Anexo A

Desarrollos matematicos

Relacion ventana de hamming con ventana rectangular

La ventana de Hamming de L muestras de duracién se define como:

h(n) = 0,54 — 0,46 cos <27r > (A.1)
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Para que ésta presente una resoluciéon con longitud L equivalente a una ventana rectangular de
longitud 2N-1, éstas deben presentar igual area, de forma que:
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Relacién ventana exponencial con ventana rectangular
La ventana exponencial con factor de amortiguamiento v se define como:
h(n) = e "l (A.3)



2 A. DESARROLLOS MATEMATICOS

Para que ésta presente una resolucion con factor de amortiguamiento v equivalente a una ventana
rectangular de longitud 2N-1, éstas deben presentar igual area, de forma que:
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Obteniendo su valor asintético:
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Tomando el desarrollo en serie de Taylor de una exponencial:
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y sustituyendo en (??) obtenemos una relacion aproximada para ventanas de igual resolucion:
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Abstract

Respiratory sinus arrhythmia is a modulation of heart rate synchronous with respiration, which
allows the estimation of respiratory {requency from the high frequency (HF) component of heart rate
variability (HRV). The extraction of the respiratory frequency from the maxima of the smoothed
pseudo Wigner-Ville distribution (SPWVD) is challenging, since the time-frequency smoothing used
to suppress the interference terms of the WVD introduces an estimation error which can be high both
in mean and standard deviation. Additionally in non-stationary conditions the error can be augmented
due to the non-linear trend of the instantaneous frequency (IF).

In this study the respiratory frequency is estimated from the HF band maxima of the SPWVD
of the HRV signal. The algorithm adjusts the degree of frequency filtering (time-lag window length)
to the time-frequency structure of the signal, in order to reduce the estimation error of the IFs.
The optimal time-lag window length, at each time instant, depends on the instantaneous amplitude
estimate of the signal components as well as on the noise present in the signal. The instantaneous
amplitude is estimated independently of the time-frequency smoothing by deconvolving and correcting
the instantaneous power estimates. The instantaneous power of the signal components is obtained by
bounded integration of the SPWVD.

The method has been evaluated on simulated HRV signals with time-varying amplitudes and non-
linear frequency trends, obtaining a mean amplitude error of 0.324 4+ 2.294 % and a mean frequency
error of 0.239 + 2.041 % (-0.008 £ 6.026 mHz) for a SNR of 20 dB. A database containing the ECG
and respiratory signals simultaneously recorded for 58 subjects during the listening of different musical
stimuli has been analyzed. The method estimates the respiratory frequency with a median error of
-1.525 £+ 4.557 % (1.953 £ 4.883 mHz) during musical stimuli and of -0.919 £ 6.542 % (11.465 + 43.477
mHz) during transitions between stimuli, which are highly non-stationary and non-linear.
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Abstract

A method to estimate the respiratory frequency from the
high frequency (HF) component of heart rate variability
(HRV) by means of the smoothed pseudo Wigner-\ille dis-
tribution (SPVWVD) is presented. The method is based on
maximum peak detection of the SPVWD and includes an
adaptive time-lag window length which reduces the mean
squared error (MSE) of the estimation, specially when the
instantaneous frequency trends are non-linear.

Evaluation of the proposed method is performed
over simulated signals with time-varying amplitude,
non-inear frequency, and SNR of 20dB, obtaining
a mean frequency estimation error of -0.2442.04%
(0.01+£6.03mHz). The method has been tested on a
database of ECG and respiration signals simultaneously
recorded during the listening of different musical stimuli,
obtaining a median respiratory frequency estimation error
of -1.53+4.56% (1.954+-4.88 mHz) during musical stimuli
and of -0.92+6.54% (11.47+43.48 mH2) during transi-
tions between stimuli, which are highly non-stationary and
non-linear.

1. I ntroduction

Respiratory sinus arrhythmia (RSA) is a modulation
of heart rate synchronous with respiration, which allows
the estimation of respiratory frequency from the high fre-
quency (HF) component of the heart rate variability (HRV)
signal. In non-stationary conditions the respirator fre-
quency can be estimated from maximum peak detection of
the smoothed pseudo Wigner-Ville distribution (SPWVD)
of the HRV signal in the HF band.

The extraction of the respiratory frequency from the
maxima peak location of the SPWVD is challenging, since
the time-frequency (TF) smoothing used to suppress the
interference terms of the Wigner—Ville distribution intro-
duces a frequency estimation error which can be high both
in mean and standard deviation [1].

