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RESUMEN

ESTIMACION DE LA FRECUENCIA RESPIRATORIA MEDIANTE ANALISIS
TIEMPO-FRECUENCIA DE LA SENAL DE VARIABILIDAD DEL RITMO
CARDIACO EN CONDICIONES NO ESTACIONARIAS

La influencia de la respiracion sobre la senal electrocardiografica (ECG) se manifiesta tanto en
variaciones morfologicas de la misma como en una modulaciéon del ritmo cardiaco, conocida como
arritmia sinusal respiratoria (RSA), por lo que medidas basadas en el ECG pueden, de forma indirecta,
proveer informaciéon de la respiracion, que resulta de especial interés cuando el registro de la senal
respiratoria es inviable o incomodo para el paciente.

El objetivo de este trabajo fin de master (TFM) es estimar la frecuencia respiratoria a partir del
estudio tiempo-frecuencia (TF) de la senal de variabilidad del ritmo cardiaco (HRV) en condiciones
no estacionarias. La recuencia respiratoria se estima como la componente de alta frecuencia (HF) de
la HRV, que, a su vez es estimada mediante la localizaciéon para cada instante de tiempo del pico
méaximo de la distribucion pseudo Wigner-Ville suavizada (SPWVD) de la HRV en la banda de HF.

El método desarrollado en éste TFM utilizada para el calculo de la SPWVD ventanas de filtrado
frecuencial de longitud variable con el fin de minimizar el error cuadratico medio (MSE) de estimacion
de la frecuencia, en especial cuando las variaciones de ésta son no lineales. La longitud 6ptima de la
ventana de filtrado frecuencial para cada instante de tiempo depende tanto de las variaciones de la
frecuencia a estimar, como de la amplitud la componente de HF y del ruido presente en la senal, que
es necesario estimar.

En condiciones no estacionarias, no solo la frecuencia sino también la amplitud de la componente
HF y el ruido pueden variar, por lo que se ha desarrollado un estimador de la amplitud instantéanea
de la componente HF a partir de la SPWVD con eliminacion de la influencia de los filtrados temporal
y frecuencial. También se ha desarrollado un estimador de la potencia instantédnea del ruido presente
en la senal que incluye los errores de estimacién de la amplitud instantdnea. Para el célculo de la
SPWVD se han utilizado diferentes kernels de filtrado tiempo-frecuencia formados por tres tipos de
ventanas, rectangular, Hamming y exponencial, tanto en tiempo como en frecuencia.

La evaluaciéon del método se ha realizado tanto a través de un estudio de simulacién, en el que se
han generado senales con caracteristicas tiempo-frecuencia similares a las de la HRV, variaciones no
lineales de frecuencia y amplitudes variantes en el tiempo, como a través del analisis de una base de
datos, que consta del registro simultaneo de la senales ECG y respiratorias de 58 sujetos sometidos a
la escucha de diferentes estimulos musicales.

El método propuesto en este TFM estima la amplitud instantanea de la componente de HF de la
HRYV sobre la senales simuladas con un error medio de 0.324+2.294 % y su frecuencia con un error
medio de -0.23942.041 % (-0.008+6.026 mHz). La estimacion de la frecuencia respiratoria en senales
reales presenta un error mediano de -1.525+4.557 % (1.953+4.883 mHz) en los segmentos musicales y
de -0.919+ 6.542 % (11.465+43.477 mHz) en las transiciones entre segmentos musicales. Finalmente
el método desarrollado en este TFM ha sido comparado con otros existentes en la literatura, basados
en ventanas de filtrado frecuencial tanto de longitud fija como variable para amplitudes constantes.
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INTRODUCCION

1.1. Trabajo previo y contexto

Este trabajo fin de master se enmarca dentro del proyecto de investigacion TEC2007-68076-
C02-02/TCM financiado por el MCyT y ha sido realizado dentro del Grupo de Tecnologias de las
Comunicaciones (GTC) del Instituto de Investigacion en Ingenieria de Aragon (I3A) de la Universidad
de Zaragoza, y del Centro de Investigacion en Red en Bioingenieria, Biomateria y Nanomedicina
(CIBER-BBN).

1.2. Motivaciéon, objetivos y alcance

El objetivo de este trabajo fin de méaster (TFM), se centra en el estudio de la viabilidad de estimar
la frecuencia respiratoria mediante la aplicacion de técnicas tiempo-frecuencia (TF) sobre la senial de
variabilidad del ritmo cardiaco (HRV) en condiciones no estacionarias.

La necesidad de estimar la frecuencia respiratoria nace de su importancia en el estudio tanto de
las alteraciones en la respiracion (p.ej. la apnea del sueno), que pueden causar serios problemas o
desordenes a nivel metabolico, orgénico o nervioso [1], como de alteraciones en otros sistemas con los
cuales interacciona (p.ej. sistema cardiovascular).

La estimacion de la frecuencia respiratoria puede realizarse bien de forma directa sobre la propia
senal respiratoria o bien de forma indirecta a partir de otras senales bioldgicas como puede ser la
variabilidad del ritmo cardiaco (HRV) o la variabilidad de la presion sanguinea (BPV) al verse influidas
por la respiracion. El interés de la estimacion de la frecuencia respiratoria de forma indirecta reside en
las dificultades existentes en la estimacion directa sobre la propia senal respiratoria asociadas tanto
al registro como a la sensibilidad de la senal a interferencias y/o ruido. La dificultad del registro de la
senial respiratoria reside en las técnicas utilizadas para su registro (p.ej. espirometria o pneumografia),
métodos que necesitan del uso de dispositivos voluminosos, caros y personal altamente cualificado,
lo que dificulta su uso en determinadas aplicaciones como pruebas de esfuerzo, estudios del suemno y
monitorizacion ambulatoria; estos disposivitos pueden a la vez interferir con la respiracion del sujeto
provocando la aparicién de artefactos no fisiologicos en el registro [2]. Finalmente la sefial respiratoria
es muy sensible a cualquier movimiento del torso, o cualquier accion en las vias respiratorias como
pueden ser la tos o el habla.

La influencia de la respiracion sobre la actividad cardiaca se manifiesta tanto en variaciones
morfologicas del electrocardiograma (ECG) (efecto mecanico), como en una modulacion del ritmo
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cardiaco (efecto autonémico) [3].

Por una parte durante la respiracion se ocasionan movimientos toracicos (expansion y contraccion
del volumen torécico) que ocasionan movimientos de los electrodos usados para el registro del ECG que
a su vez se producen cambios en las distribuciones de las impedancias toracicas asociados al llenado y
vaciado de los pulmones ocasionando variaciones en el eje eléctrico del corazon [4]. Estas variaciones
son registradas por el ECG, y reflejadas como variaciones en la morfologia del latido sinusal. Por
tanto a partir del estudio de la morfologia de los latidos cardiacos puede derivarse una senal EDR
(senal respiratoria derivada del ECG) que permita la estimacion de la frecuencia respiratoria, como el
método propuesto en [2].

Por otra parte, se sabe que el ritmo cardiaco estd influido por la respiracion a través de un
fenomeno conocido como arritmia sinusal respiratoria (RSA). Esta se caracteriza por provocar un
incremento en el ritmo cardiaco durante la inspiraciéon y un decremento de éste durante la expiracion.
Simultaneamente cuando la frecuencia respiratoria aumenta, la amplitud de la RSA disminuye,
mientras que cuando el volumen toracico estatico o volumen de ventilacién aumenta, su amplitud
se ve incrementada, es decir, la amplitud de la RSA depende tanto de la frecuencia respiratoria como
de la profundidad con la que se ejecute [1, 5.

La HRV es considerada una medida no invasiva de la actividad de los sistemas simpético
y parasimpéatico. Estos sistemas comprenden las dos ramas principales del sistema autéonomo de
regulacion cardiovascular [6]. En un estudio espectral de la HRV, se establecen tres zonas o
componentes diferenciadas. La primera se encuentra en la banda de muy baja frecuencia (VLF)
[0, 0.04] Hz, y se piensa asociada a la actividad termorreguladora. La segunda se encuentra en la
banda de baja frecuencia (LF) [0.04, 0.15] Hz y se considera asociada a los procesos de regulacion de
la presion sanguinea. La tercera componente se conoce como la componente de alta frecuencia (HF),
se considera como una medida de la actividad parasimpéatica y asociada a la RSA. En condiciones
de reposo se localiza en un intervalo comprendido desde los 0.15 Hz hasta los 0.4 Hz. Si bien este
intervalo no es apropiado cuando la frecuencia respiratoria es inferior a 0.15 Hz (p.ej. en situaciones
de relajacion extrema o meditacion) o superior a 0.4 Hz (p.ej. durante prueba de esfuerzo). En estos
casos se ha propuesto el uso de bandas dindmicas centradas en la frecuencia respiratoria [7], lo que
precisa su conocimiento. En este TFM se considera una banda de HF comprendida entre 0.15 Hz y 0.5
Hz y asume que la componente de HF de la HRV representa una buena aproximacion de la frecuencia
respiratoria que, en consecuencia, podra ser estimada a partir de la misma.

El objetivo final de este TFM es la estimacion de la frecuencia respiratoria de forma indirecta a
partir del analisis de la senal HRV en condiciones no estacionarias. Para ello es necesario, en primer
lugar, la estimacion de la senal HRV a partir del ECG. En este TFM la HRV se obtiene a partir de los
instantes de ocurrencia de los latidos y mediante la técnica de modulacién en frecuencia de pulsos por
integracion (IPFM) [8, 9]. Despues la frecuencia respiratoria se estima como aquella frecuencia a la
que se encuentra el maximo de la distribucion pseudo Wigner-Ville suavizada (SPWVD) [10, 11, 12]
de la HRV en la banda de HF.

La SPWVD es una de las distribuciones cuadraticas TF més ampliamente utilizadas en el analisis
de la HRV en condiciones no estacionarias debido a su excelente resolucion TF ya que permite un
control independiente de los filtrados temporal y frecuencial. Ademas, la estimacion de la frecuencia
instantanea, mediante la deteccion del pico méaximo de la SPWVD no presenta ningtin sesgo cuando
la frecuencia instantanea varia linealmente en el tiempo [13|. Sin embargo, cuando la frecuencia
instantanea es una funcion no lineal del tiempo, el estimador presenta un sesgo que aumenta cuanto
més importantes son las no linealidades y mayor es la longitud de la ventana de filtrado frecuencial
[14].

En [15] se ha propuesto un método de estimacion de la frecuencia instantinea de una senal
modulada en frecuencia (FM) con variaciones de frecuencia no lineales basado en la deteccion del
pico maximo de la SPWVD, que minimiza el error cuadratico medio (MSE) de dicha estimacion
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mediante la aplicacion de ventanas de filtrado frecuencial de longitud variable.

La aplicabilidad del método propuesto en [15] para la estimacion de la frecuencia respiratoria a
partir de la SPWVD de la HRV esté limitada debido al hecho de que el método propuesto asume que
las amplitudes de las componentes de la senal cuyas frecuencias instantaneas se quieren estimar son
constantes, 1o que no sucede en las aplicaciones donde la RSA no es estacionaria. Por ello, en este
TFM se extendera el método de estimacion de frecuencia al caso de senales con componentes cuyas
amplitudes varfan en el tiempo. Para ello se disenara un estimador de la amplitud instantanea de la
componente HF de la HRV basado también en la SPWVD.

Se ha disenado un estudio de simulaciéon de senales con amplitudes tiempo-variantes y variaciones
de frecuencia no lineales sobre el que se han evaluado tanto el método de estimacion de frecuencia
instantanea propuesto en [15] como el método de estimacion de amplitud instantanea y la extension
del método propuesto en [15] al caso de amplitudes variantes, desarrollado en este TFM.

Finalmente los diferentes métodos de estimacion de la frecuencia respiratoria como la frecuencia
de la componente HF de la HRV a partir de la SPWVD propuestos, se han evaluado sobre senales
reales de una base de datos facilitada por el Maxplank Institute for Cognitive and Brain Sciences que
consta de 58 sefiales ECG y respiratorias registradas simultaneamente durante la escucha de distintos
fragmentos musicales clasificados como agradables o desagradables. Esta base de datos enfatiza las
caracteristicas no estacionarias de la frecuencia respiratoria al provocar variaciones en ésta de un
segmento musical a otro y durante las transiciones [16, 17].
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METODOS Y MATERIALES

En esta secciéon se presentan los métodos de estimacion de la frecuencia respiratoria estimada a
partir de la componente de alta frecuencia (HF) de la sefial de variabilidad del ritmo cardiaco (HRV),
asi como los métodos de evaluaciéon de los mismos.

Para la estimacion de la frecuencia respiratoria como la frecuencia de la componente HF de la
HRV se ha propuesto una modificacion del algoritmo presentado en [15] que incluye la estimacion
instantanea de la amplitud de la componente HF de la HRV y la estimacién adaptativa del ruido
en la banda de HF. El algoritmo propuesto en [15] esta disefiado para senales FM con amplitudes
constantes, pero se sabe que las componentes de la HRV presentan potencias variantes en el tiempo
en numerosas aplicaciones de interés fisiologico y patologico [18]. Por lo que en este TFM se propone
la estimacion instantanea tanto de las amplitudes como del ruido para intentar reducir el error de
estimacion inherente al algoritmo.

