B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Proyecto Fin de Carrera

Ingenieria en Informatica

Coherent vs. non-coherent last level on-chip
caches: an evaluation of the latency and
capacity trade-offs

Alexandra Ferrer6on Labari

Director: Babak Falsafi
Ponente: Dario Suarez Gracia

Parallel Systems Architecture Lab.
Faculté Informatique et Communications
Ecole Polytechnique Fédérale de Lausanne (Switzerland)

Departamento de Informatica e Ingenieria de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

Curso 2010/2011
Noviembre 2010

A mis padres.

B

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Proyecto Fin de Carrera

Ingenieria en Informatica

Coherent vs. non-coherent last level on-chip
caches: an evaluation of the latency and
capacity trade-offs

Alexandra Ferrer6on Labari

Director: Babak Falsafi
Ponente: Dario Suarez Gracia

Parallel Systems Architecture Lab.
Faculté Informatique et Communications
Ecole Polytechnique Fédérale de Lausanne

Departamento de Informatica e Ingenieria de Sistemas
Centro Politécnico Superior
Universidad de Zaragoza

Curso 2010/2011
Noviembre 2010

Resumen ejecutivo

El desorbitado consumo energético de los centros de datos actuales y la creciente preocupacién por
el medio ambiente han llevado a que las tecnologias de la informacién deban plantearse cémo reducir
costes, a la vez que preservar el medio ambiente, en futuros centros de datos.

ARM, en un consorcio con Nokia, IMEC, EPFL (Escuela Politécnica Federal de Lausanne) y UCY
(Universidad de Chipre), lidera el proyecto EuroCloud, en donde se pretende desarrollar una nueva
generacion de servidores-on-chip con tecnologia 3D y de bajo consumo para servicios de computacién
en nube (cloud computing). EuroCloud propone un nuevo servidor-on-chip de muy bajo consumo,
utilizando procesadores ARM, aceleradores de hardware y memoria DRAM en chip integrada en 3D.

En este proyecto hemos estudiado uno de los componentes principales del chip del proyecto
EuroCloud, la jerarquia de memoria cache en chip, haciendo una comparacién entre diferentes op-
ciones para su organizacién. La configuracién de la jerarquia de memoria cache en chip afectara al
tiempo medio de acceso a memoria y, en consecuencia, influenciara el rendimiento global.

El chip que hemos estudiado estd compuesto por dos clusters. Cada cluster contiene dos proce-
sadores con sus respectivas caches de nivel uno privadas y una porcién del segundo nivel de memoria
cache (en este caso el segundo nivel de cache es el altimo nivel de la jerarquia). Este dltimo nivel de
cache se encuentra, por tanto, fisicamente distribuido entre los clusters y puede ser configurado de
forma distinta. En concreto, admite dos organizaciones: caches compartidas o caches privadas.

En este proyecto hemos analizado dos organizaciones: una organizacion Compartida, en la que los
dos clusters comparten el altimo nivel de la memoria cache, y que pretende conseguir aprovechar al
maximo la capacidad efectiva de la cache, y una organizacién en Cluster, en donde el altimo nivel
de cache es privado para cada cluster. En este Gltimo caso, damos prioridad a un acceso mas rapido
(menor latencia) a este nivel de la jerarquia. Dentro de una organizacién en Cluster, hemos estudiado
la posibilidad de introducir un mecanismo de coherencia para este nivel.

Tras una extensa labor de investigacion sobre el estado del arte del tema y sobre la organizacion
del chip y su arquitectura, hemos modelado los dos disefios antes mencionados en nuestra plataforma
de simulacién y simulado cargas de trabajo representativas. Hemos analizado en detalle los resultados
obtenidos para distintos tamafios de memoria cache y concluido que una organizacién en Cluster, en
general, funciona mejor. Un disefio Cluster se beneficia de una latencia de acceso mas baja a la vez
que proporciona en la mayoria de los casos la capacidad de cache necesaria para obtener un buen
rendimiento. En los casos en que capacidad es mas critica que acceso o en cargas de trabajo con poca
localidad, el disefio Compartido aventaja al disefio Cluster. En cuanto a los mecanismos de coherencia
para este nivel de la jerarquia, creemos que, para el tipo de servidor estudiado y el tipo de aplicaciones
consideradas, son innecesarios. Adicionalmente, hemos extendido el entorno de simulacién utilizado,
asi como profundizado en la metodologia de simulacién para conseguir unos resultados mas ajustados.

ii

Indice general

1 Introducciéon 1
1.1 Contexto del proyecto 2

1.2 Objetivos e 2
1.3 Organizacion de la memoria 3
1.4 Agradecimientos 3

2 Trabajo relacionado 5
3 Alternativas para la organizacion de cache en multiprocesadores embebidos 7
3.1 Imtroduccidn e 7
3.2 Organizacion basica de servidores-on-chip y opciones para la jerarquia de memoria 8
3.2.1 Alternativas consideradas 9

3.2.2 Tamano ideal del dltimo nivel de memoria cache 10

3.2.3 Detalles de implementaciéno 11

4 Metodologia 13
4.1 Simulador e 13
4.2 Diseno del sistema 13
4.3 Workloads (cargas de trabajo) Lo L 14

5 Resultados 17
5.1 Visién general de resultados oL 17
5.2 Resultados representativos 18
5.2.1 OLTP TPC-C: Oracle 18

5.2.2 Webserver: Zeus e 20

523 DSSTPC-H: Query 17 20

5.3 Resumen 22

6 Conclusiones y trabajo futuro 23
Bibliografia 25
A Project management 29
A.1 Initial schedule and effort estimation 29
A.2 Project Development 32
A.21 Schedule 32