A method for the estimation of the IF of a frequency

modulated (FM) signal based on the SPWVD is presented
in [1], which uses an adaptive time-lag window length to
resolve the bias—variance tradeoff that appears, specially
when the IF varies non-linearly. For each time instant the
optimal window length depends on the IF trend as well as
on the signal amplitude and noise variance. The assump-
tion of constant signal amplitude made in [1] is not suitable
for the estimation of the respiratory frequency from the
HRV signal in situations where the RSA amplitude varies
in time, such as during stress testing, tilt testing or induced
emotion experiments.

In this paper an extension of the method in [1] is pre-
sented for the estimation of the respiratory frequency from
the HRV signal, which accounts for time-varying ampli-
tudes and noise variance.

2. Methods and M aterials

2.1. Instantaneous frequency estimation

Assuming that the discrete analytic version of the HF
component of the HRV signal can be modeled as [2]:

2(n) = Aur(n)eI (™) 4 o(n) &)

where A,:(n) and ¢.-(n) are the instantaneous amplitude
and phase of the HF component, and v(n) complex addi-

tive white gaussian noise.
The IF is estimated from the maxima of the SPWVD at
each time instant by:

Fie(n) = 4F—J\j[ arg max {W2(n,m)}, 2

where F is the sampling frequency of z(n) and W (n, m)
represents the SPWVD calculated as [2]

K—-1 N—-1 ) )
We(n,m) =23 [h(k)[? [ S 9@)r=(n +p, k)] eI Rk
k=—K+1 p=—N+1
®)

m=-M+1,... M

where n and m represent time and frequency indexes, re-
spectively, r.(n, k) = z(n + k)z*(n — k), and g(n) and



|h(K)|? are the time and frequency smoothing windows
with length 2/V-1 and 2K -1, respectively.

The asymptotic formulae for the IF estimation error
variance and bias for a frequency smoothing window
length of hy =2K-1, a,%s and 6y, , respectively, derived in
[1], are extended in this paper for time-varying amplitudes
and noise variance, giving

op, (n) =

302(n) 2(n) 1T,
o AZ () [l * 2Aap<n>} n3 @

h3
1 2
On. < g5 sup {‘FﬁF)(n)‘} h2,

where o2(n) is the instantaneous noise variance, 7'y = =,

s

and £ (n) represents the second derivative of Fy(n).
From (4) it can be seen that increasing the frequency
smoothing window length A increases the bias and de-
creases the variance. The idea is to find for each time
instant n the optimal h, which resolve the bias-variance

tradeoff minimizing the mean squared error (MSE).

In [1] a suboptimal approach for the estimation of the
optimal i, which does not need information about the un-
known derivatives of the IF is proposed. An increasing se-
quence of hg, h1 < ho < --- < hy is considered, and for

each hs the IF estimate FHFJLS (n) as well as the variance
oj._(n) are computed. Assuming that h is small enough

so that |0),_| < ko, (n), the following confidence interval
is defined

Dy, (n) = { B, (n) = 260n, (), Fie n, (n) + 260, (n) } (9)

The largest hs for which segments D;,, , and D, have
a point in common is chosen as the optimal A ¢, for which
the bias and standard deviation are of the same order. The
IF estimate is initialized with the estimate obtained for the
shortest length Ay, and then corrected with the estimate
obtained for the optimal length /. In this work a value of
k =2 s used [1].

2.2. Instantaneous amplitude and noise es-
timation

In order to estimate o (n), the instantaneous amplitude
Aye(n) and noise variance o2 (n) need to be estimated.

The method proposed in this paper to estimate A, (n)
from the SPWVD comprises three steps: i) integration of
W.(n,m) over a suited band, ii) correction with a time-
varying factor depending on the frequency smoothing win-
dow, iii) deconvolution of the time smoothing window.

Let us define Psp(n) as the instantaneous power obtained
by the integration of W, (n, m) over a band [m1, mz],
where m; is the discrete frequency index corresponding to
the minimum frequency of FHF(n) — %, mso corresponds
to the maximum frequency Fi(n) + 2L, and Af is the
frequency smoothing window bandwidth estimated from

H(m) = DFTuy; {|h(k)|*} as the frequency distance be-
tween the first zero cross at each side of the its maximum

eak.
From [3] it is derived that the instantaneous power of the

HF component P, (n) can be computed from the SPWVD
attenuating the time and frequency smoothing effects as

Pue(n) =g~ ' (n) * (ﬁsp(n)fc(n)> ; (6)
where f.(n) is a correcting factor computed as

S m Hm)
fe(n) = =3 H(m — mue(n))

m=m7

O

being m(n) the discrete frequency index corresponding
to F(n), and g1 is the inverse function of g(n), which
can be computed in terms of the inverse Wiener filter
[4]. Finally, the instantaneous amplitude is computed as

~ A1
Aue(n) = BZ(n).