Para la evaluaciéon del método propuesto se ha disenado un estudio de simulacion de senals FM
con variaciones de frecuencia instantanea no lineales y amplitudes variantes en el tiempo.

2.1. Meétodos de estimacion

2.1.1. Estimacion de la frecuencia respiratoria

Supongamos que la sefial analitica de la HRV puede modelarse como [19]:

Q
z(n) = ZAq(n)ej¢4(") +v(n) (2.1)
g=1

donde Q representa el niamero total de componentes frecuenciales principales en la senal, A,(n) la
amplitud de cada componente, ¢4(n) la fase de cada componente y v(n) un ruido blanco complejo.
La relacion entre la fase y la frecuencia instanténea de cada componente viene dada por:

falm) = =L (m) (2.2)

" 2ndn
La estimacion de la frecuencia respiratoria instantanea se realiza a partir de la localizacion del pico
de amplitud maxima en la banda de frecuencia de HF de la HRV para cada instante de tiempo [15].

F(n)= f—]\} arg méx {P,(n,m)} (2.3)
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donde n y m denotan los indices en tiempo y frecuencia respectivamente, Fs es la frecuencia de
muestreo de la senal z(n) y P,(n,m) su SPWVD, definida segun [19]

K—1 N—1
P.nm) =23 h®)P | S g@)r(ntp k)| e EHE =M1, M (24)
k=—K+1 p=—N+1

|h(K)|? v g(n) definen las ventanas de filtrado frecuencial y temporal de longitudes 2K-1 y 2N-1,
respectivamente. El término r,(n, k) representa la funciéon de autocorrelacion instantanea definida
como: 7. (n, k) = z(n + k)z*(n — k).

El método propuesto en [15] deriva una formulacion asintotica para el sesgo y la varianza del error
de estimacion de la frecuencia de cada componente, asumiendo el modelo en (2.1) con amplitudes
constantes. Dicha formulacion se ha derivado en [20] en ausencia de filtrado temporal y en [15] con un
filtrado temporal hiperbolico, obteniendo el mismo resultado. En [15] se demuestra como al utilizar
kernels de filtrado temporal y frecuencial independientes, siempre y cuando la ventana de filtrado
temporal presente area unitaria, la formulacion de la varianza del error de estimacion es independiente
de la ventana de filtrado temporal utilizada. La formulacion asintotica del sesgo y varianza del error
de estimacién de la frecuencia instantanea de cada componente, 6, y 027 n, respectivamente, viene
dada por [15, 20]:

- 1
Ogn, = F [AFq(n)} < 30 5P {‘Fﬁz }hi (2.5)
. 302 o2 s
o, =var {AFq(n)} = ﬁ [1 + 2;1’2] 73 (2.6)
q ql s

donde Fq@}zs representa la segunda derivada de la frecuencia instantanea de la componente g estimada

con una ventana de filtrdo frecuencial de duracién temporal hg, o2 es la varianza del ruido AWGN
presente en la sefial, A, la amplitud de cada componente y T el periodo de muestreo.

De la formulacion del sesgo (2.5) y la varianza (2.6) del error de estimacion de la frecuencia
instantanea, se observa que cuando la longitud de la ventana de filtrado frecuencial aumenta, aumenta
el sesgo y disminuye la varianza. Ademés el sesgo depende linealmente de la segunda derivada de la
frecuencia, considerada constante lo que hace que éste varie a lo largo del tiempo en funciéon de las
variaciones de la frecuencia instantanea [15, 20].

Conociendo la formulacion del sesgo (2.5) y la varianza (2.6) del error de estimacion de la frecuencia
instantéanea se puede derivar la longitud de la ventana de filtrado frecuencial que minimiza el error
cuadratico medio de dicho error para cada instante temporal [15, 20]. El principal problema de esta
solucion es que requiere el conocimiento “a priori” de la evoluciéon temporal de la frecuencia instantanea
que trata de estimar. En [15, 20] se propone una alternativa suboptima para el calculo de la longitud
de la ventana de filtrado frecuencial para cada instante de tiempo. Esta alternativa utiliza tinicamente
la formulacion de la varianza del error de estimacion de la frecuencia instantanea.

La estimacion de la longitud 6ptima de la ventana de filtrado frecuencial se realiza a partir de
un algoritmo iterativo no paramétrico. Para ello se define una secuencia de ventanas de filtrado
frecuencial, hg, con longitudes crecientes (h1 < he < ... < h;), donde hs presenta una longitud
2K -1,y se calculan los correspondientes intervalos de confianza en funcion de la estimacion frecuencial
instantéanea obtenida con (2.3) y la varianza del error de estimacion de la misma (2.6), asumiendo un
bias 0g.n, < kogn, [15, 20], de acuerdo a:

Dy, = {F(th (n) — 2’€0q7hsvﬁq7hs (n) + 2“‘7(1%5} (2.7)

F, n,(n) corresponde a (2.3) de la componente ¢ estimada sobre una SPWVD con ventana de filtrado
frecuencial de longitud hs y & se establece igual a 2 de forma que asumiendo una distribuciéon gaussiana
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del error de estimacion y una ventana de filtrado frecuencial hg suficiente los intervalos de confianza
presenten algun punto en comin con una probabilidad del 95 %. Los intervalos de confianza D, j,
definen la region donde se localiza la estimacion O6ptima en funcién de la longitud de la ventana
utilizada.

La longitud de la ventana 6ptima se elige como la mayor hg para la cual los segmentos Dy y D1
tienen un punto en comun. La idea es que si los segmentos anteriores no tienen ningun punto en comun
el sesgo es demasiado grande comparado con la desviacion estandar. La longitud seleccionada como
optima se considera como el compromiso entre sesgo y varianza donde el sesgo y la desviacién estandar
tienen el mismo orden. De las expresiones (2.5), (2.6) y (2.7) se deduce que, si las amplitudes de las
componentes son constantes, la varianza del error de estimacion para cada longitud de ventana hg es
constante para toda la duracion de la senal, mientras que el sesgo varia en funciéon de las variaciones
frecuenciales de la senal. Por tanto, la duracion de los instervalos de confianza para cada longitud
de ventana de filtrado frecuencial es constante para toda la duracion del registro. Sin embargo, en
condiciones no estacionarias en las que tanto las amplitudes de las componentes como el ruido presente
en la senal pueden ser variantes en el tiempo, es razonable pensar que los intervalos de confianza pueden
tener diferentes duraciones en funcion de los valores instantaneos de amplitud y ruido. Por eso, en
este TM se propone la extension del método propuesto en [15] de manera que la varianza del error de
estimaciéon para cada longitud de ventana hg es variante en tiempo:

o h.(n) = var [Aﬁq(n)] = 2332(27&) {1 + 22’2(22)} % (2.8)
D () = { By, (n) = 26045, (1), o, (n) + 2604, (n) } (2.9)

El algoritmo establece una estimacién inicial de FHF(n) igual a la obtenida con la ventana de
filtrado frecuencial hs de menor longitud, esta estimacion es luego modificada de acuerdo al algoritmo
propuesto, de forma que nos aseguramos que en cada instante se realiza una estimacion.

El algoritmo se ha implementado para trabajar sobre bloques de senal de 5 minutos solapados
2N-1 muestras, con senales muestreadas a una frecuencia de muestreo Fy de 4 Hz y 2M = 2048,
dando una resolucion frecuencial de 1mHz. Se han considerado diferentes tipos de filtrado temporal y
frecuencial, en concreto, rectangular, Hamming y exponencial.

h(n) = 0,54 — 0,46 cos (27TLT_l 1) (2.10)

h(n) = e~ 1"l (2.11)

Para las ventanas rectangulares de tiempo y frecuencia se han utilizado los siguientes valores,
2N-1 = {21,51,101,201} y hs = {3,7,15,23,31,49,63,95,127} respectivamente, no se consideraron
longitudes hs>127 muestras puesto que en un estudio preeliminar se observo que en la SPWVD los
términos cruzados presentaban mayor potencia que los términos de sefial. Las ventanas de filtrado
Hamming y exponencial se definen en (2.10) y (2.11), respectivamente.

Para las ventanas de Hamming y exponencial se han estimado los parametros de filtrado (longitud
L para Hamming y factor de amortiguamiento - para exponencial) de forma que presenten el mismo
area que la rectangular de P muestras.

P +046

L= 2.12
0,54 (2.12)

(2.13)

SIS

’y:
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Los desarrollos se muestran en el anexo A. La tabla 2.1 muestra los valores de equivalencia para
las ventanas Hamming y exponencial respecto a la rectangular.

Tabla 2.1: Equivalencia entre las longitudes de las ventanas rectangular (P) y hamming (L) y factor
de amortiguamiento de la ventana exponencial (7).

P2N-1] L | 4 P2K-1] L | 4
21 39 ] 0.095 3 7 ]0.667
51 95 | 0.039 7 13 | 0.286
101 | 187 | 0.020 15 29 | 0.133
151 | 281 | 0.013 23 | 43 | 0.087

31 59 | 0.065
49 91 | 0.048
63 | 117 | 0.032
95 | 177 | 0.021
127 | 237 | 0.016

2.1.2. Estimacion de amplitud

Existen diversas formas de estimar la potencia instantanea a partir del espectro de la SPWVD,
tanto paramétricas como no paramétricas. En este trabajo se ha optado por estimar la potencia de
cada componente de la senal analitica en (2.1) a través de la integracion en frecuencia de cada corte
temporal de SPWVD teniendo en cuenta el efecto que sobre ésta tienen las ventanas de filtrado
temporal y frecuencial de la SPWVD.

En [21] se establece que la potencia instantdnea de una senal puede ser obtenida a partir de su
distribucion Wigner-Ville mediante:

1 M
p=(n) = 537 > W.(n,m) (2.14)

m=—M+1

donde W, (n, m) es la distribucion Wigner-Ville (WVD) de la senal z(n). La WVD se define de acuerdo
a:
K—1
W.(n,m) =2 Z r.(n+p k)e 2 m=—-M4+1,.., M (2.15)
k=—K+1

Esta distribucion cumple las condiciones marginales de tiempo y frecuencia pero su capacidad de
interpretacion se ve altamente reducida debido a la gran presencia de términos cruzados. Los términos
cruzados son debidos bien a la presencia de mas de una componente o a variaciones no lineales de la
frecuencia de las componentes [12, 22, 23, 24|. Por ello se propone el uso de la SPWVD (2.4), ya que
reduce los términos cruzados, pero al no cumplir las condiciones marginales en tiempo y frecuencia,
la relacion en (2.14) deja de ser vélida, de forma que es necesario evaluar la influencia de las ventanas
de filtrado en la estimacion de la potencia.

Consideramos la estimacion de la potencia de la componente de HF de la HRV a partir de la
integracion de la SPWVD como:

1 T
bap(n) = 537 > P.(n,m) (2.16)

m=—T+1
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donde Py () denota la estimacion de la potencia instantanea obtenida a partir de la integracion de la
SPWVD en un ancho de banda definido por 27 muestras. Teniendo en cuenta las propiedades de la
tranformada de Fourier, la SPWVD en (2.4), puede expresarse como [21]:

K—1 N—1
Pz(nﬂ’n) = 2H(m)* Z Z g(p)Z(n—l-p—l-k)z*(n—l—p—k;) e*jQﬂ'%k}
k=—K+1 [p=—N+1
= 2H(m)*S,(n,m) (2.17)

donde S (n,m) representa la WVD filtrada en tiempo y H(m), es la transformada discreta de Fourier
con 2M puntos de la ventana de filtrado frecuencial |h(k)|*:

H(m) = DFTop {|h(k)|*} (2.18)

En el caso de sefiales ideales (monocomponente, ausencia de ruido y amplitud constante), cada corte
instantéaneo de la SPWVD presenta el filtro H(m), desplazado a la frecuencia central de la banda de
interes en dicho instante. Al enventanar una senal, su potencia deja de estar concentrada en un ancho
de banda limitado, extendiendose a todo el dominio frecuencial. Por ello siempre y cuando integremos
en un ancho de banda limitado el espectro de una senal enventanada en frecuencia, obtendremos una
potencia proporcional a la real, la cual puede expresarse como:

R S

donde ps(n), es la potencia estimada a partir de la integracion en una banda limitada de S,(n,m) y
fe(n) representa un factor de correccion en funcion de la energia de la ventana que no se ha incluido
al limitar el ancho de banda en el cual se ha realizado la integracion.

En [21, 25] se propone el uso de ventanas con un factor de sensibilidad elevado de forma que la
mayor parte de la energia de la senal quede concentrado en el interior del l6bulo principal. De esta
forma limitando el ancho de banda de integracién al l6bulo principal, la estimacion es mas ajustada
a la potencia real de la senal. El factor de correcciéon lo calcularemos como:

Yoo pr 1 H(m)
fc n)=
" Sy H(m = mue(n))

(2.20)

donde myp(n) = Fyr(n)/Fs4M.

