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Abstract—This paper addresses the distributed control of state avoidance for discrete event systems which are ntbdele
large scale systems that are modeled with timed continuous as Petri nets.

Petri nets (ContPN). Distributed structures are first obtained Coming back to the continuous Petri nets, in [3], a
after the system is decomposed into subnets by cutting the reachability control problem of timed distributed contius
original net through sets of places, and adding marking Petri net systems is studied. The paper considers Petri nets
structurally implicit places. Then, local control laws are com- composed of several subsystems that communicate through
puted separately. Algorithms are proposed to make the locally channels modeled by places. The proposed algorithm allows
computed laws to be compatible and fireable when the global the subsystems to reach their respective target markings at
state of the system is considered. It is proved that using the different time instants and keep them as long as required.
control laws computed with the proposed algorithms, the final In this work, the distributed control of large scale systems
state of the overall system can be reached in minimum time. which are modeled with timed continuous Petri nets is
A manufacturing system is taken as case study to illustrate the addressed. As a starting point of this research topic, it
control method. is assumed that the systems we handle are modeled with
marked graphsContPN. This paper mainly focuses on

. INTRODUCTION driving the system from an initial state to a desired final

Petri Nets(PN) is a well known paradigm used for model- state. A large scale system is first structurally decomposed
ing, analysis, and synthesis discrete event systeniBES). into smaller subsystems, then the local control law for each
With strong facility to depict the sequence, concurrencyubsystem is computed separately. A supervisory controlle
conflict and other synchronous relationships, it is widelys introduced to update the locally computed control laws in
applied in the industry, for the analysis of manufacturingorder to make them admissible when considering the system
traffic, software systems, etc. Similarly to other modelinglobally, without knowing the detailed structures of local
formalisms for DES, it also suffers from tistate explosion subsystems. With these control laws, all the local corgrsl|
problem. To overcome it, a classical relaxation techniquaork independently, and the final state can be reached in
calledfluidification can be used. minimum time.

Continuous Petri net§7], [17] are fluid approximations  This paper is organized as follows: Section Il briefly
of classicaldiscrete Petri netsobtained by removing the recalls some basic concepts. In Section IV, a structurally
integrality constraints, which means the firing count vectodecomposition method for marked graphs is discussed, which
and consequently the marking are no longer restricted {9 used here to obtain distributed structures. Section V
be in the naturals but relaxed into the non-negative regkoposed the approach for distributed control of largeesyst
numbers. An important advantage of this relaxation is tha&ection VI gives an example of manufacturing systems. The
more efficient algorithms are available for their analysig,, conclusions are in Section VII.
reachability and controllability [12], [10] problems.

Different works about control of Petri nets can be found Il. BASIC CONCEPTS
in the literature [9], [4], [2], etc. In the context of didttited
systems, distributed timed automata is discussed in [113
In [20], the author proposed a method for the modeling
and decomposition of large and complex discrete event . .

. . . Continuous Petri Nets
manufacturing systems, where a Petri net based controller
is distributed in machines and exchanges signals with co- Definition 2.1: A continuous Petri net system is a pair
ordinators. An architecture for distributed implemerdati (N, mo) where N’ = (P, T, Pre, Post) is a net structure
of Petri nets in control applications is proposed in [14]. Awhere'
distributed control strategy is designed in [8] for forbéd '

The reader is assumed to be familiar with basic Petri net
oncepts (see [7], [17] for a gentle introduction).
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Forv € PUT, the sets of its input and output nodes are "’ ‘.
denoted asv andv®, respectively. Letp;, ¢ = 1,...,|P|
andt;,j = 1,...,|T| denote the places and transitions. Eactr=
place can contain a non-negative real number of tokens, this
number represents its marking. The distribution of tokens i
places is denoted byr. A transitiont; € T is enabled ain ‘
iff Vp, €°®t;, m(p;) >0 and its enabllng degree is given by
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enab(t],m) = Héll% {P(pz)t} Fig. 1. Marked Graph and Marking Structurally Implicit Placewith
be re(pl, ']) initial marking mo(pl) = mo(p7) = mo(pg) = mo(p12) = mo(p14) =
which represents the maximum amount in whichcan mo(pi5) = 1.
fire. Transitiont; is calledk-enabledunder markingm, if
enab(t,m) = k. An enabled transitiort; can fire in any S )
real amounty, with 0 < o < enab(t;, m) leading to a new Normally, implicit places are determined by the structure
statem’ = m+a - C(-,t;) whereC = Post — Pre is the but also depend on their initial markings. A plge¢hat can
token flow matrixand C( j) is its j* column. be made implicit (with a proper initial marking:(p)) for
If m is reachable frommn, through a finite sequeneg the @Y initial marking of the rest of the system is callettuc-