A22 Effort e 32

A.2.3 Problemsocurred 33

A.3 Personal evaluation 33

iii

INDICE GENERAL

B Statistical Sampling Simulation Methodology 35
B.1 Introduction 35
B.2 The SMARTS Methodology 35

B.2.1 Statistical Sampling 36
B.2.2 SMARTS Technique 36
B.3 SMARTS for our problem 38

C Complementary (additional) results 41
C.1 Performance metrics 41
C.2 Benchmarks 42

C.2.1 Web server: SPECWeb99 benchmark 42

C.2.2 Online transaction processing: TPC-C benchmark 42

C.2.3 Decision support systems: TPC-H DSS benchmark 43

C.3 Results. e 44
C.3.1 Web server benchmarks 45

C.3.2 OLTP benchmarks 46

C.3.3 DSS benchmarks 47

C.34 Summary e 50

D English Report 51

iv

Indice de tablas

4.1
4.2

5.1

Al
A2

B.1
B.2
B.3
B4

C.1

Parametros del sistema. Lo 14
Parametros de las aplicaciones. Lo 15
Tamano de la cache con el que se obtiene el mejor rendimiento para diferentes

benchmarks/disenos. 18
Description of the main tasks and estimated effort. 30
Comparison of the real and estimated effort. 33
Sampling variables. 36
Workloads, sample sizes and cycles between sample units for each workload. . . . 38
Workloads, coefficient of variation and error (%). 38
Workloads, minimum sample size and systematic-sampling interval. 39
Best cache sizes for the different workloads/designs. 44

vi

Indice de figuras

3.1 Diseno (aproximado) del chipde ARM., 9
3.2 Alternativas de disefio consideradas.

3.3 Disenos propuesto e implementado para Cluster. 11
5.1 Mejor resultado (UIPC por core) para benchmarks comerciales. 17
5.2 LLC MPKI y UIPC para OLTP Oracle. 19
5.3 Desglose del tiempo de ejecucion (usuario) para OLTP Oracle (Cluster). 19
5.4 LLC MPKI y UIPC para Web Zeus. 20
5.5 LLC MPKI y UIPC para DSS Query 17. 21
5.6 Desglose del tiempo de ejecucion (usuario) para DSS Query 17 (Baseline). 21
A.1 Inmitial schedule. 29
A.2 Detailed schedule for the different tasks. 31
A.3 Schedule for September and October. 32
B.1 Warming approaches for simulation sampling. 37
B.2 Simulating with flex points. 37
B.3 Example of error reduction by increasing the sample size 39
C.1 Best UIPC per core for server workloads. 44
C.2 UIPC for Web Apache and Zeus. 45
C.3 LLC MPKI for Web Apache and Zeus. 45
C.4 UIPC for OLTP DB2 and Oracle. 46
C.5 LLC MPKI for OLTP DB2 and Oracle. 47
C.6 Execution time breakdown (user) for OLTP Oracle (Cluster). 47
C.7 LLC MPKI and UIPC for DSS Query 1. 48
C.8 LLC MPKI and UIPC for DSS Query 2. 48
C.9 Execution time breakdown (user) for DSS Query 2 (Cluster). 49
C.10 LLC MPKI and UIPC for DSS Query 17. 49
C.11 Execution time breakdown (user) for DSS Query 17 (Baseline). 50

vil

viii

Capitulo 1

Introduccion

Las tecnologias de la informacién comienzan a considerar el coste energético y los problemas
medioambientales como una variable importante en el diseno de chips. Actualmente, el consumo
energético es uno de los factores principales en el coste total de los centros de datos [7], en donde
microprocesadores y sistema de memoria son los componentes mas costosos y que mas energia
consumen en un servidor [13|. En las altimas décadas, los disefiadores de microprocesadores han
confiado en escalar el voltaje (voltage scaling) mediante la reduccion del voltaje suministrado
para asi rebajar el consumo. Sin embargo, esta técnica implica un incremento de la corriente de
fuga, limitando hasta dénde podemos reducir el voltaje sin incurrir en un aumento del consumo.
Parece que integrar un gran niimero de procesadores de bajo consumo en chip o utilizar una
nueva clase de arquitecturas de servidores basados en sistemas embebidos son formas de reducir
el problema del consumo de energia en los futuros centros de datos.

ARM, en un consorcio con Nokia, IMEC, EPFL (Escuela Politécnica Federal de Lausanne)
y UCY (Universidad de Chipre), lidera el proyecto EuroCloud, un proyecto cuyo objetivo es
desarrollar una nueva generaciéon de servidores on-chip con tecnologia 3D y de bajo consumo
para servicios de computacion en nube (cloud computing) [26]. La computacion en nube aparece
como un nuevo paradigma que propone computaciéon basada en Internet, en donde los recursos
compartidos, software e informacién se proporciona a los computadores y otros dispositivos bajo
demanda. El proyecto EuroCloud propone un servidor 3D en chip de muy bajo consumo utili-
zando procesadores ARM, aceleradores de hardware e integrando DRAM en 3D.

Las aplicaciones comerciales (por ejemplo bases de datos y servidores web) y aplicaciones
emergentes de computacion en nube (como por ejemplo streaming de musica o video, reconoci-
miento de canciones o data mining) presentan altos niveles de paralelismo a nivel de thread y
de memoria, y pueden sacar muy poco partido a los complejos procesadores fuera de orden, que
estan especializados en extraer el paralelismo a nivel de instrucciéon. Este tipo de aplicaciones
se pueden beneficiar mucho mas de procesadores més simples en donde la latencia individual a
nivel de thread es menos importante que el rendimiento global agregado.

