
Anexo A

Desarrollos matemáticos

Relación ventana de hamming con ventana rectangular

La ventana de Hamming de L muestras de duración se define como:
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Para que ésta presente una resolución con longitud L equivalente a una ventana rectangular de
longitud 2N -1, éstas deben presentar igual área, de forma que:
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Relación ventana exponencial con ventana rectangular

La ventana exponencial con factor de amortiguamiento γ se define como:

h(n) = e−γ|n| (A.3)
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2 A. Desarrollos matemáticos

Para que ésta presente una resolución con factor de amortiguamiento γ equivalente a una ventana
rectangular de longitud 2N -1, éstas deben presentar igual área, de forma que:
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Obteniendo su valor asintótico:
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(A.5)

Tomando el desarrollo en serie de Taylor de una exponencial:

e−γ =

∞∑
n=0
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n!
≈ 1− γ +O(γ2) (A.6)

y sustituyendo en (??) obtenemos una relación aproximada para ventanas de igual resolución:
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Abstract

Respiratory sinus arrhythmia is a modulation of heart rate synchronous with respiration, which
allows the estimation of respiratory frequency from the high frequency (HF) component of heart rate
variability (HRV). The extraction of the respiratory frequency from the maxima of the smoothed
pseudo Wigner-Ville distribution (SPWVD) is challenging, since the time-frequency smoothing used
to suppress the interference terms of the WVD introduces an estimation error which can be high both
in mean and standard deviation. Additionally in non-stationary conditions the error can be augmented
due to the non-linear trend of the instantaneous frequency (IF).

In this study the respiratory frequency is estimated from the HF band maxima of the SPWVD
of the HRV signal. The algorithm adjusts the degree of frequency filtering (time-lag window length)
to the time-frequency structure of the signal, in order to reduce the estimation error of the IFs.
The optimal time-lag window length, at each time instant, depends on the instantaneous amplitude
estimate of the signal components as well as on the noise present in the signal. The instantaneous
amplitude is estimated independently of the time-frequency smoothing by deconvolving and correcting
the instantaneous power estimates. The instantaneous power of the signal components is obtained by
bounded integration of the SPWVD.

The method has been evaluated on simulated HRV signals with time-varying amplitudes and non-
linear frequency trends, obtaining a mean amplitude error of 0.324 ± 2.294 % and a mean frequency
error of 0.239 ± 2.041 % (-0.008 ± 6.026 mHz) for a SNR of 20 dB. A database containing the ECG
and respiratory signals simultaneously recorded for 58 subjects during the listening of different musical
stimuli has been analyzed. The method estimates the respiratory frequency with a median error of
-1.525 ± 4.557 % (1.953 ± 4.883 mHz) during musical stimuli and of -0.919 ± 6.542 % (11.465 ± 43.477
mHz) during transitions between stimuli, which are highly non-stationary and non-linear.
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Abstract

A method to estimate the respiratory frequency from the
high frequency (HF) component of heart rate variability
(HRV) by means of the smoothed pseudo Wigner–Ville dis-
tribution (SPWVD) is presented. The method is based on
maximum peak detection of the SPWVD and includes an
adaptive time-lag window length which reduces the mean
squared error (MSE) of the estimation, specially when the
instantaneous frequency trends are non-linear.

Evaluation of the proposed method is performed
over simulated signals with time-varying amplitude,
non–linear frequency, and SNR of 20dB, obtaining
a mean frequency estimation error of -0.24±2.04%
(0.01±6.03 mHz). The method has been tested on a
database of ECG and respiration signals simultaneously
recorded during the listening of different musical stimuli,
obtaining a median respiratory frequency estimation error
of -1.53±4.56% (1.95±4.88 mHz) during musical stimuli
and of -0.92±6.54% (11.47±43.48 mHz) during transi-
tions between stimuli, which are highly non-stationary and
non-linear.

1. Introduction

Respiratory sinus arrhythmia (RSA) is a modulation
of heart rate synchronous with respiration, which allows
the estimation of respiratory frequency from the high fre-
quency (HF) component of the heart rate variability (HRV)
signal. In non–stationary conditions the respirator fre-
quency can be estimated from maximum peak detection of
the smoothed pseudo Wigner–Ville distribution (SPWVD)
of the HRV signal in the HF band.

The extraction of the respiratory frequency from the
maxima peak location of the SPWVD is challenging, since
the time-frequency (TF) smoothing used to suppress the
interference terms of the Wigner–Ville distribution intro-
duces a frequency estimation error which can be high both
in mean and standard deviation [1].

