset

of u∗(H) satisfying a positivity condition and a normalization condition. In the specific

situation we are considering, a generic Hermitian matrix A = y0σ0 + yaσa

A =

(

y0 + y3 y1 − iy2

y1 + iy2 y0 − y3

)

.

We know that A will define a state if and only if

TrA = 1; µ± = y0 ±
√

(y2
1 + y2

2 + y2
3) ≥ 0,

where µ± are the two eigenvalues.

Explicitly we have

y0 =
1

2
, (y1)

2 + (y2)
2 + (y3)

2 ≤ 1

4
.

Thus in our parametrization states are determined by points in R4 on the hyperplane

y0 = 1
2
, and on this three dimensional space are identified by the points in the ball of

radius 1
2
. When referring to states we replace A with ρ and write:

ρ =

(

1
2

+ y3 y2 + iy1

y2 − iy1
1
2
− y3

)

. (42)
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Then,

D(C2) =

{

u(2) ∋ ρ =

(

1
2

+ y3 y2 + iy1

y2 − iy1
1
2
− y3

)

∣

∣

∣
(y1)

2 + (y2)
2 + (y3)

2 ≤ 1

4

}

(43)

The pure states corresponding to the vector (z1, z2) ∈ C2 with unit norm z1z̄1+z2z̄2 = 1

has a density state

ρ =

(

z̄1

z̄2

)

⊗ (z1, z2) =

(

z1z̄1 z̄1z2

z̄2z1 z2z̄2

)

.

Within the previous parametrization we find

y3 =
1

2
(z1z̄1 − z2z̄2), y1 = Im(z̄1z2), y2 = Re(z̄1z2),

and for these points the inequality is saturated thus implying that they lie on the surface of

the ball of radius 1
2
. These points on the surface sphere, are in one-to-one correspondence

with the unit rays in C2 and the map is given by the momentum map associated with the

symplectic action of U(2) on P ∼ CP
1.

For any generic ρ ∈ D there exist pure states ρ1 and ρ2 and a positive number 0 ≤
λ ≤ 1 such that ρ = λρ1 + (1 − λ)ρ2. The decomposition of an arbitrary density state ρ

corresponding to some point in the ball, as a convex sum of two pure states

ξ1 =
|ψ1〉〈ψ1|
〈ψ1, ψ1〉

and

ξ2 =
|ψ2〉〈ψ2|
〈ψ2, ψ2〉

,

is given geometrically by drawing a straight line through ρ: the states ξ1 and ξ2 are the

intersections of the line with the sphere. Evidently this decomposition may be done in a

two parameter family of ways, filling the disc which has as boundary the yellow circle in

Figure 1.

As a subset of u∗(2), the ball of the density states is foliated by symplectic leaves

associated with the coadjoint action of U(2), which coincide also with the orbits of the

SU(2) group. As we know that the rank of the matrices will be preserved, the analysis of

these orbits may also be done by considering the orbits passing through diagonal matrices,

in other terms

ρ = S

(

a 0

0 b

)

S† a+ b = 1 a ≥ 0, b ≥ 0 S ∈ SU(2).

We should keep in mind that these orbits will also correspond to the corresponding dy-

namical evolution for unitary dynamics, and therefore is physically meaningful.

We visualize the situation with the help of Figure 2. The red segment connecting (1
2
, 1

2
)

with (1, 0) (or equivalently the dashed green one, connecting with (0, 1)) parametrizes the
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Figure 1.— Bloch sphere and state ρ corresponding to the point (1
2 , 1

2 , 1
2). This state

can be written as the sum of the two extremal states in infinitely many ways, each one

corresponding to the diameters of the yellow circle. The diameter corresponding to the

pair of states ξ1 and ξ2 is depicted in green.

family of two dimensional spheres. The point (1
2
, 1

2
) coincides with the center of the Bloch

sphere (Figure 1) and represents the maximally mixed state and (1, 0) (or (0, 1)) belongs

to the outmost sphere of pure states.

3.3 Example: States of a three level system

Now H = C3. The states are normalized positive 3× 3 matrices inside u∗(3). We first

consider the geometrical tensors defined by means of the momentum map construction.

3.3.1 The choice of the basis

We choose a basis for u(3) given by the Gell-Mann matrices

λ1 =









0 1 0

1 0 0

0 0 0









λ2 =









0 −i 0

i 0 0

0 0 0









λ3 =









1 0 0

0 −1 0

0 0 0








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Figure 2.— Set of orbits of the group SU(2) acting on the (a, b) plane

λ4 =









0 0 1

0 0 0

1 0 0









λ5 =









0 0 −i
0 0 0

i 0 0









λ6 =









0 0 0

0 0 1

0 1 0









λ7 =









0 0 0

0 0 −i
0 i 0









λ8 =
1√
3









1 0 0

0 1 0

0 0 −2









λ0 =

√

2

3









1 0 0

0 1 0

0 0 1









.

These matrices satisfy the scalar product relation

Trλµλν = 2δµν .

Their commutation and anti-commutation relations are written in terms of the anti-

symmetric structure constants and symmetric d–symbols dµνρ. We find

[λµ, λν ] = 2iCµνρλρ [λµ, λρ]+ = 2

√

2

3
λ0δµν + 2dµνρλρ.

The numerical values turn out to be

C123 = 1, C458 = C678 =

√
3

2
, C147 = −C156 = C246 = C257 = C345 = −C367 =

1

2
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The values of these symbols show the different embeddings of SU(2) into SU(3) ⊂ U(3).

For the other coefficients we have

djj0 = −d0jj = −dj0j =

√

2

3
j = 1, · · · , 8

− d888 = d8jj = djj8 = dj8j =
1√
3

j = 1, 2, 3

d8jj = djj8 = dj8j = − 1

2
√

3
j = 4, 5, 6, 7

d3jj = djj3 = dj3j =
1

2
j = 4, 5 d3jj = djj3 = dj3j = −1

2
j = 6, 7

d146 = d157 = d164 = d175 = −d247 = d256 = d265 = −d274 =
1

2

d416 = −d427 = d461 = −d472 = d517 = d526 = d562 = d571 =
1

2

d614 = d625 = d641 = d652 = d715 = −d724 = d751 = −d742 =
1

2

3.3.2 The tensors

The scalar product induced on vectors on R8 will be invariant under the action of SO(8).

It is now possible to write the Poisson tensor

Λ = 2Cµνρy
ρ ∂

∂yµ
∧ ∂

∂yν

and the Riemann-Jordan tensor

R =
∂

∂y0
⊗s y

µ ∂

∂yµ
+ y0 ∂

∂yr
⊗ ∂

∂yr
+ dµνρy

µ ∂

∂yν
⊗s

∂

∂yρ
.

Now the analysis of the various distributions is more cumbersome, however it is easy

to identify a few elements:

R(dy0) = yµ
∂

∂yµ
,

which is the dilation vector field on R9; while R(dyr) = yr ∂
∂y0

+ y0 ∂
∂yr + dµνry

µ ∂
∂yν , where

it is possible to identify a boost structure plus a correction due to the d–symbols. In any

case the union of the Hamiltonian distribution and the Riemannian-Jordan distribution

generates GL(3,C).

3.3.3 Describing the density matrices

The indices appearing in the non-null structure constants are identifying the corresponding

λ–matrices whose pairwise commutators define SU(2)–subgroups. It is now possible to

introduce coordinate functions

yµ(A) =
1

2
TrλµA.
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In these coordinates, a generic Hermitian matrix A can be written as

A = y0λ0 + yrλr

The trace condition

Trρ = 1 ⇔ y0 =
1√
6

allows to identify this subset as a subset of the vector space of R8 corresponding to the

dual space of the Lie algebra of SU(3). To identify the set of density matrices, we can

consider those points satisfying

Trρ2 ≤ Trρ = 1.

If we write the states in terms of the λ–matrices, we have

ρ =
1

3
I3 +

8
∑

j=1

yjλj ,

with
8
∑

j=1

y2
j ≤

1

2

Extremal states (pure states) are in one-to-one correspondence with the minimal sym-

plectic orbit of the unitary group according to the coadjoint action and corresponds to

CP
2, the complex projective space of C3. They are defined from vectors (z1, z2, z3) ∈ C3

with the normalization condition z1z̄1 + z2z̄2 + z3z̄3 = 1 as









z1z̄1 z̄1z2 z̄1z3

z̄2z1 z2z̄2 z̄2z3

z̄3z1 z3z̄2 z̄3z3









Previous inequalities are saturated by these matrices.

Under conjugation with S ∈ SU(3), any matrix A can be written as

A = S









a 0 0

0 b 0

0 0 c









S† a ≥ 0, b ≥ 0, c ≥ 0, a+ b+ c = 1, s ∈ SU(3).

By using this “radial-angular” parametrization of states, we may study the structure

of this union of symplectic orbits by considering the family of diagonal matrices with

the positivity condition (elements of a positive Weyl chamber in the Abelian Cartan

subalgebra). The hyperplane Trρ = 1 identifies a triangle (the blue one in Figure 3) with

the intersection with positive axes (Oa,Ob,Oc); i.e. in the positive octant.

Each internal point of the triangle corresponds to a 6–dimensional symplectic orbit, out

of which we may consider convex combinations, excepting the vertices of the triangle where
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Figure 3.— Representaton of the orbits of SU(3) on the simplex of diagonal density

matrices in three dimensions

it is 4–dimensional. Due to the action of SU(3) containing the action of the discrete Weyl

group, the symplectic orbits are actually parametrized by the smaller triangle (colored

in Figure 3). When a = b = c = 1
3

we have the “maximally mixed state” which play a

crucial role when we consider composite systems and entangled states (the orbit passing

through this point degenerates to a zero dimensional orbit). On the boundary of the blue

triangle the rank of ρ is either 1 (in the vertex, which represent the pure states) or 2 (on

the segment, which represent the mixtures of two of the three levels). For a generic point,

the orbits are diffeomorphic to SU(3)/U(1) × U(1). It appears quite clearly that the set

of states is a stratified manifold characterized by the rank of the state.

82



4 Application I: Describing entanglement

4.1 Generalities

Entanglement is a property of composite physical systems which plays a very important

role in many different phenomena, but in particular, it has become a crucial issue of

quantum computation and quantum information theory. Despite the growing interest

in recent years, it was already discussed by Schrödinger and the “founding fathers” of

quantum theory in the early years (see [44, 45]).

Roughly speaking, entanglement is the concept dual to separability.

Definition 7. Let |ψ〉 be state of a Hilbert space H = H1 ⊗ H2 of a bipartite system.

Then, |ψ〉 is said to be separable if there exists a pair of states |ψ1〉 ∈ H1 and |ψ2〉 ∈
H2 satisfying that |ψ〉 = |ψ1〉 ⊗ |ψ2〉. A system which is not separable, it is said to be

entangled.

But entanglement exhibits many interesting properties, for instance the fact that there

is a gradation in the level of entanglement of the different states. Thus we can measure

the entanglement of a state by using physical magnitudes. These different observables are

called entanglement witnesses.

It is known that the set of pure states is completely clasified, from the point of view

of entanglement, with just one observable. The usual choices are the concurrence of the

state, the von Neumann entropy of one of its partial traces (i.e. the entropy of the

density state ρ1 = Tr2ρψ or of ρ2 = Tr1ρψ, where ρψ = |ψ〉〈ψ|).

