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Algoritmos de regulación en flujos
transitorios bidimensionales

Resumen

El uso de métodos numéricos para predecir la forma de la lámina de agua o las

variaciones de caudal en caso de flujos tanto estacionarios como no estacionarios

es, hoy en d́ıa, una práctica necesaria dentro de la tecnoloǵıa hidráulica moderna,

ya que ofrece la posibilidad de evaluar, de una forma no muy costosa, la respuesta

de los sistemas hidráulicos frente a una gran variedad de situaciones prácticas. En

particular, la simulación numérica de flujos transitorios permite acceder, entre otras

cosas, a la predicción de tiempos de tránsito de las ondas, alcanzados por los valores

máximos en distintos puntos del dominio de cálculo. Esta información es esencial

para el diseño de estrategias de prevención y puede ser combinada con algoritmos

de regulación y optimización.

Los problemas que acarrean las grandes precipitaciones y las consiguientes inun-

daciones es un tema de interés creciente en los últimos años. Grandes pérdidas

económicas y sociales son las principales consecuencias que traen consigo estas

inundaciones. Para poder actuar de una manera efectiva contra esto, una opción

es la utilización de áreas de inundación controlada para almacenar la mayor parte

de la crecida y devolver el agua al ŕıo una vez haya finalizado. Esto es, por otra

parte, un reto, debido a que la aplicación de estos conceptos a cuencas urbani-

zadas que fueron desarrolladas hace mucho tiempo con zonas bajas ocupadas por

infraestructura industrial, comercial y residencial se antoja muy complicada.

El trabajo consiste en familiarizarse con modelos de simulación transitoria para

flujos bidimensionales existentes en el grupo de investigación, recopilar información

de elementos y algoritmos de regulación, establecer un caso test de aplicación y

programar la combinación de ambos elementos para ensayar su potencial utilidad.
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2.2.1. Término de fricción y modelos de turbulencia . . . . . . . . . . . 19

2.2.2. Versión común de las ecuaciones de aguas poco profundas . . . . 20
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B. Teorema Π de Buckingham 69

B.1. Demostración . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.2. Aplicación del teorema Pi . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C. Condiciones de contorno 75

C.1. Condiciones de contorno en la ecuación lineal escalar 2D . . . . . . . . . 75

C.1.1. Celda ficticia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

C.2. Condiciones de contorno para el sistema de ecuaciones 2D . . . . . . . . 78

C.2.1. Aplicación al modelo bidimensional de las ecuaciones de aguas poco

profundas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.3. Condiciones de contorno internas . . . . . . . . . . . . . . . . . . . . . . 80

D. Ajuste de controladores PID 83

D.1. Método de la curva de reacción . . . . . . . . . . . . . . . . . . . . . . . 84

D.2. Aplicación a nuestro caso test . . . . . . . . . . . . . . . . . . . . . . . . 86

6
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Caṕıtulo 1

Introducción

Las inundaciones, derivadas de eventos de precipitación, son manifestaciones naturales.

Evitar la causa, es decir, la precipitación, o disminuir su magnitud, a través de la in-

tervención del hombre es prácticamente imposible. De la misma manera, la amenaza de

crecidas no se puede suprimir ni evitar, sino solo moderar o mitigar. Por lo tanto, para

enfrentarse a este tipo de problemas, no basta reaccionar frente al desastre sino prevenir-

lo, en la medida de lo posible. Pero una conducta preventiva no es tan fácil de practicarla,

debido a la multitud de factores y la complejidad de sus interacciones.

Una práctica ideal en la gestión de inundaciones es tomar en cuenta todos los medios

posibles para disminuir efectivamente el potencial de pérdidas de vidas humanas, bie-

nes y medios de producción aśı como pérdida de recursos naturales. Esto requiere que

todos los sectores: poĺıticos, administrativos, gubernamentales a todo nivel, cient́ıficos

y comunidades adquieran conciencia de la necesidad de actuar conjuntamente, es decir,

compartir el desaf́ıo, ya que todos tienen algo que perder. Considerando que el agua no

respeta fronteras ni entiende de poĺıtica ni de jurisdicciones, debe entenderse entonces,

que la gestión de inundaciones es responsabilidad de todos.

La investigación acerca de estos fenómenos ha tenido y tiene la responsabilidad de ayudar

a las comunidades para mitigar estos riesgos asociados a las inundaciones. Históricamente

la aproximación a este problema ha estado en diseñar cursos de agua con la capacidad de

manejar un gran caudal, con un peŕıodo de retorno de 100 años. Esto se ha logrado en

gran medida mediante la construcción de embalses y el aumento de alturas de los diques.

Actualmente es la simulación numérica la que ha tomado la delantera a estas medidas

mencionadas anteriormente.

La simulación numérica intenta representar de la manera más aproximada posible la

realidad que rodea a un fenómeno f́ısico. Pero, antes de obtener un modelo numérico, es

necesario interpretar esta realidad f́ısica mediante un modelo matemático (un conjunto de
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ecuaciones). Después es indispensable realizar una representación discreta del dominio,

de manera que tengamos un número finito de variables para poder introdućırselas al

ordenador. Por último debemos usar un esquema numérico apropiado para cada caso,

que sea capaz de resolver de forma aproximada las ecuaciones que relacionan las variables

discretas.

Esta pequeña receta es la base que nos permite modelar un fenómeno f́ısico y median-

te simulación numérica, poder reproducir qué ocurrió y qué está ocurriendo y predecir

qué ocurrirá. El campo de investigación que se ocupa en particular del estudio del compor-

tamiento del agua usando soluciones numéricas de ecuaciones no lineales es la Hidráulica

Computacional. El movimiento de un fluido como el agua viene gobernado por los prin-

cipios fundamentales de conservación de la masa, segunda ley de Newton y conservación

de la enerǵıa.

Estos principios fundamentales pueden expresarse en términos matemáticos, que, gene-

ralmente, adoptan la forma de ecuaciones en derivadas parciales. La dinámica de fluidos

computacional (CFD) dentro de la que se incluye la Hidráulica Computacional es, en

parte, el arte de sustituir las ecuaciones en derivadas parciales que describen el movi-

miento del fluido por “números” y, haciendo avanzar estos “números” en el espacio y/o

en el tiempo, obtener finalmente una descripción completa del campo del flujo que nos

interesa.

Por supuesto, el instrumento que ha hecho posible que la CFD avance ha sido la mejora de

la rapidez de cálculo de los ordenadores. Las soluciones en CFD requieren, en general, la

manipulación de miles, o incluso millones de números, tarea que seŕıa imposible efectuar

sin la ayuda de un ordenador.

Una gran cantidad de trabajos han sido desarrollados para generar modelos numéricos

1D y 2D mediante la aplicación de varias técnicas computacionales: diferencias finitas,

elementos finitos y volúmenes finitos. Hoy en d́ıa resolver las ecuaciones 3D para este

tipo de problemas no tiene mucho sentido. Aunque proporcionan una información muy

exhaustiva de lo que está pasando, se trata de una información, que no merece la pena

dada la potencia actual de los ordenadores. Por tal razón, en este trabajo se han focalizado

los esfuerzos en el modelo numérico 2D, que tiene ciertas ventajas respecto a los dos

modelos anteriores [29, 32, 39]

Este trabajo se centra en un aspecto muy concreto: conseguir reducir el pico de caudal que

se produce en las crecidas mediante la utilización de llanuras de inundación controlada,

que puedan almacenar la mayor cantidad de agua posible durante el peŕıodo de avenida

para después devolverla al ŕıo una vez ésta haya pasado. Ésta es una solución que ya

se está poniendo en práctica en varias Confederaciones Hidrográficas, y asegura una
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laminación importante del hidrograma. En la práctica, agricultores ceden sus terrenos

para este fin, siendo indemnizados después en el caso de que su campo quede anegado.

Esto conlleva una serie de implicaciones económicas que no se analizan en este trabajo

pero que se tienen que tener en cuenta en futuros estudios a mayor escala.

Para la realización de este trabajo, se ha creado un caso test de estudio, en el que existen

una serie de compuertas que permiten la entrada y la salida a las zonas de inundación

controlada y, con el fin de conseguir un aprovechamiento óptimo de estas llanuras de

inundación, se han implementado dos algoritmos de regulación de las compuertas ficticias

instaladas en cada una de estas zonas: un algoritmo de regulación básica, en el que se

establece un nivel de referencia y en el momento en que el nivel de agua del ŕıo supera ese

nivel, las compuertas se abren (lo mismo para cerrarse) y un controlador PID, un poco

más sofisticado, pero que se basa en la misma idea, permitiendo evaluar los errores entre

el nivel de agua en el ŕıo y el nivel de referencia preestablecido. Actualmente, el algoritmo

de control básico es el que se está utilizando en algunos lugares con este fin, pero se trata

de un mecanismo manual, pues las compuertas tipo Narmix ya vienen diseñadas aśı.

Aparte de esto, y antes de construir los propios algoritmos de regulación y observar el

resultado final, se ha realizado un análisis dimensional de nuestro problema, haciendo

intervenir a todas las variables que a priori están presentes en el sistema y llegando a

conclusiones interesantes y coherentes. El análisis dimensional es una herramienta muy

potente que nos permite conocer los parámetros que intervienen en nuestro problema y

en qué medida influyen cada uno de ellos.

