
Proyecto Fin de Carrera

Ingeniería en Informática

Coherent vs. non-coherent last level on-chip
caches: an evaluation of the latency and

capacity trade-offs

Alexandra Ferrerón Labari

Director: Babak Falsafi
Ponente: Darío Suárez Gracia

Parallel Systems Architecture Lab.
Faculté Informatique et Communications

École Polytechnique Fédérale de Lausanne (Switzerland)

Departamento de Informática e Ingeniería de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

Curso 2010/2011
Noviembre 2010

A mis padres.

Proyecto Fin de Carrera

Ingeniería en Informática

Coherent vs. non-coherent last level on-chip
caches: an evaluation of the latency and

capacity trade-offs

Alexandra Ferrerón Labari

Director: Babak Falsafi
Ponente: Darío Suárez Gracia

Parallel Systems Architecture Lab.
Faculté Informatique et Communications
École Polytechnique Fédérale de Lausanne

Departamento de Informática e Ingeniería de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

Curso 2010/2011
Noviembre 2010

Resumen ejecutivo

El desorbitado consumo energético de los centros de datos actuales y la creciente preocupación por
el medio ambiente han llevado a que las tecnologías de la información deban plantearse cómo reducir
costes, a la vez que preservar el medio ambiente, en futuros centros de datos.

ARM, en un consorcio con Nokia, IMEC, EPFL (Escuela Politécnica Federal de Lausanne) y UCY
(Universidad de Chipre), lidera el proyecto EuroCloud, en donde se pretende desarrollar una nueva
generación de servidores-on-chip con tecnología 3D y de bajo consumo para servicios de computación
en nube (cloud computing). EuroCloud propone un nuevo servidor-on-chip de muy bajo consumo,
utilizando procesadores ARM, aceleradores de hardware y memoria DRAM en chip integrada en 3D.

En este proyecto hemos estudiado uno de los componentes principales del chip del proyecto
EuroCloud, la jerarquía de memoria cache en chip, haciendo una comparación entre diferentes op-
ciones para su organización. La configuración de la jerarquía de memoria cache en chip afectará al
tiempo medio de acceso a memoria y, en consecuencia, influenciará el rendimiento global.

El chip que hemos estudiado está compuesto por dos clusters. Cada cluster contiene dos proce-
sadores con sus respectivas caches de nivel uno privadas y una porción del segundo nivel de memoria
cache (en este caso el segundo nivel de cache es el último nivel de la jerarquía). Este último nivel de
cache se encuentra, por tanto, físicamente distribuido entre los clusters y puede ser configurado de
forma distinta. En concreto, admite dos organizaciones: caches compartidas o caches privadas.

En este proyecto hemos analizado dos organizaciones: una organización Compartida, en la que los
dos clusters comparten el último nivel de la memoria cache, y que pretende conseguir aprovechar al
máximo la capacidad efectiva de la cache, y una organización en Cluster, en donde el último nivel
de cache es privado para cada cluster. En este último caso, damos prioridad a un acceso más rápido
(menor latencia) a este nivel de la jerarquía. Dentro de una organización en Cluster, hemos estudiado
la posibilidad de introducir un mecanismo de coherencia para este nivel.

Tras una extensa labor de investigación sobre el estado del arte del tema y sobre la organización
del chip y su arquitectura, hemos modelado los dos diseños antes mencionados en nuestra plataforma
de simulación y simulado cargas de trabajo representativas. Hemos analizado en detalle los resultados
obtenidos para distintos tamaños de memoria cache y concluido que una organización en Cluster, en
general, funciona mejor. Un diseño Cluster se beneficia de una latencia de acceso más baja a la vez
que proporciona en la mayoría de los casos la capacidad de cache necesaria para obtener un buen
rendimiento. En los casos en que capacidad es más crítica que acceso o en cargas de trabajo con poca
localidad, el diseño Compartido aventaja al diseño Cluster. En cuanto a los mecanismos de coherencia
para este nivel de la jerarquía, creemos que, para el tipo de servidor estudiado y el tipo de aplicaciones
consideradas, son innecesarios. Adicionalmente, hemos extendido el entorno de simulación utilizado,
así como profundizado en la metodología de simulación para conseguir unos resultados más ajustados.

i

ii

Índice general

1 Introducción 1
1.1 Contexto del proyecto . 2
1.2 Objetivos . 2
1.3 Organización de la memoria . 3
1.4 Agradecimientos . 3

2 Trabajo relacionado 5

3 Alternativas para la organización de cache en multiprocesadores embebidos 7
3.1 Introducción . 7
3.2 Organización básica de servidores-on-chip y opciones para la jerarquía de memoria 8

3.2.1 Alternativas consideradas . 9
3.2.2 Tamaño ideal del último nivel de memoria cache 10
3.2.3 Detalles de implementación . 11

4 Metodología 13
4.1 Simulador . 13
4.2 Diseño del sistema . 13
4.3 Workloads (cargas de trabajo) . 14

5 Resultados 17
5.1 Visión general de resultados . 17
5.2 Resultados representativos . 18

5.2.1 OLTP TPC-C: Oracle . 18
5.2.2 Web server: Zeus . 20
5.2.3 DSS TPC-H: Query 17 . 20

5.3 Resumen . 22

6 Conclusiones y trabajo futuro 23

Bibliografía 25

A Project management 29
A.1 Initial schedule and effort estimation . 29
A.2 Project Development . 32

A.2.1 Schedule . 32
A.2.2 Effort . 32
A.2.3 Problems ocurred . 33

A.3 Personal evaluation . 33

iii

ÍNDICE GENERAL

B Statistical Sampling Simulation Methodology 35
B.1 Introduction . 35
B.2 The SMARTS Methodology . 35

B.2.1 Statistical Sampling . 36
B.2.2 SMARTS Technique . 36

B.3 SMARTS for our problem . 38

C Complementary (additional) results 41
C.1 Performance metrics . 41
C.2 Benchmarks . 42

C.2.1 Web server: SPECWeb99 benchmark . 42
C.2.2 Online transaction processing: TPC-C benchmark 42
C.2.3 Decision support systems: TPC-H DSS benchmark 43

C.3 Results . 44
C.3.1 Web server benchmarks . 45
C.3.2 OLTP benchmarks . 46
C.3.3 DSS benchmarks . 47
C.3.4 Summary . 50

D English Report 51

iv

Índice de tablas

4.1 Parámetros del sistema. 14
4.2 Parámetros de las aplicaciones. 15

5.1 Tamaño de la cache con el que se obtiene el mejor rendimiento para diferentes
benchmarks/diseños. 18

A.1 Description of the main tasks and estimated effort. 30
A.2 Comparison of the real and estimated effort. 33

B.1 Sampling variables. 36
B.2 Workloads, sample sizes and cycles between sample units for each workload. . . . 38
B.3 Workloads, coefficient of variation and error (%). 38
B.4 Workloads, minimum sample size and systematic-sampling interval. 39

C.1 Best cache sizes for the different workloads/designs. 44

v

vi

Índice de figuras

3.1 Diseño (aproximado) del chip de ARM. 9
3.2 Alternativas de diseño consideradas. 9
3.3 Diseños propuesto e implementado para Cluster. 11

5.1 Mejor resultado (UIPC por core) para benchmarks comerciales. 17
5.2 LLC MPKI y UIPC para OLTP Oracle. 19
5.3 Desglose del tiempo de ejecución (usuario) para OLTP Oracle (Cluster). 19
5.4 LLC MPKI y UIPC para Web Zeus. 20
5.5 LLC MPKI y UIPC para DSS Query 17. 21
5.6 Desglose del tiempo de ejecución (usuario) para DSS Query 17 (Baseline). 21

A.1 Initial schedule. 29
A.2 Detailed schedule for the different tasks. 31
A.3 Schedule for September and October. 32

B.1 Warming approaches for simulation sampling. 37
B.2 Simulating with flex points. 37
B.3 Example of error reduction by increasing the sample size 39

C.1 Best UIPC per core for server workloads. 44
C.2 UIPC for Web Apache and Zeus. 45
C.3 LLC MPKI for Web Apache and Zeus. 45
C.4 UIPC for OLTP DB2 and Oracle. 46
C.5 LLC MPKI for OLTP DB2 and Oracle. 47
C.6 Execution time breakdown (user) for OLTP Oracle (Cluster). 47
C.7 LLC MPKI and UIPC for DSS Query 1. 48
C.8 LLC MPKI and UIPC for DSS Query 2. 48
C.9 Execution time breakdown (user) for DSS Query 2 (Cluster). 49
C.10 LLC MPKI and UIPC for DSS Query 17. 49
C.11 Execution time breakdown (user) for DSS Query 17 (Baseline). 50

vii

viii

Capítulo 1
Introducción

Las tecnologías de la información comienzan a considerar el coste energético y los problemas
medioambientales como una variable importante en el diseño de chips. Actualmente, el consumo
energético es uno de los factores principales en el coste total de los centros de datos [7], en donde
microprocesadores y sistema de memoria son los componentes más costosos y que más energía
consumen en un servidor [13]. En las últimas décadas, los diseñadores de microprocesadores han
confiado en escalar el voltaje (voltage scaling) mediante la reducción del voltaje suministrado
para así rebajar el consumo. Sin embargo, esta técnica implica un incremento de la corriente de
fuga, limitando hasta dónde podemos reducir el voltaje sin incurrir en un aumento del consumo.
Parece que integrar un gran número de procesadores de bajo consumo en chip o utilizar una
nueva clase de arquitecturas de servidores basados en sistemas embebidos son formas de reducir
el problema del consumo de energía en los futuros centros de datos.