Definition 8. The concurrence of a density matrix ρ ∈ D(H) is defined as

C(ρ) = max(0, 2λmax(ρ̂) − Tr(ρ̂))

where ρ̂ corresponds to

ρ̂ =
√

(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2)ρ

and λmax(ρ̂) stands for its largest eigenvalue.

Definition 9. The von Neumann entropy of a density matrix ρ ∈ D(H) is defined as

S(ρ) = Trρ log(ρ). (44)

When the density matrix corresponds to a pure state the function above vanishes.

Thus we define the corresponding entropy as the value of the function on the partial trace

over one of the subsystems:

S(ρψ) = Trρ1 log(ρ1) ρ1 = Tr1ρψ (45)
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If the state ρψ is separable and we can find ρψa
∈ D1(H1) and ρψb

∈ D1(H2) such that

ρψ = ρψa
⊗ ρψb

;

the corresponding partial traces satisfy:






ρ1 = ρψa
⇒ S(ρ1) = S(ρψa

) = 0

ρ2 = ρψb
⇒ S(ρ2) = S(ρψb

) = 0
,

because both partial states are pure. If the state ρ is entangled, though, the partial

trace yields a density state for the subsystem which is a mixed state. Therefore, the

corresponding von Neumann entropy is different from zero. But it is simple to verify

that, in the case of pure states, both functions provide the same information, since they

are functionally dependent.

Analogously, we can define a simpler operator containing similar information:

Definition 10. The linear entropy of a density matrix ρ ∈ D(H) is defined as

SL(ρ) =
4

3

(

1 − Trρ2
)

. (46)

4.2 Entanglement of pure states

For pure states, the three functions provide the same information, as we can simply

verify in a simple case:

Example 1. Let us consider a simple example. Assume H = C2 ⊗ C2 and consider a

family of pure states in the form:

|ψ〉 = cos(α)

(

1

0

)

⊗
(

1

0

)

+ sin(α)

(

0

1

)

⊗
(

0

1

)

(47)

We can evaluate the concurrence for this state and obtain:

C(|ψ〉) = sin(2α).

On the other hand, we can construct the density state associated to |ψ〉 and evaluate the

corresponding partial trace:

ρψ = |ψ〉〈ψ| =













cos2 α 0 0 cosα sinα

0 0 0 0

0 0 0 0

cosα sinα 0 0 sin2 α













⇒ ρ1 = Tr2ρψ =

(

cos2 α 0

0 sin2 α

)

.

Thus, the corresponding von Neumann entropy reads:

S(ρ1) = cos2 α log(cos2 α) + sin2 α + log(sin2 α) (48)
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But it is simple to verify that both quantities are functionally dependent, since a direct

representation as that of Figure 4 of the three functions prove that, excepting the normal-

ization, both entropy functions and the square of the concurrence behave exactly in the

same way.

1 2 3 4 5 6
Α

0.2

0.4

0.6

0.8

1.0

Entanglement

Figure 4.— Representation of the square of the concurrence, the linear entropy and the

von Neumann entropy for a pure state

The reason for this is the following result:

Theorem 6. Let H = H1 ⊗H2 of dimensions n1 ≤ n2. Given any state |ψ〉 ∈ H, there

exists orthonormal sets {|vj〉} for H1 and a basis {|wk〉} for H2 such that

|ψ〉 =

n1
∑

j=1

αj |vj〉 ⊗ |wj〉 αj > 0. (49)

This is the Schmidt decomposition of the pure state |ψ〉. The number of non-

vanishing coefficients in the decomposition is called the Schmidt rank.

Therefore, it is trivial to prove from here that the Schmidt coefficient encodes com-

pletely the degree of entanglement of pure states:

Theorem 7. A pure state |ψ〉 ∈ H is separable if and only if its Schmidt rank is equal to

one.

Thus, we can easily understand the system of the previous example, since the family

of states defined in Equation (47) has Schmidt rank equal to 2.

85



4.3 Entanglement of mixed states

On the other hand, if we consider the case of mixed states, the situation is not that

simple. In general, it is necessary to consider more than one entanglement witness in

order to completely characterize the state of the system. One interesting question arises

thus: how can we characterize the independence of the different observables we use?

In the framework of classical mechanics this question is simple to answer. Given two

physical magnitudes, which are represented by two functions f1, f2 on phase-space, they

are said to be independent at a point p ∈M if their exterior differentials satisfy

(df1 ∧ df2)(p) 6= 0

The usual approach to Quantum Mechanics, in terms of Hilbert spaces or C∗–algebras

does not allow a similar treatment of the analogous quantum problem. We lack of a

noncommutative differential calculus allowing to define a “noncommutative” exterior dif-

ferential translating the previous definition to the quantum setting.

But the geometrical formalism we introduced in the previous sections allows us to

look at the problem from a different perspective. Treating the quantum state space as

a real differential manifold, we do have a differential calculus at our disposal: the usual

differential calculus of real manifolds.

Consider the Hilbert space H and an operator A. We know that we can associate with

A the quadratic function

A→ fA(ψ) =
1

2
〈ψ|A|ψ〉 ψ ∈ H.

In the geometric description of Quantum Mechanics we read from the set of quadratic

functions the algebraic structures the set of operators is endowed with:

• the associative product of operators is translated into the nonlocal product ⋆,

• the Lie algebra defined by the commutator is translated into the Poisson algebra

defined by the tensor Λ

• the Jordan algebra given by the anticommutator is translated into the Jordan alge-

bra defined by the tensor G

But the geometric description also includes a pointwise algebra (fA.fB)(ψ) = fA(ψ)fB(ψ),

which is commutative, and whose differential calculus is the standard one. This is the al-

gebraic structure with respect to which we define the differential algebra we are interested

in:

Definition 11. Two observables A and B are said to be independent if their associated

functions satisfy

dfA ∧ dfB 6= 0 on a dense submanifold of H
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Example 2. Now we will test this formalism with a particular example. Consider for

instance the family of density states defined by the matrices:

ρt =













0 0 0 0

0 a 1
2
ceiφ, 0

0 1
2
ce−iφ b 0

0 0 0 1 − a− b













Such a matrix represents a density state provided that

0 ≤ a+ b ≤ 1 0 ≤ c ≤ 1 4ab ≥ c

This is clearly a 4–dimensional submanifold S of D(C4) and therefore much simpler to

handle than the full space. We can take an adapted basis for it, considering the matrices












0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 −1













,













0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1













,













0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0













,













0 0 0 0

0 0 i 0

0 −i 0 0

0 0 0 0













We can use the four real numbers {a, b, c, φ} as adapted coordinates on that submani-

fold.

Now we can evaluate the three functions above on these states. As we already know

the expression of the Jordan and the Poisson bracket we can also obtain the corresponding

Hamiltonian and gradient vector fields. And besides, we can also study the independence

of the functions by evaluating the expressions of

dS ∧ dC dSL ∧ dC,

where d represents the exterior differential of the differentiable structure defined on u∗(H).

Let us thus proceed:

• The value of the different functions is easy to obtain. We have

Von neumann entropy reads,

2S(ρt) = − 2(−1 + a+ b) log[1 − a− b]+
(

a+ b−
√

(a− b)2 + c2
)

log

[

1

2

(

a + b−
√

(a− b)2 + c2
)

]

+

(

a+ b+
√

(a− b)2 + c2
)

log

[

1

2

(

a+ b+
√

(a− b)2 + c2
)

]

.

The linear entropy SL corresponds to

SL(ρt) = −2

3

(

4
(

a2 + a(−1 + b) + (−1 + b)b
)

+ c2
)

(50)

Finally, the value of the concurrence is very simple:

C(ρt) = c (51)
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• We can study now the Poisson brackets corresponding to them. It is simple to prove

that all three functions commute, i.e.

{S, SL} = {S,C} = {SL, C} = 0 (52)

This implies that the local transformations generated by them are independent.

• Finally, we can study the independence of the different functions. This is an im-

portant issue, in particular the independence of the von Neumann entropy and the

concurrence, because it affects the description of entanglement of general quantum

density states. We can prove the following:

Lemma 10. The concurrence and the von Neumann entropy of the family of states

ρt are not indepent in all the space of density states but are independent as observ-

ables.

Proof. We are considering the submanifold of u(H) corresponding to the family of

density states ρt. On this set, the differential of the concurrence is trivial to obtain:

dC(ρt) = dc. (53)

The computation of the differential of the von Neumann entropy is quite more

involved. It is evident from the expression above that the functions S depends on

the three variables. But as C depends only on c, we have to consider only the a

and b dependence in what regards the computation of dS ∧ dC. We compute thus
∂S
∂a

and ∂S
∂b

. Now, the condition for (53) to be equal to zero corresponds to

∂S

∂a
= 0 =

∂S

∂b

And these conditions become

2Log[1 − a− b] + Log

[

ab− c2

4

]

= 0

These equations have a solution on

1

3
< a <

1

2
; b = a; c =

√
−1 + 4a− 3a2

Figure 5 presents these functions and the subset where they functionally dependent.

Thus we conclude that there is a nonempty subset of u∗(4) where the von Neu-

mann entropy functions and the concurrence function introduced above are not

independent. On any point outside this submanifold the two functions are indeed

independent, as it can be verified easily from the different behavior in different re-

gions. As the submanifold where the functions are functionally-dependent is clearly

not dense in MQ, we can conclude that the two entanglement witnesses S and C

are indeed independent.
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The main advantage of this approach is that, as the dimensions are finite, it is simple

to identify what is the number of functions (or observables) which are necessary to

unambiguously describe the entanglement of the of density states.

0.3

0.4

0.5
a

0.0

0.5

1.0

c

0.0

0.5

1.0

Entanglement

Figure 5.— Representations of the concurrence (in brown) and the von Neumann en-

tropy (in green) in the space parametrized by (a, a, c). In blue, we show the line corre-

sponding to the submanifold where both functions are functionally dependent even if

they take different values

5 Application II: Ehrenfest dynamics as a Hamiltonian system

The goal of this section is to summarize some of the results which have been presented

in [2, 4] concerning the mathematical description of Mixed Quantum Classical Dynamical

(MQCD) systems. We will see how we can combine quantum and classical models by

using the tensorial objects we have introduced in the first sections. The combination is

possible because, from a formal point of view, those objects are completely analogous to

those used in the geometrical description of classical mechanical systems.

5.1 Symplectic description of Classical Mechanics

Let us begin by recalling very quickly the Hamiltonian formulation of classical dynam-

ics. We address the interested reader to a classical reference as [1] for a more detailed

presentation.

89



Let us consider a classical system with phase space MC . For the sake of simplicity,

let us assume that this set is endowed with a vector space structure, i.e., MC ∼ R2n for

n the number of degrees of freedom of the system. In that manifold, there are two types

of degrees of freedom: the states of the physical variables describing the position of the

system (by “position” we mean any relevant degree of freedom one should consider), and

their corresponding momenta. We will use (~R, ~P ) as notation to represent these variables.

In what regards the observables, Classical Mechanics uses the set of differentiable

functions

f : MC → R, (54)

assigning the result of the measurement to every point in MC .