En definitiva, se trata de un trabajo de interés creciente los últimos años, que puede ser

la base para poder utilizar en un caso real y poder evaluar los grandes beneficios que

conlleva la utilización de estas llanuras de inundación controlada en la gestión de las

avenidas.
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Caṕıtulo 2

Modelo 2D de flujo de lámina libre

con promedio en la vertical

2.1. Ecuaciones generales

Las ecuaciones que describen el flujo tridimensional de superficie libre [48] pueden ser

obtenidas a partir de las ecuaciones de Navier-Stokes que expresan los principios f́ısicos

de conservación de la masa y conservación del movimiento en las tres direcciones del

espacio:

∇v = 0 (2.1)

∂u

∂t
+ ∇(uv) +

∂p

∂x
− ∂τxx

∂x
− ∂τxy

∂y
− ∂τxz

∂z
= 0

∂v

∂t
+ ∇(vv) +

∂p

∂y
− ∂τxy

∂x
− ∂τyy

∂y
− ∂τyz

∂z
= 0

∂w

∂t
+ ∇(wv) + ρg +

∂p

∂z
− ∂τxz

∂x
− ∂τyz

∂y
− ∂τzz

∂z
= 0 (2.2)

Puesto que las variaciones de densidad son despreciables o nulas, no existen v́ınculos entre

la ecuación de conservación de la enerǵıa y las de la masa y movimiento y en este caso

son suficientes las dos últimas ecuaciones para conocer la evolución del flujo.

Para fijar las soluciones de las ecuaciones diferenciales (2.1) y (2.2) es preciso definir

las condiciones de contorno en las fronteras. En este caso existen dos zonas: la entrefase

fluido-sólido (fondo) que es fija y la entrefase fluido-fluido (superficie libre) que puede

cambiar continuamente. Las condiciones de frontera en ambas superficies son de dos
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tipos: cinemáticas y dinámicas. Primero vamos a plantear las condiciones cinemáticas

en el fondo y en la superficie libre y después haremos lo mismo con las condiciones de

frontera de tipo dinámico.

Las condiciones cinemáticas están relacionadas con la velocidad y nos dicen que las

part́ıculas de agua en su movimiento no pueden cruzar ninguna frontera. Para el fon-

do significa que la componente de la velocidad normal a la superficie sólida debe ser cero

(fondo sólido, impermeable y fijo).

vn̂b = u
∂zb

∂x
+ v

∂zb

∂y
− w = 0 (2.3)

con n̂b = (∂zb/∂x, ∂zb/∂y,−1) el vector normal a la superficie ĺıquida en contacto con la

sólida hacia afuera en z = zb (x, y), donde zb es la cota del fondo medida desde un nivel

de referencia horizontal (Fig. 2.1).

En la superficie libre las cosas son un poco más complicadas ya que ésta se puede mover.

En este caso lo que debe ser nula es la velocidad normal relativa a esa superficie y

representa que el fluido no se puede salir del propio fluido, no puede atravesar tampoco

la superficie libre
∂H

∂t
+ u

∂H

∂x
+ v

∂H

∂y
− w = 0 (2.4)

en z = H (x, y, t), donde H es el nivel de la superficie libre medido desde el nivel de

referencia (Fig. 2.1).

Zb

h

H

Figura 2.1: Perfil del cauce.

Queremos hacer notar aqúı que el cauce puede tener una pendiente elevada tanto en

dirección x como en dirección y y por ello hay que elegir bien los ejes de referencia sobre

los cuales se van a tomar medidas. En este caso, lo que se hace es suponer una referencia
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horizontal arbitraria para simplificar notablemente la formulación y se considera que el

ángulo que define la pendiente es casi despreciable.

Las condiciones de contorno dinámicas nos dan información sobre las fuerzas que actúan

en los contornos. Si el flujo es viscoso y el fondo fijo, la fuerza que actúa es la de la

viscosidad y por lo tanto las part́ıculas que se encuentran en contacto con el fondo están

pegadas a él, por lo cual puede imponerse la condición de no deslizamiento que conduce

a:

u = v = 0 (2.5)

en z = zb(x, y).

En la superficie libre se supone continuidad de esfuerzos; es decir, los esfuerzos en el fluido

justo por debajo de la superficie libre son los mismos que los del aire justo encima. Estos

esfuerzos pueden ser de dos tipos: normales y cortantes ó tangentes a la superficie. En

el caso de los esfuerzos normales a la superficie donde interviene el término de presión,

despreciando los efectos de la tensión superficial,

P = Pa (2.6)

donde Pa es la presión atmosférica. El nivel absoluto de presiones no es importante y se

puede tomar como cero. Las diferencias sólo podŕıan ser importantes en el caso de que

se quisiera estudiar el efecto de las variaciones de presión atmosférica en el movimiento

del agua.

Los esfuerzos tangenciales que actúan en la superficie libre son debidos a esfuerzos viscosos

y la condición de contorno nos dice que deben ser iguales al esfuerzo tangencial aplicado al

otro lado de la frontera de la superficie libre y que puede ser provocado por el viento. De

este modo, el modelo contempla que en la superficie del mar, por ejemplo, puede actuar un

esfuerzo cortante debido al viento. Este esfuerzo cortante externo τ s = (τsx, τsy) tangente

a la superficie del agua es

τsx = (T · nH)x = −τxx
∂H

∂x
− τxy

∂H

∂y
+ τxz (2.7)

en z = H y de forma similar para la dirección y. El vector de esfuerzos producido por

el viento se supone conocido y se trata como una fuerza externa. La magnitud y la

dirección de la fuerza del viento en la superficie del mar vienen determinadas por el flujo

en la atmósfera. Normalmente se supone que el módulo de la velocidad del viento es

conocida W y se acepta la fórmula semi-emṕırica dada por Gill [24],

τs = ρcWW 2 (2.8)
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y la dirección se supone que es la dirección de la velocidad que lleva el viento. El coeficiente

cW no es constante, depende de la velocidad del viento; por ejemplo, es del orden de 0,001

si la velocidad del viento se mide a unos 10 m de altura.

Resolver este sistema de ecuaciones es muy costoso computacionalmente ya que hace

falta resolver la ecuación tridimensional de Poisson [48] para obtener la distribución de

presiones en cada paso temporal. La condición de contorno de la superficie libre implica

una no linealidad extra en el problema y para muchas aplicaciones se prefiere resolver

el sistema de ecuaciones de aguas poco profundas que se obtiene siguiendo una serie de

aproximaciones.

Después de realizar un estudio de las escalas caracteŕısticas del problema [9] llegamos a

las ecuaciones de aguas poco profundas tridimensionales que reescribimos a continuación:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 (2.9)

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂uw

∂z
= −g

∂h

∂x
+

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
(2.10)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
+

∂vw

∂z
= −g

∂h

∂y
+

∂τyx

∂x
+

∂τyy

∂y
+

∂τyz

∂z
(2.11)

∂p

∂z
+ ρg = 0 (2.12)

Se hace notar que con las ecuaciones de movimiento (2.10), (2.11) podemos conocer los

valores de u y v, w la obtendŕıamos a partir de la ecuación de conservación de la masa

(2.9) y, por último, la variable h tendŕıa que ser determinada por las condiciones de

contorno de la superficie libre (2.4), siendo aún aśı un procedimiento todav́ıa complicado.

Por esto se recurre al promedio en la vertical cuya hipótesis fundamental es que Las ondas

que se producen en la superficie vaŕıan suavemente, lo cual es equivalente a decir que la

distribución de presiones en la vertical es hidrostática o que la aceleración en la vertical

es pequeña.

2.2. Ecuaciones promediadas en la vertical

Para pasar a la forma bidimensional de las ecuaciones, dejando la profundidad como va-

riable dependiente, hay que dar un paso más. Con el objetivo de eliminar de las ecuaciones

la información del movimiento en la dirección vertical z se promedian las ecuaciones en
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esta dirección haciendo uso de las definiciones de los promedios de las variables.

ū =
1

h

∫ H

zb

udz (2.13)

v̄ =
1

h

∫ H

zb

vdz (2.14)

El proceso de promediar en la vertical las ecuaciones convierte el problema tridimensional

en uno bidimensional de grosor variable h donde los contornos ya no están en la superficie

libre y el fondo sino en el peŕımetro.

El promedio en la vertical de las ecuaciones del flujo de superficie libre bajo las hipótesis

del modelo de aguas poco profundas (ver [9]) conduce a una versión muy común del

sistema de ecuaciones en 2D que repetimos aqúı:

∂h

∂t
+

∂(hu)

∂x
+

∂(hv)

∂y
= 0

∂(hu)

∂t
+

∂(hu2)

∂x
+

∂(huv)

∂y
= −gh

∂H

∂x
+ cfu

√
u2 + v2 + hνT∇2u

∂(hv)

∂t
+

∂(huv)

∂x
+

∂(hv2)

∂y
= −gh

∂H

∂y
+ cfv

√
u2 + v2 + hνT∇2v

2.2.1. Término de fricción y modelos de turbulencia

El coeficiente cf que aparece en el término de fricción se expresa habitualmente en térmi-

nos del coeficiente de rugosidad de Manning n o de Chézy [14],

cfu
√

u2 + v2 =
n2u

√
u2 + v2

h
4
3

(2.15)

cfv
√

u2 + v2 =
n2v

√
u2 + v2

h
4
3

(2.16)

El coeficiente de rugosidad n en la práctica se determina a partir de medidas experi-

mentales o se estima a partir de valores que ya han sido almacenados en tablas [14]. La

ecuación de Manning aqúı descrita es de naturaleza emṕırica y por tanto es el resultado

de un proceso de ajuste a una curva de datos experimentales. La primera dificultad que

surge a la hora de usar este coeficiente de rugosidad es la precisión con la que ha sido

estimado. El coeficiente n depende en principio del número de Reynolds del flujo, de la

rugosidad de los contornos y de la forma geométrica de la cuenca. La rugosidad de la
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superficie del contorno representa un valor cŕıtico a la hora de estimar n, con valores

pequeños si el material es fino y valores altos en el caso contrario. El valor de n también

debe de dar cuenta de la vegetación retardando el flujo y proporcionando valores altos

de n, dependiendo también de la altura de agua. El modelo de fricción dado por (2.15) y

(2.16) se basa en la teoŕıa de capa ĺımite estacionaria sobre pared rugosa.