state (or fundamental) equation is satisfisd= m,+C.&, turally implicit place A structurally implicit place whose
whered ¢ RLT\O is the firing count vectori.e., #(t,) is the minimal initial marking can be deduced from the marking

cumulative amount of firings of; in the sequencer. A of other places is said to bmarking structurally implicit

vector & is said to be a fireable firing count vector, if thereMore formally:

exist a corresponding sequeneavhich can be fired. Definition 2.2: [18] Let N = (PUp, T, Pre, Post). The
Marked Graph(MG) is a well known subclass of Petri placep is marking structurally implicit placeiff there exists

nets in which each place has at most one input and at magt- o, such thatC/(p,T) = y - C(P, T).

one output arc. Thus they are structurally choice-fre@vall ~ For strongly connected marked graphs, a marking struc-
concurrency and synchronization but not decisions. turally implicit placep verifies:

Property2.1: [5] Let A/ be a strong connected marked
graph, is consisteniand its unique minimal Bemiflowis
x =1, 1 is a vector with all component equal to 1.

In timed continuous Petri n&tlont P N) the state equation
has an explicit dependence on timei(7) = mq+ C - &(7)
which through time differentiation become&(r) = C -
&(7). The derivative of the firing sequencl(r) = &(r)
is called thefiring flow. Depending on how the flow is
defined, many firing semantics appear, being the most used
onesinfinite and finite server semantics [17]. For a broad mq(p) = m{"™(p) = min{ > _ mo(p;)|r € Plte,ts)
class of Petri nets it is shown that infinite server semantics pjET
offers better approximation to discrete systems than finite 3

server semantics [13]. This paper deals with infinite server Example 2.1: Fig. 1 shows a marked graph. It is easy to
semantics for which_the flow of a transitian at time7is  ghserve that fronn, 5 to ¢, there exist two simple paths; —
the prodggt of the firing rate);, and the enabling degree of (toprstispretiprtapstal, T = {traprstisprstpatspats).
the transition atm(r) 12P15t13P16t1P1L2P3Laf, T2 12P15013P1601 P23 P44
Therefore,P(t12,t4) = {m1,m2}.
f(t;,7) = \j - enab(t;,m(T)) = A, - mi-rij {PTG(Z;’))} . With respect 'th(?fl'g,t%), the added F.)liacﬁ12,4 is mark-
inl ing structurally implicit with input transitiort;, and output
For the sake of clarity; will be omitted in the rest of the transitiont,. Similarly, if considering the path from; to
paper when there is no confusiofi(¢;), m andm(p;) will  ¢11, w3 = {tspsteprtrpstspiotopiitiopiztii}, psa1 IS the
be used instead of (¢;, 7), m(7) andm(p;, 7). corresponding marking structurally implicit place. Thése
a loop path fromtyy, 74 = {t11,p13, t10, P12, t11}, therefore
p11.11 IS constructed.

Clp,) =Y Clpj,-) forvr e Plte,ts)  (2)

pjE™

wheret. =°* p, ts = p°®, P(t.,ts) is the set of simple paths
(i.e., the paths without repeated nodes), fromo ¢, [6].