En este proyecto estudiamos un componente clave del chip de ARM para el proyecto Euro-
Cloud, desde una perspectiva de rendimiento y de consumo. Nos centramos en la jerarquia de
memoria en chip, comparando diferentes configuraciones de memoria para el chip multiprocesa-
dor (CMP). Estudiamos si es preferible tener un ultimo nivel de cache privado o compartido, y
en el caso de privado, si las caches deberian ser coherentes o no coherentes.

CAPITULO 1. INTRODUCCION

1.1 Contexto del proyecto

Este proyecto ha sido desarrollado en el Laboratorio de Arquitectura de Sistemas Paralelos
(PARSALab) en la Escuela Politécnica Federal de Lausanne (Suiza) y en el Grupo de Arquitec-
tura de Computadores de la Universidad de Zaragoza.

El multiprocesador estudiado esté formado por dos clusters de dos cores cada uno. Para cada
procesador el primer nivel en la jerarquia de cache es privado. El dltimo nivel de la jerarquia de
cache (en nuestro caso el nivel dos 1) esta fisicamente distribuido entre los clusters y puede ser
configurado de diferentes formas. Dependiendo de esa configuracion, el tiempo medio de acceso
a memoria (que depende de tres parametros principales: latencia, ancho de banda y tasa de
aciertos) se vera influenciado de un modo u otro: una configuracion de cache privada implica una
menor latencia, mientras que caches compartidas incrementan la tasa de aciertos. Ademaés, en el
caso de una organizaciéon privada de caches, tendremos que determinar si se deberfa incluir una
gestion explicita de la coherencia.

En este proyecto analizamos las diferentes configuraciones de este tltimo nivel de memoria
cache buscando la mejor opcién, de acuerdo con la simulacién de cargas de trabajo representati-
vas. Como entorno de trabajo usamos FLEXUS [33]. FLEXUS es un simulador desarrollado por
el grupo de Arquitectura de Computadores de la Universidad Carnegie Mellon (CALCM) que
modela la arquitectura SPARC y puede ejecutar aplicaciones comerciales y sistemas operativos.

1.2 Objetivos

El objetivo de este proyecto es analizar cual es la mejor opcién para la jerarquia de memoria del
chip de ARM para el proyecto EuroCloud. Las tareas principales en las que se puede dividir el
proyecto son:

1. Estudio de la arquitectura ARM, la organizacion del chip y trabajos relacionados con el
tema (estado del arte).

2. Extension del entorno de simulacion para modelar el multiprocesador de ARM.
3. Modelo de las diferentes organizaciones de memoria cache en chip:

e Caches compartidas (distribucion estatica de bloques).
e Caches privadas coherentes.

e Caches privadas no coherentes.
4. Estudio de la metodologia de simulacién y simulacién de cargas de trabajo representativas.

5. Analisis de resultados.

Hemos alcanzado los objetivos principales haciendo una comparacion entre las configuracio-
nes propuestas mediante la simulacién de cargas de trabajo representativas. Debido a la falta de
soporte por parte del entorno de simulacién para modelar multiprocesadores heterogéneos, mo-
delamos un multiprocesador simétrico de 16 cores desde donde podemos extrapolar los resultados.

'En este proyecto cuando hablamos del tltimo nivel de cache (LLC) del chip multiprocesador estudiado, nos
referimos al nivel dos (L2)

2

1.3. ORGANIZACION DE LA MEMORIA

Ademas, hemos extendido el entorno de simulacién permitiendo la simulacién de multiproce-
sadores con dos cores.

1.3 Organizaciéon de la memoria

El resto de este documento se organiza de la siguiente manera: el capitulo 2 presenta el estado
del arte y trabajos relacionados; el capitulo 3 explora las alternativas propuestas; el capitulo 4
explica la metodologia que se ha seguido; el capitulo 5 contiene los resultados principales y el
capitulo 6 concluye y presenta el trabajo futuro.

Se incluyen como apéndices (en inglés):
A. Project management (Gestion del proyecto): incluye calendarios y control de esfuerzos.

B. Statistical sampling simulation methodology: la metodologia de simulacién basada en mues-
treo estadistico para reducir el tiempo de simulacién y cémo se aplica a nuestro proyecto.

C. Complementary (additional) results (Resultados complementarios): estudio detallado de los
resultados obtenidos.

D. English Report: la version en inglés del presente documento entregada en la EPFL (no incluye
apéndices).

1.4 Agradecimientos

Me gustaria agradecer a mi director de proyecto Babak Falsafi el darme la oportunidad de tomar
contacto con el mundo de la investigacion durante este tltimo ano. También a todos los chicos
del PARSALab, especialmente a Mutaz, Mike, Pejman y Mammad, que siempre estuvieron dis-
ponibles para resolver mis dudas sobre el entorno de simulacién y sobre este proyecto en general.
Gracias también a Mehdi, un buen inteconnects-guy con el que compartir despacho.

Gracias especialmente a Darfo, que siempre ha estado ahi para resolver mis problemas y
ayudarme a revisar y revisar este proyecto. Muchisimas gracias por tu ayuda.

A todos mis amigos, por todos los cafés, tanto aqui en Zaragoza como en Lausanne. A Mar-
kus, por todos los momentos en los que me has aguantado y ayudado.

Finalmente, quiero expresar mi sincera gratitud a toda mi familia, que siempre me ha apoya-
do en todas las decisiones que he tomado. Especialmente dedico este proyecto a mis padres. Sin
vuestro apoyo nada de esto hubiera sido posible. Si hoy estoy donde estoy, es gracias a vosotros.