A method for the estimation of the IF of a frequency

modulated (FM) signal based on the SPWVD is presented
in [1], which uses an adaptive time-lag window length to
resolve the bias–variance tradeoff that appears, specially
when the IF varies non–linearly. For each time instant the
optimal window length depends on the IF trend as well as
on the signal amplitude and noise variance. The assump-
tion of constant signal amplitude made in [1] is not suitable
for the estimation of the respiratory frequency from the
HRV signal in situations where the RSA amplitude varies
in time, such as during stress testing, tilt testing or induced
emotion experiments.

In this paper an extension of the method in [1] is pre-
sented for the estimation of the respiratory frequency from
the HRV signal, which accounts for time-varying ampli-
tudes and noise variance.

2. Methods and Materials

2.1. Instantaneous frequency estimation

Assuming that the discrete analytic version of the HF
component of the HRV signal can be modeled as [2]:

z(n) = AHF(n)e
jφHF(n) + v(n) (1)

where AHF(n) and φHF(n) are the instantaneous amplitude
and phase of the HF component, and v(n) complex addi-
tive white gaussian noise.

The IF is estimated from the maxima of the SPWVD at
each time instant by:

F̂HF(n) =
Fs

4M
argmax

m
{Wz(n,m)} , (2)

where Fs is the sampling frequency of z(n) and Wz(n,m)
represents the SPWVD calculated as [2]
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m = −M + 1, ...,M

where n and m represent time and frequency indexes, re-
spectively, rz(n, k) = z(n + k)z∗(n − k), and g(n) and



|h(k)|2 are the time and frequency smoothing windows
with length 2N -1 and 2K-1, respectively.

The asymptotic formulae for the IF estimation error
variance and bias for a frequency smoothing window
length of hs =2K-1, σ2

hs
and θhs , respectively, derived in

[1], are extended in this paper for time-varying amplitudes
and noise variance, giving

σ2
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2π2A2
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where σ2
v(n) is the instantaneous noise variance, Ts =

1
Fs

,

and F
(2)

HF (n) represents the second derivative of FHF(n).
From (4) it can be seen that increasing the frequency
smoothing window length hs increases the bias and de-
creases the variance. The idea is to find for each time
instant n the optimal hs which resolve the bias-variance
tradeoff minimizing the mean squared error (MSE).

In [1] a suboptimal approach for the estimation of the
optimal hs which does not need information about the un-
known derivatives of the IF is proposed. An increasing se-
quence of hs, h1 < h2 < · · · < hJ is considered, and for
each hs the IF estimate F̂HF,hs(n) as well as the variance
σ2
hs
(n) are computed. Assuming that hs is small enough

so that |θhs | < κσhs(n), the following confidence interval
is defined

Dhs(n) =
{
F̂HF,hs(n) − 2κσhs (n), F̂HF,hs(n) + 2κσhs(n)

}
(5)

The largest hs for which segments Dhs−1 and Dhs have
a point in common is chosen as the optimal hs, for which
the bias and standard deviation are of the same order. The
IF estimate is initialized with the estimate obtained for the
shortest length h1, and then corrected with the estimate
obtained for the optimal length hs. In this work a value of
κ =2 is used [1].

2.2. Instantaneous amplitude and noise es-
timation

In order to estimate σ2
hs
(n), the instantaneous amplitude

AHF(n) and noise variance σ2
v(n) need to be estimated.

The method proposed in this paper to estimate AHF(n)
from the SPWVD comprises three steps: i) integration of
Wz(n,m) over a suited band, ii) correction with a time-
varying factor depending on the frequency smoothing win-
dow, iii) deconvolution of the time smoothing window.

Let us define P̂SP(n) as the instantaneous power obtained
by the integration of Wz(n,m) over a band [m1, m2],
where m1 is the discrete frequency index corresponding to
the minimum frequency of F̂HF(n) − Δf

2 , m2 corresponds

to the maximum frequency F̂HF(n) +
Δf
2 , and Δf is the

frequency smoothing window bandwidth estimated from

H(m) = DFT2M

{|h(k)|2} as the frequency distance be-
tween the first zero cross at each side of the its maximum
peak.