It is proved in [6] that, given a marking structurally
implicit place p, the minimal initial marking to makep
implicit is:

B. Implicit places and continuous marked graphs

A p'aceP i_s called_implicit_ when it is never the unique In order to compute minimal initial marking to make; 4
place restricting the firing of its output transitions. Henan . ) . .
implicit place can be removed without affecting the behavio'mpl'c't’ the sum of markings in each path fromy 1o ¢4 is
of the rest of the system, i.e., the language of firing seqencconsidered. Because the sum of markings of places;in
of the original system is preserved [16]. is 2, while for m, it is 1, according to (3), the minimal is



chosen, so one token should be put ipte 4. Similarly, two

tokens inps_11, and one token iy 1.

When the net system is considered as continuous, the
minimal initial marking of marking structurally implicit
places can also be calculated using (3).

IIl. PROBLEM STATEMENT

The classical centralized control theory has been proved
inefficient for large scale distributed systems, in whick th part)
communication delay, time synchronization problems be-
come significant. Therefore distributed or decentralizexa-c
trol is extensively explored in recent decades. In a disteit
controlled system, normally a complex dynamic system,
the controllers are not centralized in one location, but are
distributed in the subsystems, while typically, each caligr
can only access local resources and limited informatiomfro
its neighbor subsystems.

Under the framework o€ontPN the large scale system is
decomposed into subsystems that are modeled @atitPNs
and controlled by the local controllers. Each local corérol Fig. 2. Cutting of marked graph
can obtain information from its neighbor subsystems thhoug
the interface places and transitions. The problem we deal
with is: how to design the control action for each local(P;, T;, Pre;, Post;) be the subnets associated with
controller which works independently, and drive the systerg cyt B. The complemented subnéw\; is obtained from
from initial markingm to final markingm. N; by copying transitions inJ; and adding the marking
IV. STRUCTURAL DECOMPOSITION OFMARKED GRAPHS  Structurally implicit places with respect to the pafP&., t)

In this section we adapt the decomposition methods dé? Nj, te,ts € Uj, 4,5 = 1,2,i # j. The set of places being
veloped in [6]. The idea is the following: given a stronglyadded ta\; is denoted byl P; .
connected marked grapk', it is first split into two subnets  In Fig. 2, the complemented subr@\V/; is obtained after
N1 and N, according to a set of placeB C P, after that copyingUs = {t5,t1;} and addingl P, = {ps_11,p11.11} tO
the complemented subne\) are derived through adding A/;, while CN is obtained after copying; = {t4,¢2} and

(b) Na(non-dotted part) and 5 (with dotted part)

marking structurally implicit places. addingI P, = {p12.4} to M. Notice that cutB and interface
Definition 4.1: Let N = (P,T,Pre, Post) be a U are shared in both subnets.
strongly connected marked grapB,C P is said to be aut In order to calculate the initial marking of_ that makes

it implicit, we have to find out the path from. to ¢, such

iif there exists subnets/; = (13, T;, Pre;, Post;), i = 1,2, that (3) is satisfied. There are some efficient algorithmskwhi

such that: can be used, e.g., the algorithm of Floyd-Warshall [1] with a
() UL=T,T1NTy =1 computation complexity o®(|T'|*), where|T| is the number
() APUPR,=P,PPNP, =B of transitions.
(i) P =Ty UT®, Py=*ToUTS Sometimes for a complex system, only one cut is not suffi-
- 1 - 2

where U =* B U B* is said to be interface, which is cient, because the complemented subsets are still difficult
partitioned intol,, Uy, such that; UU, = U, U = T,NU. be handled. The_zreforeZ the a_lbove d_ecomposmo_n procesls nee
N to be executed in multiple hierarchical levels. Fig. 3 pnése

Example4.1: The non-dotted part in Fig. 2 are the suby,q complemented subnets obtained after cutfing in Fig.

nets A}, A, obtained from the marked graph in Fig. 1,2(b) one more time, wittB = {pg, p12, p13}. After this two

which is cut by B = {ps,p14}, with the interfaceU = level cutting, the original system is decomposed into three

{ta,ts,t11,t12} While Uy = {tq, t12}, Us = {t5,t11}. CN1, CNa; andCN . It should be noticed that the order
After Cutting’ the two Subsysterm@'li./\/2 are independent, of CUtting iS not important, if the net in Flg 1 is first cut

because all the constraints from the rest of the systeRY B1 = {ps.p12,p13}, then byBs = {ps, p14}, the exactly

are removed. Therefore different behaviors are introduce§@me subnets are obtained.