Capitulo 2
Trabajo relacionado

El escalado CMOS ha propiciado que los fabricantes de procesadores elijan, por todas las ven-
tajas que ofrecen, chip multiprocesadores (CMP) como la arquitectura comtin para aprovechar
el gran nimero de transistores disponibles y alcanzar, a la vez, alto rendimiento. Sin embargo,
conforme el namero de procesadores integrados en chip aumenta, también aumenta la presion en
la memoria en chip, originada por la peticién de datos por parte de esos procesadores. Al mismo
tiempo, los CMPs requieren acceso rapido a los datos. El altimo nivel de la jerarquia de cache
en chip (LLC) constituye un nuevo cuello de botella en la jerarquia de memoria que, no sblo
necesita utilizar su capacidad limitada de una forma eficiente, sino que ademés tiene que miti-
gar las latencias que siguen incrementandose debido a los retrasos introducidos por los cables [18].

Hasta hace unos anos parecia que incrementar el tamano de este nivel de la jerarquia de cache
era una buena manera de aprovechar los transistores disponibles. Incrementando la capacidad de
la cache se pretendia conseguir mejor rendimiento. Algunos ejemplos de mega-caches en chip son
el Dual-Core Intel Xeon 7100 con 16MB [28] o el Dual-Core Intel Itanium 2 con 24MB [36]. Sin
embargo, aumentar el tamano de la cache viene de la mano de un incremento en la latencia de
acceso. Aumentar la latencia de la cache penaliza cada acceso y ademés incrementa el nimero
de paradas en la ejecucion causadas por aciertos en L2 (se incrementa el namero de ciclos que
debemos detener el pipeline hasta que el dato est& disponible) sin cambiar el niimero de accesos
a otras partes de la jerarquia de memoria.

Ailamiki et al. [17] demostraron que aplicaciones comerciales de bases de datos no consiguen
ninguna mejora en el rendimiento (e incluso el rendimiento empeora hasta un 30 %) cuando se
aumenta la capacidad del dltimo nivel de cache de 4MB a 26MB. Si las caches son capaces de
capturar el working set primario de este tipo de aplicaciones!, entonces el rendimiento incremen-
ta. Si continuamos incrementando el tamafnio de las caches, entonces el mayor tiempo de acceso
penaliza el caso comun (acierto) introduciendo paradas en la ejecucion, mientras que la capaci-
dad adicional de la cache no es capaz de rebajar la tasa de fallos suficiente como para compensarlo.

Si nos centramos en la organizacion de la LLC, encontramos dos opciones para CMPs: caches
compartidas o caches privadas. Una cache compartida tiene s6lo una copia de cada bloque y per-
mite a los procesadores compartir la capacidad de la cache. Sin embargo, las caches compartidas
son lentas, debido a los retrasos asociados con caches grandes e interconexiones. Caches privadas
son méas rapidas porque son mas pequenas y se pueden colocar mas cerca de cada procesador,
pero su capacidad es limitada. Por tanto, caches compartidas o privadas proporcionan capacidad

!Estas aplicaciones tienen un working set primario (orden de MBs) que puede ser capturado en chip, y un
working set secundario mas grande (orden de GBs) que estéa fuera del alcance de las caches en chip actuales.

CAPITULO 2. TRABAJO RELACIONADO

0 acceso rapido, pero no ambos.

Recientemente, se ha hecho un gran esfuerzo en tratar de combinar las ventajas de disenos
basados en caches privadas y compartidas, proponiendo disenos hibridos. En general, los disenos
hibridos utilizan replicacion selectiva para balancear latencia y capacidad [37, 6, 10]. Chang et
al. presentan en [9] un marco unificado para manejar la capacidad agregada de los recursos de
cache en CMPs, mediante la formaciéon de una cache compartida a través de cooperaciéon entre
caches privadas. En la misma linea, Reactive-NUCA [16] propone clusterizar los procesadores
en grupos de comparticiéon para minimizar los fallos que suponen comunicacién con memoria
principal. R-NUCA realiza también una clasificaciéon de los bloques que se beneficiarian de ser
privados, compartidos o clusterizados, en lo que se refiere a referencias a la LLC. Basandose
en esta observacién, los autores proponen una diseno de cache que, cooperando con el sistema
operativo, reacciona a las distintas clases de accesos y coloca los bloques en el lugar adecuado.

Por otro lado, los complejos procesadores fuera de orden estan especializados en extraer el
paralelismo a nivel de instrucciéon. Sin embargo, las aplicaciones comerciales siguen un patréon
diferente. Para estos tipos de aplicaciones la latencia individual de un thread es menos impor-
tante que el rendimiento global agregado. Podemos incrementar el rendimiento agregado con
procesadores multithread, de manera que eventos que normalmente paran el procesador, como
fallos de cache, se ocultan, aumentando asi la utilizacion. Ademas, usando procesadores escalares
sencillos reducimos la complejidad del diseno, ademés del consumo de energia.

Un trabajo de la Universidad de Michigan y ARM propone una nueva arquitectura llamada
PicoServer [20]. Este trabajo afirma que integrando 3D DRAM en chip podemos prescindir de la
cache L2. El rendimiento se mantiene mediante el uso de buses muy anchos, una pequena memo-
ria DRAM en chip e incrementando el niimero de cores, mientras que ahorramos una considerable
cantidad de energia. Esta hipotesis la soporta la idea de que aplicaciones para servidores en el
futuro se ejecutaran en CMPs con un gran nimero de pequenos cores simples de ejecucion en
orden [12]|. De todas formas, incrementar el nimero de cores implica una alta demanda de datos
para alimentar esos cores, por lo que el rendimiento puede empeorar si no hay suficiente ancho
de banda. La situacién en la que el ancho de banda con la memoria fuera del chip se convierte en
un cuello de botella para el rendimiento se conoce como el bandwidth wall problem [27]. Ademas,
los buses son una fuente significante de pérdida de energia, especialmente los buses interchip,
que son normalmente muy largos y anchos.