The noise present in the signal is estimated subtracting
from z(n) the estimated HF component with amplitude
Ae(n) and frequency F-(n), so that the estimated noise
signal ©(n) accounts also for the amplitude and frequency
estimation errors. Finally, the instantaneous noise variance
is computed as 62 (n) = 4(n)o* (n).

2.3. Materials

24. Simulation study

_In order to evaluate the method proposed in this paper a
simulation study has been designed. The analytic version
of HRV signals have been simulated according to

z(n) = Ae(n)edPFM) 4 Aue(n)ed PHE () gy (n) (8)

where A.((n) and ¢.(n) are the instantaneous ampli-

tude and phase of the LF component. The frequency of
the LF component is considered constant and equal to 0.1
Hz. The A, (n) and F.:(n) vary as shown in Figure 1
and Ac(n) is defined to have a constant sympathovagal
balance B,, = A2 (n)/A2 (n) of 0.5. Note the degree
of variations of A,(n) and F(n) and their non—linearity.
The noise v(n) is set to have a SNR of 20 dB at the in-
stant of maximum instantaneous power. Since the model in
(1) assumes monocomponent signals the simulated signals
are filtered by a 9" order Butterworth filter with bandpass
[0.1-0.65]Hz.

2.4.1. Database

A database consisting in the simultaneous ECG and res-
piratory signals of 58 subjects submitted to different mu-
sical stimuli is analyzed [5]. The database is characterized
by the non-stationarity of both respiration and HRV sig-
nals, as well as by non-linear IF variations specially in the
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Figure 1. Simulated (a) A, and (b) Fi.

transitions between different musical stimuli. The ECG
and respiration signals are sampled at 1000 Hz.

The HRV signal is estimated from the ECG by an al-
gorithm based on the integral pulse frequency modulation
(IPFM) model, which accounts for the presence of ectopic
beats [6]. The HRV signal is sampled to F';=4 Hz and fil-
tered, as in the simulation study, in the band [0.1, 0.65] Hz.
Respiratory signals baseline wander is removed by means
of a 3" order Butterworth filter with cut-off frequency 0.1
Hz and resampled at 4Hz. The IF estimation on the respi-
ratory signal is used as the reference IF for the evaluation
over real signals.

2.5. Evaluation

Evaluation over the simulated signals is done in terms
of mean and standard deviation of the instantaneous fre-
quency or amplitude estimation errors while over real sig-
nals it is done in terms of median and median absolute de-
viation (MAD) in order to minimize the effect of outlier
estimates.

3. Results

3.1. Simulation study

A total of 100 realizations were generated. For the in-
stantaneous amplitude estimation different types of win-
dows for TF smoothing were considered. Results obtained
with a Hamming window for time smoothing and an ex-
ponential window for frequency smoothing are shown in
Table 1 in terms of normalized MSE for different lengths
in terms of the equivalent resolution of a rectangular win-
dow.

Table 1. Squared root of the normalized MSE of A, (n).

hs
15 31 49 63 63 127
21 [3313 3390 3360 3325 3248 3.131
51 2383 2317 2332 2360 2423 2535
71 | 2660 2659 2717 2639 2799 2.899
101 | 3375 3348 3.365 3.390 3.460 3.593

2N-1

Fig.2(a) presents the simulated amplitude Ac(n)
(black), estimated from (6) (red), without the deconvolu-
tion (blue), estimated by simple integration over the clas-
sical HF band (magenta) and over a 0.25Hz band centered
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Figure 2. (a) Different A, (n) estimates, (b) &, (n), (c)
F, (n) comparison and (d) HF component estimate.

on FHF (n). The method proposed in this paper estimates
A (n) quite accurately, although oscilations can be appre-
ciated due to discrete deconvolution and filter transients of
the inverse function and to Gibbs phenomenon.

Fig.2(b) shows simulated instant noise power (blue) and
62(n) (red), where it can be appreciated a central part with
high estimation error due estimation errors in A,¢(n) and
F.(n), which can be seen in Fig.2(c), that introduce a
phase shift into the estimated HF component as it can be
appreciated in Fig.2(d), which presents the estimated (red)
and simulated (blue) HF component.