The complemented subnét obtained after adding marking

structurally implicit places as approximations of othertpa V. DISTRIBUTED CONTROL OF LARGE SCALE SYSTEMS

of the system that are missing. The distributed structure of a large scale system is obdaine

Definition 4.2: Let N = (P,T,Pre, Post) ysing the the decomposition method presented in section IV.
be a strongly connected marked graphy; = In this section we will show that th©N-OFF controller



A. Decomposition with One Cut

The most interesting point of the decomposition approach
in section IV is: if we put proper initial markings in the adte
marking structurally implicit places making them implicit
the projections of reachable markings and firing sequences
of the original system are preserved in the complemented
subnets [6], i.e.@ can always be fired iICA; with initial
marking m;, and leading tomj. In the framework of
continuous net system, this is also true, and the exactlygsam
proof can be constructed.
Definition 5.1: Firing count vectorss; and &, are said
to be compatibleif &, (t) = d2(t), Vt € U.
Definition 5.2: Let &, and&> be compatible firing count
vectors. Operatop : (Rt Rzl — RITIV2 s defined to
be themerge such that,_&’lg :_&’1 &) &’QTVt €T;, d12(t) =
Gi(t),i=1,2.
Example5.1: Let us consider the marked graph in Fig.
(b) CN22 1 and its complemented subnets obtained using gut
Fig. 3. Complemented subnets: second cut fiaiiz {ps.p14}, and interfacd/ = {t4, 15,11, 112} in Fig. 2. Table

I shows their initial, final markings and the firing count

vectors. The initial markings of the added marking struc-

developed in [19] can be applied to each subsystem, leaditgrally implicit places are computed from (3), while their
to the overall final state in minimum-time. finial markings ar@’n}(pg)ill) = 2.1, m}-(pll,ll) =1, and

] A firing ??{Jm VeCtOfi driving thedSySter:n ton iisari]d 00 m3(p12.4) = 1.5. We can notice that the firing count vector
eminimalif it can not be expressed as the sum of other one o o - :
and Tsemiflowg19] . An ON-OFF controller for structurally o CN,I PrOJeCted f“’_mf may be not minimal, e.g., IGN;’
persistentCont PN is proposed in [19]: if& is minimal, the. minimal vector Iz, = [1.11.70.9050.1 0 1_1‘5] ,
for any ¢;, simply let it ON (with control input equal to 0) While the projectiorg! = &1 +-0.6-1. For sures'! is fireable
before the accumulated flow of reachess(¢;), and after in CA; sincel is the Tsemiflow

that suddenly let iDFF (with control input equal tof (¢;)).

my is reached in minimum time using this strategy. TABLE |
Because marked graphs is a subclass of structurally per- MARKINGS AND FIRING COUNT VECTORS
. . . T = =1 =2
sistent nets, thiSON-OFF strategy can be applied. In a r :"ON oy |, Toe o | o)
. . . . m mf mf =4 =4
distributed system, local controllers can only accesstdichi o1 104 | 1049 o 17 | wan
resources, so the global control law (minimal firing count | *2 o | ot 2ol e
vector) cannot be obtained directly. In the following, it is | »4 0(0.4) | 0(0.4) ta | 11| 1105 | 110D
Lo . . . p5 0(0.4) 0(0.4) 0(0.4) ts 07 | 070.1) | 0700.7)
shown how it is computed in a distributed way. pe 0(0.2) 000.2) || t¢ | 05 0.5(0.5)
. . . 1(0.5) 1(0.5) t 1 1(1)
In the sequel, we will use the following notations: e 0(0.4) o) || 15 | os 0606)
) P9 1(0.6) 1(0.6) tg 0.5 0.5(0.5)
(1) m{: the initial marking ofC;, directly projected from no oo otos || %] o6 | os | ose
myg. For everyp € P;, m{(p) = mo(p), while for every P12 oo vod) || ez | ds | 160 ) 1600
. .l . . ] 0(0.6) 0(0.6 t- 21 | 21(5)
added implicit place € IP;, m{(p) = m§*"(p). o 10 | 10 | 10 e
P .. . ) . . 1(0.5) 1(0.5)
(2) mj: the finial marking OfCJ\/z, directly projected from e ot | oo
my. For everyp € P;, m}(p) = my(p). Every place P51 22
. . P . 1(1
p € IP; belongs to different circuit i€ \;, and since ot @l s