Consideraremos entonces que la influencia del filtrado frecuencial puede eliminarse mediante un
factor multiplicativo variante en el tiempo.

Para la eliminacion de la influencia del filtrado en tiempo [21] analizamos la siguientes expresion
de ps(n):

K-1 N-1

2
b)) = 5> | X | X sk | e

m=l; |k=—K+1 \p=—N+1

- ﬁ z_: g(p)[z< z_: Tz(n—i—p,k)ej%}'\'}k)]

p=—N+1 m=l; \k=—K+1
lo K—-1

o [ (5 )]

m=l; \k=—K+1

— g (ﬁ ) Wz<n7m>>

= g(n)*p=(n) (2.21)
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donde p,(n) representa la potencia estimada de la componente de HF de la senal analitica z(n).

En la ecuacion (2.21), podemos ver como el filtrado temporal se traduce en un filtrado de la potencia
estimada sobre la WVD orginal. De esta forma mediante un filtrado inverso o proceso deconvolutivo
podremos eliminar la influencia del filtrado temporal.

La potencia obtenida al integrar en frecuencia cada corte instantaneo de la SPWVD, ps,(n), puede
relacionarse con la potencia instantédnea de la sefial orginal, p,(n), mediante la ecuacion:

p=(n) = g7 (n) * (sp(n) fe(n)) (2.22)

donde g~!(n) representa la funcién inversa de g(n).

a. Definicion del ancho de banda de integracion

Para poder aplicar la deconvolucién el ancho de banda en cada segmento debe ser el mismo en
cada instante temporal, de forma que se mantengan las propiedades de linealidad de la integral y
la convolucion. Existen diversas formas de definir el ancho de banda de integracion [3, 7, 26]. En
este trabajo se ha optado por definir un ancho de banda constante que contega el 16bulo principal
de la ventana de filtrado frecuencial para todos los instantes. Cada corte temporal de la SPWVD
presentard un maximo a la frecuencia en la cual se localice la componente HF de la HRV, Fy»(n),
que se estima de acuerdo a (2.3).

Amplitud (A.U)
°
N
Amplitud (A.U)
Amplitud (A.U)

0.4 0.4
0.2 0.2
AN | S— .

500 -500

0 500
m

(b)

Figura 2.1: Transformada discreta de Fourier de las ventanas de filtrado frecuencial de igual resolucion
a una ventana rectangular de 31 muestras obtenida con 2M = 1024 muestras. (a) Ventana rectangular,
(b) ventana Hamming (c) ventana exponencial.

La anchura del l6bulo principal Af se define como las muestras entre los dos primeros cruces
por cero situados a cada lado del maximo de H(m) y centrado en éste, Af = —[ : [, y depende
unicamente del tipo y longitud de la ventana de filtrado frecuencial. La figura 2.1 muestra para
cada tipo de ventana (rectangular, exponencial y Hamming) su transformada discreta de Fourier
H(m) en azul y las muestras pertenecientes al lobulo principal en rojo. En caso de no darse un
cruce por cero (ventana exponencial), se identifican como extremos los puntos que presenten una
amplitud inferior a 0.01 a cada lado del maximo. Se define un ancho de banda de integracion B,,
de acuerdo a:

Bu= 2\ lmae(n) + A7} = i, ) (2.23)

b. Eliminacién de la influencia del filtrado frecuencial

Para eliminar la influencia del filtrado frecuencial se calcula el factor de correccién para cada
instante, de acuerdo a (2.20) y se multiplica por la potencia estimada a partir de la integracion en
cada instante de la SPWVD en el ancho de banda definido en el apartado a, segun (2.19).
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c. Eliminacién de la influencia del filtrado temporal

La deconvolucién se realiza en el dominio transformado de Fourier. Para evitar los ceros de la
transformada discreta de Fourier de la ventana de filtrado temporal se utiliza el filtro inverso de
Wiener [27]. Este se define como:

“1(m) = G*(m)
G )77|G(m)|2+e (2.24)
G(m) = DFT {g(n)}
e =0,01

donde DFT{e}, denota al operador transformada discreta de Fourier, y m es el indice frecuencial
de la DFT.La DFT debe calcularse en el nimero de puntos que presenta la sefial z(n) en dominio
temporal. Para no introducir un sesgo en la potencia deconvolucionada asociado a €, éste so6lo
se suma en los indices frecuenciales donde la potencia corregida, ps(n), no contiene informacion
relevante. Se considera que la sefial no contiene informacion relevante fuera de una ventana centrada
en el maximo de la transformada de Fourier de ps(n) que contenga al menos el 90 % de la potencia
total.

La deconvolucion se lleva a cabo en el dominio frecuencial, de forma que la potencia final responde
a:

p-(n) = DET"'{G~'(m)DFT {ps(n)}} (2.25)

Finalmente la estimaciéon de la amplitud se hace a partir de la potencia instantanea estimada de
acuerdo a:

Az(n) =+/p.(n) (2.26)

La estimacion de psp(n) y su correccion se hace por bloques de igual forma que la estimacion
de frecuencia, mientras que la deconvolucion se realiza sobre toda la senal. Esto se realiza para
evitar que tanto el efecto circular de la convolucion discreta como los transitorios asociados a los
filtros utilizados, aparezcan en cada segmento introduciendo errores adicionales a los ya inherentes
en la SPWVD. La SPWVD presenta en sus extremos falta de informacién asociada a la influencia
de la ventanas de filtrado temporal utilizada de forma que las primeras N y ultimas N-1 muestras
presentaran un error de estimacion insalvable y asociado a la autocorrelacion instantdnea. Con el
solapamiento establecido eliminamos este error en cada segmento y mediante la deconvolucion de la
senal completa, los transitorios y efectos circulares de la convoluciéon quedan limitados a un ntmero
de muestras igual al transitorio del filtro asociado a la ventana utilizada, en el inicio y el final de la
senal.

2.1.3. Estimacién de ruido

El estimador de ruido propuesto en [15], no presentaba resultados validos sobre las senales
simuladas, puesto que la amplitud simulada es variante en el tiempo, de modo que se considero
introducir un algoritmo de estimacién de la potencia de ruido variante en el tiempo que tenga en
cuenta no solo el ruido presente en la sefial z(n) sino posibles errores en la estimacion de las amplitudes
instantaneas

Se propone un estimador de ruido instantéaneo a partir de la sefial original y de la estimacion de
amplitudes y frecuencia instantéaneas de la Sec. 2.1.2, considerando sefiales monocomponentes:

(n) = 2(n) — A, (n)ei%=(™ (2.27)
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donde ¢, (n) se obtiene a partir de la relacion definida en (2.2) y de la frecuencia estimada para
determinar el ancho de banda del estimador de amplitud, la senal estimada debe ser previmente
filtrada paso banda segun se describe en la Sec. 2.1.4.

Esta senal aparte de ruido, incluye un error asociado a la estimacion de la frecuencia.La estimacion
de potencia instantédnea del ruido se realizara de acuerdo a:

oo (n) = v(n)v*(n) (2.28)

De esta forma se pueden corregir los errores de estimacion de amplitud instantanea en el algoritmo
propuesto.

2.1.4. Preprocesado y postprocesado de la senal analitica

Tanto el estimador de frecuencia descrito en la Sec. 2.1.1 como el estimador de amplitud descrito
en la Sec. 2.1.2 han sido disefiados para trabajar en bloques. Ambos algoritmos estan disenados
unicamente para la estimacion de la componente de HF de la HRV. Para que funcionen de forma
optima es necesario aplicar un preprocesado comun y un post-procesado especifico.

a. Preprocesado

Para reducir la posible aparicion de términos cruzados en la SPWVD y poder aplicar filtrados
temporales de menor longitud (obteniendo mayor resolucion) la senal analitica z(n) en (2.1) es
filtrada paso banda con un filtro Butterworth de orden 9 y frecuencias de corte de 0.1 Hz y
0.65 Hz, mediante el algoritmo backward-forward IIR filtering [10]. El algoritmo de filtrado se ha

Amplitud (A.U)
o o
o ©

o
IS

o
)

o

o

0.5 1 15
Frecuencia (Hz)

Figura 2.2: Respuesta en frecuencia del filtro Butterworth de orden 9 y banda de paso [0.1, 0.65] Hz

seleccionado para que no introducir distorsion de fase en la senal, el tipo de filtro se ha seleccionado
por presentar respuesta maximalmente plana en la banda de interés de forma que no se modifiquen
las caracteristicas de la senal en la misma. La banda frecuencial se establecié de forma que el filtro
presentara respuesta unitaria y plana en la banda de HF de la HRV seleccionada. La figura 2.2,
muestra la respuesta frecuencial del filtro disenado, los circulos rojos delimitan la banda frecuencial
de HF considerada.

La senal analitica, una vez filtrada paso banda, es segmentada en bloques de 5 minutos de duracién
con un solape de 2N-1 muestras, longitud de la ventana de filtrado temporal. Cada segmento es
entonces procesado por separado con los algoritmos anteriores.

b. Post-procesado

El post-procesado consiste en unificar los bloques de nuevo en la senal. Para ello se eliminan las
primeras N y ultimas N-1 muestas en los segmentos intermedios y tnicamente las ultimas N-1
o primeras N muestras en el primer y tltimo bloque respectivamente. Una vez eliminadas estas
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muestras las senales estimadas mediante el algoritmo de estimacién frecuencial o el método de
estimacion de amplitud se concatenan.

El algoritmo es el mismo para ambos estimadores, frecuencia y amplitud, pero difiere el momento
de aplicacion. En el estimador de amplitud es necesario aplicarlo antes de realizar la deconvolucion
y en el estimador de frecuencia se aplica al final de la estimacion completa.

2.2. Materiales

2.2.1. Estudio simulacién
Para el estudio de simulacion se han disenado senales HRV con amplitudes variantes en el tiempo,

componente LF de frecuencia constante y componente HF variante en el tiempo. La senal analitica
de HRV simulada se define a partir de (2.1) con dos componentes principales, de acuerdo a:

z(n) = App(n)e?® 7™ 4 Ay p(n)e?®mr ™) 4 y(n) (2.29)

donde A, (n) y Aur(n), ¢.r(n) ¥y dur(n) representan la amplitud y fase de las componentes de LF
y HF de la HRV.
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Figura 2.3: Ley de variacion de (a) amplitud A 4 y (b) frecuencia F' ,; de la componente HF de la
HRV

La figura 2.3 muestra la amplitud Ay -(n) de la componente de HF de la HRV asi como su frecuencia
Fyr»(n). Las amplitudes de las componentes de la HRV se definen en funcion del balance simpatovagal

(Bsy = Apr(n) ), Bsy = 0,5 [18]. La frecuencia de LF se establece a 0.1 Hz. El ruido AWGN se define

sv = A2, (n)

con una SNR de 20 dB [19] de acuerdo a: SNR = 201log (méx,, {Ayr(n)}) — 201og (o).
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2.2.2. Senales reales

La base de datos utilizada consta de 58 senales respiratorias y ECG registradas simultaneamente
con una frecuencia de muestreo de 1 KHz. Durante el registro el paciente se encuentra en posiciéon
supina y esta sometido a la escucha de distintos tipos de segmentos musicales. Se sabe que la musica
influye el sistema nervioso auténomo (ANS), lo que hace que la componente de HF de la HRV no
sea estacionaria, sino que varie segtin el segmento musical y durante las transiciones entre segmentos
musicales [17].

pleasant condition
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90s

unpleasant condition

S8 5 it —

Q0s
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J‘Ji‘ B 5—5 [ i AL gn:::: 1 T ES' - E E
5
rest condition
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Figura 2.4: Secuenciacion de los segmentos musicales durante un registro y tipos de segmentos, de
arriba a abajo, tono agradable, tono desagradable, tono shepared y fragmento de silencio.

Cada registro presenta una duraciéon aproximada de 45 minutos y consta de 6 fragmentos musicales
y 7 fragmentos de silencio. Los fragmentos de silencio presentan una duracion similar a los musicales.
Se han utilizado tres tipos de fragmentos musicales clasificados como misica agradable, no agradable
y tono shepared o de control, que se presentan de forma aleatoria en la secuencia mencionada. La
figura 2.4 muestra la secuenciacion de los distintos fragmentos dentro de un registro. Dos senales
acusticas indican el inicio y la proximidad de un nuevo fragmento musical. La primera senal aparece
5 s antes del inicio del mismo y la segunda aproximadamente 10 s tras la finalizacion de éste, donde
al sujeto se le pide evaluar el segmento escuchado. Informacién mas detallada se puede encontrar en
[17].

La senal respiratoria es diezmada a una frecuencia de muestreo Fs de 4 Hz. La linea de base se
reduce mediante un filtrado paso alto con filtro de Butterworth de orden 3 y frecuencia de corte de
0.1 Hz. El ruido de alta frecuencia se elimina filtrando la senal con un filtro Butterworth de orden 3
y frecuencia de corte de 1.8 Hz. El algoritmo de filtrado de nuevo es backward-forward IIR filtering.
Esta senal servird como referencia para evaluar los métodos propuestos.