Con el objeto de calcular las variables hidrodinámicas, es necesario fijar el valor del

coeficiente de Manning, como ya hemos dicho, y el valor de la viscosidad cinemática de

remolino. La viscosidad turbulenta νT depende de las caracteŕısticas del flujo y puede

variar de un punto a otro del dominio. Por tanto, es necesario plantear un modelo de

turbulencia que nos permita evaluar el valor de νT en cada punto del dominio. En [9] se

presentan algunos de los modelos de turbulencia existentes.

2.2.2. Versión común de las ecuaciones de aguas poco

profundas

El término que proviene de promediar en la vertical el gradiente de presión ha dado lugar

a los términos g∂H/∂x, g∂H/∂y, que a su vez se pueden descomponer, teniendo en cuenta

que H = h + zb en

g
∂H

∂x
= g

∂h

∂x
+ g

∂zb

∂x
(2.17)

g
∂H

∂y
= g

∂h

∂y
+ g

∂zb

∂y
(2.18)

Los términos ∂h/∂x, ∂h/∂y se agrupan junto a las otras derivadas del mismo tipo (térmi-

nos convectivos). Las variaciones del fondo se expresan en forma de pendiente

S0x = −∂zb

∂x
(2.19)

S0y = −∂zb

∂y
(2.20)

Los términos de fricción del agua con el fondo del cauce se representan por Sf , pendiente

de la ĺınea de enerǵıa en cada dirección

Sfx =
cfu

√
u2 + v2

gh
(2.21)

Sfy =
cfv

√
u2 + v2

gh
(2.22)
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dando lugar al siguiente sistema de ecuaciones que es la forma más conocida de represen-

tación del modelo de aguas poco profundas

∂h

∂t
+

∂hu

∂x
+

∂hv

∂y
= 0 (2.23)

∂hu

∂t
+

∂hu2

∂x
+ gh

∂h

∂x
+

∂huv

∂y
= gh(S0x − Sfx) (2.24)

∂hv

∂t
+

∂huv

∂x
+

∂hv2

∂y
+ gh

∂h

∂y
= gh(S0y − Sfy) (2.25)

Este sistema de ecuaciones en su forma conservativa [1, 17] es decir, escritas las ecuaciones

de la forma más cercana posible a un sistema de leyes de conservación de masa y cantidad

de movimiento, es
∂U

∂t
+ ∇E = S ⇒ ∂U

∂t
+ ∇ · (F,G) = S (2.26)

con

U =




h

hu

hv


 , F =




hu

hu2 + g h2

2

huv


 , G =




hv

huv

hv2 + g h2

2


 ,

S =




0

gh (S0x − Sfx)

gh (S0y − Sfy)


 (2.27)

U representa el vector de variables conservadas (h profundidad del agua (Fig. 2.1), hu

y hv caudales unitarios a lo largo de las direcciones coordenadas x, y respectivamente),

F y G son los flujos de las variables conservadas a través de los lados de un volumen de

control, y contienen el flujo convectivo y los gradientes de presión hidrostática. La parte

derecha de la igualdad en el sistema de ecuaciones, S, contiene las fuentes y sumideros

de la cantidad de movimiento a lo largo de las dos direcciones coordenadas, provenientes

de las variaciones del fondo del cauce y de las pérdidas por fricción que deben estar

relacionadas con el campo de velocidades.

De esta manera, (2.26) representa un sistema hiperbólico de ecuaciones diferenciales en

derivadas parciales acopladas y no lineales. Si escribimos el sistema de ecuaciones en

formulación no conservativa

∂U

∂t
+ (A,B) · ∇U = S (2.28)
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las matrices Jacobianas de los vectores de flujo son

A =
∂F

∂U
=




0 1 0

c2 − u2 2u 0

−uv v u


 , B =

∂G

∂U
=




0 0 1

−uv v u

c2 − v2 0 2v


 (2.29)

y la matriz Jacobiana del flujo normal a una dirección dada por n̂ se puede escribir como

A = An̂x + Bn̂y =




0 n̂x n̂y

−u(u · n̂) + c2n̂x u · n̂ + un̂x un̂y

−v(u · n̂) + c2n̂y vn̂x u · n̂ + un̂y


 (2.30)

Los valores propios del Jacobiano Jn son

a1 = u · n̂ + c

a2 = u · n̂
a3 = u · n̂− c (2.31)

y sus vectores propios

e1 =




1

u + cn̂x

v + cn̂y


 , e2 =




0

−cn̂y

cn̂x


 , e3 =




1

u − cn̂x

v − cn̂y


 (2.32)

2.3. Esquema numérico

El dominio donde se mueve el flujo, se subdivide, en un conjunto de celdas para su

resolución numérica. En el modelo presentado hay libertad a la hora de elegir el tipo de

celdas: hexágonos, cuadriláteros, triángulos, etc... y además pueden formar parte de una

malla estructurada o de una malla no estructurada. La elección de la malla es un factor

importante en la simulación numérica.

Respecto a la técnica de resolución de las ecuaciones, se ha usado un método de volúme-

nes finitos porque combina lo mejor de los métodos de elementos finitos y su flexibilidad

geométrica, con lo mejor de los métodos en diferencias finitas, su flexibilidad en la de-

finición del flujo discreto (valores discretos de las variables dependientes y sus flujos

asociados). El primer paso es escribir (2.28) en la forma

∂U

∂t
+
−→∇E = S (2.33)
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donde E = (F,G)T .

Aplicando el teorema de Gauss sobre la celda de cálculo Ωi fija en el tiempo, (2.33) se

escribe como:

∂

∂t

∫

Ωi

UdΩi +

∮

∂Ωi

Endl =

∮

∂Ωi

Tndl (2.34)

donde Tn es un vector que expresa el término fuente a través de la superficie ∂Ω, l denota

la variable de integración de la superficie alrededor del volumen Ωi y n es el vector exterior

normal unitario.

Una vez formulado el problema en volúmenes finitos se ha de elaborar una estrategia

adecuada para calcular el flujo numérico a través de la superficie. La forma hiperbólica

del sistema de ecuaciones hace que este problema sea resuelto adecuadamente utilizando

un esquema numérico perteneciente a la familia de los métodos de Godunov [29, 46]. Este

tipo de método calcula el flujo numérico que actualiza el valor de cada celda de cálculo

i promediando el valor de las diferentes soluciones aproximadas que aparecen al definir

un problema de Riemann en la superficie entre el volumen y cada uno de los volúmenes

vecinos j. Dentro las posibles opciones que permiten generar una solución aproximada, en

este trabajo se utiliza la aproximación propuesta por Roe [39], que a diferencia de otras

considera todas las velocidades de propagación de información contenidas en el Jacobiano

de la matriz. Cuando aparecen términos fuente formularlos a través de una matriz en la

pared, como en (A.1), permite desarrollar soluciones aproximadas más complejas adecua-

damente [35]. De esta manera, el flujo normal En y su jacobiano cobran protagonismo.

Se evalúa la matriz jacobiana del flujo normal y se diagonaliza, permitiendo que el esque-

ma numérico se base en vectores y valores propios. De esta forma, el esquema numérico

utilizado para resolver la ecuaciones de lámina libre se detalla en el Anexo A.

En este trabajo se incluye la modelización de compuertas como agente regulador del flujo

de agua. El flujo a través una compuerta no puede ser definido como flujo de superficie

libre y la hipótesis de presión hidrostática ya no es válida. El sistema de ecuaciones de

conservación de masa y momento no es adecuado, se requiere la participación de leyes

de conservación de enerǵıa. Este cambio en el sistema de ecuaciones se evita modelando

las compuertas como una discontinuidad entre las superficies de las celdas, donde el flujo

numérico de Godunov entre dos celdas no es calculado. Con este fin, se definen condiciones

de contorno internas donde hay que imponer un número de variables adecuadas. La

discretización de este tipo de condición de contorno que modela el flujo a presión en una

compuerta y garantiza una correcta conservación de la masa se detalla en el Anexo C.
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2.4. Modelos de compuertas

Para la realización de este trabajo se implementan algoritmos de regulación de compuer-

tas. Las compuertas se definen a través de una condición de contorno interna en la que

se impone un flujo másico que las atraviesa.

Este flujo másico en la compuerta es modelado partiendo de un principio básico: el caudal

unitario que atraviesa la compuerta viene gobernado por la diferencia de niveles superfi-

ciales [26], d = h + z, existentes a ambos lados de la compuerta, donde h es el calado y

z la elevación superficial. Para comprobar esto con un ejemplo sencillo supongamos que

nos encontramos con un escenario como el que se ilustra en la Figura 2.2 en el cual el

nivel de referencia es igual aguas arriba y aguas abajo de la compuerta.