CN; is a strongly connected marked graph, each circuit

forms a Psemiflow[15], m (p) can be easily computed.  Until now the time has been ignored. If all the transition
(3) & the minimal firing count vector driving/ from mq  are controllable, a markingn is reachable in the timed

tomy. . _ model, it is also reachable in the untimed one; while if
(4) & the firing count vector oC\; directly projected a markingm is reachable in the untimed model, then it
from &. For everyt € T, &' (t) = G(t). is asymptotically reachable in the timed one [12]. There-

(5) &: the firing count vector driving\'; from mj, tom.  fore, similar results can be easily extendedontPN.
Itis assumed to be minimal when there is no additionah particular, the projections of firing count vectors and

specification. reachable markings of the original system are preserved in



the complemented subnets. In the following parts, we assursabnetCN;, such thate(t) = 7;(¢),Vt € T;, andCN; is
the system is live. said to becritical.

If the minimal firing count vectors o€ A/, andCN; are Two complemented subnets are neighbors if they share
compatible, we will prove the merged vector is firableNn  a cut. Because every time we split one net into two, each
In the case they are not compatible, lilg and &, in Ex.  subnets has at least one neighbor. We will prove it is passibl
5.1 (becausert € U,d4(t) # d2(t)), a Tsemiflowcan be to make pairs of minimal firing vectors of neighbors to be
added to make them compatible. Finally, the merged vecteompatible and obtai@ after merging all of them.
obtained is actually equal . Proposition5.2: Let (', m,) be a live marked graph that

Proposition5.1: Let (M, mg) be a live marked graph, g decomposed inta. subnets. Assuming\,, 1 < ¢ < n
with cut B and corresponding interface. Let &; be the s g critical complemented subnet, then there exist =
firing count vector drivingCV; from m{ to mY, i = 1,2. 1,2,...,n such that:

If &1, &5 are compatible, then there exists a firing sequence

o012 With &2 = &1 @ &, that can be fired ilW m; is "

reached. ! 7= @(&i +i-1) “)
Proof: Sinced; and&’; are compatible, all the common =t

transitions { € U) have the same firing counts. On the otheand ifi = ¢, z; = 0, elsex; > 0.

side B are the common places 6{\'; andCN; and®B U Proof: Since all the complemented subnets are still live

B*® = U, therefore, marked graphsg; + z; - 1 is also fireable irCA/;. For any

two neighbor subnet§ \V;, CN;, z;,z; > 0 can be found

such tha’; +x;-1 and&’; +x;- 1 are compatible. According

Because the system is a live marked graph, there alwaigProposition 5.1(&';+x;-1)®(6;+x;-1) is fireable in the
exists a sequence;, can be fired. m nhet composed by \/; andCN ;. Therefore after merging all

the firing count vectorsg’ = @;_, (&; +z; - 1) is obtained,
which can be fired inV/, and reach the final marking.

If every z; > 0, &’ is not a minimal firing count vector,
such thate' = (k- 1+ 6:) @65, 4,5 = 1,2,i # j. then certain amount of $emiflowcan be subtracted frod’

- Proof: Sinced" is a fireable vector iCA; reaching yntil & = &' SinceC\, is critical, z, = 0. u
mY, anda; is the corresponding minimal firing count vector, | et ys observe that it is possible to have more than one
consideringCA; is live marked graph with the unit vector citical subnet, but considering there is unique minimandjr
as the unique Bemiflow we haved” = &; + ;- 1, @i = count vector in a live marked graph, given any one of the
0,7 = 1,2, without loss of generality, assume, < as. critical subnets, the sam# is constructed.