La sefial HRV se estima a partir del ECG mediante un algoritmo basado en el modelo de modulaciéon
en frecuencia de pulsos por integracion (IPFM) que incluye la deteccion y correccion de latidos
ectopicos [8, 9]. La HRV es muestreada con una frecuencia de muestreo Fs; 4 Hz y se obtiene su
senal analitica a partir de la transformada de Hilbert [10].
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2.3. Meétodos de evaluaciéon

2.3.1. Estudio de simulacion

Se han realizado dos tipos de evaluacion sobre las seniales simuladas, la primera para el estimador de
amplitud definido en la Sec. 2.1.2 y la segunda de la estimacion de la frecuencia instantanea obtenida
con el método definido en la Sec. 2.1.

La evaluacion del método de estimacion de amplitud se ha realizado tanto en términos de potencia
como de amplitud de las senales presentadas en la Sec. 2.2.1. El error se estima de forma instantdnea
de acuerdo a:

ep(n) = 100% [%)] (2.30)
para la potencia instantanea y:
ea(n) = 100 Z(njlz_(n‘;lz ™) g (2.31)

para la amplitud instantanea.

La evaluacion del error de estimacion de la frecuencia instantanea se ha realizado tanto en términos
absolutos como en relativos de acuerdo a:

ex(n) = ffjHF(n) — Fup(n) [Hz] (2.32)
S (2.33)

La evaluacion del error de estimacion en frecuencia se ha realizado tanto para toda la duracion
de la senal, como por separado para los segmentos con variaciones frecuenciales aproximadamente
lineales y para los segmentos con variaciones frecuenciales no lineales.

La caracterizacion del error de estimacion se ha realizado en términos de error medio (2.34) y
desviacion estandar (2.35), de acuerdo a:

1
5l — J
&= ;e (n) (2.34)

, 1 X
ol =\ > (ed(n) — &) (2.35)
s n=1

(2.36)

donde e(n) denota el error considerado, e,(n) en caso del error en potencia, e,(n) para la amplitud
0 e en frecuencia, j denota la realizacion y Ny denota el nimero de muestras en una realizacion. Se
consideraran valores medios para 100 realizaciones de (2.34) y (2.35) para la obtencion de un error
cuadratico medio (MSE) de acuerdo a:

1 Ny
e=—9) & (2.37)
N, —
1o
0= o o (2.38)
T j=1
MSE =& + o2 (2.39)

donde NV, denota el niimero de realizaciones de un experimento.
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2.3.2. Senales reales

La evaluacion del método de estimacion sobre las senales reales se basa en el estudio del error de
estimacion de la frecuencia instantanea del método propuesto en la Sec. 2.1, mediante las ecuaciones:

E.(n) [HZ] (2.40)
F, (n)
)

ex(n) = FHF(n
_ FHF

(n

= =

[%] (2.41)

er(n)

>

r(n

donde el término F, r(n), define la frecuencia instantanea estimada a partir de la componente HF de
la HRV y F.(n) la frecuencia de referencia estimada con los mismos parametros y método sobre la
senal respiratoria de referencia.

Los errores se evaltian en términos del error mediano y la desviacién mediana absoluta tanto en
términos relativos como en términos absolutos. Se han seleccionado valores medianos para realizar
una evaluacion robusta frente a estimaciones erréneas derivadas, por ejemplo, de la presencia de falsas
detecciones, latidos ectopicos o cualquier otro artefacto en la senal de HRV. El error mediano (emeq)
y la desviacion mediana absoluta (M AD) son estimadores robustos del error y de la dispersion, y se
definen de acuerdo a:

el . =median, {e%(n)} (2.42)

MAD’ = median, {‘e%(n) —e } (2.43)

med

donde j indica el segmento de senal, musical o transicién, considerado; los valores medios de €,,eq ¥
MAD en los distintos segmentos se obtienen de acuerdo a:

1 N, Ny, )
Emed = —— J 2.44
€ d NmNh jzz:l emed ( )
1 Ny Np,
MAD = MAD? 2.4

donde N,, indica el niimero de segmentos en cada senal y Nj el nimero de senales analizadas. El
método de estimacion de frecuencia se evalia finalmente de acuerdo a (2.44) y (2.45) para cada tipo
de segmento, musical o transicion.

Se considera como segmento musical un intervalo de 80 s de duracién tras los primeros 5 s a la
aplicacion de un nuevo estimulo musical. La transiciéon entre segmentos comprende desde los ultimos
20 s antes del comienzo de un nuevo estimulo musical hasta los primeros 5s del mismo.

Se han omitido el primer y ultimo estimulo musical de cada senal de forma que se eviten errores
asociados a los filtrados y la autocorrelacion instantéanea intrinsecos de la SPWVD y también del
estimador de amplitud.

2.4. Comparaciéon de métodos

2.4.1. Estimacion adaptativa con amplitudes constantes

Este método de comparacion consiste en el anélisis del error de la estimaciéon de frecuencia con el
método propuesto en [15] frente al error obtenido con el método propuesto en este trabajo basado en
la estimacion de amplitudes instantéaneas.
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2.4.2. Estimacién tradicional

Esta comparativa consite en evaluar el error de estimacién obtenido con el método de estimacion
propuesto en la Sec. 2.1 frente al derivado de la estimacion tradicional basado en las mismas ventanas
de filtrado frecuencial pero con longitud fijas para toda la duracion de la senal.






RESULTADOS

En esta seccion mostraremos los resultados méas relevantes de los estudios de evaluacion realizados.
Se incluye una primera subseccion donde se muestran los resultados de la evaluacion del estimador
de amplitud instantdnea y del estimador de ruido. En la segunda subseccién se mostraran los
resultados del estimador de frecuencia propuesto sobre las sefiales simuladas para finalmente mostrar
los resultados obtenidos al procesar senales reales en la tercera subseccion.

3.1. Evaluaciéon del estimador de amplitud y ruido

La evaluacién del error de estimacion de amplitud se ha realizado en términos normalizados sobre
100 realizaciones con SNR de 20dB. La seleccion del kernel 6ptimo para la estimacion de Ay »(n) se ha
realizado en términos del error cuadratico medio (MSE). Se han estudiado distintas combinaciones para
el kernel tiempo-frecuencia, con ventanas exponencial, rectangular y Hamming de distintas longitudes.

Para el filtrado temporal se han establecido longitudes para ventanas rectangulares de
2N-1={21,51,71,101} y para el filtrado frecuencial hs={15,31,49,63,95,127}. Las ventanas de
Hamming y exponencial se han establecido con el mismo area que la ventana rectangular de acuerdo
a la formulacion desarrollada en el anexo A. Los resultados mostrados en las tablas a continuaciéon se
expresan en términos de las longitudes de la ventana rectangular de igual area.

Tabla 3.1: Raiz cuadrada del MSE (%) de Ayr(n) con filtrado temporal rectangular y distintos
filtrados frecuenciales

(a) Rectangular (b) Hamming (c) Exponencial

) 2N-1 ; 2N-1 ., 2N-1

| 21 51 71 101 | 21 51 71 101 s | 21 51 71 101
15 | 3.993 3.000 3.008 3.395 15 | 3.802 2.879 3.106 3.503 15 | 3.858 2.882 3.053 3.608
31 | 3.746 3.205 3.353 3.978 31 | 3.833 2977 3.201 3.766 31 | 3.879 2.884 3.070 3.580
49 | 3766 3.107 3.469 4.012 49 | 3714 3.115 3.324 3.868 49 |3.901 2921 3.083 3.616
63 | 3.850 3.455 3.478 3.970 63 | 3.724 3258 3372 3.002 63 | 3.877 2960 3.128 3.711
95 | 4.249 4.098 4.162 4.704 95 | 3.837 3.651 3.649 4.115 95 | 3.769 2.990 3.207 3.764
127 | 4447 4361 4532 5328 127 | 4163 4.140 3.967 4.623 127 | 3.722  3.095 3.260 3.883

La tabla 3.1 muestra la raiz cuadrada del MSE para el kernel separable con filtrado temporal
rectangular y los distintos filtrados frecuenciales considerados. La tabla 3.2 muestra los mismos
resultados pero con un kernel separable con filtrado temporal Hamming y finalmente la tabla 3.3,
los muestra para un kernel con filtrado temporal exponencial. En cada tabla, se destaca en rojo, la
combinacién de longitudes para cada tipo de kernel que permiten una estimaciéon con MSE minimo.

19
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Tabla 3.2: Raiz cuadrada del MSE (%) de Ay »(n) con filtrado temporal Hamming y distintos filtrados
frecuenciales

(a) Rectangular (b) Hamming (c) Exponencial

L 2N-1 L 2N-1 n 2N-1

° 21 51 71 101 s 21 51 71 101 ° 21 51 71 101
15 | 3.389 2.463 2.667 3.133 15 | 3.400 2.387 2.682 3.332 15 | 3.313 2383 2.660 3.375
31 | 3.219 2791 3.293 3.546 31 | 3.234 2404 2791 3.423 31 | 3.390 2.317 2.659 3.348
49 | 3.256 2.908 3.063 3.735 49 | 3.164 2.548 2909 3.593 49 | 3.360 2.332 2.717 3.365
63 | 3.257 2756 3.037 3.964 63 | 3.277 2.680 2.995 3.663 63 | 3.325 2.360 2.693 3.390
95 | 3.990 3.764 4.029 4.900 95 | 3.479 2972 3.280 4.087 95 | 3.248 2423 2799 3.460
127 | 4.233 4.208 4.793 5.818 127 | 3.902 3.570 4.144 4.812 127 | 3.131 2535 2.899 3.593

Tabla 3.3: Raiz cuadrada del MSE (%) de Ayr(n) con filtrado temporal exponencial y distintos
filtrados frecuenciales

(a) Rectangular (b) Hamming (c) Exponencial

L 2N-1 L 2N-1 n 2N-1

° 21 51 71 101 s 21 51 71 101 ° 21 51 71 101
15 | 2.886 2.736 3.288 5.418 15 | 2.853 2.608 3.199 4.730 15 | 2.753 2.696 3.241 4.109
31 | 2.877 3.001 3.677 5.576 31 | 2.821 2726 3.398 5.335 31 | 2790 2.636 3.232 4.211
49 | 3.365 3.412 4.290 6.633 49 | 2941 2945 3.592 5.538 49 | 2.816 2.654 3.178 4.744
63 | 3.704 3.450 4.295 6.530 63 | 3.110 3.063 3.601 5.806 63 | 2.842 2.632 3.263 5.027
95 | 4.215 4.362 5.600 8.049 95 | 3.705 3.548 4.100 6.559 95 | 2.726 2.790 3.348 5.285
127 | 5927 5.886 6.766 9.283 127 | 4975 4.770 5475 7.860 127 | 2903 2911 3.850 5.427

Comparando los resultados obtenidos con los nueve kernels considerados, el MSE minimo se obtiene
con un kernel separable con filtrado temporal Hamming y frecuencial exponencial de resoluciones
equivalentes a una ventana rectangular de 51 y 31 muestras en tiempo y frecuencia respectivamente
(tabla 3.2(c)), definidas para una frecuencia de muestreo Fy de 4 Hz.

2N-1

21 51 71 101

15 | 59.702 58.980 58.477 57.655
31 | 65.504 64.350 63.488 62.301
49 | 68.813 67.388 66.347 64.930
63 | 70.462 68.922 67.762 66.182
95 | 72.823 71.268 69.710 67.984
127 | 74.140 72.567 70.954 68.906

Tabla 3.4: Raiz cuadrada del MSE de A, (%) donde Ay, es estimada a partir de la integral en
la banda clasica de HF de la HRV sobre la SPWVD con kernel temporal Hamming y frecuencial
exponencial.

Con fines comparativos, la tabla 3.4 presenta una evaluacion de la raiz del MSE de A » cuando ésta
se estima a partir de (2.16) en la banda frecuencial clasica de HF (0.15-0.4 Hz) de la HRV utilizando
un kernel de filtrado temporal Hamming y frecuencial exponencial de distintas longitudes. En ella
observamos como la raiz del MSE es muy superior a la del obtenido con el método propuesto en este
TFM, con valores superiores al 50 %.

Mediante el uso del método propuesto en este TFM para estimar las amplitudes y el uso de un
kernel temporal Hamming de 51 muestras y frecuencial exponencial de 31 muestras para la SPWVD
obtenemos una estimacion con MSE de 2.317% en amplitud, 4.653 % en potencia y un error de
estimacion de 0.324 + 2.294 % en amplitud y 0.702 £ 4.600 % en potencia.