Figura 2.2: Ejemplo para la aplicación de la ecuación de Bernoulli

Aplicamos la ecuación de Bernoulli entre el punto 1 y en el punto 2 y llegamos a

(
p

ρg
+ z +

v2

2g

)

1

=

(
p

ρg
+ z +

v2

2g

)

2

(2.35)

Ponemos p = pat + ρgh y simplificando se llega a que

h1 +
v2
1

2g
= h2 +

v2
2

2g
(2.36)

Imponemos por continuiddad h1v1 = h2v2 con h1 ≫ h2, luego v1 ≪ v2. Por lo tanto

simplificando y despejando v2 de la expresión (2.36) se tiene

v2 =
√

2g(h1 − h2) (2.37)

Para determinar el caudal unitario sólo tendremos que multiplicar por la apertura de la

compuerta.
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En lo que sigue nos referiremos como d2 al nivel aguas arriba de la compuerta y d1 al

nivel aguas abajo, aśı como G0 a la apertura de la compuerta. Esto permite incluir la

presencia de discontinuidades en la elevación del terreno exactamente donde está situada

la compuerta.

Obviamente el caso en el que G0 = 0, la compuerta se convierte automáticamente en un

pared sólida. A partir de esta aclaración básica, y sin pérdida de generalidad, asumimos

d2 > d1 (el caso d1 ≥ d2 es análogo). Con esta suposición, se generan cuatro posibles

escenarios que dependen de los posibles niveles superficiales (d2 y d1) y elevación del

terreno (z2 y z1) aguas arriba y aguas abajo de la compuerta.

Caso 1: z1 > z2, d2 − z1 > G0,d1 > z1 + G0

Este caso se ilustra en la Figura 2.3 y el caudal que atraviesa la compuerta viene dado

por la expresión

q = G0K1(d2 − d1)
1
2 (2.38)

donde K1 es una constante emṕırica [26].

Caso 2: z1 > z2, d2 − z1 > G0, d1 ≤ z1 + G0

Se ilustra en la Figura 2.4 y el caudal unitario se expresa mediante

q = G0K2(d2 − z1)
1
2 (2.39)

donde K2 es una constante emṕırica [26].

Figura 2.3: Niveles de agua para el caudal

en la ecuación (2.38)

Figura 2.4: Niveles de agua para el caudal

en la ecuación (2.39)
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Análogamente tenemos los casos 3 y 4, suponiendo lo contrario que en los precedentes.

Caso 3: z1 > z2, d2 − z1 > G0,d1 > z1 + G0

Se trata de un caso similar al caso 1, pues la diferencia de niveles superficiales es la misma

(se puede observar en la Figura 2.5). Por lo tanto, la ecuación que nos proporciona el

caudal que atraviesa la compuerta viene dada por la misma expresión que en el caso 1.

q = G0K1(d2 − d1)
1
2 (2.40)

Caso 4: z1 > z2, d2 − z1 > G0, d1 ≤ z1 + G0

En la Figura 2.6 queda ilustrado lo que ocurre en este caso 4. El caudal unitario q se

expresa mediante

q = G0K2(d2 − z2)
1
2 = G0K2(h2)

1
2 (2.41)

Figura 2.5: Niveles de agua para el caudal

en la ecuación (2.40)

Figura 2.6: Niveles de agua para el caudal

en la ecuación (2.41)
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Caṕıtulo 3

Caso test

En los últimos años, existe un interés creciente por parte de las Confederaciones Hi-

drográficas, y especialmente por la Confederación Hidrográfica del Ebro (CHE), en in-

tentar reducir el pico de caudal que se produce en las crecidas mediante la utilización de

áreas de inundación controlada. Cuando llega la cresta de la crecida, se activan los meca-

nismos de regulación de las compuertas que dan entrada a estas zonas de inundación, lo

que permite que se almacene una gran cantidad de agua, que deja de circular por el ŕıo.

Después, una vez que ya no existe ningún tipo de peligro, este agua es devuelta al ŕıo de

nuevo mediante los mecanismos de regulación mencionados anteriormente.

A continuación se presenta el caso test que se ha utilizado para la realización de este

trabajo.

3.1. Cauce

Se ha tomado un ejemplo simplificado para este fin; un tramo de un ŕıo ’ficticio’ con tres

zonas de inundación controlada, compuertas en cada una de estas áreas que permiten

el paso del agua en ambos sentidos y paredes verticales a lo largo del ŕıo donde no hay

compuerta.

La ĺınea del cauce es una curva sinusoidal que viene representada por las:

x(t) = t (3.1)

y(t) =
a

1 +
(

t
b
− 1

)2 cos(k t) (3.2)

t = [0, 6000], a = 400, b = 3000, k =
2 π

2000
(3.3)

La sección del cauce del ŕıo es triangular, con el mismo tamaño a lo largo de todo el

27



tramo. Las paredes verticales se establecieron en un principio en 2 m de altura aunque

después se cambiaron a 8 m con el fin de evitar que el agua desbordase por lugares donde

no queŕıamos (se trata de intentar involucrar el menor número de factores posibles para

poder identificar los problemas correctamente y construir las herramientas necesarias).

En la Figura 3.1 se ilustra la forma y las medidas de la sección transversal.

40m

80m

8 m

5 m

10m

z

d

Figura 3.1: Sección transversal del ŕıo

3.2. Elevación topográfica y malla

3.2.1. Elevación topográfica

La geometŕıa del terreno es muy importante en hidráulica computacional. No es lo mismo

estar trabajando con un canal rectangular de fondo plano en un laboratorio que con un

ŕıo de verdad. Por eso, cuando se encargan estudios a una mayor escala generalmente hay

un apartado principal en el que se proporciona la geometŕıa del cauce como del terreno.

Últimamente la tecnoloǵıa más empleada es un DTM (Digital Terrain Model) que suele

venir acompañado de un vuelo LIDAR, el cual aporta la medición de distancias con láser.

Puesto que nuestro caso test se trata de un ejemplo ficticio, no se dispońıa de ningún tipo

de información relativa a la elevación del terreno, con lo que, intentando dar una dosis

de realismo a nuestro caso de estudio, se ha construido una función anaĺıtica que permite

acercarnos a la idea de lo que puede pasar en un ŕıo en la realidad.

Para cada punto del dominio, x ∈ [0, 6000] y ∈ [−2000, 2000] se calcula su distancia

mı́nima al cauce. A esta distancia la llamaremos d.
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Si d > 40 se le asigna una pendiente de 1/1000. Posteriormente aplicamos una zb diferente

en función de la coordenada x:

zb = zb +
1

1000
(6000 − x)

En la Figura 3.2 se presenta el caso test con su correspondiente elevación del terreno.

Figura 3.2: Caso test

3.2.2. Malla

Para realizar un mallado de nuestro caso test se ha utilizado el mallador triangle de

libre distribución (http://www.cs.cmu.edu/∼quake/triangle.html). En particular, se ha

utilizado una malla triangular no estructurada con el fin de representar mejor la topograf́ıa

del terreno, compuesta por 18812 celdas y 9484 nodos. El motivo de no utilizar más celdas

de cálculo es claro: reducir el tiempo de cálculo. Además, como se puede ver en la Figura

3.3, nos interesa un refinamiento en la parte del cauce del ŕıo, y y no nos interesa tanto

lo que ocurre en la zona de las áreas de inundación, de ah́ı el tamaño de celda tan grande

que hemos impuesto en esas zonas.

3.3. Condiciones iniciales y condiciones de contorno

La realización de este trabajo ha sido posible gracias a un simulador de flujos superfi-

ciales 2D, existente en el grupo de investigación. La disposición del código fuente para
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Figura 3.3: Malla

la realización de este trabajo ha sido fundamental, debido a que se han implementado

nuevas funciones, subrutinas y archivos de configuración.

En el simulador se tiene que especificar (además de otros parámetros) tanto la geometŕıa

de nuestro problema como las condiciones iniciales y de contorno. Como la geometŕıa

se ha descrito en los apartados anteriores, solamente nos quedaŕıa especificar nuestras

condiciones iniciales y de contorno.

3.3.1. Condiciones iniciales

En lo que se refiere a las condiciones iniciales, en todos los casos vamos a partir de

un estado estacionario de 100 m3/s. Para conseguir esto, partimos de una situación de

un ŕıo seco, imprimiendo un caudal de entrada constante de 100 m3/s hasta que el

caudal aguas abajo sea igual al caudal entrante. Una vez conseguido esto, lo que haremos

será sustituir el estado inicial del ŕıo completamente seco por el volcado final de datos

que nos proporciona el simulador. De esta manera conseguiremos imponer un estado

estacionario de 100 m3/s circulando por el ŕıo, una situación más realista que partir de

un ŕıo completamente seco.

3.3.2. Condiciones de contorno

Las entradas y salidas de flujo son condiciones de contorno en nuestro simulador. Por lo

tanto, tendremos una condición de contorno a la entrada del cauce, en forma de hidro-

grama, y una condición de contorno a la salida. En el anexo B se detalla más a fondo la

implementación de estas condiciones de contorno.

Hidrogramas

Para proporcionar las entradas de flujo se han utilizado dos tipos de hidrogramas: hidro-

gramas gaussianos y SCS (Soil Conservation Service). Estos dos tipos de hidrogramas se
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han elegido porque es muy fácil trabajar con ellos, sobre todo a la hora de calcular el

volumen de agua que transportan.