In particular, for anyt € U, &'(t) = d;(t) + «;, because
G'(t) = d*(t) = G(t), G1(t) — da(t) =z — a1 =k > 0. _ o . . o
Thereforeg, and&. + k - 1 are compatible, according to with the initial and final markings as listed in Table. I. Afte
Proposition 5.15 15 = (k-1 + &2) ® &, is fireable inCA”  cutting with By = {ps, p1a} and Bz = {pe, p12, P13}, We get
andmy is reached. Sincé';, &, are minimal,&1, is also  three complemented subnetd/; (Fig. 2(a)),CN a1, CNas
minimal. Because the minimal firing count vector is unique(Fig_ 3).CN;, andCA, are neighbors sharing cutting,
in live marked graph [19]¢1> = &. _ CN5; and CN o, are neighbors sharingg,. In Table Il is

Example5.2: In Ex. 5.1,5, and &, are not compatible, - . . .

. i i c - the minimal firing count vectors for reaching corresponding
with differencek = 0.6 (i.e., Vt € U, d2(t) — &1(t) = 0.6). final markings. It is obtained:

Clearly, after adding.6 - 1 to &, they can be merged, and

my+C - G1a=my+C - (F1 & F) =my

Property5.1: Let (N, mg) be a live marked graph, with
cut B and corresponding interfadé. There existsk > 0,

Example5.3: Let's examine the marked graph in Fig. 1

& is obtained, i.e.g = (&1 + 0.6 - 1) & &». = (G1+06-1)®Fd 73
Notice that in the exampley; is different from the direct
projection from&, while &, is equal toa2. In fact, if & = HereCN4,CN 5 are critical subnets.
(k-14 ;)@ d;, thend(t) =d,(t),t € T;. The rest of this section devotes to design an effective
N S ) algorithm to search a critical subnet, and calculating cor-
B. Decomposition with Hierarchical Cut respondingz; to generates.

Let us consider the case when the system is decomposedn order to make it more understandable, let us construct
hierarchically. When cutting a net into two pa@4/,, CA/2, a graphG = (V, W) to depict the relations among comple-
and suppos& = (k1 -1+ &1) @ &9, thend(t) = d2(t),t € mented subnets. Each nodes V' represents a subnet, there
Ts. If cutting CN; one more time int€ N5, andCN 52, and  are arcs between, andw; if the corresponding subnefsV;
SupposeFs = (ka-14621)B 622 , thends(t) = d22(t),Vt €  and CN; are neighbors. The weight of the arc from to
Tys. Therefore we have(t) = d22(t),Vt € Tae. The same wv; is w(v;,v;) = 6;(t) — d,(t),t € U, negative weight is
result can be obtained whéh\ 5, is cut again, hence it can also allowed here. So in the corresponding graph(Fig.
be concluded: there always exists at least one complemen®dthe weightw(vs,v1) = 0.6, w(vy,v2) = —0.6, while



TABLE I
of complemented subnets.
MINIMAL FIRING COUNT VECTORS

T | WN) | 81(CN1) | &2(CN2a1) | &F3(CNa2) Algorithm 1 Search a critical subnet
| 1.7 1.1 T
b |23 L Input: G = (V,W)
ts | 15 0.9 Output: A nodev, € V
ta | 11 0.5 L1 1: Label all the nodes iV asnew
ts | 0.7 0.1 0.7 0.7 . o
te | 05 05 05 2: while more than one node i is labeled asxewdo
tz |1 1 3:  Choose a node; from V which is labeled asew
ts | 0.6 0.6 4. forj=1tondo
to | 0.5 0.5 ) .
to | 0 0 0 5 if W(j,7) has not been calculatetien
t11 | 0.6 0 0.6 0.6 6: calculateW (i, 5);
tiz | 1.6 1 1.6 7 if W(i,5) > 0 then
t13 2.1 1.5
8 label v; asold;
06 0 9 else if W(i,7) < 0 then

10: label v; asold;
0 G ’ 11: break;