El proyecto EuroCloud sigue la idea de incluir muchos procesadores de bajo consumo en chip
y usar DRAM integrada en 3D. La integracion de DRAM en 3D ha recibido gran atencién en
Arquitectura de Computadores en los tltimos anos, ya que la interconexién en vertical permite
tener sistemas con latencias méas bajas y anchos de banda mayores [23]. Estos aspectos son muy
atractivos para servidores y procesadores de alto rendimiento por sus altos requerimientos de
memoria y niveles de paralelismo a nivel de thread. La memoria tipo DRAM estandar (fuera de
chip) tiene un ancho de banda limitado debido a la limitacion en el nimero de pins, es lenta
porque para acceder a ella hay que recorrer todo el chip, y consume mucha energia debido a la
circuiteria y entrada/salida [26]. La integracion 3D de DRAM sobre la logica, en combinacion
con aceleradores de hardware, puede eliminar esas ineficiencias.

Nuestro trabajo se centra en un componente clave (la jerarquia de memoria en chip) de una
nueva clase de servidores-on-chip basados en sistemas embebidos. Desde nuestro conocimiento, es
la primera vez que se estudia el rendimiento de aplicaciones comerciales en sistemas embebidos.

Capitulo 3

Alternativas para la organizaciéon de
cache en multiprocesadores embebidos

Este capitulo presenta las diferentes alternativas para la jerarquia de memoria en chip analizadas en
este proyecto. Exponemos las principales caracteristicas de cada alternativa para concluir formulando
nuestra hipétesis.

3.1 Introduccion

El objetivo de la jerarquia de memoria cache es minimizar la latencia de los datos a los que se
accede de manera frecuente y asi maximizar el rendimiento. En la jerarquia de cache de un uni-
procesador convencional, conseguimos ese objetivo aprovechando la localidad espacial y temporal
de los datos; esto quiere decir que movemos los bloques de datos en la jerarquia de memoria ba-
sdndonos en la frecuencia de acceso. Los datos mas referenciados se colocan cerca del procesador
y por lo tanto se acceden mas rapidamente. El mismo principio se puede aplicar a jerarquias de
cache en multiprocesadores. La diferencia es que ahora tendremos que tener en cuenta también si
los procesadores comparten o no un determinado nivel de la jerarquia, o si un nivel se implementa
como un bloque fisico con latencia de acceso uniforme a la cache (uniform cache access o UCA),
o si por el contrario, se implementa como miultiples bancos fisicamente distribuidos, en donde la
latencia varia segiin qué procesador accede a los datos y los bancos de la cache se encuentran
distribuidos en el chip, implicando que la latencia de acceso a los datos es no uniforme (es decir,
non-uniform cache access o NUCA) [21].

Conforme el nimero de procesadores y bancos de cache aumenta, las caches fisicamente dis-
tribuidas son més atractivas desde una perspectiva de diseno, manufactura y escalabilidad [3].
Pero también colocar una porcién de la memoria cache cerca de un subconjunto de procesadores
puede reducir la latencia de acceso a esa porcion de la cache para esos procesadores, en lugar de
ofrecer una latencia alta, pero igual, en toda la cache (disenios UCA).

Las arquitecturas tiled surgen como una solucién para mitigar la creciente latencia de acceso
al ultimo nivel de cache [21]. En este tipo de arquitecturas, el chip se divide en un gran nimero
de tiles idénticos (o casi idénticos) que se interconectan mediante una red de interconexion esca-
lable y de bajo consumo. Cada tile contiene una porcion de la LLC (que puede tener multiples
bancos), por lo que la cache se encuentra fisicamente distribuida en el chip. De esta forma, los
procesadores pueden acceder muy rapido a las porciones de cache que se encuentran cerca de
ellos, aunque tienen que pagar la latencia de viajar a través de la red de interconexién si los

7

CAPITULO 3. ALTERNATIVAS PARA LA ORGANIZACION DE CACHE EN MULTIPROCESADORES
EMBEBIDOS

datos a los que quieren acceder se encuentran mas lejos (NUCA).

Si el ultimo nivel de cache (LLC) se distribuye en multiples tiles, caches privadas y caches
compartidas introducen distintos compromisos. En general, una cache compartida es preferible si
lo que queremos es reducir el namero colectivo de fallos de LLC, mientras que una organizacion
con caches privadas es mejor si lo que queremos reducir es la latencia de acceso y la complejidad
del diseno.

Caches compartidas incrementan la capacidad efectiva porque s6lo una copia de cada blo-
que se encuentra en la cache. Si asumimos una distribucion estética de los datos (basada en la
direccion de bloque), los bloques pueden colocarse arbitrariamente lejos del procesador que los
solicita, lo que penaliza el tiempo medio de acceso. Por otro lado, un disefio privado colocaré los
bloques cerca del procesador(es) que los soliciten, asi que garantizamos un acceso rapido a esos
datos. La desventaja es que puesto que bloques compartidos de sélo lectura estaréan replicados
en varios tiles, la capacidad efectiva de la cache disminuye y, en consecuencia, aumenta el trafico
fuera de chip.

El protocolo de coherencia puede jugar también un papel importante. Mientras que en un
disenio compartido la coherencia es implicita por construcciéon, cuando hablamos de un diseno
privado nos encontramos con dos posibilidades: caches coherentes o caches no coherentes. En
caso de que el dltimo nivel de cache sea coherente, el trafico dentro del chip crece (mensajes
para gestionar la coherencia), con los problemas de disipacion de energia que esto conlleva [3].
Ademas, los mecanismos de coherencia reducen el area disponible y penalizan la comparticion
de datos. En el caso de caches no coherentes, éste tipo de diseio demandara trafico extra fuera
del chip, con los problemas de ancho de banda con memoria principal derivados [27]. Si elegimos
un diseno privado coherente, los protocolos basados en directorio parecen la mejor opcién para
gestionar la comparticion de bloques en el chip [8, 30].