On the set of functions C∞(MC) we introduce an operation, known as Poisson bracket,

which allows us to study the effect of symmetry transformations and also the dynamical

evolution. The precise definition is as follows:

Definition 12. A Poisson bracket, {·, ·}, is a bilinear operation

{·, ·} : C∞(MC) × C∞(MC) → C∞(MC), (55)

which:

• It is antisymmetric,

{f, g} = −{g, f}, ∀f, g ∈ C∞(MC).

• It satisfies the Jacobi identity, i.e. ∀f, g, h ∈ C∞(MC):

{f, {g, h}}+ {h, {f, g}} + {g, {h, f}} = 0.

• It satisfies the Leibniz rule i.e. ∀f, g, h ∈ C∞(MC):

{f, gh} = {f, g}h+ g{f, h}.

A Poisson bracket allows us to introduce the concept of Hamiltonian vector field:

Definition 13. Given a function f ∈ C∞(MC) and a Poisson bracket {·, ·}, a vector

field, Xf is said to be its Hamiltonian vector field if

Xf (g) = {f, g}, ∀g ∈ C∞(MC).

The concept can also be given a tensorial flavor by using a tensor Π, which allows us to

define

Π(df, dg) = {f, g} ∀f, g ∈ C∞(MC). (56)

See [1] for the expression of the conditions to be satisfied by the 2-vector Π.
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Example 3. Let MC = R2 with coordinates (R,P ). We consider as Poisson bracket

{f1, f2} =
∂f1

∂P

∂f2

∂R
− ∂f1

∂R

∂f2

∂P
.

Then, given f ∈ C∞(R2), we can write the corresponding Hamiltonian vector field Xf

as

Xf =
∂f(R,P )

∂P

∂

∂R
− ∂f(R,P )

∂R

∂

∂P
.

The geometric formulation of Hamiltonian Mechanics is very often defined on Poisson

manifolds, i.e. manifolds endowed with a Poisson bracket on the corresponding space of

functions. We will call a Hamiltonian system to a triple (MC , {·, ·}, H), where {·, ·} is a

Poisson structure on MC , and dynamics is introduced via the function H ∈ C∞(MC), that

we call the Hamiltonian. One can consider two different formulations of the dynamics:

• One which defines the corresponding Hamiltonian vector field XH obtained as above

XH(g) = {H, g}, ∀g ∈ C∞(MC).

The integral curves of the vector field XH define the solution of the dynamics.

• An analogous formulation can be given in terms of the observables. If we consider

now the set of functions of the system, i.e. the set of classical observables which

contains, as elements, the functions ‘position’ and ‘momenta’ of each particle (i.e.

~R and ~P ), dynamics is written as the Poisson bracket of the Hamiltonian function

H with any other function of the system, i.e.

df

dt
= {H, f}, ∀f ∈ C∞(MC). (57)

Both approaches are equivalent.

5.2 The set of states of our system

Let us now proceed to combine the geometrical description of Classical Mechanics and

Quantum Mechanics. It is immediate to realize that, from a dynamical point of view,

both approaches are closely related. Indeed, in both cases there is an intrinsic Poisson

structure which allows us to interpret the solutions of the dynamics as the integral curves

of Hamiltonian vector fields.

Besides, we know that if we have two classical particles, defined on symplectic mani-

folds (M1, ω1) and (M2, ω2), the dynamical description of the system of the two particles

is achieved on the manifold M1 ×M2, with a symplectic structure which is obtained as

the sum of both, i.e.,

ω12 = π∗
1ω1 + π∗

2ω2,
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where π1 : M1 ×M2 →M1 and π2 : M1 ×M2 →M2 are the canonical projections.

Our goal now is to provide a geometrical framework to represent Ehrenfest equations

of a molecular system. Ehrenfest equations represent an approximation for the description

of an atomic or molecular system where:

• the nuclei and the inner electrons, are represented as classical systems, called cores,

coupled to

• the outer electrons which are considered to behave as quantum systems.

The approximation makes sense when the evolution of the degrees of freedom which

are assumed to be classical is much slower than the quantum evolution. This implies that

we are implicitly assuming that we can disregard the entanglement between the classical

and the quantum degrees of freedom. But this fact implies that the complete set of states

will be just the cartesian product of the sets of states of the classical and the quantum

parts.

Thus, the set of states of the complete system contains:

• First, a Hilbert space H which contains the states of the set of objects of our system

which are described quantum-mechanically. It is the vector space corresponding to

the completely antisymmetric representation of the permutation group SN (i.e. a

set of Slater determinants), where N is the number of electrons of the system and

each electron lives in a Hilbert space of dimension M . Thus, the dimension of H will

be NQ =
(

M

N

)

. We know that it is a complex vector space, but we choose to consider

it as a real vector space with the double of degrees of freedom and denote it as

MQ. Also, in correspondence with the Hilbert space vectors in the usual formalism

of quantum mechanics, several states in MQ represent the same physical state. To

consider true physical states one should extract only those corresponding to the

projective space, which can be identified with a submanifold of MQ. A more general

approach is to consider the sphere of states with norm equal to one, SQ, and take

into account the phase transformations generated by Eq (4) in a proper way. We

will discuss this in the following sections.

• Second, a differentiable manifold MC (for simplicity we can just consider it to be

a vector space), which contains the classical degrees of freedom. We will assume it

to be a phase space, and thus it will have an even number of degrees of freedom

and it will be endowed with a canonical symplectic structure. Therefore we can also

consider a Poisson structure on the set of functions of the manifold MC .

• Third, we let our state space S be the Cartesian product of both manifolds,

S = MC ×MQ.
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Such a description has important implications: it is possible to consider each sub-

system separately in a proper way but it is not possible to entangle the subsystems

one with the other. As long as Ehrenfest dynamics disregards this possibility, the

choice of the Cartesian product is the most natural one.

Example 4. If we consider a simple case, where we have one nucleus moving in a three

dimensional domain and the electron state is considered to belong to a two-level system,

the situation would be:

Ψ = (~R, ~P , q1, q2, p1, p2), (q1, q2, p1, p2) ∈ R
4,

where ~R represents the position of the nucleus, and ~P represents its linear momentum.

The tetrad (q1, q2, p1, p2) represents the set of four real coordinates which correspond to

the representation of the state of the two-level system on a real vector space (of four ’real’

dimensions which corresponds to a two ’complex’-dimensional vector space).

As a conclusion from the example above, we use as coordinates for our states:

• The positions and momenta of the nuclei and electrons of the cores:

(~R, ~P ) ∈MC . (58)

We will have 3NC + 3NC of these, for NC the number of classical particles of the

system.

• The real and imaginary parts of the coordinates of the Hilbert space elements with

respect to some basis:

(~q, ~p) ∈MQ. (59)

We will have NQ +NQ of these, for NQ the complex dimension of the Hilbert space

H.

5.3 The observables

To represent the physical magnitudes we must consider also the classical-quantum

observables from a new perspective. Our observables must be functions defined on the

state space S = MC ×MQ. We can consider also the projections:

πC : MC ×MQ →MC , πC(~R, ~P , ~q, ~p) = (~R, ~P ) (60)

and

πQ : MC ×MQ →MQ, πQ(~R, ~P , ~q, ~p) = (~q, ~p). (61)
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We know from our discussion in the case of a purely quantum system that any function

of the form (38) produces an evolution, via the Poisson bracket, which preserves the norm.

In the MQCD case, we can easily write the analogue of the vector field (4) by writting:

ΓQ = I ⊗ Γ. (62)

It is simple to see that this object is completely determined by the pullback of the pro-

jections πC and πQ:

πC∗ΓQ = 0, πQ∗
ΓQ = Γ.

This is again the infinitesimal generator of phase transformations for the quantum

subsystem, but written at the level of the global state space MC × MQ. A reasonable

property to be asked to the functions chosen to represent our observables is to be constant

under this transformation. From a mathematical point of view we can write such a

condition as follows:

Definition 14. We will define the set of possible physical observables, O, as the set of

all C∞–functions on the set MC ×MQ which are constant under phase changes on the

quantum degrees i.e.

O = {f ∈ C∞(MC ×MQ)| ΓQf = 0}. (63)

As we will see later, this choice reflects the fact that, when considered coupled together,

the nonlinearity of Classical Mechanics expands also to MQCD.

We would like to remark that because of the choice of the set of states as a Cartesian

product of the classical states and the quantum states, we can consider as subsets of the

set of observables:

• The set of classical functions: these are functions which depend only on the classical

degrees of freedom. Mathematically, they can be written as those functions f ∈ O
such that there exists a function fC ∈ C∞(MC) such that

f = π∗
C(fC); i.e. f(~R, ~P , ~q, ~p) = fC(~R, ~P ),

for π∗
C the pullback of the projection πC . We denote this subset as OC . An example

of a function belonging to this set is the linear momentum of the nuclei.

• The set of generalized quantum functions: functions which depend only on the

quantum degrees of freedom and which are constant under changes in the global

phase. Mathematically, they can be written as those functions f ∈ O such that

there exists a function fQ ∈ C∞(MQ) for which f = π∗
Q(fQ), i.e.

f(~R, ~P , ~q, ~p) = fQ(~q, ~p); Γ(fQ) = 0, (64)
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for π∗
Q the pullback of the projection πQ. We denote these functions as OQ. We

have added the adjective “generalized” because this set is too large to represent the

set of pure quantum observables. These later functions, should be considered, when

necessary, as a smaller subset, which corresponds to the set of functions defined in

Eq. (38). We denote this smaller subset as Os
Q. An example of a function belonging

to Os
Q is the linear momentum of the electrons.

• A third interesting subset is the set of arbitrary linear combinations of the subsets

above, i.e. those functions which may be written as the sum of a purely classical

function and a purely quantum one: f = π∗
Q(fQ) + π∗

C(fC), i.e.

f(~R, ~P , ~q, ~p) = fC(~R, ~P ) + fQ(~q, ~p). (65)

We will denote this set as OC+Q. An element of this set of functions is the total

linear momentum of the composed system.

We would like to make a final but very important remark. We have not chosen the

set of observables as

{

f ∈ C∞(MC ×MQ)|f = 〈ψ(~q, ~p), A(~R, ~P )ψ(~q, ~p)〉
}

, (66)

for A(~R, ~P ) a linear operator on the Hilbert space H depending on the classical degrees

of freedom because of two reasons:

• It is evident that the set above is a subset of (63) and thus we are not loosing any

of these operators. But it is a well known property that Ehrenfest dynamics is not

linear and then if we consider the operator describing the evolution of the system,

it can not belong to the set above. We must thus enlarge the set (66).

• We are going to introduce in the next section a Poisson bracket on the space of

operators. For that bracket to close a Poisson algebra, we need to consider the

whole set (63).

It is important to notice that in the set (63) there are operators which are not repre-

senting linear operators for the quantum part of the system and hence the set of properties

listed above for the pure quantum case are meaningless for them. But this is a natural

feature of the dynamics we are considering, because of its nonlinear nature.

5.4 Geometry and the Poisson bracket on the classical-quantum world

Finally, we must combine the quantum and the classical description in order to provide

a unified description of our system of interest. As we assume that both the classical and

the quantum subsystems are endowed with Poisson structures, we face the same problem
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we have when combining, from a classical mechanics perspective, two classical systems.

Therefore it is immediate to conclude that the corresponding Poisson structures can be

combined as:

{·, ·} = {·, ·}C + ~
−1{·, ·}Q, (67)

where the term {·, ·}C acts on the degrees of freedom of the first manifold and {·, ·}Q acts

on the degrees of freedom of the second one.