ARM, en un consorcio con Nokia, IMEC, EPFL (Escuela Politécnica Federal de Lausanne)
y UCY (Universidad de Chipre), lidera el proyecto EuroCloud, un proyecto cuyo objetivo es
desarrollar una nueva generación de servidores on-chip con tecnología 3D y de bajo consumo
para servicios de computación en nube (cloud computing) [26]. La computación en nube aparece
como un nuevo paradigma que propone computación basada en Internet, en donde los recursos
compartidos, software e información se proporciona a los computadores y otros dispositivos bajo
demanda. El proyecto EuroCloud propone un servidor 3D en chip de muy bajo consumo utili-
zando procesadores ARM, aceleradores de hardware e integrando DRAM en 3D.

Las aplicaciones comerciales (por ejemplo bases de datos y servidores web) y aplicaciones
emergentes de computación en nube (como por ejemplo streaming de música o vídeo, reconoci-
miento de canciones o data mining) presentan altos niveles de paralelismo a nivel de thread y
de memoria, y pueden sacar muy poco partido a los complejos procesadores fuera de orden, que
están especializados en extraer el paralelismo a nivel de instrucción. Este tipo de aplicaciones
se pueden beneficiar mucho más de procesadores más simples en donde la latencia individual a
nivel de thread es menos importante que el rendimiento global agregado.

En este proyecto estudiamos un componente clave del chip de ARM para el proyecto Euro-
Cloud, desde una perspectiva de rendimiento y de consumo. Nos centramos en la jerarquía de
memoria en chip, comparando diferentes configuraciones de memoria para el chip multiprocesa-
dor (CMP). Estudiamos si es preferible tener un último nivel de cache privado o compartido, y
en el caso de privado, si las caches deberían ser coherentes o no coherentes.

1

CAPÍTULO 1. INTRODUCCIÓN

1.1 Contexto del proyecto

Este proyecto ha sido desarrollado en el Laboratorio de Arquitectura de Sistemas Paralelos
(PARSALab) en la Escuela Politécnica Federal de Lausanne (Suiza) y en el Grupo de Arquitec-
tura de Computadores de la Universidad de Zaragoza.

El multiprocesador estudiado está formado por dos clusters de dos cores cada uno. Para cada
procesador el primer nivel en la jerarquía de cache es privado. El último nivel de la jerarquía de
cache (en nuestro caso el nivel dos 1) está físicamente distribuido entre los clusters y puede ser
configurado de diferentes formas. Dependiendo de esa configuración, el tiempo medio de acceso
a memoria (que depende de tres parámetros principales: latencia, ancho de banda y tasa de
aciertos) se verá influenciado de un modo u otro: una configuración de cache privada implica una
menor latencia, mientras que caches compartidas incrementan la tasa de aciertos. Además, en el
caso de una organización privada de caches, tendremos que determinar si se debería incluir una
gestión explícita de la coherencia.

En este proyecto analizamos las diferentes configuraciones de este último nivel de memoria
cache buscando la mejor opción, de acuerdo con la simulación de cargas de trabajo representati-
vas. Como entorno de trabajo usamos FLEXUS [33]. FLEXUS es un simulador desarrollado por
el grupo de Arquitectura de Computadores de la Universidad Carnegie Mellon (CALCM) que
modela la arquitectura SPARC y puede ejecutar aplicaciones comerciales y sistemas operativos.

1.2 Objetivos

El objetivo de este proyecto es analizar cuál es la mejor opción para la jerarquía de memoria del
chip de ARM para el proyecto EuroCloud. Las tareas principales en las que se puede dividir el
proyecto son:

1. Estudio de la arquitectura ARM, la organización del chip y trabajos relacionados con el
tema (estado del arte).

2. Extensión del entorno de simulación para modelar el multiprocesador de ARM.

3. Modelo de las diferentes organizaciones de memoria cache en chip:

• Caches compartidas (distribución estática de bloques).
• Caches privadas coherentes.
• Caches privadas no coherentes.

4. Estudio de la metodología de simulación y simulación de cargas de trabajo representativas.

5. Análisis de resultados.

Hemos alcanzado los objetivos principales haciendo una comparación entre las configuracio-
nes propuestas mediante la simulación de cargas de trabajo representativas. Debido a la falta de
soporte por parte del entorno de simulación para modelar multiprocesadores heterogéneos, mo-
delamos un multiprocesador simétrico de 16 cores desde donde podemos extrapolar los resultados.

1En este proyecto cuando hablamos del último nivel de cache (LLC) del chip multiprocesador estudiado, nos
referimos al nivel dos (L2)

2

1.3. ORGANIZACIÓN DE LA MEMORIA

Además, hemos extendido el entorno de simulación permitiendo la simulación de multiproce-
sadores con dos cores.

1.3 Organización de la memoria

El resto de este documento se organiza de la siguiente manera: el capítulo 2 presenta el estado
del arte y trabajos relacionados; el capítulo 3 explora las alternativas propuestas; el capítulo 4
explica la metodología que se ha seguido; el capítulo 5 contiene los resultados principales y el
capítulo 6 concluye y presenta el trabajo futuro.

Se incluyen como apéndices (en inglés):

A. Project management (Gestión del proyecto): incluye calendarios y control de esfuerzos.

B. Statistical sampling simulation methodology: la metodología de simulación basada en mues-
treo estadístico para reducir el tiempo de simulación y cómo se aplica a nuestro proyecto.

C. Complementary (additional) results (Resultados complementarios): estudio detallado de los
resultados obtenidos.

D. English Report: la versión en inglés del presente documento entregada en la EPFL (no incluye
apéndices).

1.4 Agradecimientos

Me gustaría agradecer a mi director de proyecto Babak Falsafi el darme la oportunidad de tomar
contacto con el mundo de la investigación durante este último año. También a todos los chicos
del PARSALab, especialmente a Mutaz, Mike, Pejman y Mammad, que siempre estuvieron dis-
ponibles para resolver mis dudas sobre el entorno de simulación y sobre este proyecto en general.
Gracias también a Mehdi, un buen inteconnects-guy con el que compartir despacho.

Gracias especialmente a Darío, que siempre ha estado ahí para resolver mis problemas y
ayudarme a revisar y revisar este proyecto. Muchísimas gracias por tu ayuda.

A todos mis amigos, por todos los cafés, tanto aquí en Zaragoza como en Lausanne. A Mar-
kus, por todos los momentos en los que me has aguantado y ayudado.

Finalmente, quiero expresar mi sincera gratitud a toda mi familia, que siempre me ha apoya-
do en todas las decisiones que he tomado. Especialmente dedico este proyecto a mis padres. Sin
vuestro apoyo nada de esto hubiera sido posible. Si hoy estoy donde estoy, es gracias a vosotros.

3

4

Capítulo 2
Trabajo relacionado

El escalado CMOS ha propiciado que los fabricantes de procesadores elijan, por todas las ven-
tajas que ofrecen, chip multiprocesadores (CMP) como la arquitectura común para aprovechar
el gran número de transistores disponibles y alcanzar, a la vez, alto rendimiento. Sin embargo,
conforme el número de procesadores integrados en chip aumenta, también aumenta la presión en
la memoria en chip, originada por la petición de datos por parte de esos procesadores. Al mismo
tiempo, los CMPs requieren acceso rápido a los datos. El último nivel de la jerarquía de cache
en chip (LLC) constituye un nuevo cuello de botella en la jerarquía de memoria que, no sólo
necesita utilizar su capacidad limitada de una forma eficiente, sino que además tiene que miti-
gar las latencias que siguen incrementandose debido a los retrasos introducidos por los cables [18].