La figura 3.1 muestra la evaluacion de A, r(n) utilizando el kernel tiempo-frecuencia de minimo
MSE sobre la senal HRV simulada. En ella observamos como la estimacion en los extremos presenta
unas oscilaciones introduciendo un error elevado en la estimaciéon. Estas oscilaciones se asocian a los
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Figura 3.1: Evaluacion de Ay .(n) obtenida sobre la SPWVD con el kernel TF de minimo MSE,
(a) Ampitud original vs. estimada para una realizacion, (b) e,(n) para 100 realizaciones en términos
normalizados, la linea blanca representa é, y las lineas rojas delimitan el intervalo [e, — 20,4, €5 +204],
(c) 6%(n) para una realizacion.

transitorios del filtrado temporal y el efecto circular de la convolucién en dominio discreto, éstas se
localizan en los extremos y presentan una duracion igual al transitorio del filtro asociado a la ventana
utilizada (250 muestras). En el resto de la estimacion, el error disminuye considerablente respeco a los
extremos. En las regiones donde la variacion frecuencial presenta un mayor grado de no linealidad, este
error aumenta respecto a los tramos donde la variacion no es tan fuerte o es lineal, esto se asocia a como
se ha definido el filtro inverso de deconvolucion, donde so6lo se han tomado en cuenta las variaciones
de frecuencia que contienen al menos al 90 % de la potencia total, eliminando las variaciones de alta
frecuencia. Adicionalmente en esta gréafica se presenta también la estimacién del ruido instantaneo
(figura 3.1(c)) asociado a la estimacion de amplitud obtenida. Se observa como en la parte central la
estimacion es muy superior a la potencia de ruido real.

0.5
3 © s .ulada = 04 simulada
L *  estimada z estimada
4 03
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Figura 3.2: Comparativa (a) A,r(n) y (b) Fyr(n) obtenidas con el estimador de amplitud y ( )y
(d) 2(n) generada con las sefiales de (a) y (b) en la regiones de mayor error de estimacion de o2(n)
(rojo) frente a las simuladas (azul).

Los errores de estimacion de la potencia de ruido se derivan de los errores de estimacion de A, r(n)
y Fyur(n) en el estimador de amplitud. La figura 3.2 muestra las estimaciones de Ay, (n) y Fyp(n)
y la senal analitica generada a partir de éstas para la estimacion del ruido. En ella observamos como
la region donde se localiza el mayor error de 62(n) se corresponde con las regiones donde A . (n)
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y Fir»(n) presentan mayor error y se observa un mayor desfase en la sefial generada (figura 3.2(c)
y 3.2(d)) introduciendo errores de estimacion superiores a la potencia real de ruido. La SNR media
obtenida a partir de 100 realizaciones es de 16.14 dB, inferior a la introducida pero mas proxima a la
real que la obtenida con el estimador de ruido propuesto en [15], 4.83 dB. Esto permite la compensacion
del error de estimacion de Ay . (n) en la formulacion de la varianza del error de estimacion (2.6).

6
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Figura 3.3: Comparativa de A .(n) obtenida sobre la SPWVD con el kernel TF de minimo MSE.
(a) Ampitud simulada (negro), estimada con el metodo propuesto en este TFM (rojo), estimada sin
correccion ni deconvolucion pero en el B, definido en este TFM (azul), estimada en una banda centrada
en la frecuencia respitoria con un ancho de banda de 0.25 Hz (verde) y estimada con integracion en
la banda clasica HF (magenta). (b) Amplitud simulada (negro), estimada con el método propuesto
(rojo), corregida pero sin deconvolucion (azul) y sin correccion ni deconvolucion (verde).

Finalmente en la figura 3.3 se presenta una comparativa de la estimacion de amplitud con distintos
métodos utilizados como son, el método propuesto en este TFM, integracién en la banda propuesta
en este TFM, integraciéon en un ancho de banda de 0.25Hz centrado en la frecuencia respiratoria e
integracion en la banda clasica de HF (0.15, 0.5 Hz). Por un lado podemos observar como al integrar la
SPWVD en la banda propuesta en este TFM la estimacion es mas ajustada a la real (figura 3.3(b)) pero
aparece un sesgo, por otro lado observamos como a pesar de introducir las oscilaciones en la parte
final derivadas del proceso de deconvolucion, la estimacion de la amplitud obtenida con el método
propuesto en este TFM es mas proxima en los instantes donde la amplitud varia de forma mas brusca
(instantes en torno a las muestras n={200, 400, 500, 600}).

De acuerdo a los resultados presentados hasta el momento, el kernel adaptativo que ofrece mejor
estimacion en términos de MSE para la amplitud es el compuesto por un filtrado temporal Hamming
y frecuencial exponencial. Consideraremos este kernel como el 6ptimo para estimar A,.(n) en el
estimador propuesto en la Sec. 2.1.

3.2. Evaluacion del estimador de frecuencia en simulacion

Para la evaluacién del estimador de frecuencia se han realizado distintas pruebas, sobre la senal de
HRYV simulada y con una SNR de 20 dB. Para la evaluacion del error se generaron 100 realizaciones y
se estudio el error de estimacion, en terminos de error medio €5, desviacion estandar oy, y MSE, segiin
(2.37), (2.38) v (2.39). Los errores se evaluaron tanto en términos absolutos (mHz), como el términos
relativos (%), donde la normalizacion se realizo en funcion de la frecuencia instantanea generada en
simulacion.

3.2.1. Evaluacién del método con datos tedricos

El método propuesto en este trabajo se ha evaluado sobres las senales simuladas. En el algoritmo
de estimacion se han introducido los valores tedricos instantaneos de la amplitud de la componente de
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alta frecuencia de la HRV (A x(n)) y del ruido v(n). Este estudio nos permite seleccionar el kernel
del filtrado tiempo-frecuencia que presente menor error cuadratico medio (MSE).

Tabla 3.5: Raiz cuadrada del MSE (%) de Fyr con el algoritmo de amplitudes variantes, datos
de amplitud y ruido tedricos y los distintos kernels propuestos, rectangular (R), Hamming (H) y
exponencial (E), evaluado en (a) toda la senal, (b) segmentos de variacion aproximadamente lineal y
(c) segmentos de variaciones no lineales.

(a) (b) (c)
Kernel 2N-1 Kernel 2N-1 Kernel 2N-1
21 51 101 201 21 51 101 201 21 51 101 201
1.588 2.223 3.865 6.727 0.882 0.779 1.689 4.243 2.087 3.082 5.254 8.593
0.946 1.786 3.815  7.606 0.550 0.572 1.085 3.413 1.229 2489 5.351 10.320
1.084 1.872 3.814 7.681 0.622 0.627 1.162 3.554 1413 2.603 5.332 10.383

-

1.673 2.517 4.209 6.623
1.039 2.122 4.037 8.501
1.153 2272 4.087 8.754
1.938 2.834 4.677 9.239
1.476  2.757 5.585 12.222
1.600 2.916 5.867 12.480

0.872 1.141 2.842 4.145
0.549 0.616 1.283 4.145
0.601 0.672 1.306 4.234
0.797 1.393 3.516 6.348
0.526 0.910 2.538 6.483
0.575 0.854 2.611 6.676

2.223  3.409 5.274 8475
1.376 2973 5.632 11.413
1.531 3.180 5.700 11.767
2.653 3.800 5.643 11.521
2.043 3.838 7.566 16.201
2214 4.084 7.968 16.519

el olc|fa=f=agas{i-vh-l=

Rl ol=rli-v/l o R -l !
el Nofasfarfiasii=-R-cR-l 1!
Rl oRarfi=rlic R -l
el Noffasfarfiasii=vR-R-l 1!
Rl ol=rli-v/l ol -l !

Tabla 3.6: Raiz cuadrada del MSE (mHz) de Fyr con el algoritmo de amplitudes variantes, datos
de amplitud y ruido teodricos y los distintos kernels propuestos, rectangular (R), Hamming (H) y
Exponencial (E), evaluado en (a) toda la senal, (b) segmentos de variacion aproximadamente lineal y
(c) segmentos de variaciones no lineales.

(a) (b) (c)

Kernel 2N-1 Kernel 2N-1 Kernel 2N-1

T F 21 51 101 201 T F 21 51 101 201 T F 21 51 101 201
R R | 4436 6.363 11.053 19.668 R R [2633 2411 5.117 13.961 R R | 5750 8.772 14.926 24.241
R H | 2.667 5186 11.105 21.971 R H | 1.660 1.761 3.542 11.404 R H |3412 7205 15486 29.225
R E | 3.017 5416 11.062 22.158 R E | 1882 1936 3.784 11911 R E | 3861 7.498 15.363 29.303
H R | 4690 7213 12162 19.527 H R |2606 3479 8935 13.982 H R |6.162 9.692 14.798 23.992
H H | 2254 5156 11.011 21.818 H H | 1659 1917 4.202 14.313 H H |3871 8595 16.214 32.389
H E | 3239 6.577 11.834 25.367 H E | 1821 2069 4.274 14.606 H E |4244 9.179 16.377 33.116
E R | 5474 8114 13.694 29.546 E R | 2390 4.327 11.423 22.983 E R | 7448 10.740 15.721 35.154
E H | 4253 7979 16.505 35.228 E H | 1.608 2906 8.907 23.338 E H | 5864 11.035 21.809 44.444
E E | 4580 8.429 17.178 35.930 E E | 1.758 2760 9.136 24.065 E E | 6306 11.739 22758 45.186

Las tablas 3.5 y 3.6 muestran la raiz cuadrada del MSE en funcion del tipo de kernel utilizado
para distintas longitudes fijas del filtrado temporal, en terminos normalizados ( %) y absolutos (mHz)
respectivamente. Las longitudes se expresan en funcion de la ventana rectangular de resolucion
equivalente a la utilizada. En rojo se han identificado para cada longitud de filtrado temporal el kernel
que presenta MSE minimo. Los segmentos de senal definidos como variaciones no lineales y variaciones
aproximadamente lineales, se establecieron en simulacion. La figura 3.4 muestra la segmentacion de la
frecuencia de la senal simulada en funcién de sus variaciones frecuenciales. En verde se han identificado
los segmentos con variacion aproximadamente lineal y en rojo los segmentos con variaciones no lineales.

Generalmente todos los kernel presentan estimaciones de orden similar para una misma longitud
2N-1 en términos relativos. No existe un tnico kernel que minimice de forma conjunta el MSE en ambos
segmentos (variaciones aproximadamente lineales y no lineales) independientemente de la longitud 2N-
1 utilizada para el filtrado temporal. Analizando la senal completa (tabla 3.6(a)), observamos que el
kernel formado por ventanas Hamming en tiempo y frecuencia obtiene MSE minimo para tres valores
2N-1 considerados, no siendo asi en terminos relativos, donde éste se obtiene con un filtrado temporal
rectangular. Comparando entonces los 6rdenes de los errores para el kernel TF compuesto por filtrado
temporal rectangular y filtrado frecuencial Hamming con los obtenidos para el kernel de filtrado
tiempo-frecuencia con ventanas Hamming en términos normalizados (tabla 3.5(a)), vemos como son
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Figura 3.4: Segmentacion de la Iy en funcion de sus variaciones frecuenciales en segmentos de
variacion no lineal (rojo) y segmentos de variacion aproximadamente lineal (azul).

del mismo orden (presentando una diferencia en torno al 0.2 % cuando el filtrado es adecuado (2N-1
= {21,51}), si los comparamos en términos absolutos (tabla 3.6(a)), la diferencia méxima en este caso
es de 0.3 mHz cuando se utiliza un filtrado temporal Hamming frente a uno rectangular. De ahora
en adelante utilizaremos un filtrado temporal Hamming, que de la literatura, se sabe reduce el sesgo
en la estimacion con respecto a una rectangular, si bien los resultados obtenidos con ambos tipos de
filtrados temporales son similares para un filtrado frecuencial Hamming.

3.2.2. Evaluacion del método propuesto

El kernel seleccionado para el filtrado tiempo-frecuencia se compone por una ventana de filtrado
temporal Hamming y filtrado frecuencial Hamming. A continuacion presentamos la evaluacion del
método propuesto en este trabajo con el kernel seleccionado, para la senal propuesta en el estudio
de simulacion cuando tanto la amplitud instantanea como el ruido no son los teéricos sino estimados
segun los métodos propuestos en Sec. 2.1.2 y Sec. 2.1.3 respectivamente. Los resultados se muestran
en funcion de las longitudes de la ventana rectangular de resoluciéon equivalente.

La figura 3.5 muestra una comparativa entre Fy, . (n) (rojo) y la simulada (azul) para las disintas
longitudes 2N-1 consideradas; se han eliminado las partes inciales y finales, dénde el error de
estimacion en A, r(n) es grande debido a los transitorios del filtro de deconvolucion, como se explico
en la Sec. 3.1. Se observa como al aumentar el filtrado temporal se pierde la capacidad de seguir
las variaciones rapidas de la senal y, en consecuencia, aumenta el error de estimacién; también se
observa en las subfiguras 3.5(c) y 3.5(d) como, por el efecto del filtrado adaptativo (instantes 600 a
800), la variabilidad en la estimacion aumenta. Con un filtrado pequenio o mediano, la estimacion es
muy buena en las regiones de variacion aproximadamente lineal o lentas y ligeramente peor en las de
variacion no lineal.