3.2 Organizacién basica de servidores-on-chip y opciones para la
jerarquia de memoria

En este proyecto evaluamos dos configuraciones diferentes para el tltimo nivel de memoria cache
para el chip del proyecto EuroCloud (figura 3.1). El multiprocesador que estudiamos esté forma-
do por dos clusters de dos procesadores cada uno, en donde para cada procesador el primer nivel
de cache es privado. El altimo nivel de cache (en este caso nivel 2) esté fisicamente distribuido
entre los clusters. La comunicacion entre clusters se realiza a través de una red de intercone-
xion. La Snoop Control Unit (SCU) es la encargada de la interconexion, arbitraje, comunicacion,
transferencias cache-to-cache y con el sistema de memoria y coherencia.

Nuestro objetivo es explorar las diferentes alternativas para la organizacion de la jerarquia
de memoria en chip, proponiendo dos organizaciones para la LLC:

1. LLC Compartida: los dos clusters comparten la LLC en chip. En este caso suponemos que
la distribucion de los bloques es estatica (basada en la direccion de bloque). Notar que este
diseno es coherente por construcciéon.

2. LLC Privada: la LLC es privada para cada cluster. En este caso podemos considerar un
diseno coherente o no coherente.

3.2. ORGANIZACION BASICA DE SERVIDORES-ON-CHIP Y OPCIONES PARA LA JERARQUIA DE
MEMORIA

Dual-Core Cluster Dual-Core Cluster

A9 | Ao Ag | Ao

[L2CC ” 1MB L2 | | L2cc || 512KB L2

Fy Fy I
Interconnect

Figura 3.1: Disefio (aproximado) del chip de ARM. Soélo se incluye el detalle de la jerarquia de memoria en chip.
L2CC son las iniciales de L2 cache controller.

3.2.1 Alternativas consideradas

Debido a las restricciones impuestas por el entorno de simulacién, decidimos extender nuestro
analisis a un multiprocesador de 16 cores, explorando dos disenos diferentes:

P P P P P P P P P P P P
|L25| |L2$| |L25| |L25| | | I | | | | |
-1 =1 1= T [interconnection Network | | Interconnection Network |
|E' |E | | | | | | | |
P |5 | P P L2|5 L2[$
||_2$| |L2$| L2§ |L2$| MC MC
L el —Lfie)
P 1T P L1 P P P P = P P P P P
E IR I I i i ——
[[[[[interconnection Network | | Interconnection Network |
| | | | | | | |
S I o R L2[$ L2[$
[es]| [[e=s]| [[res]] |fees] e T
(a) Disefio Compartido de LLC (Baseline o Sha- (b) Disefio Cluster de LLC (Cluster).

red).

Figura 3.2: Alternativas de diseno consideradas.

1. Disennio Compartido (Baseline o Shared): consiste en un sistema de 16 nodos, con NUCA
y una LLC (L2) compartida, interconectada por una red (mesh) 4 por 4 (figura 3.2a). En
total hay cuatro controladores de memoria. Este disenio pretende sacar el méaximo partido
a la capacidad efectiva de la cache.

2. Diseno en Cluster (Cluster): también se trata de un sistema de 16 nodos, pero los procesa-
dores se dividen en cuatro grupos (clusters) de cuatro procesadores cada uno; la cache L2
es una cache compartida por los procesadores dentro de cada grupo, pero es privada entre
los cuatro clusters (figura 3.2b). La LCC es multibanco y se accede a través de una red de
interconexion. Cada cluster tiene un controlador de memoria. Este diseno da prioridad a
conseguir una latencia de acceso mas baja.

CAPITULO 3. ALTERNATIVAS PARA LA ORGANIZACION DE CACHE EN MULTIPROCESADORES
EMBEBIDOS

Vemos que los resultados basados en estos disefios pueden ser claramente extrapolables al
CMP original (en todo caso los resultados obtenidos podrian degradar el rendimiento ya que
aumentamos el namero de procesadores y por tanto la presion en el chip).

3.2.2 Tamano ideal del tltimo nivel de memoria cache

Diferentes tipos de aplicaciones y diferentes tipos de paralelismo en esas aplicaciones presentan
diferentes retos a nivel arquitectural y de diseno para la jerarquia de memoria a la hora de alcan-
zar objetivos que tienen que ver con el rendimiento, la escalabilidad y el ahorro de energia. En
nuestro estudio nos centramos en cargas de trabajo comerciales, pues son el tipo de aplicaciones
que los servidores de hoy en dia ejecutan.

Hardavellas et al. en [16] hicieron un estudio sobre los requerimientos de aplicaciones co-
merciales en términos de capacidad y organizacion de LLC, proponiendo un nuevo esquema
de distribucion de bloques y organizacién de la cache. De ese estudio podemos extraer varias
conclusiones:

e Las referencias a L2 forman de manera natural tres grupos con diferentes caracteristicas:
(1) las instrucciones se comparten entre todos los procesadores y son solo lectura; (2) los
datos compartidos se comparten entre todos los procesadores y son lectura-escritura en la
mayoria de los casos; (3) los datos privados presentan distintos niveles de lectura-escritura.

o El working set de instrucciones para cargas de trabajo comerciales es aproximadamente del
tamano de una porcion de la cache L2 (en su estudio, 1MB por porcion).

e El primer nivel de memoria cache puede capturar el conjunto de datos (data working set).

e Los mecanismos de coherencia hardware para L2 en CMPs con arquitecturas tiled y ejecu-
tando aplicaciones comerciales son innecesarios y deberian evitarse.