Hasta hace unos años parecía que incrementar el tamaño de este nivel de la jerarquía de cache
era una buena manera de aprovechar los transistores disponibles. Incrementando la capacidad de
la cache se pretendía conseguir mejor rendimiento. Algunos ejemplos de mega-caches en chip son
el Dual-Core Intel Xeon 7100 con 16MB [28] o el Dual-Core Intel Itanium 2 con 24MB [36]. Sin
embargo, aumentar el tamaño de la cache viene de la mano de un incremento en la latencia de
acceso. Aumentar la latencia de la cache penaliza cada acceso y además incrementa el número
de paradas en la ejecución causadas por aciertos en L2 (se incrementa el número de ciclos que
debemos detener el pipeline hasta que el dato está disponible) sin cambiar el número de accesos
a otras partes de la jerarquía de memoria.

Ailamiki et al. [17] demostraron que aplicaciones comerciales de bases de datos no consiguen
ninguna mejora en el rendimiento (e incluso el rendimiento empeora hasta un 30%) cuando se
aumenta la capacidad del último nivel de cache de 4MB a 26MB. Si las caches son capaces de
capturar el working set primario de este tipo de aplicaciones1, entonces el rendimiento incremen-
ta. Si continuamos incrementando el tamaño de las caches, entonces el mayor tiempo de acceso
penaliza el caso común (acierto) introduciendo paradas en la ejecución, mientras que la capaci-
dad adicional de la cache no es capaz de rebajar la tasa de fallos suficiente como para compensarlo.

Si nos centramos en la organización de la LLC, encontramos dos opciones para CMPs: caches
compartidas o caches privadas. Una cache compartida tiene sólo una copia de cada bloque y per-
mite a los procesadores compartir la capacidad de la cache. Sin embargo, las caches compartidas
son lentas, debido a los retrasos asociados con caches grandes e interconexiones. Caches privadas
son más rápidas porque son más pequeñas y se pueden colocar más cerca de cada procesador,
pero su capacidad es limitada. Por tanto, caches compartidas o privadas proporcionan capacidad

1Estas aplicaciones tienen un working set primario (orden de MBs) que puede ser capturado en chip, y un
working set secundario más grande (orden de GBs) que está fuera del alcance de las caches en chip actuales.

5

CAPÍTULO 2. TRABAJO RELACIONADO

o acceso rápido, pero no ambos.

Recientemente, se ha hecho un gran esfuerzo en tratar de combinar las ventajas de diseños
basados en caches privadas y compartidas, proponiendo diseños híbridos. En general, los diseños
híbridos utilizan replicación selectiva para balancear latencia y capacidad [37, 6, 10]. Chang et
al. presentan en [9] un marco unificado para manejar la capacidad agregada de los recursos de
cache en CMPs, mediante la formación de una cache compartida a través de cooperación entre
caches privadas. En la misma línea, Reactive-NUCA [16] propone clusterizar los procesadores
en grupos de compartición para minimizar los fallos que suponen comunicación con memoria
principal. R-NUCA realiza también una clasificación de los bloques que se beneficiarían de ser
privados, compartidos o clusterizados, en lo que se refiere a referencias a la LLC. Basándose
en esta observación, los autores proponen una diseño de cache que, cooperando con el sistema
operativo, reacciona a las distintas clases de accesos y coloca los bloques en el lugar adecuado.

Por otro lado, los complejos procesadores fuera de orden están especializados en extraer el
paralelismo a nivel de instrucción. Sin embargo, las aplicaciones comerciales siguen un patrón
diferente. Para estos tipos de aplicaciones la latencia individual de un thread es menos impor-
tante que el rendimiento global agregado. Podemos incrementar el rendimiento agregado con
procesadores multithread, de manera que eventos que normalmente paran el procesador, como
fallos de cache, se ocultan, aumentando así la utilización. Además, usando procesadores escalares
sencillos reducimos la complejidad del diseño, además del consumo de energía.

Un trabajo de la Universidad de Michigan y ARM propone una nueva arquitectura llamada
PicoServer [20]. Este trabajo afirma que integrando 3D DRAM en chip podemos prescindir de la
cache L2. El rendimiento se mantiene mediante el uso de buses muy anchos, una pequeña memo-
ria DRAM en chip e incrementando el número de cores, mientras que ahorramos una considerable
cantidad de energía. Esta hipótesis la soporta la idea de que aplicaciones para servidores en el
futuro se ejecutarán en CMPs con un gran número de pequeños cores simples de ejecución en
orden [12]. De todas formas, incrementar el número de cores implica una alta demanda de datos
para alimentar esos cores, por lo que el rendimiento puede empeorar si no hay suficiente ancho
de banda. La situación en la que el ancho de banda con la memoria fuera del chip se convierte en
un cuello de botella para el rendimiento se conoce como el bandwidth wall problem [27]. Además,
los buses son una fuente significante de pérdida de energía, especialmente los buses interchip,
que son normalmente muy largos y anchos.

El proyecto EuroCloud sigue la idea de incluir muchos procesadores de bajo consumo en chip
y usar DRAM integrada en 3D. La integración de DRAM en 3D ha recibido gran atención en
Arquitectura de Computadores en los últimos años, ya que la interconexión en vertical permite
tener sistemas con latencias más bajas y anchos de banda mayores [23]. Estos aspectos son muy
atractivos para servidores y procesadores de alto rendimiento por sus altos requerimientos de
memoria y niveles de paralelismo a nivel de thread. La memoria tipo DRAM estándar (fuera de
chip) tiene un ancho de banda limitado debido a la limitación en el número de pins, es lenta
porque para acceder a ella hay que recorrer todo el chip, y consume mucha energía debido a la
circuitería y entrada/salida [26]. La integración 3D de DRAM sobre la lógica, en combinación
con aceleradores de hardware, puede eliminar esas ineficiencias.

Nuestro trabajo se centra en un componente clave (la jerarquía de memoria en chip) de una
nueva clase de servidores-on-chip basados en sistemas embebidos. Desde nuestro conocimiento, es
la primera vez que se estudia el rendimiento de aplicaciones comerciales en sistemas embebidos.

6

Capítulo 3
Alternativas para la organización de
cache en multiprocesadores embebidos

Este capítulo presenta las diferentes alternativas para la jerarquía de memoria en chip analizadas en
este proyecto. Exponemos las principales características de cada alternativa para concluir formulando
nuestra hipótesis.

3.1 Introducción

El objetivo de la jerarquía de memoria cache es minimizar la latencia de los datos a los que se
accede de manera frecuente y así maximizar el rendimiento. En la jerarquía de cache de un uni-
procesador convencional, conseguimos ese objetivo aprovechando la localidad espacial y temporal
de los datos; esto quiere decir que movemos los bloques de datos en la jerarquía de memoria ba-
sándonos en la frecuencia de acceso. Los datos más referenciados se colocan cerca del procesador
y por lo tanto se acceden más rápidamente. El mismo principio se puede aplicar a jerarquías de
cache en multiprocesadores. La diferencia es que ahora tendremos que tener en cuenta también si
los procesadores comparten o no un determinado nivel de la jerarquía, o si un nivel se implementa
como un bloque físico con latencia de acceso uniforme a la cache (uniform cache access o UCA),
o si por el contrario, se implementa como múltiples bancos físicamente distribuidos, en donde la
latencia varía según qué procesador accede a los datos y los bancos de la cache se encuentran
distribuidos en el chip, implicando que la latencia de acceso a los datos es no uniforme (es decir,
non-uniform cache access o NUCA) [21].

Conforme el número de procesadores y bancos de cache aumenta, las caches físicamente dis-
tribuidas son más atractivas desde una perspectiva de diseño, manufactura y escalabilidad [3].
Pero también colocar una porción de la memoria cache cerca de un subconjunto de procesadores
puede reducir la latencia de acceso a esa porción de la cache para esos procesadores, en lugar de
ofrecer una latencia alta, pero igual, en toda la cache (diseños UCA).

Las arquitecturas tiled surgen como una solución para mitigar la creciente latencia de acceso
al último nivel de cache [21]. En este tipo de arquitecturas, el chip se divide en un gran número
de tiles idénticos (o casi idénticos) que se interconectan mediante una red de interconexión esca-
lable y de bajo consumo. Cada tile contiene una porción de la LLC (que puede tener múltiples
bancos), por lo que la cache se encuentra físicamente distribuida en el chip. De esta forma, los
procesadores pueden acceder muy rápido a las porciones de cache que se encuentran cerca de
ellos, aunque tienen que pagar la latencia de viajar a través de la red de interconexión si los

7

CAPÍTULO 3. ALTERNATIVAS PARA LA ORGANIZACIÓN DE CACHE EN MULTIPROCESADORES
EMBEBIDOS

datos a los que quieren acceder se encuentran más lejos (NUCA).