En segundo lugar se muestran los histogramas de la longitud 6ptima (hp:) de la ventana de filtrado
frecuencial, figura 3.6, para cada longitud 2N-1 considerada. Cada subfigura presenta el histograma
de la h,p; mediana de las 100 realizaciones consideradas en cada instante temporal. De acuerdo a la
definicion del método, la longitud debe variar en funcion de la variaciéon de la frecuencia instanténea,
lo que queda constatado en esta figura. Por ltimo la figura 3.7 muestra la variacion de la longitud
definida como 6ptima para cada instante temporal, en funciéon de la longitud del filtrado temporal. Para
cada instante temporal se ha considerado el valor mediano de h.y,; en las 100 realizaciones generadas.
Observamos que cuando las variaciones de frecuencia son lentas, atin siendo no lineales, la ventana
de filtrado frecuencial alcanza valores mayores (instantes 600 a 800 y 1000 a 1200 en figuras 3.7(a),
3.7(b) y 3.7(c)) mientras que cuando las variaciones son mas rapidas ya sean lineales o no lineales la
ventana de filtrado frecuencial toma valores inferiores de forma que compense sesgo y varianza de la
estimacion. Para el caso 2N-1 = 201, donde el filtrado temporal no es adecuado la ventana de filtrado
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Figura 3.5: E, #(n) con el kernel tiempo frecuencia de ventanas Hamming en tiempo y frecuencia
para una longitud de filtrado temporal (a) 2N-1 = 21, (b) 2N-1 = 51, (¢) 2N-1 = 101 y (d) 2N-1 =
201 muestras.

frecuencial rara vez toma valores superiores a 49 debido a que el sesgo es muy superior a la varianza
que pueda presentar.

El método propuesto en este trabajo para la estimacion de la frecuencia respiratoria a partir de la
componente de HF de la HRV sobre senales simuladas, nos permite una estimaciéon de la misma con
un error medio de -0.008 £+ 6.026 mHz (0.239 + 2.041 %), evaluado sobre 100 realizaciones cuando
se utiliza un filtrado temporal Hamming de 51 muestras en su equivalente rectangular y un filtrado
frecuencial Hamming para el calculo de la SPWVD.

3.2.3. Comparativa con el método de amplitudes constantes

En esta subseccién comparamos el método propuesto en este trabajo con el método propuesto en
[15] que estima amplitudes constantes, utilizando en ambos métodos el mismo kernel de filtrado TF
que en el apartado anterior. De nuevo todos los resultados se muestran en términos de la longitud de
la ventana rectangular de resolucion equivalente.

La figura 3.8 muestra una comparativa de F wr(n) estimada con los dos métodos considerados
frente a la frecuencia simulada en toda la senial y dos ampliaciones de los dos tipos de segmentos més
significativos, en ella vemos como en cualquier caso la estimaciéon obtenida con el método propuesto
en este trabajo es mas ajustada a la simulada que la obtenida con el método propuesto en [15].

Por ultimo las tablas 3.7, 3.8 y 3.9 muestran la comparativa del error de estimacion y del MSE tanto
en terminos normalizados como absolutos en funcion del método de estimacion utilizado (amplitudes
constantes descrito en [15] o amplitudes variables propuesto en este TFM) para cada tipo de segmento



26 3. RESULTADOS

50 50
100 100
50 50
0 0

3 7 15 23 31 49 63 95127 7 15 23 31 49 63 95 127
h

s S

(a) (b)

L

3 7 15 23 31 49 63 95127 7 15 23 31 49 63 95 127

s

(c) (d)

ocurrencias
= N
o
o
ocurrencias
PN
o
o

350

300
250
200
150

ocurrencias
ocurrencias

100

Figura 3.6: Histograma de la longitud de la ventana de filtrado frecuencial para (a) 2N-1 = 21, (b)
9N-1 = 51, (¢) 2N-1 = 101 y (d) 2N-1 = 201.
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Figura 3.7: Variacion temporal de la longitud de la ventana de filtrado frecuencial utilizando una
longitud de (a) 2N-1 = 21, (b) 2N-1 = 51, (¢) 2N-1 = 101 y (d) 2N-1 = 201, para el filtrado temporal

considerado.

Observamos como cuando la longitud del filtrado temporal es adecuada (2N-1 ={21,51}), la
extension al método en [15] propuesta en este TFM mejora la estimacion, reduciendo tanto el sesgo
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Figura 3.8: Comparativa de Fy,(n) estimada con el método en [15] (rojo) y Fyr(n) estimada con
el método propuesto en este TFM (negro) respecto a la simulada (azul), con el kernel de filtrado
temporal Hamming equivalente a una ventana rectangular de 51 muestras y frecuencial adaptativo
con ventana de Hamming. (a) Toda la sefial. (b) Segmento no lineal. (¢) Segmento aproximadamente
lineal.

Tabla 3.7: Comparativa de e(n) con el método en [15] frente al método extendido, en toda la duracion
de la senal. (a) Términos absolutos, (b) términos normalizados.

(a) (b)
Error de estimacion (mHz) Error de estimacion (%)
Amplitudes Amplitudes
2N-1 constantes variables 2N-1 constantes variables
21 0.233 +£4.730  -0.146 £ 2.463 21 0.346 + 1.656  0.043 + 0.821
51 -0.094 + 7.472  -0.008 £+ 6.026 51 0.208 + 2.588  0.239 + 2.041
101 | -1.014 + 11.895 0.555 4+ 12.959 101 | -0.114 £+ 4.146 0.836 + 4.547
201 | -2.027 + 16.905 1.785 4+ 27.713 201 | -0.021 4+ 5.887 2.548 £ 9.952
Raiz del MSE (mHz) Raiz del MSE (%)
Amplitudes Amplitudes
2N-1 constantes variables 2N-1 constantes variables
21 4.736 2.467 21 1.692 0.822
51 7.473 6.026 51 2.597 2.055
101 11.938 12.971 101 4.147 4.623
201 17.026 27.771 201 5.887 10.273

como el MSE, independientemente del segmento en el cual se evalte el error de Fyr(n).

3.2.4. Comparativa con longitudes constantes

En este punto comparamos los resultados de la Sec. 3.2.2 con los obtenidos de la estimacion con
los filtrados frecuenciales de longitud fija utilizados en este trabajo.

Las tablas 3.10 y 3.11 presentan la comparativa del MSE de F wr(n) en términos relativos y
absolutos respectivamente, para toda la duracion de la senal y cada uno de los segmentos considerados.
El error de estimacion disminuye en funcion de hs hasta alcanzar un valor minimo a partir del cual
comienza a aumentar de nuevo.

Observamos como, por ejemplo, para una ventana de filtrado temporal de longitud 2N-1 = 21
muestras, el MSE minimo en los segmentos de variaciones aproximadamente lineales se obtiene con
una ventana de filtrado frecuencial de hs = 49 muestras mientras que para los segmentos de variaciones
no lineales se necesita una ventana de longitud hs = 15 muestras (ver tabla 3.10).

En definitiva, siempre hay una longitud hs fija que obtiene un MSE inferior al que se obtiene con
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Tabla 3.8: Comparativa de ex(n) con el método en [15] frente al método extendido, en los segmentos
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de variacion aproximadamente lineal. (a) Términos absolutos, (b) términos normalizados.

(a) (b)
Error de estimacion (mHz) Error de estimacion (%)
Amplitudes Amplitudes
2N-1 constantes variables 2N-1 constantes variables
21 -0.046 + 2.465  -0.091 + 1.674 21 0.056 + 0.818  0.000 + 0.531
51 -0.286 + 3.368  -0.116 + 1.999 51 -0.157 £ 1.094 0.011 £+ 0.671
101 -1.816 + 9.006  -0.485 + 5.094 101 | -0.762 £+ 2.922 -0.009 £+ 1.690
201 | -5.226 + 11.861 -1.222 + 16.439 201 | -1.608 + 3.672 0.164 + 5.063
Raiz del MSE (mHz) Raiz del MSE (%)
Amplitudes Amplitudes
2N-1 constantes variables 2N-1 constantes variables
21 2.465 1.677 21 0.820 0.531
51 3.380 2.003 51 1.105 0.671
101 9.187 5.117 101 3.020 1.690
201 12.961 16.485 201 4.009 5.066

Tabla 3.9: Comparativa del error de Fy, con el método en [15] frente al método extendido, en los

segmentos de variacion no lineal. (a) Términos absolutos, (b) términos normalizados.

(a) (b) Variacion no lineal
Error de estimacién (mHz) Error de estimacion (%)
Amplitudes Amplitudes
2N-1 constantes variables 2N-1 constantes variables
21 0.526 + 6.274  -0.204 + 3.070 21 0.651 + 2.177  0.087 + 1.036
51 0.108 + 10.125  0.105 =+ 8.383 51 0.591 + 3.492  0.479 + 2.822
101 | -0.172 £ 14.253 1.648 4+ 17.750 101 0.567 + 5.034 1.725 £+ 6.155
201 1.334 + 20.373  4.944 + 35.682 201 1.647 + 7.168 5.053 £+ 12.811
Raiz del MSE (mHz) Raiz del MSE (%)
Amplitudes Amplitudes
2N-1 constantes variables 2N-1 constantes variables
21 6.296 3.076 21 2.273 1.040
51 10.126 8.383 51 3.542 2.862
101 14.254 17.826 101 5.066 6.392
201 20.416 36.023 201 7.355 13.772

Tabla 3.10: Raiz cuadrada del MSE (%) de Fyur(n) en funcion de las distintas longitudes del filtrado
frecuencial tanto para (a) toda la duracion de la senal (b) segmentos de variacion aproximadamente
lineal y (c¢) segmentos de varicion no lineal.

(a) (b) (c)

h 2N-1 h. 2N-1 h. 2N-1
s 21 51 101 201 i 21 51 101 201 i 21 51 101 201
Adaptativa | 0.822 2.055 4.623 10.273 Adaptativa | 0.531 0.671 1.690 5.066 Adaptativa | 1.040 2.862 6.392 13.772
3 0.890 2.172 5.076 11.175 3 0.653 0.838 2.167 5.792 3 1.078 2989 6.925 14.868
7 0.831 2.120 4.995 10.934 7 0.622 0.801 2.093 5.611 7 0.998 2.924 6.827 14.572
15 0.777 2.055 4.784  9.933 15 0.570 0.735 1.818 4.678 15 0.941 2.846 6.596 13.399
23 0.779 2.033 4.553  8.566 23 0.533 0.687 1.462 3.422 23 0.967 2.826 6.348 11.760
31 0.808 2.018 4.325 7.884 31 0.497 0.635 1.283 4.842 31 1.034 2.816 6.055 10.145
49 0.959 2.021 4.201 8.423 49 0.454 0.568 2.472  8.439 49 1.290 2.835 5.453 8410
63 1.225 2.138 4.650 8.960 63 0.467 0.695 4.238 10.201 63 1.687 2978 5.046 7.443
95 1.901 2.725 5.557  9.571 95 0.616 1.448 5.986 11.469 95 2.648 3.608 5.069 7.053
127 2460 3.233 6.051  9.708 127 0.820 1.838 6.637 11.611 127 3.423 4.231 5.370  7.190
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Tabla 3.11: Raiz cuadrada del MSE (mHz) de Fyx(n) en funcion de las distintas longitudes del filtrado
frecuencial tanto para (a) toda la duracion de la senial (b) segmentos de variacion aproximadamente
lineal y (c¢) segmentos de varicion no lineal.

(a) (b) (c)

h 2N-1 h 2N-1 h 2N-1
N 21 51 101 201 N 21 51 101 201 N 21 51 101 201
Adaptativa | 2.467 6.026 12.971 27.771 Adaptativa | 1.677 2.003 5.117  16.485 Adaptativa | 3.076 8383 17.826 36.023
3 2471 6.253 14.577 31.493 3 2.015 2551 6.940 19.419 3 2.853 8565 19.635 40.497
7 2.362 6.163 14.405 30.916 7 1.936 2458 6.730 18.870 7 2.721 8459 19.450 39.851
15 2.255 6.033 13.850 28.211 15 1.788 2286 5.883  15.959 15 2.641 8316 18.904 36.962
23 2.265 5.973 13.160 24.176 23 1.668 2.151  4.753  11.704 23 2.741 8265 18.213 32.492
31 2.353  5.921 12.475 22.756 31 1.552 1999 4.151  16.496 31 2.959 8230 17.356 27.863
49 2.800  5.905 12182 25.222 49 1.403 1.788 7.701  27.626 49 3.737 8257  15.543 22.432
63 3.579  6.221  13.704  27.562 63 1.427 2100 13.130  33.409 63 4911  8.645 14.276 19.646
95 5.528 7.877 16.717 29.800 95 1.859 4.180 18.886 37.482 95 7.687 10.435 14.090 18.598
127 7.091 9.330 18.208 30.161 127 2.481 5.405 20.978 37.890 127 9.836 12.162 14.758 18.923

la ventana adaptativa pero ésta varia para cada segmento considerado y para cada longitud 2/N-1.

3.3. Ewvaluacion del estimador de frecuencia sobre senales reales

Finalmente presentamos la evaluacion del método sobre las senales de la base de datos, la
comparativa con la estimacion obtenida con el método en [15] y con la estimadas mediante el uso
de ventanas de filtrado frecuencial de longitud fija.