Hidrogramas gaussianos

Los hidrogramas gaussianos tienen tres parámetros caracteŕısticos: la amplitud, el centro

y la anchura. Podemos llegar a una expresión como

Q(t) = Qp e
−

(t−tp)2

2(tb)2 (3.4)

que nos proporciona el caudal en función del tiempo a través de estos tres parámetros.

donde Qp es el caudal pico que se alcanza, tp es el tiempo de pico (el instante de tiempo

en el que ocurre ese caudal pico) y tb es un parámetro relacionado con la anchura del

hidrograma. De esta manera el volumen de estos hidrogramas es muy fácil calcularlo:

V =

∫
∞

−∞

Q(t) dt = Qp|tb|
√

2π

Scs unit Hydrograph

t/Tp Q/Qp

0 0

0.1 0.015

0.2 0.075

0.3 0.16

0.4 0.28

0.5 0.43

0.6 0.6

0.7 0.77

0.8 0.89

0.9 0.97

1 1

1.1 0.98

1.2 0.92

1.3 0.84

1.4 0.75

1.5 0.66

1.6 0.56

1.8 0.42

2 0.32

2.2 0.24

2.4 0.18

2.6 0.13

2.8 0.098

3 0.075

3.5 0.036

4 0.018

4.5 0.009

5 0.004

Cuadro 3.1: Hidrograma SCS unitario

Hidrogramas SCS

El hidrograma adimensional unitario SCS fue

desarrollado a partir de multitud de bases de

datos que recoǵıan las precipitaciones en nume-

rosas cuencas fluviales en Estados Unidos. Se

trata de un método muy conocido en la actuali-

dad para generar hidrogramas unitarios sintéti-

cos [3, 16] . Mediante la Tabla 3.1 se proporcio-

na una relación (unitaria) entre tiempo del pico

( t/tp ) y el pico de caudal ( Q/Qp ). Solamente

tendremos que multiplicar este valor por el cau-

dal pico y por el tiempo de pico deseado para

obtener nuestro hidrograma correspondiente.

En la Figura 3.4 se representan los dos tipos de

hidrogramas cuyos tiempos de pico y caudales

pico coinciden.
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Figura 3.4: Hidrograma gaussiano y SCS

Curva de aforo

Para la condición de contorno a la salida se ha utilizado una ley de flujo normal:

S0 =
1

1000
Sf =

Q|Q|n2

A(h)2Rh(h)4/3
(3.5)

donde A(h) = área mojada, Rh(h) = Radio hidráulico que a su vez se calcula mediante

Rh =
A

Pm
donde Pm es el peŕımetro mojado.

Imponemos S0 = Sf , y realizando una tabla con valores discretos de (h,Q) obtenemos

nuestra condición de contorno a la salida del cauce que introduciremos dentro de uno de

los archivos de configuración del simulador.

Compuertas

Las compuertas se definen a través de una condición de contorno interna en la que se

impone un flujo másico que las atraviesa. Este flujo másico en la compuerta es modelado

utilizando K1 = 3,33 y K2 = 2,248 en (2.38-2.41).
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Caṕıtulo 4

Influencia de determinados factores

en la reducción del pico de caudal

4.1. Análisis dimensional

Antes de abordar cualquier situación es necesario saber qué parámetros y en qué medida

influyen en nuestro problema. Nuestro objetivo es intentar reducir el pico de caudal de

un hidrograma mediante la utilización de áreas de inundación controlada. Una manera de

abordar este primer contacto con el problema es la utilización del análisis dimensional.

Nos referimos al análisis dimensional como aquellos procedimientos que, basados en el

análisis de las variables y parámetros que gobiernan un fenómeno, y más espećıficamente

en las magnitudes f́ısicas que dichas variables involucran, permiten encontrar relaciones

entre parámetros adimensionales.

El problema f́ısico queda entonces descrito, con el mismo grado de fidelidad, por este

nuevo conjunto reducido de parámetros adimensionales. Enfatizamos la palabra reducido,

dado que ésta es una de las ventajas del análisis dimensional. Al ser menor el número de

variables o parámetros, es posible organizar y expresar más eficientemente los resultados

de la experimentación.

Una herramienta muy valiosa en el análisis dimensional es el teorema Π de Buckingham.

Gracias a este teorema, es posible reducir el número de parámetros o variables de los

cuales depende un fenómeno f́ısico, mediante la generación de grupos adimensionales

que involucran dichas variables. Resulta particularmente valioso cuando no se conoce la

ecuación que gobierna un fenómeno y se busca encontrar dicha relación a través de la

experimentación de laboratorio.

En el anexo C se enuncia y demuestra el mencionado teorema Π de Buckingham y se
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aplica a nuestro caso de estudio.

Supondremos que el descenso en el caudal pico depende de cinco variables, a saber,

∆Qp = f(∆tG0 , G0, V, Qpe
, ta)

donde

Qps
= pico de caudal a la salida en m3/s Qpe

= pico de caudal a la entrada m3/s

tac = tiempo de apertura de la compuerta en s tcc = tiempo de cierre de la compuerta en s

G0 = apertura de la compuerta en m V = volumen del hidrograma

∆Qp = |Qps
− Qpe

| ∆tG0 = tcc − tac

y habiendo adimensionalizado, probamos que

∆Qp

Qpe

= F (
∆tG0Qpe

V
,
tacQpe

V
,

G0

vol
1
3

)

Por lo tanto, sólo nos queda estudiar la influencia de cada uno de estos parámetros

Π∆tG0
=

∆tG0Qpe

V

Πtac
=

tacQpe

V

ΠV =
G0

vol
1
3

en el descenso del pico de caudal. Para ello vamos a estudiar cómo influyen estos paráme-

tros en el amortiguamiento del pico de una manera muy sencilla: mantendremos dos de

ellos constantes y haremos variar el otro para ver la relación existente entre el amorti-

guamiento y este último parámetro (ver Tabla 4.1).

Π∆tG0
Πtac

ΠV

Caso 1 cte var cte
Caso 2 var cte cte
Caso 3 cte cte var

Cuadro 4.1: Casos a simular
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4.2. Consideraciones previas

Este análisis se va a realizar teniendo en cuenta la influencia de un solo depósito o

área de inundación. En concreto, será siempre el tercer depósito (el que está aguas

abajo).

La compuerta permanecerá, o bien cerrada, o bien abierta 2 m.

Las simulaciones realizadas son únicamente de 40000 segundos.

Los picos de caudal elegidos para realizar este estudio van desde 500 m3/s a 1000

m3/s aumentando de 50 en 50 m3/s considerando que partimos de un estado esta-

cionario con caudal = 100 m3/s .

Los hidrogramas utilizados para este tipo de simulaciones son hidrogramas de tipo

SCS.

El volumen del hidrograma unitario SCS es k = 1.357. Cuando damos valores a los

pico caudal y a los tiempos de pico, el volumen del nuevo hidrograma se transforma

de la manera siguiente:

V = kTpe
Qpe

(4.1)

4.3. Caso 1 : Π∆tG0
= 0.9 ΠV = 0.00817

En este primer caso hemos intentado ver la relación que hay entre el amortigua-

miento en el pico de caudal y el instante de tiempo en el que se abre la

compuerta, permaneciendo constante el tiempo durante el que está abierta esta misma

compuerta. Imponer Π∆tG0
y ΠV constantes implicaba tomar por un lado un volumen

constante del hidrograma y al variar el pico de caudal a la entrada, ir variando el tiempo

que está abierta la compuerta para conseguir un valor constante en Π∆tG0
. El volumen

que se ha tomado es 14653980 m3.

En este primer caso nos encontramos en la situación de que Π∆tG0
es constante, es decir,

para cada pico de caudal tenemos un valor constante de ∆tG0 ; en otras palabras, la

compuerta permanece abierta durante un peŕıodo fijo de tiempo.

Los tiempos de apertura que se han elegido para las simulaciones viene de aplicar la

siguiente fórmula:

Para cada pico de caudal, y para cada 1 ≤ i ≤ 10 hacemos
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(ta)i =
(Tpe

+ 5000)i

10

Esta elección de los tiempos de apertura se debe a intentar ver la influencia de elegir un

tiempo de apertura anterior y posterior al tiempo de pico.

Con todo esto, y haciendo un pequeño recuento, para cada pico de caudal, hemos simulado

10 casos. Como tenemos 11 picos distintos de caudal hemos simulado 110 casos. En la

Figura 4.1 se muestran los resultados.
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Figura 4.1: Influencia del instante de apertura

Conlusiones

1. En el eje de ordenadas se representa el descenso en el pico de caudal dividido por el

caudal pico a la entrada. Este dato nos da una idea en tanto por uno de la cantidad

de agua que se almacena en el depósito en comparación con la que discurre por el

cauce. Es decir, lo que buscamos nosotros es que ese valor sea lo más cercano a 1

posible. Cuanto más se aproxime este valor a 0 querrá decir que la apertura que

estamos considerando es menos eficiente.
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2. En el eje de abscisas se representa el parámetro adimensional Πtac

3. La primera conclusión es algo que ya pod́ıamos sospechar: si mantenemos constante

el tiempo en el que está abierta la compuerta y abrimos la compuerta o bien muy

pronto o bien muy tarde, el depósito no “reduce el hidrograma entrante” de una

manera óptima. Ésto lo vemos en los dos primeros tiempos de apertura y en los dos

últimos (se abre demasiado pronto y demasiado tarde respectivamente).