Si el último nivel de cache (LLC) se distribuye en múltiples tiles, caches privadas y caches
compartidas introducen distintos compromisos. En general, una cache compartida es preferible si
lo que queremos es reducir el número colectivo de fallos de LLC, mientras que una organización
con caches privadas es mejor si lo que queremos reducir es la latencia de acceso y la complejidad
del diseño.

Caches compartidas incrementan la capacidad efectiva porque sólo una copia de cada blo-
que se encuentra en la cache. Si asumimos una distribución estática de los datos (basada en la
dirección de bloque), los bloques pueden colocarse arbitrariamente lejos del procesador que los
solicita, lo que penaliza el tiempo medio de acceso. Por otro lado, un diseño privado colocará los
bloques cerca del procesador(es) que los soliciten, así que garantizamos un acceso rápido a esos
datos. La desventaja es que puesto que bloques compartidos de sólo lectura estarán replicados
en varios tiles, la capacidad efectiva de la cache disminuye y, en consecuencia, aumenta el tráfico
fuera de chip.

El protocolo de coherencia puede jugar también un papel importante. Mientras que en un
diseño compartido la coherencia es implícita por construcción, cuando hablamos de un diseño
privado nos encontramos con dos posibilidades: caches coherentes o caches no coherentes. En
caso de que el último nivel de cache sea coherente, el tráfico dentro del chip crece (mensajes
para gestionar la coherencia), con los problemas de disipación de energía que esto conlleva [3].
Además, los mecanismos de coherencia reducen el área disponible y penalizan la compartición
de datos. En el caso de caches no coherentes, éste tipo de diseño demandará tráfico extra fuera
del chip, con los problemas de ancho de banda con memoria principal derivados [27]. Si elegimos
un diseño privado coherente, los protocolos basados en directorio parecen la mejor opción para
gestionar la compartición de bloques en el chip [8, 30].

3.2 Organización básica de servidores-on-chip y opciones para la
jerarquía de memoria

En este proyecto evaluamos dos configuraciones diferentes para el último nivel de memoria cache
para el chip del proyecto EuroCloud (figura 3.1). El multiprocesador que estudiamos está forma-
do por dos clusters de dos procesadores cada uno, en donde para cada procesador el primer nivel
de cache es privado. El último nivel de cache (en este caso nivel 2) está físicamente distribuido
entre los clusters. La comunicación entre clusters se realiza a través de una red de intercone-
xión. La Snoop Control Unit (SCU) es la encargada de la interconexión, arbitraje, comunicación,
transferencias cache-to-cache y con el sistema de memoria y coherencia.

Nuestro objetivo es explorar las diferentes alternativas para la organización de la jerarquía
de memoria en chip, proponiendo dos organizaciones para la LLC:

1. LLC Compartida: los dos clusters comparten la LLC en chip. En este caso suponemos que
la distribución de los bloques es estática (basada en la dirección de bloque). Notar que este
diseño es coherente por construcción.

2. LLC Privada: la LLC es privada para cada cluster. En este caso podemos considerar un
diseño coherente o no coherente.

8

3.2. ORGANIZACIÓN BÁSICA DE SERVIDORES-ON-CHIP Y OPCIONES PARA LA JERARQUÍA DE
MEMORIA

Figura 3.1: Diseño (aproximado) del chip de ARM. Sólo se incluye el detalle de la jerarquía de memoria en chip.
L2CC son las iniciales de L2 cache controller.

3.2.1 Alternativas consideradas

Debido a las restricciones impuestas por el entorno de simulación, decidimos extender nuestro
análisis a un multiprocesador de 16 cores, explorando dos diseños diferentes:

(a) Diseño Compartido de LLC (Baseline o Sha-
red).

(b) Diseño Cluster de LLC (Cluster).

Figura 3.2: Alternativas de diseño consideradas.

1. Diseño Compartido (Baseline o Shared): consiste en un sistema de 16 nodos, con NUCA
y una LLC (L2) compartida, interconectada por una red (mesh) 4 por 4 (figura 3.2a). En
total hay cuatro controladores de memoria. Este diseño pretende sacar el máximo partido
a la capacidad efectiva de la cache.

2. Diseño en Cluster (Cluster): también se trata de un sistema de 16 nodos, pero los procesa-
dores se dividen en cuatro grupos (clusters) de cuatro procesadores cada uno; la cache L2
es una cache compartida por los procesadores dentro de cada grupo, pero es privada entre
los cuatro clusters (figura 3.2b). La LCC es multibanco y se accede a través de una red de
interconexión. Cada cluster tiene un controlador de memoria. Este diseño da prioridad a
conseguir una latencia de acceso más baja.

9

CAPÍTULO 3. ALTERNATIVAS PARA LA ORGANIZACIÓN DE CACHE EN MULTIPROCESADORES
EMBEBIDOS

Vemos que los resultados basados en estos diseños pueden ser claramente extrapolables al
CMP original (en todo caso los resultados obtenidos podrían degradar el rendimiento ya que
aumentamos el número de procesadores y por tanto la presión en el chip).

3.2.2 Tamaño ideal del último nivel de memoria cache

Diferentes tipos de aplicaciones y diferentes tipos de paralelismo en esas aplicaciones presentan
diferentes retos a nivel arquitectural y de diseño para la jerarquía de memoria a la hora de alcan-
zar objetivos que tienen que ver con el rendimiento, la escalabilidad y el ahorro de energía. En
nuestro estudio nos centramos en cargas de trabajo comerciales, pues son el tipo de aplicaciones
que los servidores de hoy en día ejecutan.

Hardavellas et al. en [16] hicieron un estudio sobre los requerimientos de aplicaciones co-
merciales en términos de capacidad y organización de LLC, proponiendo un nuevo esquema
de distribución de bloques y organización de la cache. De ese estudio podemos extraer varias
conclusiones:

• Las referencias a L2 forman de manera natural tres grupos con diferentes características:
(1) las instrucciones se comparten entre todos los procesadores y son sólo lectura; (2) los
datos compartidos se comparten entre todos los procesadores y son lectura-escritura en la
mayoría de los casos; (3) los datos privados presentan distintos niveles de lectura-escritura.

• El working set de instrucciones para cargas de trabajo comerciales es aproximadamente del
tamaño de una porción de la cache L2 (en su estudio, 1MB por porción).

• El primer nivel de memoria cache puede capturar el conjunto de datos (data working set).

• Los mecanismos de coherencia hardware para L2 en CMPs con arquitecturas tiled y ejecu-
tando aplicaciones comerciales son innecesarios y deberían evitarse.

Basándonos en estas conclusiones podemos afirmar:

• Si la LLC es capaz de capturar el working set primario de la carga de trabajo [17], entonces
el diseño que garantice la menor latencia tendrá mejores resultados.

Podemos formular entonces nuestra hipótesis afirmando que siempre que la capacidad de la
cache sea mayor que un determinado tamaño (el tamaño que permita almacenar en cache el
working set primario), esperamos que el diseño Cluster obtenga un rendimiento mejor.

Si el diseño Cluster no es capaz de capturar el working set primario de la carga de trabajo,
entonces la petición de datos irá al siguiente nivel de la jerarquía, es decir, a la memoria fuera
de chip, lo que incrementará el tiempo medio de acceso. Por otro lado, caches grandes con una
distribución estática de los bloques pueden implicar accesos a porciones de cache arbitrariamente
lejos del procesador que solicita el dato y, en consecuencia, una latencia mayor debido a la red
de interconexión.

Por último, implementando mecanismos de coherencia en el último nivel de la jerarquía de
cache, podríamos beneficiarnos de las transferencias cache-to-cache (pero pagando un alto precio
en términos de tráfico en chip y hardware [9]). Las transferencias cache-to-cache se usan para
reducir las peticiones de datos fuera del chip para fallos locales en LLC, pero estas operaciones
requieren comunicación entre el tile que solicita el dato, el tile en el que se encuentra el directorio

10

3.2. ORGANIZACIÓN BÁSICA DE SERVIDORES-ON-CHIP Y OPCIONES PARA LA JERARQUÍA DE
MEMORIA

(para la coherencia) y el tile que en ese momento es el dueño del dato. Esta operación es más
costosa que un acierto remoto en una cache compartida (esto es el caso de un acierto en LLC en
el que el dato se encuentra en otro tile), donde la transferencia cache-to-cache sólo se realiza si
el bloque solicitado se encuentra en estado exclusivo. Además, el hardware que se requiere para
implementar los mecanismos de coherencia reduce el área disponible para el LLC y consecuente-
mente limita la capacidad de la cache.