En el estudio del método de estimacion frecuencial se eliminaron las longitudes hs ={3,7,15},
puesto que la resoluciéon de la SPWVD no era suficiente, como puede verse en la figura 3.9, que
muestra la SPWVD de un segmento de la sefial con distinas longitudes h.

La figura 3.10 presenta una comparativa de la distribucion de ex(n) en funcion de la longitud del
filtrado frecuencial utilizado en el kernel tanto para los segmentos musicales como para la transiciones
entre segmentos musicales. En el estudio del error se eliminaron el primer y tltimo segmento, donde se
ha visto que el método no funciona adecuadamente debido al error de estimacion de la amplitud.
Apreciamos que la distribucion para los segmentos musicales presenta un rango intercuartil casi
inapreciable, y similar comportamiento observamos para las transiciones siendo éste ligeramente més
ancho, dando lugar a un gran nimero de estimaciones fuera de rango.

A modo de poder analizar el por qué de estas distribuciones se hizo un anélisis del error de
estimacion instantaneo en funcion de la segmentacion de la senal para una tnica senal de la base de
datos. La figura 3.11 muestra tanto Fy.(n) como e (n) para dicha sefial en ella observamos como el
error se localiza en un rango aproximado comprendido entre [-10,10] mHz delimitado por las bandas
rojas, apareciendo estimaciones que consideraremos como erroneas o atipicas generalmente en las
transiciones.

Para poder justificar dichas estimaciones anémalas se ha realizado una comparativa de la senal
respiratoria y la HRV analizadas, la figura ?? muestra la senal respiratoria (azul) frente a la HRV
(verde) una vez filtradas en la banda definida en la Sec. 2.1.4. Observamos como en los instantes en los
que el error de estimaciéon es muy grande, aparece una desincronizacién entre las senales respiratoria
y HRV, esta se observa en que las variaciones de la HRV no siguen las variaciones respiratorias en
torno a los instantes donde se da el mayor error. Adicionalmente se ha realizado una evaluacion de la
estimacion de amplitud; la figura 3.13 muestra una comparativa de la estimaciéon de amplitud para
la misma senal, en ella se muestra Ay estimada mediante la integracion de la SPWVD en la banda
propuesta en este TFM (azul), Ay r estimada mediante la integracion de la SPWVD en la banda
propuesta en este TFM y corregida para la eliminacion del filtrado frecuencial (rojo) y Ay estimada
con el método propuesto en este TFM (negro). En ella se observa como al corregir el filtrado temporal
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Figura 3.9: SPWVD del segundo segmento de una senal de la base de datos estimada con un filtrado
temporal Hamming de resoluciéon equivalente a una ventana rectangular de 51 muestras y filtrado
frecuencial Hamming de resolucion equivalente a (a) hs = 3, (b) hs = 7, (¢) hs = 15, (d) hs = 23, (e)
hs= 31y (f) hs =49, (g) hs = 63, (h) hs= 95y (i) hs = 127 muestras.
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Figura 3.10: Distribucion de ex(n) en mHz utilizando un kernel para el filtrado temporal de longitud
2N-1 = 51 muestras y las distintas longitudes de filtrado frecuencial propuestas en (a) segmentos
musicales y (b) transiciones entre segmentos musicales.

(negro) las estimaciones presentan variaciones bruscas y estimaciones anomalas correspondiendose con
instantes en los que también se dan estimaciones anémalas de la frecuencia. Con ésto podemos intuir
que los errores de estimacion de frecuencia anémalos pueden derivarse tanto a de la falta de sincronia
en las senales a analizar como de los errores en la estimacion de la amplitud de las mismas.
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Figura 3.12: Comparativa de la senal respiratoria (azul) y HRV (verde) una vez filtradas en la banda
de frecuencia definida en la Sec. 2.1.4, para diferentes instantes temporales donde se localizan los

mayores errores de Flp.

La figura 3.14 presenta la distribucion del error mediano para cada segmento en funcién del método
y kernel utilizado, los superindices 1 y 2 indican el método de estimacion utilizado, con amplitudes
instantaneas y con amplitudes constantes respectivamente. Observamos como el error de estimaciéon
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Figura 3.13: Comparativa de la estimacion de A, estimada mediante la integracion de la SPWVD
en la banda propuesta en este TFM (azul), estimada mediante la integracion de la SPWVD en la banda
propuesta en este TFM y corregida para la eliminacion del filtrado frecuencial (rojo) y estimada con
el método propuesto en este TFM (negro).
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Figura 3.14: Distribucion del error mediano de los distintos segmentos en mHz utilizando un kernel
para el filtrado temporal de 2N-1 = 51 muestras y las distintas longitudes de filtrado frecuencial
propuestas en (a) segmentos musicales y (b) transiciones entre segmentos musicales.

Tabla 3.12: Error mediano y desviacion mediana absoluta (mHz) de Fy» para (a) fragmentos musicales
y (b) transiciones entre fragmentos musicales.

(a) Frag. Musicales (b) Transiciones
2N-1 2N-1
A 21 51 101 201 A 21 51 101 201

* |Med MAD Med MAD Med MAD Med MAD > | Med MAD Med MAD Med MAD Med MAD
Adaptl | 0977 11719 0000 3052 0251 6530 2076 5.750 Adaptl | 175065 27541 10273 30.602 1953 7812 2930 18509
Adapt2 | -0.977 8.789 0.000 1.953 -0.254 4.160 0.977 6.836 Adapt2 | 172.852 28.320  10.312  36.563 7.559 3.398 2.461 10.742
23 1.699 12.949 0.723 6.328 0.977 6.367 5.352 10.488 23 164.062 18.594  10.527  47.051 10.234 22.676 3.437 8.027
31 1.953 3.906 2.930 1.953 3.906 3.652 3.906 4.883 31 122.070 53.965  12.480  32.227 17.578 1.953 -4.629 7.090
47 3.906 1.699 4.883 0.977 7.812 1.953 3.906 2.930 47 -97.402 11.465  20.254  35.664 29.297 0.977 -120.117  15.879
63 4.883 1.953 4.883 2.930 5.859 4.883 0.977 3.906 63 -107.168 8.5 24.414 1.230 156.758  12.188  -179.941 2.207

95 -0.977  10.020 0.977 5.137 0.000 5.137 4.375 8.320 95 159.180 3 17.656  23.262  -18.340  17.070 8.066 6.582

127 0.254 2.207 1.953 1.953 0.977 2.930 2.930 1.953 127 154.297 23.691  50.059 11.973  -25.391 9.766 6.367 1.445

es similar con ambos métodos de estimacion con kernel adaptativo. Se muestra también como con
longitudes de filtrado frecuencial fijas la distribucion del error presenta menos dispersion, en particular
para los segmentos musicales. En las tablas 3.12 y 3.13 mostramos la evaluacién numérica.
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Tabla 3.13: Error mediano y desviacion mediana absoluta (%) de F para (a) fragmentos musicales y
(b) transiciones entre fragmentos musicales.

(a) Frag. Musicales (b) Transiciones
2N-1 2N-1

b 21 51 101 201 b 21 51 101 201

* |Med MAD Med MAD Med MAD Med MAD : |Med MAD Med MAD Med MAD MAD
Adaptl | 0550 6.627 1508 3430 4010 501 3501 Adaptl | 1077 13245 1716 6550 5400 3.8 3000
Adapt2 | -0.226 5.014 -0.965 -2.760 3.606 -4.876 3.143 Adapt2 | 1.315 12.451  -0.976 6.637 -4.816 3.386 1.967
23 |-0838 6258 2011 3827 3762 5767 3146 23 | 1080 13132 -1493 6276 -5.640  2.950 1533
31 0.048 4.488 -0.520 -1.404 2.818 -2.341 2.592 31 2.307 11.852 2.688 6.834 -0.376 3.152 1.649
47 -0.020 3.233 -0.161 2.182 0.222 2.183 0.737 2.220 47 1.705 9.734 3.035 6.941 3.998 3.551 1.672
63 -0.165 2.514 -0.250 1.800 -0.176 1.762 0.223 1.766 63 0.043 8.340 0.170 6.058 0.732 2.816 1.426
95 -0.541 1.982 -0.482 1.698 -0.849 1.606 -0.804 1.558 95 -2.456 6.752 -2.822 4.743 -2.877 2.406 1.216
127 | -0824 1780 0771 15% 1318 1536 -1.632 1569 127 | 4175 6121 4281 4258 4770 2407 1154

Las tablas 3.12 y 3.13 muestran la comparativa del error de estimacion mediano (emeq) v la
desviacion mediana absoluta (M AD) en un segmento de acuerdo a (2.44) y (2.45), respectivamente.
Los resultados se muestran en términos absolutos y normalizados para ambos métodos de estimacion
con kernel adaptativo y para la estimacion con kernels de longitud fija en tiempo y frecuencia.

En primer lugar en términos normalizados (tabla 3.13), el error mediano aumenta mientras que
la desviacion mediana absoluta disminuye con el aumento del filtrado temporal para ambos tipos de
segmento cuando utilizamos ventanas de filtrado frecuencial adaptativas. En segundo lugar observamos
como el método propuesto en este TFM no presenta diferencias significativas con el método orginal
propuesto en [15] puesto que tanto el sesgo como la desviacion son del mismo orden.

Si comparamos con las estimaciones con filtrado frecuencial de longitud fija (tabla 3.13),
observamos como siempre existe una longitud que obtiene una estimaciéon con menor sesgo y menor
desviacion en cada caso, siendo distinta para cada tipo de segmento y para cada longitud 2/N-1 de la
ventana de filtrado temporal.

De los resultados anteriores podemos intuir que el filtrado temporal a aplicar para obtener un sesgo
y desviacion minimos depende también del tipo de segmento, independientemente del tipo de filtrado
que apliquemos en frecuencia.

Finalmente podemos observar como el error mediano de estimacion y la desviacién mediana
absoluta de Fi(n) es pequeno en ambos segmentos, obteniendo valores maximos de 5.676 mHz y 10.273
mHz para el error mediano y de 8.789 mHz y 36.602 mHz para la M AD en los segmentos musicales y las
transiciones respectivamente, siempre y cuando se utilicen longitudes de filtrado temporal adecuadas
(ver tabla 3.12).
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DISCUSION Y CONCLUSION

En este TFM se ha desarrollado un estimador de la frecuencia respiratoria basado en la estimacion
de la frecuencia de la componente de alta frecuencia de la senal de variabilidad del ritmo cardiaco como
el méximo en cada instante temporal de la SPWVD calculada con ventanas de filtrado frecuencial de
longitud variable en funcién de las variaciones de frecuencia instantanea. El método desarrollado se
basa en el propuesto en [15] e incluye la estimacion instantanea tanto de la amplitud de la componente
HF como del ruido, de interés en aplicaciones donde la arritmia sinusal respiratoria puede variar en el
tiempo. La primera parte del este TFM se ha centrado en el desarrollo de un estimador de la amplitud
de la componente de HF a partir de la integracion de la SPWVD.

La estimacion de la amplitud instantdnea mediante el método propuesto en este TFM permite
obtener una mejor estimacion de la potencia real de la senal respecto a métodos tradicionales basados
en la integracion de la SPWVD tanto en la banda cléasica de HF (0.15 Hz - 0.4 Hz) como en una banda
centrada en la frecuencia respiratoria y ancho de banda de 0.25 Hz [7]. El método propuesto en este
TFM para la estimacion de la amplitud instantdnea comprende tres pasos: integracion en un ancho de
banda aproximadamente igual al 16bulo principal de la ventana de filtrado frecuencial y centrado en el
pico de la SPWVD; eliminacion de la influencia del filrado frecuencial; y eliminacion de la influencia
del filtrado temporal.

Hemos visto como estimar la potencia a partir de la integracion de la SPWVD bien en la banda
de HF o en un ancho de banda constante centrado en la frecuencia respiratoria permite estimar las
variaciones de potencia a lo largo del tiempo (figura 3.3) de la senal analitica objeto de estudio, pero
no permiten obtener los valores reales de la potencia o amplitud instantanea de la componente.