From [3] it is derived that the instantaneous power of the
HF component PHF(n) can be computed from the SPWVD
attenuating the time and frequency smoothing effects as

P̂HF(n) = g−1(n) ∗
(
P̂SP(n)fc(n)

)
, (6)

where fc(n) is a correcting factor computed as

fc(n) =

∑M
m=−M+1 H(m)∑m2

m=m1
H(m −mHF(n))

(7)

being mHF(n) the discrete frequency index corresponding
to FHF(n), and g−1 is the inverse function of g(n), which
can be computed in terms of the inverse Wiener filter
[4]. Finally, the instantaneous amplitude is computed as

ÂHF(n) = P̂
1
2

HF (n).
The noise present in the signal is estimated subtracting

from z(n) the estimated HF component with amplitude
ÂHF(n) and frequency F̂HF(n), so that the estimated noise
signal v̂(n) accounts also for the amplitude and frequency
estimation errors. Finally, the instantaneous noise variance
is computed as σ̂2

v(n) = v̂(n)v̂∗(n).

2.3. Materials

2.4. Simulation study

In order to evaluate the method proposed in this paper a
simulation study has been designed. The analytic version
of HRV signals have been simulated according to

z(n) = ALF(n)e
jφLF(n) + AHF(n)e

jφHF(n) + v(n) (8)

where ALF(n) and φLF(n) are the instantaneous ampli-
tude and phase of the LF component. The frequency of
the LF component is considered constant and equal to 0.1
Hz. The AHF(n) and FHF(n) vary as shown in Figure 1
and ALF(n) is defined to have a constant sympathovagal
balance Bsv = A2

LF
(n)/A2

HF
(n) of 0.5. Note the degree

of variations of AHF(n) and FHF(n) and their non–linearity.
The noise v(n) is set to have a SNR of 20 dB at the in-
stant of maximum instantaneous power. Since the model in
(1) assumes monocomponent signals the simulated signals
are filtered by a 9th order Butterworth filter with bandpass
[0.1–0.65]Hz.

2.4.1. Database

A database consisting in the simultaneous ECG and res-
piratory signals of 58 subjects submitted to different mu-
sical stimuli is analyzed [5]. The database is characterized
by the non-stationarity of both respiration and HRV sig-
nals, as well as by non-linear IF variations specially in the
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Figure 1. Simulated (a) AHF and (b) FHF.

transitions between different musical stimuli. The ECG
and respiration signals are sampled at 1000 Hz.

The HRV signal is estimated from the ECG by an al-
gorithm based on the integral pulse frequency modulation
(IPFM) model, which accounts for the presence of ectopic
beats [6]. The HRV signal is sampled to Fs=4 Hz and fil-
tered, as in the simulation study, in the band [0.1, 0.65] Hz.
Respiratory signals baseline wander is removed by means
of a 3rd order Butterworth filter with cut-off frequency 0.1
Hz and resampled at 4Hz. The IF estimation on the respi-
ratory signal is used as the reference IF for the evaluation
over real signals.

2.5. Evaluation

Evaluation over the simulated signals is done in terms
of mean and standard deviation of the instantaneous fre-
quency or amplitude estimation errors while over real sig-
nals it is done in terms of median and median absolute de-
viation (MAD) in order to minimize the effect of outlier
estimates.

3. Results

3.1. Simulation study

A total of 100 realizations were generated. For the in-
stantaneous amplitude estimation different types of win-
dows for TF smoothing were considered. Results obtained
with a Hamming window for time smoothing and an ex-
ponential window for frequency smoothing are shown in
Table 1 in terms of normalized MSE for different lengths
in terms of the equivalent resolution of a rectangular win-
dow.

Table 1. Squared root of the normalized MSE of A HF(n).
2N -1

hs

15 31 49 63 63 127
21 3.313 3.390 3.360 3.325 3.248 3.131
51 2.383 2.317 2.332 2.360 2.423 2.535
71 2.660 2.659 2.717 2.639 2.799 2.899
101 3.375 3.348 3.365 3.390 3.460 3.593

Fig.2(a) presents the simulated amplitude AHF(n)
(black), estimated from (6) (red), without the deconvolu-
tion (blue), estimated by simple integration over the clas-
sical HF band (magenta) and over a 0.25Hz band centered
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Figure 2. (a) Different ÂHF(n) estimates, (b) σ̂v(n), (c)
F̂HF(n) comparison and (d) HF component estimate.

on F̂HF(n). The method proposed in this paper estimates
AHF(n) quite accurately, although oscilations can be appre-
ciated due to discrete deconvolution and filter transients of
the inverse function and to Gibbs phenomenon.

Fig.2(b) shows simulated instant noise power (blue) and
σ̂2
v(n) (red), where it can be appreciated a central part with

high estimation error due estimation errors in AHF(n) and
FHF(n), which can be seen in Fig.2(c), that introduce a
phase shift into the estimated HF component as it can be
appreciated in Fig.2(d), which presents the estimated (red)
and simulated (blue) HF component.