Siguiendo nuestra hipótesis (con la que esperamos que el diseño Cluster obtenga mejores
resultados), la adición de un mecanismo de coherencia puede degradar el rendimiento, además
de complicar el hardware e incrementar el consumo de energía. Por estas razones decidimos no
explorar un diseño privado coherente.

Para estimar el tamaño de la cache L2 (LLC) para nuestros diseños, asumimos un chip de
180 mm2 en tecnología de 45 nm. Contamos que el 65% del chip será utilizado para colocar los
tiles. Asumimos un área de 3,1 mm2 para cada Cortex A9, de forma que nos queda un tamaño
por porción de L2 de 4,2125 mm2, lo que nos permite sin problemas colocar una porción de hasta
1MB de LLC.

Respecto a la asociatividad de la cache, fijamos este valor a 16, puesto que es un valor ade-
cuado y ampliamente utilizado para este nivel de la jerarquía de cache [28, 22].

Resumiendo, exploramos tamaños de cache desde 128KB hasta 1MB por procesador, lo que
supone una capacidad total de cache desde 4MB hasta 16MB en chip. Esperamos que el diseño
Compartido presente un rendimiento mejor hasta un determinado tamaño de cache, y que a par-
tir de ese tamaño el diseño Cluster supere al diseño Compartido al aprovechar su menor tiempo
de acceso. Estamos de acuerdo con la idea de que los mecanismos de coherencia para este nivel
de jerarquía de cache y este tipo de cargas comerciales deberían evitarse, y no esperamos que
introducir un mecanismo de coherencia vaya a incrementar el rendimiento.

3.2.3 Detalles de implementación

Finalmente comentar que en la práctica no implementamos el diseño Cluster tal y como se
propone en la figura 3.2b.

(a) Diseño propuesto para Clus-
ter.

(b) Diseño implementado
para Cluster.

Figura 3.3: Diseños propuesto e implementado para Cluster.

En la figura 3.2b, los procesadores se comunican con la memoria cache L2 a través de una red
de interconexión. Para este tipo de conexiones, un crossbar parece ser la opción más adecuada.

11

CAPÍTULO 3. ALTERNATIVAS PARA LA ORGANIZACIÓN DE CACHE EN MULTIPROCESADORES
EMBEBIDOS

Sin embargo, en vez de simular el diseño propuesto decidimos simular una arquitectura tiled
interconectada mediante una red 2 por 2. La figura 3.3 muestra el diseño propuesto (3.3a) y el
diseño implementado (3.3b).

Notar que crossbars con pocos puertos tienen una latencia de acceso media más baja [22, 11],
así que podemos considerar el diseño que hemos implementado (red 2 por 2) como una cota
inferior de rendimiento.

12

Capítulo 4
Metodología

Este capítulo presenta la metodología que se ha seguido en este proyecto. Se presenta brevemente la
metodología de simulación y las cargas de trabajo (benchmarks) que hemos usado. Más información
en los apéndices B (sobre metodología de simulación) y C (resultados detallados).

4.1 Simulador

Utilizamos el entorno de simulación FLEXUS [33] para conseguir simular de forma precisa
chips multiprocesadores y multiprocesadores simétricos ejecutando cargas de trabajo comercia-
les. FLEXUS es un simulador capaz de simular código tanto a nivel de usuario como de sistema
operativo. Utilizamos la metodología de SimFlex statistical sampling (muestreo estadístico) [33].
FLEXUS extiende el simulador funcional Virtutech Simics [24] con modelos de arquitecturas ti-
led con procesadores, caches NUCA, controladores de protocolos de coherencia e interconexiones
en chip.

Lanzamos simulaciones desde checkpoints con caches y predictores de salto inicializados, eje-
cutamos durante 100.000 ciclos para inicializar la ventana de lanzamiento y la red de intercone-
xión antes de recoger resultados de la ejecución del programa durante 50.000 ciclos. Utilizamos
como métrica el número de instrucciones de usuario por ciclo (user instructions per cycle o
UIPC), es decir, el número de instrucciones ejecutadas (comitted) por todos los procesadores di-
vidido por el total de ciclos ejecutados, que es proporcional al rendimiento global del sistema [33].

Para estimar las latencias de las caches usamos Cacti 6.5 [34, 25]. Cacti es un modelo de
caches que integra tiempo de acceso, tiempo de ciclo, área y consumo de energía. De esta forma
todas las variables se basan en los mismos supuestos y son, por tanto, consistentes. Además las
latencias que proporciona Cacti son normalmente más bajas que las del hardware comercial, por
lo que nuestras suposiciones son conservativas.

4.2 Diseño del sistema

Para nuestros experimentos modelamos en FLEXUS el sistema que aparece en la tabla 4.1.
Aunque FLEXUS modela la arquitectura UltraSPARC III, los parámetros del simulador se han
ajustado para hacer el procesador lo más parecido posible al Cortex A9 de ARM [2].

13

CAPÍTULO 4. METODOLOGÍA

La tabla 4.1 recoge los parámetros que no cambian entre los distintos diseños propuestos.
Como ya hemos explicado en el capítulo 3, exploramos dos diseños cuya diferencia principal es la
organización del último nivel de cache de la jerarquía (L2). Para el modelo Compartido (Shared)
asumimos un sistema de 16 nodos donde cada procesador tiene una porción de la cache L2 (ar-
quitectura tiled). Para nuestro diseño Cluster agrupamos los 16 procesadores en cuatro grupos o
clusters de cuatro cores. Cada cluster comparte el último nivel de cache, y este nivel de cache es
privado entre clusters. Exploramos tamaños de cache desde 128KB hasta 1MB por core, lo que
supone un tamaño total entre 4MB y 16MB en chip. Esto corresponde, desde nuestro punto de
vista, con un tamaño aceptable para la tecnología y el tipo de procesador estudiado (ver capítulo
3 para más detalles, incluyendo suposiciones sobre el área y el tamaño de la cache).

Nuestro protocolo de coherencia en chip es un protocolo MESI de cuatro estados basado
en Piraña [5]. Simulamos un controlador de memoria por cada cuatro cores, cada controlador
colocado en un tile, asumiendo comunicación con la memoria fuera de chip a través de tecnología
flip-chip. Los tiles se comunican entre ellos a través de la red de interconexión en chip.

Parametros del CMP
Tamaño CMP 16-core // 4x4-core clusters
Procesadores UltraSPARC III ISA; 2GHz, OoO cores

8-stage pipeline, 2-wide dispatch/retirement
8-entradas ROB y LSQ, 4-entradas store buffer

Predictor de saltos 8K GShare + 16K bi-modal + 16K selector
2K entradas, 16-way, 2 saltos por ciclo

L1 Caches Split I/D, 4-way 32KB
2-ciclos load-to-use, 2 puertos, LRU
64-byte bloques, 32 MSHRs, 8-entradas victim
cache

L2 Cache Tamaño variable dependiendo del diseño
16-way, NUCA
64-byte bloques, 32 MSHRs, 16-entradas victim
cache

Memoria principal 3GB, 8KB tamaño de página, 75 cycles access
time

Controladores memoria Uno cada 4 cores, interleaving de páginas round
robin

Interconexión en chip Mesh (4x4 para Baseline, 2x2 para Cluster)
8-byte links, 3-cycles link latencia

Tabla 4.1: Parámetros del sistema.

4.3 Workloads (cargas de trabajo)

Simulamos sistemas bajo el sistema operativo Solaris 8 y ejecutamos cargas de trabajo comerciales
formadas por un amplio rango de aplicaciones de servidores de distintos vendedores, incluyendo
procesamiento de transacciones en línea, sistemas de soporte de decisiones y servidores web [4].
Los detalles técnicos de las aplicaciones se recogen en la tabla 4.2.

14

4.3. WORKLOADS (CARGAS DE TRABAJO)

A continuación listamos las tres categorías de cargas de trabajo que hemos usado en este
proyecto:

• Servidores Web: SPECWeb99 [29] sobre Apache y Zeus en este estudio. Estos bench-
marks se pueden caracterizar por altos niveles de paralelismo a nivel de thread (thread level
parallelism o TLP), alto número de fallos obligatorios en cache que detienen la máquina
debido al tráfico con memoria, y un gran porcentaje de tiempo de kernel debido a manejo
de interrupciones, trasmisión de paquetes y procesamiento de red. [20]

• Procesamiento de transacciones en línea: (online transaction processing o OLTP) las
aplicaciones OLTP poseen uno de los segmentos más grandes en el mercado de servidores.
Se usan en las operaciones comerciales del día a día (por ejemplo, reservas de vuelos) y
se caracterizan por un gran número de clientes que acceden continuamente a una base de
datos y realizan pequeñas modificaciones a través de transacciones. Los benchmarks de
esta categoría que hemos incluido son TPC-C [31] sobre Oracle y DB2. Ambos utilizan un
sistema gestor de bases de datos para realizar un gran número de pequeñas transacciones.