From a more geometric point of view, this combination is equivalent to define a sym-

plectic tensor on MC ×MQ combining the corresponding symplectic structures, ωC and

ωQ, in the form:

ω = ωC + ~ωQ. (68)

Remember that it is always possible to combine two symplectic forms in this way,

because of the properties of differential algebra.

Lemma 11. The tensor (67) defines a Poisson structure on C∞(MC ×MQ).

Proof It is completely straightforward if we realize that the Poisson tensor is directly

related to the form ω which is trivally a symplectic form.

Notice that the set of pure classical functions OC and the set of quantum generalized

functions OQ are closed under the Poisson bracket. The same happens with the quantum

functions Os
Q and the set of linear combinations OC+Q. In mathematical terms, what we

have is a family of Poisson subalgebras. This property ensures that the description of

purely classical or purely quantum systems, or even both systems at once but uncoupled

to each other, can be done within the formalism.

Once the Poisson bracket on MC ×MQ has been introduced we can express again the

constraint we introduced in the definition of the observables in Poisson terms. Thus we

find that in a completely analogous way to the pure quantum case, we can prove that

Lemma 12. The condition in Eq.(63)

ΓQ(f) = 0

is equivalent to ask the function f to Poisson-commute with the function fI =
∑

k((q
k)2 +

p2
k), i.e.

ΓQ(f) = 0 ⇔ {fI, f} = 0.

5.5 The definition of the dynamics

From the previous sections we know that our formulation of MQCD can be imple-

mented on:
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• The manifold which represents the set of states by defining a vector field whose

integral curves represent the solutions of the dynamics (equivalent to the Schrödinger

picture of standard quantum mechanical systems).

• The set of functions (please note the differences between the classical and the quan-

tum cases) defined on the set of states which represent the set of observables of the

system. In this case the Poisson bracket of the functions with the Hamiltonian of

the system defines the corresponding evolution (equivalent to the Heisenberg picture

of standard quantum mechanical systems).

Remember that both approaches are not disconnected, since they can be easily related

either by the momentum mapping or simply by the vector fields::

XH = {fH , ·}, (69)

where we denote by XH the vector field which represents the dynamics on the phase space

and by fH the function which corresponds to the Hamiltonian of the complete system.

We can now proceed to our first goal: to provide a Hamiltonian description of Ehrenfest

dynamics in terms of a Poisson structure. We thus define the following Hamiltonian

system:

• A state space corresponding to the Cartesian product MC ×MQ.

• A set of operators corresponding to the set of functions O defined in Eq. (17).

On this set, we consider the Poisson bracket defined in Eq. (67) defined on the

symplectic vector space MC ×MQ with symplectic form (68).

• And finally, the dynamics introduced by the following Hamiltonian function:

fH(~R, ~P , ~q, ~p) =
∑

J

~P 2
J

2MJ

+ 〈ψ(~q, ~p), He(~R)ψ(~q, ~p)〉, (70)

where He is the expression of the electronic Hamiltonian, MJ are the masses of the

classical subsystem of the nuclei and ψ(~q, ~p) is the real-space representation of the

state ψ analogous to Eq. (31).
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As a result, the dynamics of both subsystems are obtained easily. In the Schrödinger

picture we obtain:

~̇R =
∂fH

∂ ~P
= M−1 ~P , (71)

~̇P = −∂fH
∂ ~R

= −grad(〈ψ(~q, ~p), He(~R)ψ(~q, ~p)〉), (72)

q̇1 = ~
−1∂fH
∂p1

, (73)

ṗ1 = −~
−1∂fH
∂q1

, (74)

...

q̇NQ = ~
−1 ∂fH
∂pNQ

, (75)

ṗNQ
= −~

−1 ∂fH
∂qNQ

. (76)

This set of equations corresponds exactly with Ehrenfest dynamics.

The final point is to prove the following lemma:

Lemma 13. The dynamics preserves the set of observables O.

Proof An observable belongs to O if it Poisson-commutes with fI. Thus, as fH ∈ O,

if we consider an observable f ∈ O, by the Jacobi identity:

{fI, {fH , f}} = −{f, {fI, fH}} − {fH , {f, fI}} = 0 (77)

Example 5. In the following example we will study a simple toy model in which the

coupling of classical and quantum degrees of freedom gives rise to chaotic-like behavior.

This behavior has been proven to be related with physical effects such as the change of the

degree of purity of the quantum part of the system (see [4]).

The system consists of a complex two dimensional Hilbert space MQ = C2 and a

classical 2-D phase space where we define a 1-D harmonic oscillator. Using coordinates

(Jθ, θ) for the classical variables (action-angle coordinates for the oscillator) and Ψ ∈ C2

we define the following Hamiltonian

fH = Jθ +
1

2
〈Ψ|σz + ǫ cos(θ)σx|Ψ〉,

with σx, σz the Pauli sigma matrices.

We parametrize the normalized quantum state by

|Ψ〉 = eiα

(

√

Jφ

eiφ
√

1 − Jφ

)

,
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α being the global phase.

In these variables the Hamiltonian reads

fH = Jθ + Jφ + ǫ
√

Jφ
√

1 − Jφ cos(θ)cos(φ), (78)

where ǫ measures the coupling of the classical and quantum systems.

In the limit of vanishing ǫ the system is integrable and actually linear in these coordi-

nates. However for non vanishing ǫ the model becomes non linear and more complicated

behavior appears. We can represent the trajectories of the corresponding Hamilton equa-

tions, which read:



































θ̇ = 1

φ̇ = ~−1

(

1 +

(

−1 + 1

2
√
Jφ

)

ǫ cos(θ) cos(φ)

)

J̇θ = −(−1 +
√

Jφ)
√

Jφǫ cos(φ) sin(θ)

J̇φ = −~−1
(

(−1 +
√

Jφ)
√

Jφǫ sin(φ) cos(θ)
)

(79)

We can see then how the dynamics becomes more complex as the coupling ǫ increases,

the nonlinear effects becoming more and more important. For small values of ǫ the trajec-

tory is almost planar and periodic while when it is increased, it becomes more and more

complicated.
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Figure 6.— The plot shows the trajectory with initial conditions

(θ(0), φ(0), Jθ(0), Jφ(0)) = (0.1, 0.32, 0.6, 0.55) on the hyperplane (φ/2π, Jθ , Jφ)

for ǫ = 0.15 (blue curve) and for ǫ = 1.55 (red curve). For simplicity, we take ~ = 1.
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Abstract

In the framework of nonsymmetric gravitational theories we consider the equa-

tions of motion for matter fields. It is found that the antisymmetric part of the

metric is the Pauli matrix in 4 dimensions, suggesting a possible deep relation

between spin and geometry. Some arguments about the possibility of building a

fermionic space-time instead the ordinary bosonic space-time are discussed.

1 Introduction

The possible extensions of General Relativity is a subject that has experimented a

lot of different theoretical approximations since the formulation of the general theory in

1915. For example: Einstein, Schrodinger, Weyl, and many others [1]–[5], tried to unify

electromagnetism and gravity using a formalism which defined both, a metric tensor and

an affine connection that were non symmetric. This theory, despite its high degree of

mathematical elegance did not work, and failed in the attempt to recover some classical

results like the Lorentz Force. Years before the formulation of Einstein-Schrodinger theory,

Cartan [6, 7], studied how to extend general relativity in order to incorporate torsion(the

antisymmetric part of the affine connection). His efforts yields to the conception of space-

time with curvature and torsion, unlike usual General Relativity where torsion is zero.

More recently, other physicists like John Moffat [8] have studied in detail the field

equations of general theories based in nonsymmetric metric tensors. We will accept this

theoretical framework as our starting point, with the aim of investigate the implications

for particle physics. In particular, we want to study how the wave equations of the matter

fields will be affected by the addition of a non symmetric contribution in the metric tensor.

The mathematical discussion that follows provides the result that allow us to identify the

Pauli matrix in 4 dimensions with the antisymmetric part of the metric.

105



2 The line element in General Relativity. Bosonic space-time and fermionic

space-time

We begin with the standard definition for the line element in General Relativity:

ds2 = gαβ(x)dxαdxβ, (1)

where the metric tensor is regarded as symmetric.Note that if we add a skew symmetric

contribution to the metric tensor, wαβ=−wβα, the line element remains unchanged due

to a simple fact: usual space-time coordinates commute. In such sense, they are bosonic

coordinates and represent bosonic degrees of freedom:

ds2 = (gαβ + wαβ)dxαdxβ = gαβdx
αdxβ, (2)

[xα, xβ] = 0 =⇒ dxαdxβ = dxβdxα. (3)

For this reason the term wαβdx
αdxβ vanishes identically.

We want to generalize (1) for a more general space-time configurations. Let us inves-

tigate how the line element in (1) can be extended in situations where the metric tensor

is not generally symmetric, and where coordinates do not generally commute. Let us

assume the hypothesis that this general expression of the line element is preserved:

ds2 = Gαβdx
αdxβ = (gαβ + wαβ)(

1

2
{dxα, dxβ} +

1

2
[dxα, dxβ])

=
1

2
gαβ{dx

α, dxβ} +
1

2
wαβ[dxα, dxβ], (4)

where we have made the following decomposition:

dxαdxβ =
1

2
{dxα, dxβ} +

1

2
[dxα, dxβ] (5)

and where the nonsymmetric metric Gαβ consists in the sum of two contributions:

Gαβ
= gαβ + wαβ , (6)

with

gαβ = 1

2
(Gαβ +Gβα), (7)

wαβ = 1

2
(Gαβ −Gβα). (8)

The contravariant tensor Gαβ is defined in terms of the equation

GµνGσν = δµ
σ . (9)
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For usual commutative geometry and bosonic space-time :

[dxα, dxβ] = 0, (10)

{dxα, dxβ} = 2dxαdxβ. (11)

In this case, the second term in the right side of (4) vanishes, and we recover the usual

expression (1), for the line element in General Relativity. But it is more interesting analys

what would happen if we consider a fermionic configuration of space-time. This means

that at each point exists a chart of coordinates that are Grassman numbers and verify

the following relations:

{dθα, dθβ} = 0, (12)

[dθα, dθβ] = 2dθαdθβ. (13)

Under these conditions, the general line element (4) becomes:

ds2 = Gαβdx
αdxβ = wαβdθ

αdθβ. (14)

Automatically, it arises the question: What is the physical meaning of this construc-

tion? Does a fermionic space-time make sense after all? General Relativity is a theory

formulated in a purely bosonic space-time where geometry is widely regarded as commu-

tative. Meanwhile, Grassman variables represent fermions, and are present in the path

formulation of fermionic fields in quantum field theory. Besides, exist in supersymmetry

the superspace where bosonic coordinates are completed with Grassmann numbers, but in

a framework where the metric is considered like a symmetric tensor. Given our hypothesis

of a general metric with a decomposition in a symmetric and antisymmetric tensors, It

seems that the last relations suggest that an unusual type of fermionic fields could be able

to feel the antisymmetric part, while bosons and the other ordinary fermions only couple

to the symmetric part. Despite the beauty and symmetry of this approach, we will show

in the next section that if we accept the possibility of (12) and (13), the formalism leads

to the existence of tachyons.