Frequency estimates were compared to those obtained
with method in [1] based on constant amplitude estimation.
Our method performs better in both types of segment, soft
and sharp IF trends. Fig.3 shows a comparison between
the simulated IF (blue), F̂HF(n) by the method proposed in
this paper (black) and F̂HF(n) with the method in [1] (red).
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Figure 3. IF comparison on the two most significative
type of segment on one simulated signal with a 51 sample
Hamming window for time smoothing.

The IF estimates were also compared to those obtained
with the frequency smoothing windows of constant length
(see Table 2). It turns out that the adaptive algorithm does
not always achieve the minimum MSE, as there is always
a constant length providing lower MSE. The matter is that
this optimal constant length varies depending on the type
of segment and on the time smoothing window length.

3.2. Database

Results on the database support those obtained in the
simulation study. Fig.4 shows the median error distribution



Table 2. Squared root of the normalized MSE of F̂HF(n)
for different time smoothing window length

Soft IF trend segments

2N -1
hs

Adapt. 3 7 15 23 31 49 63 95 127
51 0.671 0.838 0.801 0.735 0.687 0.635 0.568 0.695 1.448 1.838
101 1.690 2.167 2.093 1.818 1.462 1.283 2.472 4.238 5.986 6.637

Sharp IF trend segments

2N -1
hs

Adapt. 3 7 15 23 31 49 63 95 127
51 2.862 2.989 2.929 2.846 2.826 2.816 2.835 2.978 3.608 4.231
101 6.392 6.925 6.827 6.596 6.348 6.055 5.453 5.046 5.069 5.370

Whole signal

2N -1
hs

Adapt. 3 7 15 23 31 49 63 95 127
51 2.055 2.172 2.120 2.055 2.033 2.018 2.021 2.138 2.725 3.233
101 4.623 5.076 4.995 4.784 4.553 4.325 4.201 4.650 5.557 6.051
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Figure 4. Median error distribution over each segment on
real signals in (a) music stimuly and (b) transition between
stimuly and 2N -1 = 51

for each type of segment, where adapt1 refers to F̂HF(n)
with instantaneous amplitude estimates while adapt2 refers
to method in [1]. Both methods perform in a similar way,
and there always exists a constant frequency smoothing
window length which provides an estimate with less me-
dian error, specially during the musical stimuli. The draw-
back again, is that the constant length is not the same for
both type of segments. Shortest lengths used in the simula-
tion study were discarded as they do not provide sufficient
smoothing.

The adaptive algorithm proposed in this paper al-
lows to estimate the respiratory frequency from the
HF component of HRV with a median error of
-1.53±4.56% (1.95±4.88 mHz) during musical stimuli
and of -0.92±6.54% (11.47±43.48 mHz) during transi-
tions between stimuli.

4. Discussion and conclusions

In this paper a method for the estimation of the respira-
tory frequency from the HF component of HRV signal in
non–stationary conditions has been presented. The method
is based on maximum peak detection of the SPWVD and
includes adaptive frequency smoothing window length to
reduce the MSE of the estimation, specially when the IF

variations are non-linear making the bias high. It is based
on the method proposed in [1] but includes instantaneous
amplitude and noise variance estimates, reducing the MSE
of the frequency estimation errors, specially for large or
non–linear variations of the IF.

Evaluation over simulated signals with time-varying
amplitude, non–linear frequency, and SNR of 20dB,
yielded a mean frequency estimation error of -0.24±2.04%
(0.01±6.03 mHz). Over the database the method ob-
tained a median respiratory frequency estimation error
of-1.53±4.56% (1.95±4.88 mHz) during musical stimuli
and of -0.92±6.54% (11.47±43.48 mHz) between stimuli.

One of the problems associated to the instantaneous am-
plitude estimation presented in this paper is the appearance
of oscillations due to the deconvolution process. In prac-
tice, the deconvolution can be skipped since it has been
shown that is the proper definition of the integration band
as well as the correction of the influence of the frequency
smoothing make estimates based on integration of the SP-
WVD be closer to real values.

In the simulation study the IF estimation algorithm pre-
sented in this paper showed a slightly better performance
than that in [1] even though the simulated signals used in
this paper presented sharper IF trends. However, results
on the database showed no significant difference between
them. On the other hand [1] shows that the adaptive algo-
rithm improves the IF estimation from the ones obtained
when using a fixed window length for frequency smooth-
ing. In this paper we have demonstrated that there always
exists a fixed length which performs better, but it depends
on the IF trend and the time smoothing window length.
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