• Sistema de soporte de decisiones: (decision suport systems o DSS) los sistemas DSS
se usan principalmente con propósitos de análisis comercial, en donde la información pro-
cedente del lado OLTP de un negocio se carga periódicamente en una base de datos DSS y
se analiza. Al contrario que OLTP, DSS se caracteriza por consultas (queries) largas, prin-
cipalmente sólo lectura, que pueden explorar una gran fracción de la base de datos. En este
proyecto utilizamos benchmarks DSS que se basan en el benchmark TPC-H [32]. Consisten
en queries y modificaciones de datos concurrentes en grandes bases de datos con el objetivo
de dar respuesta a cuestiones de negocios, examinar grandes volúmenes de datos y ejecutar
consultas mucho más complejas que la mayoría de las transacciones OLTP. Seleccionamos
para nuestro estudio queries scan-dominated (query 1), join-dominated (query 2) y queries
con compartamiento mixto o mixed-behavior (query 17).

Web Server (SPECWeb99)
Apache Apache HTTP Server v2.0. 16K conexiones,

fastCGI, worker threading model
Zeus 16K conexiones, fastCGI

OLTP - Online Transaction Processing (TPC-C v3.0)
DB2 IBM DB2 v8 ESE. 100 warehouses (10 GB), 64

clientes, 2 GB buffer pool
Oracle Oracle 10g Enterprise Database Server. 100 wa-

rehouses (10 GB), 16 clientes, 1.4 GB SGA
DSS - Decision Support Systems (TPC-H)

Queries 1, 2, 17 IBM DB2 v8 ESE, 480 MB buffer pool, 1 GB
base de datos

Tabla 4.2: Parámetros de las aplicaciones.

15

16

Capítulo 5
Resultados

Este capítulo presenta un resumen de los resultados obtenidos en este proyecto. El apéndice C recoge
todos los resultados de manera detallada, incluyendo más detalles sobre los benchmarks que hemos
utilizado, así como sobre las métricas empleadas.

5.1 Visión general de resultados

Hemos simulado las cargas de trabajo que aparecen en la tabla 4.2 y presentamos como nuestra
métrica de rendimiento el número total de instrucciones ejecutadas (commited) por ciclo (user
instructions per cycle o UIPC), es decir, el número total de instrucciones ejecutadas por to-
dos los procesadores dividido por el total de ciclos ejecutados. Esta métrica es proporcional al
rendimiento global del sistema [33]. Exploramos los dos diseños presentados en el capítulo 3 y
variamos el tamaño de la cache desde 128KB hasta 1MB por procesador (lo que supone un total
de cache en chip desde 4MB hasta 16MB).

Figura 5.1: Mejor resultado (UIPC por core) para benchmarks comerciales.

La figura 5.1 muestra los mejores resultados para cada benchmark para los diseños Compar-
tido (Shared) y Cluster, así como la media armónica. El tamaño del último nivel de la jerarquía
de cache que proporciona el mejor rendimiento se puede ver en la tabla 5.1. En todos los casos,
excepto para SPECWeb99 sobre Zeus y DSS TPC-H Query 17, el diseño Cluster funciona me-

17

CAPÍTULO 5. RESULTADOS

Workload Tamaño de cache (mejor)
Diseño Compartido (Shared) Diseño Cluster

SPECWeb99 APACHE 16 MB 4 MB
SPECWeb99 ZEUS 16 MB 4 MB
OLTP TPC-C DB2 16 MB 4 MB
OLTP TPC-C ORACLE 16 MB 4 MB
DSS TPC-H QUERY 1 8 MB 512 KB
DSS TPC-H QUERY 2 8 MB 4 MB
DSS TPC-H QUERY 17 4 MB 2 MB

Tabla 5.1: Tamaño de la cache con el que se obtiene el mejor rendimiento para diferentes benchmarks/diseños.
El tamaño de la cache corresponde al tamaño de cache visible para cada procesador (es decir, en el diseño Cluster
una cache de 4MB corresponde a una cache de 16MB en chip).

jor. También tiene un mejor rendimiento en media. Los resultados en general siguen la misma
tendencia para todos los benchmarks y tamaños de cache.

5.2 Resultados representativos

En esta sección exploramos algunos resultados representativos para cada tipo de benchmark, en
concreto: OLTP TPC-C Oracle, Web server Zeus y DSS TPC-H Query 17. OLTP-C TPC-C Ora-
cle es un benchmark representativo para el conjunto considerado, además de corroborar nuestra
hipótesis inicial. Web server Zeus y DSS TPC-H Query 17 son los únicos benchmarks para los
que el diseño Cluster no obtiene mejores resultados que el diseño Compartido. Las razones por
lo que esto ocurre se presentan también en esta sección.

5.2.1 OLTP TPC-C: Oracle

Nuestros benchmarks OLTP includen TPC-C sobre DB2 y Oracle. En esta sección nos centra-
mos en OLTP TPC-C sobre Oracle como un claro ejemplo de benchmark que corrobora nuestra
hipótesis.

Ailamaki et al. [17] ya observaron en su estudio sobre aplicaciones de bases de datos los
requerimientos de este tipo de aplicaciones. Siempre que el working set primario de la carga de
trabajo no supere la capacidad del último nivel de cache (LLC), el rendimiento incrementa. A
partir del punto en el que este working set cabe en la cache, caches más grandes pueden empeorar
el rendimiento. Podemos ver esta tendencia claramente en la figura 5.2.

Es importante entender la diferencia entre nuestros diseños Baseline (Compartido) y Cluster.
Aunque ambos diseños cuentan con la misma cantidad de cache en chip, la cantidad de cache que
cada procesador ve es diferente. Es decir, si consideramos 1MB por core de LLC, en el caso del
diseño Compartido, cada core puede acceder al total de la cache, 16MB; en el caso de Cluster, las
caches son privadas para cada cluster, por lo que el tamaño de LLC visible para cada core es 4MB.

Oracle obtiene mejor rendimiento con un diseño Compartido con caches pequeñas. Una vez
que los requerimientos de cache se satisfacen (a la vista de la figura 5.2b, 512KB por core), el
diseño Cluster supera al diseño Compartido. De hecho, podemos ver como Oracle presenta una

18

5.2. RESULTADOS REPRESENTATIVOS

(a) LLC MPKI para OLTP Oracle. (b) UIPC para OLTP Oracle.

Figura 5.2: LLC MPKI y UIPC para OLTP Oracle.

diferencia de 0,1 UIPC (por core) cuando consideramos 1MB de cache por procesador.

La figura 5.2a muestra los fallos por 1000 instrucciones (MPKI) de LLC para Oracle. Esta
gráfica sigue la misma tendencia: vemos como el número de fallos por 1000 instrucciones baja
de manera considerable cuando pasamos de 128KB a 256KB por core (Cluster) pero apenas hay
variación cuando aumentamos el tamaño de 512KB a 1MB por core (tanto Shared como Cluster).

Ilustrando todo lo que hemos comentado, la figura 5.3 muestra el desglose del tiempo de
ejecución (de usuario) para Oracle (diseño Cluster). Podemos ver que una cache de 512KB no es
capaz de capturar el working set primario del benchmark y por eso una gran parte del tiempo
de ejecución se debe a comunicación con la memoria fuera del chip (off-chip). Con 1MB de cache
por core vemos que ese tiempo se reduce desde el 50% (128KB por core) a menos del 10% del
tiempo total de ejecución de usuario. Este decremento se traduce en un aumento de dos veces el
rendimiento (figura 5.2b).

Figura 5.3: Desglose del tiempo de ejecución (usuario) para OLTP Oracle (Cluster).

19

CAPÍTULO 5. RESULTADOS

5.2.2 Web server: Zeus

Nuestra categoría de benchmarks de servidores web incluye SPECWeb99 sobre Apache y Zeus.
Ambas presentan una tendencia similar en lo que se refiere a rendimiento (UIPC aumenta con-
forme la capacidad de la LLC aumenta), pero Apache prefiere un diseño Cluster para todas las
configuraciones consideradas, mientras que Zeus se beneficia de un diseño Compartido. La figura
5.4b muestra el rendimiento (UIPC) para Zeus. Podemos observar que la diferencia entre los
diseños es muy pequeña.