3 The metric tensor and the spin of the particles

In Minkowski space-time, a symmetric metric tensor given with signature (+,−,−,−)

we have the Casimir

P µPµ = gµνP
µP ν = m2. (15)

By application of the correspondence principle Pµ → i∂µ we obtain the free Klein

Gordon wave equation

(gµν∂
µ∂ν +m2)φ(x) = 0. (16)
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Again, we make now the following observation: in the case free, if we add an antisym-

metric field wµν to the metric tensor in (15) the Casimir is not affected by this addition,

because P µP ν is a purely symmetric object describing bosonic matter. However, when we

have interactions, the correspondence principle is modified by inserting covariant deriva-

tives P α → iDα instead of usual derivatives, P α → i∂α. This substitution has the effect

of changing the symmetry of P αP β, because DαDβ no longer commutes, and this will

generate an additional term involving the antisymmetric part of the metric.

To show this in detail, let us write the Klein-Gordon equation in general curved space-

time:

(Gαβ(x)DαDβ +m2)φ(x) = [(gαβ + wαβ)(
1

2
{Dα, Dβ} +

1

2
[Dα, Dβ]) +m2]φ(x) = 0. (17)

By a direct computation of the product in the last equation we obtain:

(
1

2
gαβ{Dα, Dβ} +

1

2
wαβ[Dα, Dβ] +m2)φ(x) = 0. (18)

Straightforward manipulations show that the commutator of the covariant derivative

can be written as:

[Dα, Dβ]φ(x) = −(Γc
αβ − Γc

βα)∂cφ(x). (19)

General Relativity is torsion- free and this means that the Levi-Civita connection

is symmetric. In these conditions the last commutator vanishes. Nevertheless, in our

analysis this term gives an additional contribution that we shall bear in mind.

Similarly, it can be found an expression for the anti-commutator of the covariant

derivatives, but involving the symmetric part of the affine connection:

{Dα, Dβ}φ(x) = 2∂α∂βφ(x) − (Γc
αβ + Γc

βα)∂cφ(x). (20)

Eqs. (19) and (20) can be used to write the compact expression for the Klein-Gordon

field in curved nonsymmetric space-time. Replacing these relations in (18) we find after

straightforward calculations:

(gαβ∂α∂β +m2)φ(x) = GαβΓc
αβ∂cφ(x), (21)

where

Γc
αβ =

1

2
(Γc

αβ + Γc
βα) +

1

2
(Γc

αβ − Γc
βα). (22)

The left side of (21) is identical to the corresponding Klein-Gordon equation in General

Relativity. The difference lies in the right side: now the metric and the affine connection

are not symmetric, but it is worth to note that the form of the equation remains the same.

What about Dirac fields? The explicit and detailed treatment of Dirac fields in a

general curved space-time is a much more complicated task (see for instance [9]), but we
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only want to take a general picture in order to inquire some aspects of the field wαβ. For

this reason, we will not solve the covariant derivative over Dirac fields. We will limit to

the task of requiring that the Dirac equation could be expressed as the square root of the

Klein-Gordon field.

The Dirac equation in curved space-time can be written as

(iγαDα −m)ψ(x) = 0, (23)

where Dα = ∂α + Γα. As we have said before, we make the assumption that the Dirac

field in general curved space-time can be expressed as the square root of the Klein-Gordon

equation. This allows us to write

(−iγαDα −m)(iγβDβ −m)ψ(x) = 0. (24)

If we assume Dαγ
β = 0, which seems a plausible generalization of the condition

∂αγ
β = 0 that is verified by the Dirac matrices in a flat space-time, we find

(γαγβDαDβ +m2)ψ(x) = 0. (25)

This is nothing but the Klein-Gordon equation in general nonsymmetric curved space-

time (17). Thus, we can make the identification

γαγβ =
1

2
{γα, γβ} +

1

2
[γα, γβ] = Gαβ = gαβ + wαβ. (26)

That provides

gαβ =
1

2
{γα, γβ}, (27)

wαβ =
1

2
[γα, γβ]. (28)

Equation (27) is a well known result that remit us to the field of Clifford algebra.

On the other hand, the commutator of the Dirac matrices transforms as a tensor, and

is a clue concept to understand the behavior of the Dirac field under general Lorentz

transformations. We suggest a new interpretation of this tensor in the framework of

nonsymmetric space-time, where the metric tensor has an antisymmetric part.

With these results in mind let us return to the previous section where we studied the

notion of a fermionic space-time of Grassmann coordinates, that couple to the antisym-

metric part of the metric tensor in the definition of the general line element(4). Let us

begin writing the left side of the Casimir invariant (15), in a flat space-time doted with a

nonsymmetric metric Gαβ = γαγβ. Then we have

Gαβpαpβ = γαγβpαpβ. (29)
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Making contact now with (12) and (13), for fermionic degrees of freedom

{pα, pβ} = pαpβ + pβpα = 0. (30)

This allow us to make the substitution: pαpβ = −pβpα in equation (29) and we have

−γαγβpβpα. (31)

Note that γβpβ is nothing but the Dirac equation in momentum space: γβpβψ = mψ.

Therefore, equation (29) provides after a direct computation a global term of −m2, and

this means that we are dealing with tachyons.

If we repeat the same reasoning for bosonic commutative variables, the result gives

the correct sign for the Casimir invariant.

This result is intriguing. It likely means that we are not allowed to describe usual

fermions with anticommutative variables in the external space-time, but only in their

own internal vectorial space. Maybe this result is telling us something about tachyons.

Tachyons would be Grassman fields that behave in the space-time being able to feel the

antisymmetric part of the metric tensor, undetectable for us and the other ordinary mat-

ter. Indeed, bosons and the usual fermions that are represented by Grassmann variables

in their internal spinor space, are all associated with standard bosonic coordinates when

they move in the space-time.

In any case, this last result only questions the assumptions of the equations (12) and

(13), but says nothing about the validity of nonsymmetrical gravitational theories.

4 Discussion

In this paper we have explored an alternative approach which combines some insights

of nonsymmetrical gravitational theories with concepts of noncommutative geometry. In

this approach, we have discussed that the inclusion of an antisymmetric part in the metric

tensor has some interesting consequences when is considered the possibility of extend

the conception of bosonic space-time with coordinates that do not commute. We have

postulated a generalization for the invariant line element in General relativity, which puts

bosonic and fermionic coordinates on an equal footing. Bosonic degrees of freedom couple

to the symmetric part of the metric, while unusual fermionic degrees of freedom would do

the same but with the other part.

Nevertheless, these assumptions lead to the wrong sign for the square of the mass

in the Casimir invariant, which means that tachyons arise inevitably when we describe

these unusual type of fermions. In other words: Grassman coordinates in a nonsymmetric

space-time represent degrees of freedom that behave like tachyons.

On the other hand, it has been studied in some detail the wave equations for matter

fields in the framework of nonsymmetric gravitational theories, suggesting a possible new
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interpretation for the commutator of the Dirac matrices, which emerges naturally as the

antisymmetric part of the metric tensor.

Until now, it has not been found any experimental evidence of the nonsymmetric

nature of the metric tensor. But we point out that if these nonsymmetric theories of

gravity are finally found to be a correct description of nature, then such identification of

the antisymmetric part of the metric tensor with the commutator of the gamma matrices

could be naturally established as a theoretical consequence.
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Nota Necrológica

Enrique Meléndez Andreu

Es dif́ıcil recoger en unas pocas palabras toda una vida dedicada a la investigación y

la docencia, como ha sido el caso del Prof. Enrique Meléndez, pero voy a intentar hacerlo.

El profesor Meléndez nació en Zaragoza el 17 de julio de 1933, en 1955 se licenció

en Ciencias Qúımicas por la Universidad de Valladolid y en 1962 obtuvo el t́ıtulo de

“Docteur en Sciences Physiques” por la Universidad de La Sorbona en Paŕıs que refrendó

posteriormente en 1963 con el de “Doctor en Qúımicas” por la Universidad de Valladolid.

Su trayectoria profesional se desarrolló primero en Paŕıs (1956–1964) como Investi-

gador en el C.N.R.S., volviendo a continuación a España como Investigador en el Instituto

Alonso Barba de Qúımica Orgánica del C.S.I.C. en Madrid (1964–1968). Posteriormente

fue Profesor Agregado en la Cátedra de Qúımica Farmacéutica de la Universidad de

Barcelona (1968–1974) y finalmente fue Catedrático de Qúımica Orgánica en la Universi-

dad de Zaragoza (1974–2003) donde desarrolló su labor docente e investigadora hasta su

jubilación.

Fue uno de los fundadores del grupo de Qúımica Orgánica, creado en 1967, del que fue

su primer secretario y que cuenta actualmente con 650 socios. Asimismo fue presidente de

la Sociedad Española de Qúımica Terapéutica entre 1985 y 1989. A pesar de ser qúımico

por su fuerte interacción con la investigación en Medicina fue elegido académico numerario

de la Real Academia de Medicina de Zaragoza.

Ingresó como académico numerario de la Real Academia de Ciencias Exactas, F́ısicas,

Qúımicas y Naturales de Zaragoza en febrero de 1982, cuando leyó su discurso de ingreso

titulado “Cristales Ĺıquidos”. En 1990 fue elegido como Presidente cargo que ostentó

hasta 1996.

En el discurso de contestación a su discurso de ingreso el Profesor Gutiérrez Losa

enumeró los méritos del Profesor Meléndez y quiero recordar algunas de sus palabras que

indican muy claramente la importancia de su labor en nuestra Universidad: “Por eso

cuando en 1974 accede a la Cátedra de Qúımica Orgánica en nuestra Facultad de Cien-

cias. . . Enrique Meléndez trae consigo no sólo el entusiasmo y la inquietud que siempre

le caracterizaron, sino también un bagaje cient́ıfico (teórico y práctico) considerable. En

sólo siete años de estancia en esta Universidad, el Prof. Meléndez ha reestructurado las

113



enseñanzas dependientes del Departamento de Qúımica Orgánica de acuerdo con el nuevo

plan de estudios y ha marcado, con trazo firme, nuevas ĺıneas de investigación orientadas

principalmente al estudio de heterociclos, a la preparación de nuevos aminoácidos y al

complejo y sugestivo campo de los cristales ĺıquidos, precisamente el tema elegido por él

para su disertación en este lugar”.

Figure 1.— El Profesor Enrique Meléndez Andreu (en el centro de la segunda fila)

con motivo de su incorporación al Senatrus Cient́ıfico en 2006, con el Rector Pétriz, el

Decano Elipe y el Presidente de la Real Academia, Horacio Moll.

Este entusiasmo por la Qúımica Orgánica, en todas sus facetas, lo supo transmitir a

sus disćıpulos. Aśı de los 19 doctorandos del Prof. E. Meléndez en la Universidad de

Zaragoza, 16 han seguido una trayectoria vinculada a la docencia y a la investigación en

la Universidad y en el Consejo Superior de Investigaciones Cient́ıficas. De hecho entre

sus disćıpulos se cuenta con nueve catedráticos de Qúımica Orgánica, un catedrático de

Qúımica F́ısica, un profesor titular de Qúımica Orgánica y un profesor de investigación y

cuatro investigadores del Consejo Superior de Investigaciones Cient́ıficas.