12: end if
06 0 13: end if
14:  end for
Fig. 4. The graphG = (V, W) constructed from the three complemented L .
subnets in Ex. 5.3 15: if j =n andw; is labeled asewthen
16: return w;;
end if
w(ve,v3) = w(vs,v2) = 0. DenoteW (v;,v;) the sum of )
18: end while

the weights on the simple path from to v;.
Since a cut splits a net into two subnets, in grépkhere  19: return The last node i/ that is labeled asew
only exists one directed simple path from nodgsto v;
(also fromw;, v;), and obviouslyW (v;,v;) = =W (v, v;). We will assume there is a supervisory controller in our
It can be observed that, the sum of weight in the patbystem structure, whose work is to search a critical subnet,
(vi,v;) reflects theelative differencef &; to &°;. In EX. 5.3, and send the relative differenag to the local controller of
the relative difference ofi; to v, is w(vs, v2) = 0, while the  CA/;. The local controller receives this value then updates
one of vz 10 vy is w(vs,va) + w(vz,v1) = 0.6. Obviously the local control law. Algorithm 2, 3 are for supervisory
we haved = (1 +0.6-1) @ (&2 +0-1) @ &3. Actually, controller, local controller respectively.
the non negative value; in (4) is equal tolV (v,, v;).
Property5.2: If for any nodev; € V, W(v,,v;) > 0, Algorithm 2 Supervisory Controller

thenCN/, is a critical subnet. Input: &;
Proof: If W(vg,v;) > 0, then letz; = W(vg,v:), &  Output: «
can be constructed. Thereforg = W (v,,vy) =0, CN is 1: Construct the graplit = (V, W):

critical. i B ] )
- 2: Find out a critical subnef\, using Algorithm 1;

Algorithm 1 shows how to search a critial subnet based3: Computex(i): the relative difference of N, to CN;;
on the graph constructed. In the beginning all the nodes ara: Sendx(i) to subnetCN;, i = 1,2, ...,n;
labeled asew then every time aewlabeled node, denoted
by v; is chosen, the relative differences from to others
nodesv;, W(v;,v;) is calculated (if it is not done before).
If it is negative thenv; is not critical and labeled asld.
If it is positive thenwv; is not critical becauséV (v;,v;) Let us consider theContPN system in Fig. 5 which
must be negative, and we don’t need to chegkin the models a manufacturing system with three types of product
future. When a node with all relative differences non-negati lines which are assembled for one final product. The system
is found, or there is only one node left which is labeleds cut into four subsystems through the buffer placBs £
as new; the program finishes. When calculating the sunpi,pi2}, Ba = {pis,p2s}, Bs = {p24,p3s}) Of each
of weights, of course the intermediate value that has begmoduct line, as shown in Fig. 6, whegg 31, p27.31, P1.7:
calculated before should be reused. In the worst case, thes andpig 24 are the added marking structurally implicit

n(n—1

computing complexity isQ(T)), wheren is the number places.

V1. CASE STUDY



Algorithm 3 Local Controlleri
Input: CN;, mg, m’
Output: &;

1: Calculate the minimal firing cour&; to reachm};
2: Sendé&’; to the supervisory controller;

3: Receivex(i) from the supervisory controller;

4: Updated’; to &; + x(i) - 1;

5. Apply ON-OFF control;

PIv i3 P2ty

Fig. 5. A manufacturing system model

Assuming the initial and desired final marking are listed
in Table Ill. The corresponding minimal firing count vector
are easy to calculate, shown in Table IV.