El número de fallos por mil instrucciones (MPKI) en la figura 5.4a muestra un decremento
en los MPKI de la LLC con caches más grandes. Si observamos los dos gráficos juntos (figura
5.4) podemos concluir que la reducción en la tasa de fallos compensa la latencia de acceso más
alta de una cache más grande. Estos resultados indican que los benchmarks web se benefician de
caches de último nivel con más capacidad. De todas formas, Zeus parece que saca provecho de la
compartición de datos, y el tamaño de la cache es un parámetro más crítico que la latencia, que
es por lo que el diseño Compartido funciona mejor. Para ambos benchmarks, el mejor resultado
se obtiene con la cache más grande considerada (1MB por core).

(a) LLC MPKI para Web Zeus. (b) UIPC para Web Zeus.

Figura 5.4: LLC MPKI y UIPC para Web Zeus.

5.2.3 DSS TPC-H: Query 17

Nuestros benchmarks DSS son TPC-H queries 1, 2 y 17 sobre DB2. Estos benchmarks se corres-
ponden con tres categorías: scan-based (query 1), join-dominated (query 2) y comportamiento
mixto o mixed-behavior (query 17). En esta sección presentamos los resultados para la query 17
(se muestran en la figura 5.5: la figura 5.5b muestra el rendimiento y la figura 5.5a muestra el
número de fallos por 1000 instrucciones para la LLC).

Para esta query una cache compartida es mejor en todos los casos excepto para tamaño 512KB
por core. Si observamos el gráfico de rendimiento (UIPC), figura 5.5b, podemos ver cómo nuestro
diseño Compartido presenta un incremento en el rendimiento cuando pasamos de una cache de
128KB a una cache de 256KB (por core), pero el rendimiento empeora si continuamos añadiendo
capacidad a la cache. Para este diseño, 128KB por core de memoria cache proporcionan mejores

20

5.2. RESULTADOS REPRESENTATIVOS

(a) LLC MPKI para DSS Query 17. (b) UIPC para DSS Query 17.

Figura 5.5: LLC MPKI y UIPC para DSS Query 17.

resultados que 1MB de cache por core. El diseño Cluster muestra la misma tendencia que el
diseño Compartido, pero esta vez el decremento se presenta cuando pasamos de 512KB a 1MB
(por core).

Ambos gráficos para UIPC y LLC MPKI sugieren que esta query tiene una localidad baja y,
por tanto, caches grandes degradan el rendimiento (latencia de acceso más alta). El hecho de que
el diseño Compartido proporcione mejores resultados también sugiere que esta query se beneficia
de la compartición de datos entre los procesadores.

El desglose del tiempo de ejecución de usuario en la figura 5.6 (Shared) muestra que el tiempo
correspondiente a comunicación fuera de chip está alrededor del 30%.

Figura 5.6: Desglose del tiempo de ejecución (usuario) para DSS Query 17 (Baseline).

Para las queries 1 y 2, el diseño Cluster consigue mejores resultados (figura 5.1). En estos
casos, incrementar el tamaño de la cache no se traduce en un incremento del rendimiento. En el
caso de la query 1, el primer nivel de cache es capaz de capturar prácticamente todos los accesos,
por lo que el rendimiento no varía. La query 2 no se beneficia de caches grandes, e incluso el

21

CAPÍTULO 5. RESULTADOS

rendimiento se degrada (ver apéndice C para más detalles).

5.3 Resumen

Hemos visto como diferentes tipos de aplicaciones presentan diferentes características en lo que
se refiere a compartición, tamaño y organización del último nivel de memoria cache. En general,
una organización privada (Cluster) es preferible para la mayoría de los benchmarks que hemos
estudiado y en media.

En el caso de servidores web, éstos presentan un incremento en el rendimiento con caches de
último nivel más grandes.

Los benchmarks OLTP tienen unos requerimientos mínimos de LLC. Una vez que esos re-
querimientos se han satisfecho, el diseño que permita un acceso más rápido (en nuestro caso, el
diseño Cluster) tiene un rendimiento mejor.

Los benchmarks DSS tienen distinto comportamiento según la categoría a la que pertene-
cen: el rendimiento de la query scan-dominated (query 1) no cambia al variar el tamaño de la
cache, ya que el primer nivel de la jerarquía captura prácticamente todos los accesos; la query
join-dominated (query 2) se beneficia de un diseño privado (Cluster); finalmente, la query con
comportamiento mixto (query 17) tiene una localidad muy baja, lo que se traduce en un rendi-
miento mayor con caches más pequeñas (al proporcionar éstas menor tiempo de acceso).

22

Capítulo 6
Conclusiones y trabajo futuro

La jerarquía de memoria es uno de los factores clave en el rendimiento de multiprocesadores,
además de ser uno de los componentes que más energía consumen. Por lo tanto, la organización
de la jerarquía de memoria y, especialmente, la jerarquía de memoria cache en chip juegan un
papel fundamental en el rendimiento de chips multiprocesadores.

En este proyecto hemos analizado dos organizaciones para el último nivel de cache (en nuestro
caso L2) del chip de ARM para el proyecto EuroCloud: un diseño Compartido, donde pretende-
mos sacar el máximo partido de la capacidad efectiva de la cache, y un diseño Cluster, en donde
damos prioridad a colocar los datos cerca del procesador que los solicita y conseguir una latencia
de acceso baja.

Hemos modelado los dos diseños propuestos en nuestro entorno de simulación FLEXUS [33].
Hemos simulado cargas de trabajo comerciales representativas de tres categorías distintas: servi-
dores web, procesamiento de transacciones en línea (OLTP) y sistemas de soporte de decisiones
(DSS). De los resultados obtenidos podemos concluir que nuestro diseño Cluster proporciona
mejor rendimiento en media; nuestro diseño Compartido tiene un rendimiento mayor si el ben-
chmark presenta baja localidad y/o el tamaño de la cache es pequeño.

En concreto distintos tipos de aplicaciones generan diferentes conclusiones.

• Aplicaciones Web presentan mejor rendimiento con caches de más capacidad.

• Aplicaciones OLTP tienen requerimientos mínimos en lo que se refiere al tamaño del último
nivel de memoria cache de la jerarquía. Por encima de ese tamaño, organizaciones privadas
y sus latencias más bajas proporcionan mejores resultados.

• Aplicaciones DSS tienen diferentes características dependiendo de la categoría. En gene-
ral, el diseño Cluster funciona mejor que el diseño Compartido y los requerimientos de
capacidad del último nivel de cache son pequeños.

Corroboramos las conclusiones en [15] sobre requerimientos mínimos en workloads de bases
de datos, ya que nuestros resultados demuestran que este tipo de cargas de trabajo necesitan un
mínimo de cache para obtener un rendimiento adecuado. A partir de un determinado tamaño,
continuar incrementando la capacidad de la cache nos lleva a resultados similares o incluso peores
debido a que el tiempo de acceso a la cache es mayor, mientras que la tasa de aciertos no aumenta
lo suficiente para compensar.

23

CAPÍTULO 6. CONCLUSIONES Y TRABAJO FUTURO

Caches privadas ofrecen otras ventajas sobre diseños compartidos que deben ser considerados.
Además de proporcionar latencias más bajas, el diseño en sí es más escalable. Las caches privadas
son más independientes (en el sentido de self-contained) y es más fácil implementar mecanismos
de prioridad o de calidad de servicio [37, 19].

Aunque inicialmente propusimos dos alternativas para caches privadas en Cluster (coheren-
tes y no coherentes), sólo hemos explorado el modelo no coherente. Creemos que los mecanismos
hardware para gestionar la coherencia en LLC (L2) en servidores de arquitectura tiled que ejecu-
tan aplicaciones comerciales son innecesarios y deberían evitarse. Además de complicar el diseño
hardware, mover bloques en chip debido a mecanismos de coherencia penaliza el tiempo medio
de acceso a la cache y suponen un aumento en el consumo de energía.

De todas formas, las caches privadas presentan una desventaja fundamental frente a las ca-
ches compartidas, que es el gran numero de peticiones fuera de chip. Como parte del proyecto
EuroCloud se pretende estudiar el impacto de la integración de DRAM en 3D dentro del chip.
Esta integración 3D permitirá latencias más bajas en el acceso a memoria (ya que se colocan
varios cientos de MBs de DRAM cerca de los procesadores). Creemos que una cantidad mínima
de memoria cache LLC se debe mantener en chip, ya que la latencia de la DRAM en 3D es
muy alta para un segundo nivel de memoria cache. Dejamos para trabajo futuro un estudio más
detallado en el tema.