Frequency estimates were compared to those obtained
with method in [1] based on constant amplitude estimation.
Our method performs better in both types of segment, soft
and sharp IF trends. Fig.3 shows a comparison between
the simulated IF (blue), ;. (n) by the method proposed in
this paper (black) and £,_(n) with the method in [1] (red).
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Figure 3. IF comparison on the two most significative

type of segment on one simulated signal with a 51 sample
Hamming window for time smoothing.

The IF estimates were also compared to those obtained
with the frequency smoothing windows of constant length
(see Table 2). It turns out that the adaptive algorithm does
not always achieve the minimum MSE, as there is always
a constant length providing lower MSE. The matter is that
this optimal constant length varies depending on the type
of segment and on the time smoothing window length.

3.2. Database

Results on the database support those obtained in the
simulation study. Fig.4 shows the median error distribution



Table 2. Squared root of the normalized MSE of E_(n)

for different time smoothing window length
Soft I F trend segments

hs

N1\ pdapt. 3 7 15 23 31 49 6 9% 127

51 0.671 0.838 0.801 0.735 0.687 0.635 0568 0.695 1.448 1.838
101 1.690 2167 2093 1818 1462 1283 2472 4238 5986 6.637

Sharp IF trend segments

h

2N-1 Adapt. 3 7 15 23 31 49 63 95 127

51 2862 2989 2929 2846 2.826 2816 2835 2978 3.608 4.231
101 | 6.392 6.925 6.827 6.596 6.348 6.055 5453 5046 5.069 5.370

Whole signal

hs

2N-1 Adapt. 3 7 15 23 31 49 63 95 127

51 2.065 2172 2120 2.055 2.033 2.018 2021 2138 2725 3.233
101 | 4.623 5076 4.995 4.784 4553 4325 4201 4.650 65557 6.051
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Figure 4. Median error distribution over each segment on
real signals in (a) music stimuly and (b) transition between
stimuly and 2N-1 =51

for each type of segment, where adaptl refers to FHF (n)
with instantaneous amplitude estimates while adapt2 refers
to method in [1]. Both methods perform in a similar way,
and there always exists a constant frequency smoothing
window length which provides an estimate with less me-
dian error, specially during the musical stimuli. The draw-
back again, is that the constant length is not the same for
both type of segments. Shortest lengths used in the simula-
tion study were discarded as they do not provide sufficient
smoothing.

The adaptive algorithm proposed in this paper al-
lows to estimate the respiratory frequency from the
HF component of HRV with a median error of
-1.53+4.56% (1.95+4.88 mHz) during musical stimuli
and of -0.92+6.54% (11.47+43.48 mHz) during transi-
tions between stimuli.

4. Discussion and conclusions

In this paper a method for the estimation of the respira-
tory frequency from the HF component of HRV signal in
non-stationary conditions has been presented. The method
is based on maximum peak detection of the SPWVD and
includes adaptive frequency smoothing window length to
reduce the MSE of the estimation, specially when the IF

variations are non-linear making the bias high. It is based
on the method proposed in [1] but includes instantaneous
amplitude and noise variance estimates, reducing the MSE
of the frequency estimation errors, specially for large or
non-linear variations of the IF.

Evaluation over simulated signals with time-varying
amplitude, non-linear frequency, and SNR of 20dB,
yielded a mean frequency estimation error of -0.244-2.04%
(0.014+6.03 mHz). Over the database the method ob-
tained a median respiratory frequency estimation error
0f-1.53+4.56% (1.95+4.88 mHz) during musical stimuli
and of -0.92+6.54% (11.47+43.48 mHz) between stimuli.

One of the problems associated to the instantaneous am-
plitude estimation presented in this paper is the appearance
of oscillations due to the deconvolution process. In prac-
tice, the deconvolution can be skipped since it has been
shown that is the proper definition of the integration band
as well as the correction of the influence of the frequency
smoothing make estimates based on integration of the SP-
WVD be closer to real values.

In the simulation study the IF estimation algorithm pre-
sented in this paper showed a slightly better performance
than that in [1] even though the simulated signals used in
this paper presented sharper IF trends. However, results
on the database showed no significant difference between
them. On the other hand [1] shows that the adaptive algo-
rithm improves the IF estimation from the ones obtained
when using a fixed window length for frequency smooth-
ing. In this paper we have demonstrated that there always
exists a fixed length which performs better, but it depends
on the IF trend and the time smoothing window length.
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