4. También podemos observar que la función meseta que se intuye en cada uno de

los caudales pico es muy amplia, es decir, hay muchas aperturas en las cuales se

produce un efecto óptimo en la reducción del hidrograma. Esto posiblemente es

debido a que el parámetro en el que está incluido el tiempo que está abierta la

apertura ( Π∆tG0
=

∆tG0
Qpe

V
) es muy grande.

Para probar este hecho se han realizado otras 440 simulaciones esta vez con un pico

de caudal de 850 m3/s pero con Π∆tG0
= 0.3, 0.5, 0.7 y 0.9 (es decir, hemos reducido

el tiempo que está abierta la compuerta). Los resultados se muestran en la Figura

4.2. Se aprecia que conforme el valor Π∆tG0
es más pequeño se reduce el abanico de

aperturas óptimas.
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Figura 4.2: Reducción del tiempo que está abierta la compuerta
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5. Por último la curvatura que se experimenta en los valores a medida que vamos

aumentando el tiempo de apertura se debe a que

(tac)i =
(Tpe

+ 5000)i

10

Luego por (4.1)
(tac)iQp

V
=

i

10k

Tpe
+ 5000

Tpe

Qp

Qp − 100

Como Qp y Tpe
son inversamente proporcionales se tiene (más o menos) que el

cociente
(Tpe

+ 5000)Qp

Tpe
(Qp − 100)

está próximo a 1 , por lo que no influye mucho el parámetro i (ya veremos que en

el caso de Πtac
y ΠV constantes es diferente).
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Figura 4.3: Influencia real del instante de apertura

Como se observa en la Figura 4.1, no hemos conseguido “adimensionalizar bien” puesto

que las gráficas son muy similares pero siguen dependiendo del pico de caudal (no colap-

san). En un intento por hacer que esto último ocurra, se va a representar la Figura 4.1

de nuevo, pero, en vez deen el eje de ordenadas Qp−Qs

Qp
, se ha representado Ql−Qs

Ql
donde
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Ql representa el caudal a la salida cuando la compuerta está cerrada. Es decir, cuando

representamos este parámetro Ql−Qs

Ql
estamos midiendo verdaderamente la influencia

del depósito puesto que dejamos a un lado lo que el propio cauce lamina cuando no hay

ningún depósito.

En la Figura 4.3 se representa la influencia del instante de apertura en el amortiguamiento

del pico (sólo midiendo la influencia del depósito, dejando aparte lo que lamina el cauce).

Se observa que, a partir de cierto pico de caudal (750 m3/s) todos los puntos colapsan,

con lo que se genera una curva única que relaciona el instante de apertura con el amorti-

guamiento a la salida. Si hubiéramos representado más puntos, como hemos hecho en la

Figura 4.2, veŕıamos que la pendiente de subida es más suave de lo que aqúı se muestra.

Tanto esta pendiente como la zona en la que es óptimo el amortiguamiento dependen del

parámetro ∆tG0 .

4.4. Caso 2: Πtac
= 0.4 ΠV =0.00817

Análogamente al Caso 1, se ha elegido un valor constante en el volumen del hidrograma

de 14653980 m3. Como se ha variado el pico de caudal de igual manera que en el caso

anterior y ahora se pretende que sea Πtac
el que quede fijo, se propone para este Caso 2

variar el tiempo de apertura con el pico de caudal para conseguir un valor constante ( en

este caso se ha elegido un valor de Πtac
= 0.4 ).

Lo que vamos a representar en la Figura 4.4 es la relación que hay entre el amor-

tiguamiento del pico de caudal y el tiempo en el que permanece abierta la

compuerta. Estos tiempos se han variado de la manera siguiente:

(∆tG0)i =
(39500 − tac)i

10

para 1 ≤ i ≤ 10. Al igual que en el caso anterior hemos simulado por lo tanto 10 ∆tG0

diferentes para cada pico de caudal. Como tenemos 11 picos distintos de caudal, pues 110

simulaciones cuyos resultados se muestran en la Figura 4.4.

Conlusiones

1. Igual que ocurŕıa en el caso 1, en el eje de ordenadas se representa el amortigua-

miento en el pico de caudal definido como ∆Qp

Qpe
; en el eje de abscisas es Π∆tG0

lo

que se dibuja. De nuevo, parecen intuirse las funciones meseta que se mencionaban

anteriormente aunque han sido cortadas debido a que el tiempo de simulación era

solamente de 40000 segundos. Evidentemente si el instante de apertura es fijo y
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el tiempo que se deja la compuerta abierta es muy pequeño (valores de más a la

izquierda en la gráfica) el amortiguamiento es muy bajo. Sin embargo cuando nos

movemos entre valores de 0.8 y 1 (siempre considerando que Πtac
= 0.4 constante),

en todos los casos simulados con caudales pico distintos, el aprovechamiento del

depósito ya es óptimo.
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Figura 4.4: Influencia del tiempo en el que está abierta la compuerta

2. Para comprobar el aspecto que tienen estas funciones meseta hemos simulado 100

casos con un pico de caudal de 850 m3/s y un tiempo de apertura de la compuerta

constante (Πtac
= 0.7). Se pueden ver los resultados en la Figura 4.5. La manera de

interpretar este gráfico es sencilla: como el tiempo en el que abrimos la compuerta es

constante y lo que vamos variando es el tiempo que dejamos abierta la compuerta,

cuanto más tiempo dejemos abierta la compuerta más agua entrará al depósito, con

lo que el amortiguamiento del pico de caudal será mayor. Esto es, cuando estamos

más a la izquierda en el eje de las x los tiempos que dejamos abierta la compuerta

son pequeños y el amortiguamiento es menor. Conforme nos vamos desplazando

a la derecha lo que estamos haciendo es dejar la compuerta abierta durante más

tiempo, con lo cual entra más agua al depósito.
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3. Además se observa que, conforme más grande es el parámetro Πtac
(esto es, el

instante en el que se abre es mayor) más pronunciada es la pendiente de la función

meseta hasta alcanzar el amortiguamiento óptimo.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.5  1  1.5  2

∆Q
/Q

p

∆tap Qp/vol

Πtac
 = 0.7

Πtac
 =0.4

Figura 4.5: Influencia tiempo en el que está abierta la compuerta

4. En cuanto al desplazamiento hacia la derecha que se observa en los datos cuando

aumentamos el caudal pico, es debido a que ahora el parámetro que vaŕıa lo hace

de la siguiente manera:

(∆tG0)i =
(39500 − tac)i

10

Sabiendo que
tacQp

V
= 0,4

se llega a que,

(∆tG0)iQp

V
=

i

10

(39500 − tac)0,4

tac

= 0,04i(
39500

tac

− 1)

Ahora
39500

tac
−1 es un número mayor que uno que al multiplicarlo por i se hará más

grande, de ah́ı el desplazamiento que sufre la función conforme más elevado es el

pico de caudal.
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Como ocurŕıa en el Caso 1, las gráficas no colapsan y siguen dependiendo del pico de

caudal. La solución es análoga a lo que se propońıa en el caso anterior: ver la influencia

real de las áreas de inundación dejando a un lado lo que el propio cauce lamina. Los

resultados se pueden ver en la Figura 4.6. Podemos ver que nuevamente se ha conseguido

lo que se persegúıa, ya que las ĺıneas que representan la reducción en el pico de caudal

colapsan (en su mayor parte).
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Figura 4.6: Influencia real del tiempo que está abierta la compuerta

4.5. Caso 3: Π∆tG0
= 0.9 Πtac

=0.4

En este tercer caso queremos relacionar la influencia que tiene el volumen del

hidrograma en la reducción del pico de caudal, dejando constantes el tiempo que

se encuentra abierta la compuerta y el instante en el que se abre (para cada pico de

caudal)

Se han realizado 94 simulaciones más variando nuevamente los picos de caudal, esta vez

de 500 m3/s a 950 m3/s. Este caso en un poco diferente a los anteriores , pues estamos

variando el volumen del hidrograma, parámetro que está incluido en los demás grupos

adimensionales, por lo tanto, para poder mantener constantes Π∆tG0
y Πtac

hay que variar

los otros parámetros involucrados.

En la Figura 4.7 se muestran los resultados.
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Conclusiones

1. El gráfico hay que mirarlo al revés, es decir, cuanto más a la derecha estamos

significa que el parámetro

ΠV =
G0

V
1
3

es más grande, es decir, el volumen es más pequeño.
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Figura 4.7: Influencia del volumen en el amortiguamiento del pico de caudal

2. Teniendo en cuenta lo anterior, concluimos que cuanto más pequeño es el volumen

dentro de cada pico de caudal, más amortiguado es el pico del hidrograma saliente.

Esta conclusión puede parecer obvia, pero tiene numerosas interpretaciones. Por

ejemplo, dos hidrogramas de entrada pueden tener distintos picos de caudal y el

mismo volumen de agua (ver Figura 4.8 y Figura 4.9), pero la laminación que se

produce no es la misma en los dos casos. En el hidrograma más “picudo” (Figura

4.9), se consigue laminar alrededor de un 20% mientras que en el hidrograma más

“suave” (Figura 4.8), la laminación es menor, en torno al 13%.