El Profesor Enrique Meléndez era un excelente docente. Todos los que tuvimos la

suerte de asistir a sus clases recordamos con admiración y cariño como llegaba siempre

puntual, con su bata blanca siempre remangada, y comenzaba a hablar de forma clara

y concisa, a la vez que iba rellenando una pizarra que al cabo de un tiempo aparećıa

ante nuestros ojos como un fantástico esquema de todo lo que se hab́ıa tratado hasta
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el momento. Siempre hemos comentado la perfección de las pizarras tanto en cuanto a

calidad de contenido como a la estética de las mismas.

Otro punto a resaltar era la combinación de respeto y afabilidad que teńıa en el trato

con todos sus alumnos y estudiantes, era muy fácil hablar con él pero no lo era el tutearlo,

el usted saĺıa de forma espontánea.

Tal y como indicaba el Profesor Gutiérrez Losa en 1974 llegó el Prof. E. Meléndez a

la Universidad de Zaragoza. Su antecesor el Prof. Barluenga se acababa de trasladar a

la Universidad de Oviedo con casi todos sus disćıpulos, por lo que el Profesor Meléndez

tuvo que empezar con estudiantes con la carrera recién acabada. En aquel momento los

laboratorios de Qúımica Orgánica estaban en condiciones bastante precarias, el material

era muy escaso y era necesario reciclar y aprovechar al máximo los disolventes. El profesor

Meléndez, en un peŕıodo de tiempo relativamente corto, dotó a los laboratorios de la

infraestructura necesaria, tanto en material como en equipos, para realizar los trabajos

de investigación.

Finalmente en 1987 se constituyó el Dpto. de Qúımica Orgánica y como primer fir-

mante del acta de constitución el profesor Meléndez fue nombrado director del mismo.

La estancia doctoral y postdoctoral en Francia del profesor Meléndez le hizo tener una

concepción de la Universidad y de la Investigación muy diferente a la que se teńıa en nue-

stro páıs en el mismo peŕıodo, dejando una gran libertad a sus doctorandos y valorando

positivamente sus opiniones e iniciativas. De hecho, en el primer año de su estancia en

Zaragoza, y a pesar de las penurias económicas de la cátedra, puso en marcha dos ĺıneas

de investigación completamente diferentes, una basada en compuestos con actividad far-

macológica mediante la śıntesis de nuevos aminoácidos y otra en nuevos materiales de

tipo cristal ĺıquido. Estas dos ĺıneas, en campos tan diferentes, comenzaron utilizando

los mismos compuestos de partida en lo que denominaron en el grupo como “qúımica de

estanteŕıa”, lo que da idea de la imaginación y capacidad del Profesor Meléndez. Posteri-

ormente se incorporó una tercera ĺınea de investigación basada en derivados heteroćıclicos.

De estas tres ĺıneas iniciales han derivado los seis grupos de investigación del actual De-

partamento de Qúımica Orgánica.

Para conseguir estos resultados tan rápidamente se apoyó en sus excelentes relaciones

con investigadores de gran prestigio a nivel nacional e internacional. En muchas ocasiones

estos investigadores no dudaban en venir a Zaragoza a ser sometidos a sesiones marato-

nianas con todos los doctorandos del Profesor Meléndez. Destacan entre ellos el Profesor

José Elguero del CSIC y el Profesor Félix Serratosa de la Universidad de Barcelona y del

CSIC, dos de los qúımicos orgánicos españoles más prestigiosos a nivel internacional y el

Prof. Lionel Liébert del CNRS en el centro de excelencia de Orsay (Francia), pionero en

el estudio de los cristales ĺıquidos.

115



Su visión de la investigación era muy amplia y entendió claramente la importancia de

la colaboración entre f́ısicos y qúımicos en el campo de los Materiales Avanzados donde

se necesita una visión multidisciplinar. Aśı, a ráız de una de las primeras publicaciones

de nuestro grupo en el campo de los cristales ĺıquidos ferroeléctricos, en 1984 estableció

contacto con un grupo de la Universidad del Páıs Vasco en Lejona (Vizcaya). Tras los

primeros contactos esta colaboración, que todav́ıa se mantiene, ha dado lugar a más de

una decena de proyectos coordinados nacionales e internacionales y a casi un centenar de

publicaciones conjuntas.

Otro hito importante para nuestra Universidad fue su participación en la negociación

con el CSIC para la creación del Instituto de Ciencia de los Materiales de Aragón (ICMA-

1985). Este Instituto Mixto de Investigación entre la Universidad de Zaragoza y el CSIC

ha tenido y tiene una gran relevancia en el desarrollo de la investigación de nuestra

comunidad.

Su inquietud por todo lo relacionado con nuestra Facultad hizo que tras su jubilación

siguiera participando en las actividades académicas, siendo uno de los primeros miembros

de Senatus cient́ıfico de nuestra Facultad.

Es importante resaltar, además de su indudable vocación por la Qúımica, su gran

conocimiento y pasión por el arte, fundamentalmente pintura y música clásica. Conoció a

muchos y famosos pintores coetáneos, de hecho logró una excelente colección de pinturas

y era asiduo a los conciertos (fundamentalmente si eran de calidad) que teńıan lugar en

nuestra ciudad.

Finalmente quiero hacer especial hincapié en su gran pasión por la naturaleza y la

montaña, especialmente por el Valle de Tena, del que proveńıa su padre, y en el que pasó

excelentes momentos paseando, pescando, buscando setas o simplemente, contemplando

la naturaleza.

En resumen, un excelente profesor y una excelente persona, que ha contribuido de

forma importante al desarrollo cient́ıfico de nuestro páıs y que ha dejado una huella muy

marcada en todos los que lo conocieron.

José Luis Serrano

Académico numerario
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ACTIVIDADES DE LA REAL ACADEMIA DE CIENCIAS

EXACTAS, FÍSICAS, QUÍMICAS Y NATURALES DE ZARAGOZA

EN EL AÑO 2012

Sesiones:

En el año 2012 la Real Academia de Ciencias de Zaragoza celebró tres sesiones, una

de ellas con motivo de la entrega de Premios de Investigación.

Las sesiones tuvieron lugar los d́ıas 16 de mayo, 17 de octubre y 7 de noviembre. Esta

última fue la mencionada sesión de entrega de Premios de Investigación 2011-2012.

La Real Academia de Ciencias de Zaragoza participó también el 18 de octubre en la

Sesión solemne de apertura de curso de las academias de Aragón y el 24 de noviembre en la

Solemne Sesión conjunta de las Academias de Aragón para conmemorar el V Centenario

de Miguel Servet.

El 26 de septiembre la Real Academia de Ciencias de Zaragoza organizó un acto

académico en memoria del Académico Enrique Meléndez Andreu, quien fue Presidente de

la misma desde 1990 hasta 1996.

Publicaciones de la Academia:

La Academia ha publicado el volumen 66 de la Revista de la Academia de Ciencias

de Zaragoza, y el volumen 38 de la serie Monograf́ıas de la Real Academia de Ciencias,

con el t́ıtulo de “A special tribute to Professor Monique Madaune-Tort”.

Organización de Congresos y Conferencias:

La Academia ha organizado en 2012, entre otros, los siguientes eventos:

• Conferencia de la Profesora Laurence BOUQUIAUX, de la Universidad de Lieja

(Bélgica) el d́ıa 18 de abril con el t́ıtulo “The Leibniz Newton Controversy”.

• Conferencia el 9 de mayo de José Manuel Blecua, Director de la Real Academia

Española titulada: “Camino de las palabras hacia el diccionario”.

• Conferencia a cargo de Dr. Miguel Andériz López, con el t́ıtulo “Bases biomatemáticas

del estudio de los factores de riesgo en medicina”.
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• La Academia ha colaborado en el XIV Encuentro de Invierno Geometŕıa, Mecánica

y Teoŕıa de Control celebrado en Zaragoza los d́ıas 6 y 7 de febrero

• Colaboración en la organización conjunta con la Facultad de Ciencias de los Ciclos

de Conferencias Cita con la Ciencia y Espacio Facultad 2011-2012.

Por último, dentro de la habitual participación de Académicos en numerosos congresos

nacionales e internacionales, y en conferencias en el ámbito de la difusión de la ciencia,

cabe destacar las siguientes actuaciones:

• El Académico Alberto Elduque ha sido conferenciante invitado en los congresos

Workshop on Exceptional Algebras and Groups (Ottawa, Canadá, abril de 2012),

International Workshop on Groups, Rings, Lie and Hopf Algebras II (Bonne Bay,

Newfoundland, Canadá, agosto de 2012), y DAG days: The Freudenthal-Tits Magic

Square (Gante, Bélgica, en octubre de 2012).

Ha sido también miembro del Comité Cient́ıfico del II Encuentro Conjunto Re-

al Sociedad Matemática Española - Sociedad Matemática Mexicana (Torremolinos,

Málaga, enero de 2012), de la Escuela CIMPA Algebraic structures, their repre-

sentations and applications in geometry and nonassociative models (Cartagena de

Indias, Colombia, marzo de 2012) y del congreso Lie and Jordan Algebras, their

Representations and Applications-V (Belem, Brasil, julio de 2012).

Además ha impartido las siguientes conferencias y cursos: Lie algebras: Killing-

Cartan classification, mini-curso de 8 horas en la CIMPA School Algebraic struc-

tures, their representations and applications in geometry and nonassociative models,

Cartagena, Colombia, en marzo de 2012, Conways’s rational tangles, en Memorial

University of Newfoundland (St. John’s, Canadá, julio de 2012), Lie theory, curso

de verano de 30 horas en la Memorial University of Newfoundland (St. John’s,

Canadá, julio–agosto de 2012, A Freudenthal-Tits Supermagic Square, en la Uni-

versidade da Beira Interior (Portugal), octubre de 2012, Gradings on simple Lie

algebras en el Seminario de Álgebra y Combinatoria del ICMAT, Madrid, noviem-

bre de 2012. Symmetric composition algebras and exceptional simple Lie algebras,

Colloquium Talk en la Universidad de Uppsala (Suecia), en diciembre de 2012.

• El Académico Eladio Liñán fue el organizador de los actos conmemorativos y de la

exposición que tuvieron lugar en Zaragoza con motivo del 150 aniversario del hallaz-

go del yacimento de Murero (Zaragoza) que fue el primer yacimento paleontológico

declarado Bien de Interés Cultural (BIC) en España.

• El Académico Pablo J. Alonso fue miembro del comité cient́ıfico de la XI reunión na-

cional del GIRSE y 1a reunión conjunta ARPE-GERPE-GIRSE) (GIRSE=Gruppo
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Italiano di Risonanza di Spin Elettronico, ARPE=Association française de Résonance

Paramagnétique Électronique, GERPE=Grupo Español de Resonancia Paramagné-

tica Electrónica.

• El Académico Antonio Elipe ha sido miembro del Comité Cient́ıfico de los siguientes

congresos: 1st IAA Conference on Dynamics, Control and Space Systems. Porto,

Portugal. 19–21 marzo; XIII Jornadas de trabajo en mecánica celeste. Zaragoza,

18–19 junio; y Maths and Chemistry, Zaragoza, 20–22 junio.

En colaboración con la ACPUA (Agencia de Calidad y Prospectiva Universitaria

de Aragón) ha organizado las jornadas La Calidad en los Centros Universitarios

de la Defensa: Una garant́ıa de futuro, celebradas en Zaragoza los d́ıas 7 y 8 de

noviembre.