Basédndonos en estas conclusiones podemos afirmar:

e Sila LLC es capaz de capturar el working set primario de la carga de trabajo [17], entonces
el disefio que garantice la menor latencia tendré mejores resultados.

Podemos formular entonces nuestra hipotesis afirmando que siempre que la capacidad de la
cache sea mayor que un determinado tamano (el tamano que permita almacenar en cache el
working set primario), esperamos que el disenio Cluster obtenga un rendimiento mejor.

Si el disenio Cluster no es capaz de capturar el working set primario de la carga de trabajo,
entonces la peticién de datos ird al siguiente nivel de la jerarquia, es decir, a la memoria fuera
de chip, lo que incrementara el tiempo medio de acceso. Por otro lado, caches grandes con una
distribucién estatica de los bloques pueden implicar accesos a porciones de cache arbitrariamente
lejos del procesador que solicita el dato y, en consecuencia, una latencia mayor debido a la red
de interconexioén.

Por dltimo, implementando mecanismos de coherencia en el tltimo nivel de la jerarquia de
cache, podriamos beneficiarnos de las transferencias cache-to-cache (pero pagando un alto precio
en términos de trafico en chip y hardware [9]). Las transferencias cache-to-cache se usan para
reducir las peticiones de datos fuera del chip para fallos locales en LLC, pero estas operaciones
requieren comunicacion entre el tile que solicita el dato, el tile en el que se encuentra el directorio

10

3.2. ORGANIZACION BASICA DE SERVIDORES-ON-CHIP Y OPCIONES PARA LA JERARQUIA DE
MEMORIA

(para la coherencia) y el tile que en ese momento es el duefio del dato. Esta operacion es mas
costosa que un acierto remoto en una cache compartida (esto es el caso de un acierto en LLC en
el que el dato se encuentra en otro tile), donde la transferencia cache-to-cache solo se realiza si
el bloque solicitado se encuentra en estado exclusivo. Ademas, el hardware que se requiere para
implementar los mecanismos de coherencia reduce el area disponible para el LLC y consecuente-
mente limita la capacidad de la cache.

Siguiendo nuestra hipotesis (con la que esperamos que el diseno Cluster obtenga mejores
resultados), la adicion de un mecanismo de coherencia puede degradar el rendimiento, ademas
de complicar el hardware e incrementar el consumo de energia. Por estas razones decidimos no
explorar un diseno privado coherente.

Para estimar el tamano de la cache L2 (LLC) para nuestros disenos, asumimos un chip de
180 mm? en tecnologia de 45 nm. Contamos que el 65 % del chip sera utilizado para colocar los
tiles. Asumimos un area de 3,1 mm? para cada Cortex A9, de forma que nos queda un tamafio
por porcién de L2 de 4,2125 mm?, lo que nos permite sin problemas colocar una porcién de hasta
1MB de LLC.

Respecto a la asociatividad de la cache, fijamos este valor a 16, puesto que es un valor ade-
cuado y ampliamente utilizado para este nivel de la jerarquia de cache |28, 22|.

Resumiendo, exploramos tamanos de cache desde 128 KB hasta 1MB por procesador, lo que
supone una capacidad total de cache desde 4MB hasta 16MB en chip. Esperamos que el diseno
Compartido presente un rendimiento mejor hasta un determinado tamano de cache, y que a par-
tir de ese tamano el disefio Cluster supere al disenio Compartido al aprovechar su menor tiempo
de acceso. Estamos de acuerdo con la idea de que los mecanismos de coherencia para este nivel
de jerarquia de cache y este tipo de cargas comerciales deberian evitarse, y no esperamos que
introducir un mecanismo de coherencia vaya a incrementar el rendimiento.

3.2.3 Detalles de implementacién

Finalmente comentar que en la préactica no implementamos el diseio Cluster tal y como se
propone en la figura 3.2b.

(a) Disefio propuesto para Clus-(b) Diseflo implementado
ter. para Cluster.

Figura 3.3: Disenos propuesto e implementado para Cluster.

En la figura 3.2b, los procesadores se comunican con la memoria cache L2 a través de una red
de interconexién. Para este tipo de conexiones, un crossbar parece ser la opciéon mas adecuada.

11

CAPITULO 3. ALTERNATIVAS PARA LA ORGANIZACION DE CACHE EN MULTIPROCESADORES
EMBEBIDOS

Sin embargo, en vez de simular el diseno propuesto decidimos simular una arquitectura tiled
interconectada mediante una red 2 por 2. La figura 3.3 muestra el diseno propuesto (3.3a) y el
disefio implementado (3.3b).

Notar que crossbars con pocos puertos tienen una latencia de acceso media mas baja [22, 11],

asi que podemos considerar el disefio que hemos implementado (red 2 por 2) como una cota
inferior de rendimiento.

12

Capitulo 4
Metodologia

Este capitulo presenta la metodologia que se ha seguido en este proyecto. Se presenta brevemente la
metodologia de simulacién y las cargas de trabajo (benchmarks) que hemos usado. Mas informacién
en los apéndices B (sobre metodologia de simulacién) y C (resultados detallados).