También creemos que estudios futuros deberían incluir datos sobre el consumo de energía
para el chip considerado, ya que el ahorro de energía es una de las principales motivaciones para
el proyecto EuroCloud. Pensamos que caches privadas (diseño Cluster) presentarán un menor
consumo de energía que caches compartidas. Podríamos también, por ejemplo, estudiar la via-
bilidad de desconectar partes de la memoria como medida de ahorro de energía y el impacto
que esto supondría en el rendimiento. Los diseños híbridos parecen una buena forma de obtener
las ventajas de caches privadas y caches compartidas, pero deberíamos pensar en este tipo de
diseños desde una perspectiva de ahorro de energía y si efectivamente son una opción para este
tipo de chips multiprocesadores.

Finalmente, deberíamos considerar que, además del tipo de aplicaciones estudiadas, la compu-
tación en nube incluirá otro tipo de aplicaciones como streaming de vídeo y audio, reconocimiento
de canciones o data mining. Cada tipo de aplicación presenta características y comportamiento
únicos, así que benchmarks que incluyan este tipo de aplicaciones deberían implementarse e in-
cluirse en el estudio de servidores para computación en nube.

24

Bibliografía

[1] Alaa R. Alameldeen and David A. Wood. Variability in architectural simulations of multi-
threaded workloads. In HPCA ’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, page 7, Washington, DC, USA, 2003. IEEE Computer
Society.

[2] ARM. The ARM Cortex-A9 Processors, 2009. www.arm.com/files/pdf/
ARMCortexA-9Processors.pdf (last access October 2010).

[3] M. Azimi, N. Cherukuri, D.N. Jayasimha, A. Kumar, P. Kundu, S. Park, I. Schoinas, and
A. Vaidya. Integration Challenges and Tradeoffs for Tera-scale Architectures. Intel Tech-
nology Journal, 11(3):173–184, August 2007.

[4] Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system cha-
racterization of commercial workloads. SIGARCH Comput. Archit. News, 26(3):3–14, 1998.

[5] Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz
Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: a scalable
architecture based on single-chip multiprocessing. In ISCA ’00: Proceedings of the 27th
annual international symposium on Computer architecture, pages 282–293, New York, NY,
USA, 2000. ACM.

[6] Bradford M. Beckmann, Michael R. Marty, and David A. Wood. ASR: Adaptive Selective
Replication for CMP Caches. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 443–454, Washington, DC, USA, 2006.
IEEE Computer Society.

[7] K.G. Brill. The Invisible Crisis in the Data Center: The Economic Meltdown of Moore’s
Law. White Paper, 2007. Uptime Institute.

[8] David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-Based Cache
Coherence in Large-Scale Multiprocessors. Computer, 23(6):49–58, 1990.

[9] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiprocessors. In IS-
CA ’06: Proceedings of the 33rd annual international symposium on Computer Architecture,
pages 264–276, Washington, DC, USA, 2006. IEEE Computer Society.

[10] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing Replication, Com-
munication, and Capacity Allocation in CMPs. In ISCA ’05: Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 357–368, Washington, DC, USA,
2005. IEEE Computer Society.

[11] William Dally and Brian Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

25

BIBLIOGRAFÍA

[12] John D. Davis, James Laudon, and Kunle Olukotun. Maximizing CMP Throughput with
Mediocre Cores. In PACT ’05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, pages 51–62, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power Provisioning for a
Warehouse-sized Computer. In ISCA ’07: Proceedings of the 34th annual international
symposium on Computer architecture, pages 13–23, New York, NY, USA, 2007. ACM.

[14] Richard A. Hankins, Trung Diep, Murali Annavaram, Brian Hirano, Harald Eri, Hubert
Nueckel, and John P. Shen. Scaling and characterizing database workloads: Bridging the gap
between research and practice. InMICRO 36: Proceedings of the 36th annual IEEE/ACM In-
ternational Symposium on Microarchitecture, page 151, Washington, DC, USA, 2003. IEEE
Computer Society.

[15] Nikolaos Hardavellas. Chip Multiprocessors for Server Workloads. PhD thesis, School of
Computer Science, Carnegie Mellon University, July 2009.

[16] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Reactive
NUCA: near-optimal block placement and replication in distributed caches. In ISCA ’09:
Proceedings of the 36th annual international symposium on Computer architecture, pages
184–195, New York, NY, USA, 2009. ACM.

[17] Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastassia Ailamaki,
and Babak Falsafi. Database Servers on Chip Multiprocessors: Limitations and Opportu-
nities. In Proceedings of the Biennial Conference on Innovative Data Systems Research,
2007.

[18] Ron Ho, Kenneth W. Mai, Student Member, and Mark A. Horowitz. The future of wires.
In Proceedings of the IEEE, pages 490–504, 2001.

[19] Ravi Iyer. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In
ICS ’04: Proceedings of the 18th annual international conference on Supercomputing, pages
257–266, New York, NY, USA, 2004. ACM.

[20] Taeho Kgil, Shaun D’Souza, Ali Saidi, Nathan Binkert, Ronald Dreslinski, Trevor Mudge,
Steven Reinhardt, and Krisztian Flautner. PicoServer: using 3D stacking technology to
enable a compact energy efficient chip multiprocessor. SIGARCH Comput. Archit. News,
34(5):117–128, 2006.

[21] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages and operating
systems, pages 211–222, New York, NY, USA, 2002. ACM.

[22] Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way mul-
tithreaded sparc processor. IEEE Micro, 25(2):21–29, 2005.

[23] Gabriel H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In ISCA ’08:
Proceedings of the 35th Annual International Symposium on Computer Architecture, pages
453–464, Washington, DC, USA, 2008. IEEE Computer Society.

26

BIBLIOGRAFÍA

[24] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Ha-
llberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A
Full System Simulation Platform. Computer, 35:50–58, 2002.

[25] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 3–14, Washington, DC, USA, 2007. IEEE Computer Society.

[26] Emre Ozer, Krisztian Flautner, Sachin Idgunji, Ali Saidi, Yiannakis Sazeides, Bushra Ahsan,
Nikolas Ladas, Chrysostomos Nicopoulos, Isidoros Sideris, Babak Falsafi, Almutaz Adileh,
Michael Ferdman, Pejman Lotfi-Kamran, Mika Kuulusa, Pol Marchal, and Nikolas Minas.
EuroCloud: Energy-conscious 3D Server-on-Chip for Green Cloud Services. In 2nd Workshop
on Architectural Concerns in Large Datacenters in conjunction with ISCA-2010, June 2010.

[27] Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan Solihin.
Scaling the bandwidth wall: challenges in and avenues for CMP scaling. In ISCA ’09:
Proceedings of the 36th annual international symposium on Computer architecture, pages
371–382, New York, NY, USA, 2009. ACM.

[28] S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. A Dual-Core Multi-Threaded Xeon
Processor with 16MB L3 Cache. In IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pages 315 –324, feb. 2006.

[29] Standard Performance Evaluation Corporation (SPEC). Specweb99 benchmark, 2000. http:
//www.spec.org/web99/ (last access October 2010).

[30] Per Stenstrom. A Survey of Cache Coherence Schemes for Multiprocessors. Computer,
23(6):12–24, 1990.

[31] Transaction Processing Performance Council (TPC). TPC Benchmark C Standard Specifi-
cation, 2010. http://www.tpc.org/tpcc/ (last access October 2010).

[32] Transaction Processing Performance Council (TPC). TPC Benchmark H (Decision Support)
Standard Specification, 2010. http://www.tpc.org/tpch/ (last access October 2010).

[33] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ailamaki, Babak
Falsafi, and James C. Hoe. SimFlex: Statistical Sampling of Computer System Simulation.
IEEE Micro, 26(4):18–31, 2006.

[34] Steven J. E. Wilton and Norman P. Jouppi. CACTI: An Enhanced Cache Access and Cycle
Time Model. IEEE Journal of Solid-State Circuits, 31:677–688, 1996.

[35] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. SMARTS:
accelerating microarchitecture simulation via rigorous statistical sampling. SIGARCH Com-
put. Archit. News, 31(2):84–97, 2003.

[36] J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The Asynchronous 24MB on-chip Level-3
cache for a dual-core Itanium R©-Family Processor. In Solid-State Circuits Conference, 2005.
Digest of Technical Papers. ISSCC. 2005 IEEE International, pages 488 –612 Vol. 1, feb.
2005.

27

BIBLIOGRAFÍA

[37] Michael Zhang and Krste Asanovic. Victim Replication: Maximizing Capacity while Hiding
Wire Delay in Tiled Chip Multiprocessors. In ISCA ’05: Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 336–345, Washington, DC, USA,
2005. IEEE Computer Society.

28