3. Es destacable de nuevo la simetŕıa entre los distintos picos de caudal, análoga al

caso 1.
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Figura 4.8: Hidrograma entrante y lami-

nación (a)
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Figura 4.9: Hidrograma entrante y lami-

nación (b)
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Caṕıtulo 5

Algoritmos de regulación

El algoritmo de regulación o de control es un procedimiento que procesa unas entradas,

por ejemplo medidas de nivel, y proporciona una acción de control, o sea, un movimiento

de compuerta. La función del algoritmo es controlar un sistema, de acuerdo con una

serie de especificaciones dadas. Este caṕıtulo describe los algoritmos empleados y los

parámetros que lo componen.

El objetivo del algoritmo de control en nuestro caso es ajustar la posición de las compuer-

tas del canal de acuerdo con el método de control establecido. En función de los niveles

reales (aqúı no son medidos con sensores, sino que son obtenidos mediante el método de

simulación del flujo) y el nivel de referencia o setpoint, el algoritmo proporcionará una

nueva posición para la compuerta sobre la que actúe.

La salida del algoritmo es una consigna para la compuerta. Es decir, se obtiene una

función discreta (definida sólo en instantes determinados de tiempo) de posición de la

compuerta. Por lo tanto, será necesario discretizar la ecuación del controlador, como se

verá más adelante.

5.1. Controlador básico On/Off

Existen algoritmos de control muy sencillos y otros más complicados y sofisticados. Ac-

tualmente, en la mayoŕıa de compuertas que se instalan con el fin de utilizar las llanuras

de inundación controlada para almacenar el agua de las grandes crecidas, se utiliza un

mecanismo de control bastante sencillo: se establece un nivel de referencia; mientras la al-

tura de agua en el ŕıo es menor que el nivel de referencia la compuerta permanece cerrada.

En el momento en el que el calado en el ŕıo supere ese nivel, inmediatamente la compuerta

se abre y deja pasar el agua a la zona de inundación. Cuando el nivel de agua vuelve a

bajar por debajo del umbral preestablecido, la compuerta vuelve a girar y se cierra. Por
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último el agua se devuelve al ŕıo una vez haya pasado el episodio de lluvia. Se trata de

un sistema de control muy básico, apodado según la literatura existente On/Off, pues la

compuerta permanece abierta o cerrada completamente en cada instante de tiempo.

Las compuertas que permiten este mecanismo son las llamadas tipo “Narmix” y se pueden

observar en la Figura 5.1 y Figura 5.2. Se trata, por tanto, de una compuerta automática

que no precisa de electricidad para funcionar.

Figura 5.1: Compuerta tipo Narmix Figura 5.2: Ejemplo de una instalación de

una compuerta Narmix

5.2. Controlador PID: Proporcional, Integral y

Diferencial

El controlador es el elemento f́ısico que lleva implementado el algoritmo de control. A

partir de una señal de error - diferencia entre nivel real y nivel objetivo - provee una

señal - una nueva posición de la compuerta - al actuador para que éste abra o cierre el

elemento regulador.

Existen tres métodos de control: proporcional, integral y diferencial [11] :

Con el sistema proporcional se puede hacer que las órdenes sobre las compuertas

sean proporcionales a las medidas dadas por el sensor o a otras deducidas por ellas

(al error por ejemplo). Por ejemplo, se puede hacer que la apertura de la compuerta

sea proporcional al nivel, al caudal o a la velocidad.
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La programación integral permite que la maniobra de la compuerta responda a

la desviación con respecto al valor de consigna recogiendo la historia de tiempos

del error (integrando el error). Con este tipo de controlador se intenta eliminar

el error provocado por el control proporcional, aunque acaba teniendo un efecto

desestabilizador.

La orden diferencial genera una reacción en el actuador de acuerdo con la velocidad

de variación de la señal de entrada. Con ella puede establecerse una apertura de

compuertas que sea proporcional a la velocidad de, por ejemplo, el descenso del

nivel, haciendo frente a problemas urgentes. Aśı pues, este tipo de método nos

proporciona propiedades predictivas, a la vez que dota de estabilidad al sistema de

control.

El control PID incorpora los tres métodos de control. Es la forma más común de sistema de

lazo cerrado. Llegó a ser la herramienta estándar cuando el control de procesos emergió en

la década de 1940 y en la actualidad, más del 95% de los sistemas de control son del tipo

PID [5] . El controlador PID ha sobrevivido a numerosos cambios en la tecnoloǵıa: desde

sistemas mecánicos, neumáticos hasta microprocesadores pasando por tubos electrónicos,

transistores y circuitos integrados.

5.2.1. El algoritmo

La ecuación del controlador PID, escrita en su forma en el dominio del tiempo es la

siguiente:

u(t) = K

(
e(t) +

1

Ti

∫ t

0

e(τ)dτ + Td
de(t)

dt

)
= P + I + D (5.1)

donde:

u es la acción que genera el controlador, en este caso, una apertura para la compuerta,

e es el llamado error de control (e = h− href) donde href es variable objetivo o setpoint,

h es variable medida en el sistema.

Los parámetros del controlador son la constante proporcional K, el tiempo de integración

Ti y el tiempo diferencial Td. La acción o señal de control es por lo tanto la suma de tres

términos: el término P (proporcional al error), el término I (proporcional a la integral del

error) y el término D (proporcional a la derivada del error).

La constante K define la posición de la compuerta, basándose en la diferencia entre el

nivel de referencia o setpoint y el nivel actual. El tiempo Ti define la longitud de datos de

la señal de error que se tienen en cuenta. El tiempo Td define la reacción de las compuertas
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a los cambios actuales en la señal de error.

Las partes integral, proporcional y derivada pueden interpretarse como acciones de control

basadas en el pasado, el presente y el futuro [36].

Para poder utilizar este método es necesario, aparte de discretizar la ecuación (5.1),

ajustar los parámetros K, Ti y Td para cada sistema mediante métodos tunning de

controladores PID. En el anexo D se explican los dos métodos que se han utilizado

para el ajuste emṕırico de nuestro sistema, y se proporcionan valores para las constantes

mencionadas anteriormente.

5.2.2. Representación discreta del PID

Para discretizar el controlador es necesario aproximar la integral y la derivada – ecuación

(5.1) - por formas manejables para la computación en un ordenador. La derivada se

aproxima mediante diferencias finitas y se llega a que:

de

dt
≈ e(tk) − e(tk−1)

tk − tk−1

=
e(tk) − e(tk−1)

Ts

(5.2)

donde tk denota los instantes de muestreo, es decir, los momentos en que el ordenador

lee la variable continua y Ts es el valor de dicho peŕıodo, llamado peŕıodo de muestreo.

Es cada peŕıodo de muestreo cuando el controlador ejecuta la acción. Es decir, la nueva

posición para la compuerta.

Para la integral:

∫ t

0

e(t) ≈ Ts ·
t∑

i=0

e(i) (5.3)

siendo Ts constante. Por lo tanto el algoritmo discretizado del PID queda:

u(tk) = K · e(tk) +
K · Ts

Td

tk∑

i=0

e(i) +
KTd · (e(tk) − e(tk−1))

Ts
(5.4)

Para poder obtener el algoritmo que implementaremos en el código se escribe la ecuación

(5.4) en terminos de k − 1:

u(tk−1) = K · e(tk−1) +
K · Ts

Td

tk−1∑

i=0

e(i) +
K · Td · (e(tk−1) − e(tk−2))

Ts
(5.5)

Por lo tanto, el incremento de la acción generada por el controlador se obtiene restando

las ecuaciones (5.4) y (5.5):

48



∆u(tk) = u(tk) − u(tk−1) = K [e(tk) − e(tk−1)] +
K · Ts

Ti
e(tk)

+
K · Td

Ts

[e(tk) − 2e(tk−1) + e(tk−2)]

(5.6)

Agrupando términos se tiene:

∆u(tk) = u(tk) − u(tk−1) = K ·
(

1 +
Ts

Ti
+

Td

Ts

)
e(tk) − K ·

(
1 +

2Td

Ts

)
e(tk−1)

+ K · Td

Ts
e(tk−2)

(5.7)

Con el fin de intentar obtener más formas de estabilizar el algoritmo en caso de problemas

de inestabilidad se añaden al algoritmo PID los factores de peso α1, α2 y α3 , para obtener

finalmente la representación discreta de la ecuación del PID:

u(tk) = u(tk−1) + α1 · K ·
(

1 +
Ts

Ti
+

Td

Ts

)
(href(tk) − h(tk))

− α2 · K ·
(

1 +
2Td

Ts

)
(href(tk−1) − h(tk−1))

+ α3 · K · Td

Ts

(href(tk−2) − h(tk−2))

(5.8)

donde

href es el valor objetivo para la variable regulada (el nivel de agua)

α1, α2, α3 son los factores para ponderar cada paso temporal (́ındice n, n-1 y n-2)

h es el valor actual de la variable controlada

5.3. Implementación en el código de simulación y

funcionamiento

Una vez ajustado el controlador y obtenidas las constantes (ver anexo D), solo falta

introducir todas estas modificaciones en el código de simulación de flujos superficiales que

tenemos en el grupo de investigación. Esto se ha hecho a través de dos nuevos archivos

de configuración para el simulador.

Por un lado,un archivo que permite identificar cuántas compuertas existen en nuestro

sistema y dónde están colocadas. Para esto último se necesitan proporcionar la informa-

ción del numero de parejas de celdas que componen la compuerta, y identificador de cada

celda involucrada. Podemos ver un ejemplo en la Figura 5.3.
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Figura 5.3: Celdas involucradas en la compuerta 3

Este caso, que hace referencia a la compuerta 3, las parejas de celdas que intervienen son:

1224-11211 y 798-1225.