TABLE Il

INITIAL AND FINAL MARKINGS

CNy CNo CN3 CNy (d) CN4
P mg P mq P mg P mg
m m o m m
o ;(0f6)) o i(lfg)) - é(of;) o ;mf;) Fig. 6. Complemented subnets from the system model in Fig. 5, ot
o 000.4) || p1a 000.3) || »as 000.2) || P12 0(0.4) By = {p1,p12}, B2 = {p13,p23}, B3 = {p2a,p3s}
P3 0(0.8) P15 0(0.9) P26 0(0.7) P13 4(1.9)
P4 1(0.2) P16 1(0.1) P27 2(0.5) P23 0(0.3)
P5 2(0.5) P17 2(0.5) P28 0(0.8) P24 3(0.3)
P 0(0.7) P18 0(0.6) P29 0(0.9) P38 0(0.2)
p7 0(0.8) P19 0(0.9) P30 1(0.1) P39 0(0.6)
P8 1(0.2) P20 2(0.5) P31 0(0.6) P40 1(0.8)
2} 0(0.7) P21 0(0.6) P32 2(0.5) P41 0(0.2)
P10 2(0.5) P22 0(0.3) P33 0(0.9) P42 0(0.2)
P11 0(0.4) P23 0(0.3) P34 0(0.6) P43 0(0.4)
P12 0(0.4) P35 1(0.1) P44 0(0.8)
P36 2(0.5) P45 1(0.2)
P37 0(0.2) P46 0(1.0)
P38 0(0.2) P47 2(1.0)
P4y 5(0.4)
Pag 3(1.5)
P50 0(1.5)
P8,31 6(4.2) P§,31 6(4.2) P27,31 5(2.6) P1,7 0(3.8)
P9,15 0(3.6)
p16.24 | 0(4.9) Fig. 7. The graph constructed from Table. IV

Based on Table. IV, graplr (Fig. 7) is constructed, in i L . . .
which CAV, is neighbor to all the other subnets with weightCFF: The global final marking is reached in 13.24 time units,
w(ve,v1) = w(v, vs) = 2.8, wlvs,v3) = 2.2. If applying which is minimal time as what has been proved in [19].
Algorithm 1, CN 4 is selected.

The relative differences of V', to all the other subnets
can be computed, which in this case is very straightforward: Distributed control could be a solutions of controlling
r1 = w9 = 2.8, x3 = 2.2. Therefor the minimal firing count systems that are too complex to handle with centralized
vector is generated a& = (61 +2.8-1) @ (62+2.8-1)@ controller or the deployments of systems are physically
(F34+22-1)DFy. distributed. This work focus on distributed control of larg

Then, for instance, in order to control the transitionscale systems that are modeled with timed continuous Petri
in CN1, the ON-OFF can be applied with control law nets, aiming to drive the system from initial marking to
&) = &1 +28-1, ie, transitiont; € T} is ON when desired final marking. The model is first decomposed into
the accumulated flow of; is less thans}(t;), elset; is subnets with sets of places, then making structurally ioitpli

VIl. CONCLUSIONS



TABLE IV
[10]
MINIMAL FIRING COUNT VECTORS

CNT CN > CN3 CN 4
T ER T ED T ER T EN
t1 4.2 tg ) t16 5.1 t1 7
to 3.8 tg 3.9 ti7 4.9 toy 3.2
ts 3 t1o 3.6 t1g 4.2 tg 2.8 [11]
ty 2.3 t11 2.7 t1g 3.4 tg 6.7
ts 1.5 t1o 2.1 too 2.5 t1s5 3.1
te 0.8 t13 1.2 toq 1.9 tig 7.3
tr 0.4 t14 0.6 too 1 toy 2.4 [12]
tg 0 t1s 0.3 tog 0.4 tos 2.2
t31 1.8 t31 1.8 toy 0.2 tog 2.4
tor 0 tor 2.2
t3q 2.4 tog 1.8
tog 1
t30 0 [13]
t3q 4.6
t3o 1.5

14
places are introduced to obtain complemented subnets a[nd]
control laws can be computed in a distributed way. After
that, ON-OFF control is applied in each subnet, and final
marking is reached in minimum time. (15]

Since the obtained subnets depend on the selection of cuts
an improper cut may lead to subnets with big size whicﬁwj
are still difficult to handle. Therefore a qualified autornati [17]
cutting algorithm is worth to be investigated. In principée
proper cut should generate subnets with similar size and the
corresponding set of interface transitions should be small [18]

Another future work will be applying this control method
to more general nets structures, for example structurally
persistent nets, where the decomposition method and appré!
imation strategy should be reconsidered.
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