• El Secretario José F. Cariñena formó parte del Comité Organizador de los XIV

Encuentros de Invierno Mecánica, Geometŕıa y Teoŕıa de control, 6 y 7 de febrero y

del Thematic Day: Geometric Structures in Mechanics” el 8 de febrero, en Zaragoza.

Fue también miembro del Comité Cient́ıfico del Congreso Mathematical Structures

in Quantum Systems and applications en Benasque, julio 8-14.

Varios Académicos han colaborado en cursos propios en la Universidad de la Experiencia

que organiza la Universidad de Zaragoza.

Premios de investigación 2012

Se concedieron los Premios de Investigación 2011-2012 de la Academia correspondien-

tes a las secciones de Exactas y F́ısicas. En la sección de Exactas el premio fue para

el Profesor Luis Rández Garćıa y en la de F́ısicas al Doctor Jesus Clemente Gallardo.

Los premiados expusieron sendos trabajos de investigación en la sesión celebrada el 7 de

noviembre y se les hizo entrega del Premio de Investigación 2012. Los trabajos de investi-

gación con los t́ıtulos respectivos de “Optimization of spatial and temporal discretization

schemes for Computational Aero-Acoustics problems” y “The geometrical formulation of

Quantum Mechanics”, se publican en este volumen 67 de la Revista de la Real Academia.

Se ha iniciado el proceso para los Premios 2012-2013 en las Secciones de Qúımicas y

Naturales.

Distinciones y Nombramientos a Académicos.

La Junta de Gobierno de la Sociedad Española de ptica decidió nombrar Socio de

Honor de SEDOPTICA al Académico Miguel A. Rebolledo por su labor en favor del

desarrollo de la ptica española.

El Académico D. Antonio Elipe fue nombrado Cadete Honoŕıfico por la Academia

General Militar.
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Otros datos.

La Real Academia de Ciencias de Zaragoza, en contra de lo sucedido hasta el momento,

este año no ha recibido subvencióna para su funcionamiento del Ministerio de Educación

y Ciencia a través del programa de apoyo a las Reales Academias asociadas al Instituto

de España.

Se ha continuado poniendo al d́ıa la página web de la Academia, cuya dirección es

http://acz.unizar.es

Zaragoza, diciembre de 2012

120



REVISTA DE LA REAL ACADEMIA DE CIENCIAS

EXACTAS, FÍSICAS, QUÍMICAS Y NATURALES DE ZARAGOZA

Abstract

La Revista de la Real Academia de Ciencias publishes original research contri-

butions in the fields of Mathematics, Physics, Chemistry and Natural Sciences. All

the manuscripts are peer reviewed in order to assess the quality of the work. On

the basis of the referee’s report, the Editors will take the decision either to publish

the work (directly or with modifications), or to reject the manuscript.

1 Normas generales de publicación

1.1 Env́ıo de los manuscritos.

Para su publicación en esta Revista, los trabajos deberán remitirse a

Académico-Director de Publicaciones

Revista de la Academia de Ciencias

Universidad de Zaragoza

50009 Zaragoza

o bien electrónicamente a la cuenta elipe@unizar.es.

La Revista utiliza el sistema de offset de edición, empleando el texto electrónico faci-

litado por los autores, que deberán cuidar al máximo su confección, siguiendo las normas

que aqúı aparecen.

Los autores emplearán un procesador de texto. Se recomienda el uso de LaTeX, para

el que se han diseñado los estilos academia.sty y academia.cls que pueden obtenerse

directamente por internet en http://acz.unizar.es o por petición a la cuenta de correo

electrónico: elipe@unizar.es.

1.2 Dimensiones

El texto de los trabajos, redactados en español, inglés o francés, no deberá exceder de

16 páginas, aunque se recomienda una extensión de 6 a 10 páginas como promedio. El

texto de cada página ocupará una caja de 16× 25 cm., con espacio y medio entre ĺıneas.
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2 Presentación del trabajo.

Los trabajos se presentarán con arreglo al siguiente orden: En la primera página se

incluirán los siguientes datos:

a) T́ıtulo del trabajo: Conciso, pero ilustrativo, con mayúsculas.

b) Autor: Nombre y apellidos del autor o autores, con minúscula.

c) Centro: Centro donde se ha realizado, con su dirección postal.

d) Abstract: En inglés y con una extensión máxima de 200 palabras.

e) Texto

A) Los encabezamientos de cada sección, numerados correlativamente, serán escritos

con letras minúsculas en negrita. Los encabezamientos de subsecciones, numerados en

la forma 1.1, 1.2, . . . , 2.1, 2.2, . . . , se escribirán en cursiva.

B) Las fórmulas estarán centradas y numeradas correlativamente.

C) Las referencias bibliogáficas intercaladas en el texto, deben ser fácilmente identifi-

cables en la lista de refencias que aparecerá al final del art́ıculo, bien mediante un número,

bien mediante el nombre del autor y año de publicación.

D) Las figuras y tablas, numeradas correlativamente, se intercalarán en el texto. Las

figuras se enviarán en formato EPS, o que se pueda convertir a éste con facilidad. Los

apéndices, si los hay, se incluirán al final del texto, antes de la bibliograf́ıa.

G) Las referencias bibliográficas de art́ıculos deberán contener: Autor: año de publi-

cación, “T́ıtulo del art́ıculo”, revista número, páginas inicial–final. En el caso de libros,

deberá incluirse: Autor: año de publicación, T́ıtulo del libro. Editorial, lugar de publi-

cación.

3 Notas finales

Por cada trabajo publicado, se entregarán al autor o autores un total de 25 separatas.

La Revista permite la inclusión de fotograf́ıas o figuras en color, con un coste adicional

que correrá a cargo de los autores.

Antonio Elipe

Académico Editor
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RELACIÓN DE REVISTAS NACIONALES QUE RECIBE EN INTERCAMBIO

LA BIBLIOTECA DE LA ACADEMIA DE CIENCIAS

ACTA BOTANICA BARCINONENSIS

ACTA QUIMICA COMPOSTELANA - Departamento de Qúımica Anaĺıtica

AFINIDAD - Revista Qúımica Teórica y Aplicada

ANALES DE BIOLOGIA - Sección de Bioloǵıa General (Murcia)

ANALES DEL JARDIN BOTANICO DE MADRID

ANALES DE LA REAL ACADEMIA DE DOCTORES

ANALES DE LA UNIVERSIDAD DE MURCIA

ANALES DE CIENCIAS - Facultad de Ciencias (Qúımicas y Matemáticas) (Murcia)

ANALES SECCION DE CIENCIAS - Colegio Universitario de Girona

ANUARIO DEL OBSERVATORIO ASTRONOMICO - Madrid.

BELARRA. SOCIEDAD MICOLOGICA. Baracaldo.

BLANCOANA - Col. Univ. “Santo Reino” Jaén

BOLETIN DA ACADEMIA GALEGA DE CIENCIAS - (Santiago de Compostela)

BOLETIN DE LA ASOCIACION HERPETOLOGICA ESPAÑOLA

BOLETIN GEOLOGICO Y MINERO

BOTANICA COMPLUTENSIS - Madrid

BUTLLETI DEL CENTRO D’HISTORIA NATURAL DE LA CONCA DE BARBARA

COLLECTANEA BOTANICA - (Barcelona)

COLLECTANEA MATEMATICA - (Barcelona)

ESTUDIO GENERAL - Revista Colegio Universitario (Girona)

EXTRACTA MATHEMATICAE - Universidad de Extremadura

FACULTAD DE CIENCIAS EXPERIMENTALES DE JAEN. Monograf́ıas.

FOLIA BOTANICA MISCELANEA - Departamento de Botánica (Barcelona)

GACETA DE LA REAL SOCIEDAD MATEMÁTICA ESPAÑOLA

INDICE ESPAÑOL DE CIENCIA Y TECNOLOGIA -

INSTITUTO GEOLOGICO Y MINERO DE ESPAÑA

INVESTIGACION E INFORMACION TEXTIL Y DE TENSIOACTIVIVOS (C.S.I.C.)

- Barcelona

LACTARIUS.- BOL. DE LA ASOCIACION MICOLOGICA - Jaén

LUCAS MALLADA - Inst. Est. Altoaragoneses.
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MEMORIAS DE LA REAL ACADEMIA DE CIENCIAS Y ARTES DE BARCELONA

MISCELANEA ZOOLOGICA - Museo Zoológico - Ayuntamiento de Barcelona

NATURALIA BAETICA - Jaén

PIRINEOS

PUBLICACIONES PERIODICAS DE LA BIBLIOTECA DEL MUSEU DE ZOOLOGIA

- (Barcelona)

REBOLL.- Bull. Centro d’Historia Natural de la Conca de Barbera.

REVISTA DE LA ACADEMIA CANARIA DE CIENCIAS

REVISTA REAL ACADEMIA GALEGA DE CIENCIAS

REVISTA DE BIOLOGIA DE LA UNIVERSIDAD DE OVIEDO

REVISTA ESPAÑOLA DE FÍSICA

REVISTA ESPAÑOLA DE FISIOLOGIA - Pamplona

REVISTA ESPAÑOLA DE HERPETOLOGIA

REVISTA IBERICA DE PARASITOLOGIA

REVISTA MATEMATICA COMPLUTENSE - (Madrid)

REVISTA DE OBRAS PUBLICAS

REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS, FISICAS Y NATU-

RALES DE MADRID – Matemáticas

REVISTA DE LA REAL ACADEMIA DE CIENCIAS - QUIMICA - Madrid

RUIZIA - Monograf́ıas del Jard́ın Botánico (Madrid)

SCIENCIA GERUNDENSIS

STUDIA GEOLOGICA SALMANTICENSIA - Universidad de Salamanca

TRABAJOS DE GEOLOGIA - Universidad de Oviedo

TREBALLS DEL CENTRE D’HISTORIA NATURAL DE LA CONCA DE BARBERA.

TREBALLS DE L’INSTITUT BOTANIC DE BARCELONA

TREBALLS DEL MUSEU DE ZOOLOGIA DE BARCELONA

ZOOLOGIA BAETICA. UNIVERSIDAD DE GRANADA.
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RELACIÓN DE REVISTAS INTERNACIONALES QUE RECIBE EN

INTERCAMBIO LA BIBLIOTECA DE LA ACADEMIA DE CIENCIAS

ACADEMIA NACIONAL DE CIENCIAS - Córdoba. Argentina

ACADEMY OF NATURAL SCIENCES OF PHILADELFIA

ACCADEMIA NAZIONALE DEI LINCIEI - Notiziario

ACCADEMIA UDINESE DI SCIENZI LETTERS ED ARTI.

ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE

ACTA FAUNISTICA ENTOMOLOGICA MUSEI NATIONALIS - Pragae

ACTA GEOLOGICA POLONICA - Warszawa

ACTA MATHEMATICA HUNGARICA

ACTA MATEMATICA SINICA - New Series China

ACTA MUSEI NATIONALI PRAGAE

ACTA ORNITHOLOGICA - Polska Akademia Nauk Warszawa

ACTA PHYSICA - Academia Scientarum Hungaricae

ACTA SOCIETATIS ENTOMOLOGICA BOHEMOSLOVACA

ACTA UNIVERSITATIS - Series: Mathematics and Informatic – University of Nis –

Yugoeslavia

ACTA ZOOLOGICA FENNICA

AGRONOMIA LUSITANICA - Est. Agr. Nac. Sacavem - Portugal

AKADEMIE DER WISSENSCHAFTEN

ANALES DE LA ACADEMIA NACIONAL DE CIENCIAS EXACTAS, FISICAS Y

NATURALES DE BUENOS AIRES

ANALES DE LA ESCUELA NACIONAL DE CIENCIAS BIOLOGICAS. México

ANALES DE LA SOCIEDAD CIENTIFICA ARGENTINA

ANALES DE LA ESCUELA NACIONAL DE CIENCIAS BIOLOGICAS - México

ANIMAL BIODIVERSITY CONSERVATION

ANNALEN DES NATURHISTORICHEN MUSEUMS IN WIEN

ANNALES ACADEMIA SCIENTARUM FENNICAE - Serie A - I Matematica - Helsinke

ANNALES ACADEMIA SCIENTARUM FENNICAE - Serie A - II Chemica - Helsinke

ANNALES ACADEMIA SCIENTARUM FENNICAE - III Geologica Geografica - Helsinke

ANNALES ACADEMIA SCIENTARUM FENNICAE - Serie A - IV Physica - Helsinke

ANNALES HISTORICO NATURALES - Musei Nationalis Hungarici
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ANNALES DE L’INSTITUT FOURIER - Université de Grenoble

ANNALES DE L’INSTITUT FOURIER - Gap

ANNALES DE LA SOCIETE SCIENTIFIQUE - Serie I - Science Mathematiques Physiques

Bruxelles

ANNALES UNIVERSITATIS MARIA CURIE - Sectio A Mathemat. - Sklodowska

ANNALES UNIVERSITATIS MARIA CURIE - Sklodowska - Sectio AA Chemica. Lublin.

ANNALES UNIVERSITATIS MARIA CURIE - Sklodowska - Sectio AAA Physica. Lublin.

ANNALES ZOOLOGICI FENNICI - Helsinki

ANNALI DELLA FACOLTA DE AGRARIA - Universita de Pisa

ANNALI DEL MUSEO CIVICO DI STORIA NATURALE “Giacomo Doria”

ARBOLES Y SEMILLAS DEL NEOTROPICO - Museo Nac. de Costa Rica

ARCHIVIO GEOBOTANICO - Univ de Pav́ıa.

ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI - Matem-

atica e Applicacioni - Roma

ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI - Scien-

ze Fisiche e Naturali - Roma

ATTI DELLA ACCADEMIA DI SCIENZE, LETTERE E ARTI DI UDINE

ATTI DELL’INSTITUTO BOTANICO E DEL LABORATORIO CRITTOGRAMICO

DELL’UNIVERSITA DI PAVIA

BAYERISCHE AKADEMIE DR WISSENSCHAFTEN - Munchen

BEITRAGE ZUR FORSCHUNSTECHOLOGIE - Akademie Verlag Berlin

BOLETIM DA SOCIEDADE PARANAENSE DE MATEMATICAS - Paraná

BOLETIM DA SOCIEDADES PORTUGUESA DE CIENCIAS NATURALES - Lisboa

BOLETIN DE LA REAL ACADEMIA DE CIENCIAS FISICAS, MATEMATICAS Y

NATURALES - Caracas

BOLETIN DE LA ACADEMIA DE CIENCIAS - Córdoba. Argentina.

BOLETIN BIBLIOGRAFICO DE LA ESCUELA NACIONAL DE CIENCIAS BIOLÓ-

GICAS - México

BOLETIN DEL MUSEO NAC. DE COSTA RICA.

BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA

BOTANY UNIV. OF CALIFORNIA PUBLICATIONS.

BRENESIA - Museo Nacional de Costa Rica

BULGARIAN ACADEMY OF SCIENCES - Scientific Information - CENTRE MATH-

EMATICAL AND PHYSICAL SCIENCES

BULGARIAN JOURNAL OF PHYSICS

BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY - Providence

BULLETIN DE LA CLASSE DE SCIENCES - Academie Royale de Belgique - Bruxelles

BULLETIN OF THE GEOLOGICAL INSTITUTION OF THE UNIVERSITY UPSALA
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BULLETIN OF THE JSME (Japan Society of Mechanical Engineers)

BULLETIN DE LA SOCIETE SCIENTIFIQUE DE BRETAGNE - Rennes

CALIFORNIA AGRICULTURE - University of California

CIENCIAS TECNICAS FISICAS Y MATEMATICAS. Academia de Ciencias. Cuba.

COLLOQUIUM MATHEMATICUM - Warszawa

COMMENTATIONES MATHEMATICAE - Ann. So, Mathematicae Polonese

COMPTES RENDUS DE L’ACADEMIE BULGARE DE SCIENCES - Sofia

DARWINIANA REV. INST. BOTANICA DARWINION - República Argentina

DORIANA - Supplementa agli Annali del Museo Civico di Storia Naturale “G. Doria” -

Cenova

ESTUDOS, NOTAS E TRABALHOS DO SERVIC DE FOMENTO MINERO - Portugal

ESTUDOS, NOTAS E TRABALHOS, DIECCIÓ GERAL DE GEOLOGIA E MINAS -

Porto

FILOMAT - FACTA UNIVERSITATIS - Univ. af Nis.

FÍSICA DE ONDAS ACÚSTICAS Y ELECTROMAGNÉTICAS LINEALES - Acad.

Búlgara de las Ciencias

FOLIA ANATOMICA UNIVERSITATIS CONIMBRIGENSIS - Coimbra

FOLIA ZOOLOGICA - Czechoslovak Academy of Sciences

FUNCTIONS ET APPROXIMATIC COMMENTARI MATHEMATICI - Poznań

GLASNIK MATEMATICKI - Zagreb

IBC - INFORMAZIONI - Rivista Bimestrale Inst. Beni. Artistic. - Regione Emilis-

Romagna

INSTITUTO DE MATEMATICA - Univ. Nac. del Sur - Bahia Blanca - Argentina

INSTITUTO NACIONAL DE INVESTIGAÇAO AGRARIA - Estaçao AGRONOMICA

NACIONAL OEIRAS INSTITUTO SUPERIOR TÉCNICO DE CIENFUEGOS

INTERNATIONAL TIN RESEARCH INSTITUTE

JAHRBUCH DER AKADEMIE DER WISSENSCHAFTEN IN GÖTTINGEN.

JOURNAL OF THE AMERICAN ACADEMY OF ARTS AND SCIENCES - Daedalus

JOURNAL OF THE BULGARIAN ACADEMY OF SCIENCES

JOURNAL OF THE LONDON MATHEMATICAL SOCIETY

JOURNAL OF NON-CRYSTALLINE SOLIDS - Amsterdam

LESTURAS MATEMATICAS - Colombia

MATHEMATICA BALKANICA

MATHEMATICA MONTISNIGRA

MEMORABILIS ZOOLOGICA

MEMORANDA SOCIETATIS PROFAUNA ET FLORA FENNICA - Helsingfors

MEMORIAS DA ACADEMIA DAS CIENCIAS DE LISBOA (Classe de Ciencias)

MITTEILUNGEN AUS DEN ZOOLOGISCHEN MUSEUM IN BERLIN
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MONOGRAFIAS DE LA ACADEMIA NACIONAL DE CIENCIAS EXACTAS, FISI-

CAS Y NATURALES DE BUENOS AIRES

NACHRICHTEN DER AKADEMIE DER WISSENSCHAFTEN IN GUTTINGEN - II

Matemáticas y F́ısica

NATURAL HISTORY MUSEUM UNIV. OF KANSAS.

NEOTROPICO - Museo Nacional de Costa Rica

NETHERLANDS JOURNAL OF ZOOLOGY

NONLINEARITY - Inst. Physics and London Math. Soc

NOTAS DE ALGEBRA Y ANALISIS - Ins. de Matematica - Univ. Atac. del Sur. Bahia

Blanca

NOTULAE NATURAE

NUCLEAR ENERGY -Bulgarian Academy of Sciences

OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES - San

Francisco

PHILIPPINE JOURNAL OF SCIENCES - Manila

POLISH ACADEMY OF SCIENCES. INSTITUTE OF MATHEMATICA

POLSKA AKADEMIE NAUK-PRACE GEOLOGICZNE

POLSKA AKADEMIE NAUK-PRACE MINERALOGICZNE

PORTUGALIA PHYSICA - Sociedade Portuguesa de F́ısica

PROCEEDINGS OF THE ACADEMY OF NATURAL SCIENCES OF PHILADEL-

PHIA

PROCEEDINGS OF THE CALIFORNIA ACADEMY OF SCIENCES

PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY

PROCEEDINGS OF THE ROCHESTER ACADEMY OF SCIENCES

PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON - A: Mathematical and

Physical Sciences

PROCEEDINGS OF THE ROYAL SCOIETY OF EDINBURGH - Section A (Mathe-

matical and Physical Sciences)

PROCEEDINGS OF THE ROYAL SOCIETY OF QUEENSLAND

PUBLICACIONES FUNDAMENTALES DE LA ACADEMIA DE CIENCIAS DE SOFIA

PUBLICATION DE L’INSTITUT DE RECHERCHE MATHEMATIQUE AVANCEE -

Strasbourg

PUNIME MATEMATIKE - Prishtine

QUADERNI DELL’ ACADEMIA UDINESA.

QUATERLY OF APPLIED MATHEMATICS

REVISTA CUBANA DE FISICA

REVISTA COLOMBIANA DE MATEMÁTICAS
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REVISTA DE LA FACULTAD DE INGENIERIA QUIMICA- Univ. Nal. del Litoral -

Argentina

REVISTA TRIMESTRAL DEL INTERNATIONAL TIN RESEARCH INSTITUTE

REVISTA UNIVERSIDAD NACIONAL DE LA PLATA - Argentina

REVISTA DE LA UNION MATEMATICA ARGENTINA

REZIMEA ABSTRACS - POGDORICA

SCIENCE BULLETIN - University of Kansas

SCIENTIFIC PAPERS NAT. HISTORY MUSEUM. The University Kansas.

SEARCH AGRICULTURAL ITHACA NEW YORK

SENCKENBERGIANA BIOLOGICA - Frankfurt

SENCKENBERGIANA LETHAEA - Frankfurt

SMITHSONIAN CONTRIBUTIONS TO PALEONTOLOGY

SPECTRUM - Akademie der Wissenschaften der DDR

STUDIA GEOLOGICA POLONICA - Polska Akademy Nauk Warsovia

SUT JOURNAL OF MATHEMATICS - Science University of Tokio

T. KOSCIUSZKI TECHNICAL - Univesity of Cracow

UNIVERSIDAD NACIONAL DE LA PLATA - Notas del museo de la Plata

UNIVESITY OF THE STATE OF NEW YORK - Bulletin

UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS

VERTEBRATOLOGICKE ZPRAVY CESKOLOVENSKA AKADEMIE BRNO

ZBORNIK RADOVA FILOZOFSKOG - Fakulteta u Nisu-Serija Matematika

ZBORNIK - Acta Musei Nationalis - Pragae

ZOOLOGICA POLONIAE

ZPRAVY USEB (Vertebralogy zpravy) - Brno - Checoslovaquia
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