Se ha comprobado que la simple integracion en la banda propuesta en este TFM ofrece una mejora
significativa con respcto a los métodos anteriores cuyo sesgo es mejorado mediante la eliminacion de
la influencia del filtrado frecuencial. El filtrado temporal de la SPWVD imprime un suavizado en la
potencia instantanea estimada, que se puede eliminar mediante un proceso de deconvolucién, pero a
costa de la introduccién de terminos oscilatorios. Las oscilaciones aparecen con mayor amplitud en
los extremos de la senal y con menor amplitud en la parte central de la misma. Las oscilaciones en
los extremos se deben a dos factores, el primero al efecto circular de la deconvolucion en el dominio
discreto y en segundo a los transitorios del filtro asociado a la ventana de filtrado frecuencial. El
efecto circular de la convolucién podria reducirse mediante un zero padding en los extremos de forma
que éste podria simplemente eliminarse, pero introduciriamos un escalén en la senal que se traduciria
en un nuevo transitorio del filtrado temporal. Otra forma de reducirlas seria considerar la extension
con una aproximacion polinomial en los extremos de forma que no introduzcamos un transitorio
y podamos eliminar los efectos circulares de la deconvoluciéon mediante la no consideraciéon de las
muestras externas. Las oscilaciones en la parte central se deben al fenémeno de Gibbs y no puede
eliminarse en tiempo discreto.
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El algoritmo propuesto presenta una limitacién cuando se quiere analizar simultaneamente mas
de una componente frecuencial. Esta limitacion afecta a las ventanas de filtrado frecuencial, cuyo
I6bulo principal debe presentar un ancho de banda méaximo inferior a la minima separacion frecuencial
entre ambas componentes. Una solucién en ese caso seria calcular la amplitud instantanea de cada
componente por separado sobre la senal filtrada en la banda correspondiente a cada componente.
Si bien el coste computacional del algoritmo propuesto es alto debido a la resolucion utilizada en
la SPWVD (2M = 2048), éste puede reducirse reduciendo la resolucion frecuencial de la SPWVD
mediante el factor 2M, que no afecta significativamente al calculo de la amplitud. Ademas se puede
utilizar segmentos de menor duracion donde el filtrado temporal y frecuencial necesarios sean menores,
minimizando la influencia del filtrado temporal, que podria no corregirse. En este caso el algoritmo
podria implementarse on-line siempre y cuando se admita un retardo en la estimacion igual al primer
bloque a procesar y el tiempo de computo de éste bloque.

La evaluacion realizada para el método de estimacion en frecuencia con datos tedricos nos permite
establecer las condiciones ideales de funcionamiento del algoritmo y seleccionar un kernel 6ptimo para
la estimcion de la frecuencia respiratoria. Hemos observado como el error de estimacion para un mismo
filtrado temporal y una misma longitud 2N-1 permanece dentro del mismo orden. Esto nos permite
establecer que la implementacion de las ventanas es consistente siempre y cuando se utilicen ventanas
de filtrado con &area equivalente, el método ofrece prestaciones similares. El error de estimacion de
la amplitud instanténea y del ruido aumenta ligeramente los errores de estimacion de frecuencia (de
2.018 % a 2.055 %), si bien los resultados siguen siendo mejores que los obtenidos con el método de
amplitudes constantes propuesto en [15], siempre y cuando se utilice un filtrado temporal de longitud
2N-1 adecuada.

La mejora se traduce en una reducciéon tanto del sesgo como la varianza del error de estimacion
aproximadamente a la mitad, en particular en los segmentos de variacion no lineal, donde el error de
estimacion es mejorado para al menos tres de las longitudes 2/N-1 consideradas.

En [15] se demuestra que la estimacion de la frecuencia instantdnea mejora cuando se utiliza un
filtrado frecuencial de longitud variable frente a un filtrado frecuencial de longitud fija. En dicho
trabajo se compara la estimacion de la frecuencia instantédnea con filtrado frecuencial de longitud
variable frente a la estimada con un filtrado frecuencial de 128 muestras, que equivaldria en nuestro
método a una longitud de 512 muestras. En este TFM se ha comprobado que utilizando una longitud
2N-1 adecuada en el filtado temporal, la estimacion de la frecuencia instantanea con un filtrado
frecuencial de longitud adaptativa mejora respecto a las obtenidas con ventanas de filtrado frecuencial
de 127 muestras, tanto en términos normalizados como en términos absolutos y en ambos tipos de
segmentos. Sin embargo en este TFM también se ha constatado que siempre existe una longitud de
filtrado frecuencial fija que permite realizar una estimacién de minimo error cuadratico medio en
ambos tipos de segmentos. El problema del uso de una ventana fija es que no siempre la misma
longitud permite una estimaciéon con minimo MSE en ambos tipos de segmentos. La longitud 2K-1
fija que minimiza el MSE difiere en funcion de la longitud 2N-1 de la ventana de filtrado temporal y
de las variaciones de frecuencia consideradas (o tipo de segmento).

La evaluacion sobre senales reales se ha considerado en términos de error mediano y desviacion
mediana absoluta, en lugar de error medio y desviacion estandar debido a que en senales reales no solo
existe el error asociado al método de estimacion de la frecuencia instantanea sino también errores de
estimacion de la HRV o en la estimacion de la amplitud instantanea, que pueden provocar estimaciones
anomalas. Los errores de la HRV puden deberse tanto a un motivo no fisiolégico o error de registro
de la senal respiratoria como a una influencia de la componente simpéatica (LF) de frecuencia proxima
a 0.15 Hz que no ha sido reducida con el filtrado paso banda definido en la Sec. 2.1.4, que fuerza
una estimacion de la frecuencia de HF préxima a los 0.15Hz. Los errores asociados a estimacion de la
amplitud instantanea de la HRV pueden simplemente corregirse omitiendo la correccion del filtrado
temporal (deconvolucion). Mediante el uso de valores medianos minimizamos de forma robusta el
efecto de éstas estimaciones anémalas en la evaluacion del método, que ha sido realizada por separado
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para ver las capacidades de estimacion del algoritmo propuesto en los segmentos con variaciones més
lentas (segmentos musicales) y en los segmentos con variaciones méas rapidas (transiciones).

El método propuesto en este TFM ha obtenido errores en la estimacion de la frecuencia respiratoria
de -1.525+4.557 % (1.953+4.883 mHz) en los segmentos musicales y de -0.919+6.542 % (11.465+43.477
mHz) en las transiciones entre segmentos utilizando una ventana de filtrado temporal de longitud 2/N-1
= 51 muestras, comparables a los obtenidos mediante el método original propuesto en [15].

En cuanto a la comparativa del error de estimacion con el método adaptativo frente a la estimacion
obtenida con ventanas de longitudes fijas, se demuestra como existe al menos una longitud fija que
permite la estimacion de la frecuencia instantanea con menor error, pero, al igual que ocurria en el
estudio de simulacion, el problema es que no existe una tinica longitud hs que permita la estimacion con
error mediano minimo para ambos tipos de segmentos y para cualquier longitud de filtrado temporal.
Esto es de especial interés en aplicaciones en las que se usan ventanas de filtrado temporal de longitud
variable [19].

Se puede concluir que la estimacion de la frecuencia instantéanea a partir de la SPWVD con ventanas
de filtrado frecuencial de longitud variable, aun no siendo la 6éptima en cada tipo de segmento consigue
realizar una buena estimacién en ambos, sin necesidad de un conocimiento previo de las variaciones
temporales de la frecuencia instantanea de la componente frecuencial objeto de estudio.






TRABAJO FUTURO

Durante la realizacion del trabajo y tras la finalizacion del mismo nos han surgido nuevas
posibilidades que podemos establecer como lineas futuras de la investigacion:

a. Mejorar la estimacion de la amplitud reduciendo coste computacional y haciéndola menos sensible
a ruido, existe una propuesta de algoritmo [28] para reducir el ruido en la SPWVD que permitiria
no solo estimar mejor la amplitud sino también la frecuencia instantanea.

b. Introducir otros métodos de estimaciéon de la amplitud y ver su comportamiento como pueden ser
[29, 30, 31].

c¢. Introducir un filtrado adaptativo simultaneamente en tiempo y frecuencia que permita adaptar el
algoritmo a las variaciones temporales de la senal [19].

d. Desarrollar analiticamente la formulacion del sesgo y varianza del error de estimacion para distintos
kernels teniendo en cuenta sefiales con variaciones frecuenciales no lineales de mayor orden.

e. Combinar la estimacion de la frecuencia a través de la HRV con alguna otra senal derivada del
ECG y obtener una estimacién méas robusta mediante un post-procesado combinado.
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PRACTICAS

La parte practica de este trabajo fin de master consistié en acudir a distintas sesiones de registros
de pruebas de esfuerzo y colaborar en la medida de lo posible en ellas.

Los registros de pruebas de esfuerzo han sido realizados y dirigidos por el cardiélogo Pedro Serrano,
en la clinica Viamed-Montecanal. Los registros de prueba de esfuerzo se han realizado sobre tapiz
rodante con el protocolo de Bruce mediante el uso de un holter o el sistema BSP para medida HyperQ.

Tuve la oportunidad de estar en contacto con Linda Davrath, en una de las sesiones de registro de
prueba de esfuerzo, en la cual me comentoé las capacidades del sistema HyperQ. Linda esta llevando a
cabo un estudio para analizar las prestaciones de esta medida y ver si los resultados son mas fiables que
los obtenidos con el método utilizado en la actualidad. El estudio se realiza unicamente sobre mujeres
que van a ser sometidas a una angiografia de forma que se obtenga comprobacion de los resultados
obtenidos con el HyperQ.

El sistema HyperQ requiere de informacion de control del paciente que es rellenada por el médico
encargado del registro. Permite la asignacion de un protocolo automatico (en este caso se uso el
protocolo de Bruce) o la definicién de un protocolo de registro de forma manual, aun cuando el
protocolo se establece automético, el sistema permite modificarlo manualmente durante el registro de
la prueba de esfuerzo. Este sistema registra el ECG de 12 derivaciones, calcula el ritmo cardiaco (HR),
el ECG medio y analiza las elevaciones del segmento ST de forma automética durante todo el registro
y permite la inserciéon manual de la presion arterial del paciente en el momento deseado.

Las estimaciones del ECG medio y del HR se realizan mediante un algoritmo de ventana deslizante
a lo largo de toda la duracion de la senal. Para poder realizar las estimaciones de ECG medio, HR
necesita del registro del ECG en reposo durante al menos 3s antes del inicio de la prueba de esfuerzo,
y también una duracién igual durante el periodo de recuperacion tras la finalizacion de la prueba de
esfuerzo. Para considerar que el registro es valido y sus resultados robustos, el sujeto debe alcanzar
al menos un HR del 85% del HR establecido como objetivo (generalmente 220 latidos por minuto
(bpm) menos la edad del paciente). Para poder obtener resultados robustos solo se calculan valores
en aquellos periodos y derivaciones donde el registro del ECG no es demasiado ruidoso.

En las pruebas realizadas hasta el momento se ha observado que el sistema aunque disenado con
los datos de un paciente medio varon, esta ofreciendo resultados muy robustos sobre mujeres, mejores
incluso de los que presentan los metodos de evaluacion de la elevacion y pendiente del ST existentes
hasta ahora.

El primer registro de prueba de esfuerzo se realiz6 sobre un varon de 56 anos, peso de 83 Kg y
1.61m de altura. Este paciente ha sufrido dos infartos de miocardio, el primero en mayo de 2002 y el
ultimo en octubre 2009. E1 HR objetivo se establecio en 164 bpm. El registro alcanz6 una duracion
de 17:07 minutos y 3 intervalos completos del protocolo, el HR maximo alcanzado fue del 86 % y la
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prueba se dio por finalizada a causa de fatiga en el paciente.

El segundo registro se realizo sobre una mujer de 26 anos, 70Kg de peso y 1.64m de estatura.
Esta paciente no presenta antecedentes cardiacos pero su padre padece isquemia, acude al registro
para descartar posibles patologias cardiacas asociadas al cansancio, mareos y falta de fuerza en la
extremidades que sufre desde hace aproximadamente un mes. El HR objetivo se establece el 194 bpm,
al no ser sujeto vélido para el estudio se le aplica un protocolo de Bruce modificado manualmente
donde los intervalos se reducen a duracion aproximada de 1 minuto. La prueba de esfuerzo finaliza
debida a la fatiga del paciente al alcanzar el 6° estado del protocolo de Bruce y tras una duracion de
6:06 minutos. El HR alcanzado es superior al 95 % del establecido como objetivo. Un primer andlisis
visual del ECG descart6 la existencia de posibles patologias cardiacas.

Tres pruebas de esfuerzo se han realizado sobre deportistas, edad media 35 afios. Se utiliz6 un
holter para el registro y un protocolo de Bruce modificado. Los tres pacientes alcanzaron al menos el
5 estado del protocolo de Bruce, superando ligeramente el 85 % de las pulsaciones méaximas para su
edad.

El sexto registro se llevé a cabo sobre una paciente mujer de 57 anos mediante el uso de un holter
y el protocolo de Bruce modificado, se alcazo el estadio 4 y la prueba fue cancelada por ansiedad. Se
ha detectado principio de isquemia y se le ha citado para una nueva prueba de esfuerzo con el BSP y
medidad HyperQ y un cateterismo.

El altimo registro se realizé sobre una paciente de 70 anos, 1.61m de estatura y 100kg de peso. La
prueba duro apenas 6 minutos y fue cancelada a causa de fatiga, mareo y nauseas. Aunque es sujeto
de estudio, su registro no es valido al no haber superado el primer estado del protocolo de Bruce ni
haber alcanzado el 85 % de su HR méaximo. No se ha podido realizar una medida significativa del
HyperQ en ninguna derivacion.

Linda Davrath me propuso el facilitarme los registros una vez digitalizados para que pudiéramos
utilizarlos en futuras investigaciones. Estos registros no van a empezar a digitalizarse hasta mediados
de septiembre, con lo que para este TFM no han podido ser incluidos para analizar las prestaciones
del metodo sobre registros de prueba de esfuerzo.
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