Por otro lado, un nuevo archivo que involucra todos los aspectos relatados anteriormente

referidos a los algoritmos de regulación. En primer lugar se tiene que discernir entre que

tipo de regulación se quiere (On/Off o PID), hay que establecer el tiempo de muestreo,

es decir, el tiempo para el cual se da una nueva apertura de la compuerta, aśı como

las aperturas máxima y mı́nima de la compuerta. Además también se especificaran los

valores elegidos para los parámetros αi que provienen de la discretización del algoritmo,

y las coordenadas x e y del punto elegido para ser la referencia y nivel de referencia (o

setpoint) escogido.

Igualmente se generan automáticamente dos archivos de salida, uno que nos proporciona

las aperturas que se registran de cada una de las compuertas y otro en el que se detallan

los niveles de referencia preestablecidos y los registrados en cada instante de tiempo.

Para clarificar como se comporta el simulador una vez implementados los correspondientes

algoritmos de regulación se incluye el siguiente diagrama de flujo, en el que se esquematiza

el funcionamiento del bloque de cálculo.

50



 Definición de aproximación a las derivadas en las interceldas.
 Definición de valores promediados en interceldas.
 Cálculo de flujos de información desde intercelda hacia celdas vecinas.
 Cálculo de (h,u,v) n+1 en función de (h,u,v) n y de información de las 
interceldas vecinas, y de descarga de las compuertas.
 Actualización del resto de variables.

t = t + !t

t = 0
K = 1

Obtención de apertura (K+1) a partir 
de ecuación del controlador

t = t + !t
K = K+1

ENTRADA DE DATOS

¿ t = KTmuestreo ?

SÍ

NO

¿ t > Tcálculo ?

NO
SÍSALIDA DE DATOS

Figura 5.4: Esquema de funcionamiento

5.4. Resultados

En este apartado se presentan los resultados que se han obtenido a ráız de la implemen-

tación en el código de simulación de estos dos tipos de algoritmos de control diferentes.

Aunque se han hecho numerosas simulaciones con diferentes tipos de hidrogramas, se in-

cluyen tres ejemplos, cada uno con sus correspondientes métodos de control, para poder

observar las diferencias entre unos y otros.
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En la Figura 5.5 se pueden ver los tres hidrogramas mencionados. La elección de estos

tres hidrogaramas se debe a las numerosas diferencias que presentan entre śı, como por

ejemplo los picos de caudal registrado, la forma de cada uno... De esta manera se ampĺıa

el abanico de posibles actuaciones frente a hidrogramas diferentes.
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Figura 5.5: Hidrogramas elegidos para las simulaciones

Con cada uno de los tres hidrogramas que aqúı se presentan, se han simulado 4 casos: sin

áreas de inundación controlada, es decir, las compuertas cerradas, sin regulación, o sea,

las compuertas completamente abiertas, con una regulación On/Off y con un controlador

PID. Como resultados se presentan las figuras siguientes: para cada hidrograma y cada

mecanismo de regulación se incluyen dos figuras, una en la que se representan los caudales

a la entrada y a la salida, aśı como las aperturas que se obtienen y otra en la que se puede

ver los niveles previamente establecidos (setpoint) y los registrados durante el peŕıodo de

avenida. A continuación se presentan dichos resultados.
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Las conclusiones se detallan en el caṕıtulo siguiente, aunque solamente viendo las gráficas

podemos afirmar que:

La habilitación de zonas de inundación controlada para intentar reducir el pico de

caudal en las avenidas es un método muy eficiente para la gestión de las avenidas,

puesto que consigue laminar el hidrograma entrante de una manera considerable.

En el caso de caudales bajos, se aprecia que no es imprescindible la instalación de

ningún algoritmo de regulación, ya que el hidrograma laminado alcanza práctica-

mente el mismo pico de caudal que si hubiese instalado algún mecanismo regulador.

La laminación que producen los mecanismos de regulación On/Off y el controlador

PID son muy parecidos, aunque con caudales altos se aprecia una mejoŕıa en el

amortiguamiento del pico si actuamos con un controlador PID.

Si tenemos un hidrograma entrante cuyo pico de caudal es muy grande y además se

prolonga mucho en el tiempo, como ocurre en el hidrograma no 2, la diferencia entre

aplicar un controlador y dejar que el agua entre por śı sola a las áreas de inundación

se hace visible. Además pudiera darse el caso que tuviésemos un hidrograma con

esas caracteŕısticas que además tuviese dos picos. Si dejásemos entrar libremente el

agua durante el primer pico de caudal y se llenan las zonas de inundación, cuando

llegue el segundo pico ya no tenemos margen de laminación.

Sin embargo fijando un nivel de referencia elevado para el primer pico (con cual-

quiera de los dos tipos de regulación) y dejando actuar a las áreas de inundación

controlada solamente en el segundo pico conseguimos una mejor gestión de este tipo

de avenidas.
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Caṕıtulo 6

Conclusiones y trabajo futuro

6.1. Conclusiones

La Hidráulica Computacional es uno de los campos de la ciencia en el cual la

irrupción de los ordenadores exige una nueva manera de trabajar, aunque sin olvidar

los desarrollos teóricos y los métodos experimentales. En particular, la simulación

numérica de ondas de avenida se esta convirtiendo en una herramienta muy potente

y eficiente para la Administración, aunque, cada vez más, la demanda de una mayor

precisión en la descripción del modelo y en los resultados posteriores y un coste

computacional no muy elevado se han convertido en exigencias muy frecuentes. Por

ello, la investigación en esta rama es y será una parte esencial en el desarrollo de

nuevas técnicas para la gestión de las avenidas.

Si atendemos al análisis dimensional realizado, podemos concluir:

• A igual volumen del hidrograma e igual tiempo que permanece abierta la com-

puerta, el instante de apertura influye, de manera que si se abre la compuerta

antes del pico de caudal o después, el amortiguamiento no es óptimo. Por otro

lado, cuanto mayor sea el tiempo que permanece abierta la compuerta, mayor

es el abanico de tiempos “validos” para un aprovechamiento óptimo de las

zonas de inundación controlada.

• Si el instante de apertura es fijo en el tiempo, al igual que el volumen del

hidrograma, el tiempo que permanece abierta la compuerta es muy impor-

tante: cuanto más tiempo dejemos abierta la compuerta, más agua entrará al

depósito, con lo que el amortiguamiento será mayor.

• La influencia que tiene el volumen del hidrograma en nuestro sistema es clara:

si el tiempo que permanece abierta la compuerta es el mismo, y el instante
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de apertura también, cuanto más pequeño es el volumen dentro de cada pico

de caudal, más amortiguado es el pico del hidrograma saliente, es decir, si dos

hidrogramas tienen el mismo pico de caudal pero uno tiene menos volumen

que el otro, el primero dará lugar a un hidrograma saliente más laminado que

el segundo.

La utilización de las áreas de inundación (sin ningún tipo de control) conduce a una

laminación del hidrograma mucho mayor que si no se utilizasen estas áreas, por lo

que se trata de una técnica muy efectiva para la gestión de las avenidas.

Si se trabajan con caudales pequeños no merece la pena la instalación de ningún

tipo de algoritmo de control, quizás solamente para retener el agua en las zonas de

inundación controlada y poder devolverla una vez haya pasado la crecida.

Trabajar con un solo depósito o área de inundación o con más de uno no es igual para

los controladores. Un controlador PID computa mejor lo que pasa en los tres lugares

de referencia y los relaciona unos con otros, mientras que una regulación On/Off

solamente tiene en cuenta lo que está pasando in situ. Posiblemente, a medida que

se aumenten el número de zonas de inundación controlada, el controlador PID puede

ser mucho más eficiente que el controlador básico On/Off, aunque éste último (que

además ya esta instalado automáticamente en el mecanismo de ciertas compuertas)

resulta muy eficiente.

Si los caudales son más grandes, la utilización de un algoritmo de control es funda-

mental dado que se consigue una laminación mucho mayor del hidrograma. Además

frente a situaciones de crisis, por ejemplo con una gran avenida, no sirve con te-

ner las compuertas abiertas desde el primer momento, dado que se pueden llenar

las áreas de inundación antes de que la punta de la crecida haya llegado. En este

contexto se tiene que tener en cuenta el volumen del hidrograma de avenida y com-

pararlo con el volumen de agua potencialmente almacenable en el conjunto de todas

las áreas inundables disponibles, para poder gestionar mejor con un algoritmo de

regulación la entrada y salida de agua a las zonas inundables.
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6.2. Trabajo futuro

La continuación natural de este estudio es la aplicación en un caso real, con datos

objetivos respecto a la elevación del terreno y la batimetŕıa del cauce y eventos de

avenidas reales registrados en el pasado.

El interés en este asunto, comentado en este trabajo, por parte de las Conferede-

raciones Hidrográficas, y en particular de la CHE (Conferederación Hidrográfica

del Ebro) no es ficticio, dado que participa en el proyecto Métodos predictivos de

gestión multi-criterio de sistemas hidrográficos y de ayuda a la decisión en situa-

ciones de crisis de agua en el macizo pirenáico (2009–2010 CTPP04/08), en el que

el grupo de investigación es parte activa. Actualmente se está trabajando con este

mismo caso test en este proyecto y en colaboración con otras universidades se están

implementando nuevos algoritmos de regulación que permitan una mejor gestión de

una avenida.
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[22] P. Garćıa Navarro y P. Brufau Métodos numéricos para las ecuaciones del
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