4.1 Simulador

Utilizamos el entorno de simulacion FLEXUS [33] para conseguir simular de forma precisa
chips multiprocesadores y multiprocesadores simétricos ejecutando cargas de trabajo comercia-
les. FLEXUS es un simulador capaz de simular c6digo tanto a nivel de usuario como de sistema
operativo. Utilizamos la metodologia de SimFlex statistical sampling (muestreo estadistico) [33].
FLEXUS extiende el simulador funcional Virtutech Simics [24] con modelos de arquitecturas ti-
led con procesadores, caches NUCA, controladores de protocolos de coherencia e interconexiones
en chip.

Lanzamos simulaciones desde checkpoints con caches y predictores de salto inicializados, eje-
cutamos durante 100.000 ciclos para inicializar la ventana de lanzamiento y la red de intercone-
xion antes de recoger resultados de la ejecucion del programa durante 50.000 ciclos. Utilizamos
como métrica el niamero de instrucciones de usuario por ciclo (user instructions per cycle o
UIPC), es decir, el nimero de instrucciones ejecutadas (comitted) por todos los procesadores di-
vidido por el total de ciclos ejecutados, que es proporcional al rendimiento global del sistema [33].

Para estimar las latencias de las caches usamos Cacti 6.5 |34, 25]. Cacti es un modelo de
caches que integra tiempo de acceso, tiempo de ciclo, area y consumo de energia. De esta forma
todas las variables se basan en los mismos supuestos y son, por tanto, consistentes. Ademas las
latencias que proporciona Cacti son normalmente mas bajas que las del hardware comercial, por
lo que nuestras suposiciones son conservativas.

4.2 Diseno del sistema
Para nuestros experimentos modelamos en FLEXUS el sistema que aparece en la tabla 4.1.

Aunque FLEXUS modela la arquitectura UltraSPARC III, los pardmetros del simulador se han
ajustado para hacer el procesador lo mas parecido posible al Cortex A9 de ARM |[2].

13

CAPITULO 4. METODOLOGIA

La tabla 4.1 recoge los parametros que no cambian entre los distintos disenos propuestos.
Como ya hemos explicado en el capitulo 3, exploramos dos disefios cuya diferencia principal es la
organizacion del ultimo nivel de cache de la jerarquia (L2). Para el modelo Compartido (Shared)
asumimos un sistema de 16 nodos donde cada procesador tiene una porcion de la cache L2 (ar-
quitectura tiled). Para nuestro disefio Cluster agrupamos los 16 procesadores en cuatro grupos o
clusters de cuatro cores. Cada cluster comparte el ultimo nivel de cache, y este nivel de cache es
privado entre clusters. Exploramos tamanos de cache desde 128KB hasta 1MB por core, lo que
supone un tamaiio total entre 4MB y 16MB en chip. Esto corresponde, desde nuestro punto de
vista, con un tamano aceptable para la tecnologia y el tipo de procesador estudiado (ver capitulo
3 para més detalles, incluyendo suposiciones sobre el area y el tamano de la cache).

Nuestro protocolo de coherencia en chip es un protocolo MESI de cuatro estados basado
en Pirana [5]. Simulamos un controlador de memoria por cada cuatro cores, cada controlador
colocado en un tile, asumiendo comunicacién con la memoria fuera de chip a través de tecnologia
flip-chip. Los tiles se comunican entre ellos a través de la red de interconexién en chip.

Parametros del CMP
Tamano CMP 16-core // 4x4-core clusters
Procesadores UltraSPARC III ISA; 2GHz, OoO cores
8-stage pipeline, 2-wide dispatch /retirement
8-entradas ROB y LSQ, 4-entradas store buffer

Predictor de saltos 8K GShare + 16K bi-modal + 16K selector
2K entradas, 16-way, 2 saltos por ciclo
L1 Caches Split 1/D, 4-way 32KB

2-ciclos load-to-use, 2 puertos, LRU
64-byte bloques, 32 MSHRs, 8-entradas victim

cache

L2 Cache Tamano variable dependiendo del diseno
16-way, NUCA
64-byte bloques, 32 MSHRs, 16-entradas victim
cache

Memoria principal 3GB, 8KB tamano de pagina, 75 cycles access
time

Controladores memoria | Uno cada 4 cores, interleaving de péginas round
robin

Interconexiéon en chip Mesh (4x4 para Baseline, 2x2 para Cluster)

8-byte links, 3-cycles link latencia

Tabla 4.1: Parametros del sistema.

4.3 Workloads (cargas de trabajo)

Simulamos sistemas bajo el sistema operativo Solaris 8 y ejecutamos cargas de trabajo comerciales
formadas por un amplio rango de aplicaciones de servidores de distintos vendedores, incluyendo
procesamiento de transacciones en linea, sistemas de soporte de decisiones y servidores web [4].
Los detalles técnicos de las aplicaciones se recogen en la tabla 4.2.

14

4.3. WORKLOADS (CARGAS DE TRABAJO)

A continuacion listamos las tres categorias de cargas de trabajo que hemos usado en este
proyecto:

e Servidores Web: SPECWeb99 [29] sobre Apache y Zeus en este estudio. Estos bench-
marks se pueden caracterizar por altos niveles de paralelismo a nivel de thread (thread level
parallelism o TLP), alto namero de fallos obligatorios en cache que detienen la méaquina
debido al trafico con memoria, y un gran porcentaje de tiempo de kernel debido a manejo
de interrupciones, trasmision de paquetes y procesamiento de red. [20]

e Procesamiento de transacciones en linea: (online transaction processing o OLTP) las
aplicaciones OLTP poseen uno de los segmentos méas grandes en el mercado de servidores.
Se usan en las operaciones comerciales del dia a dia (por ejemplo, reservas de vuelos) y
se caracterizan por un gran namero de clientes que acceden continuamente a una base de
datos y realizan pequenas modificaciones a través de transacciones. Los benchmarks de
esta categoria que hemos incluido son TPC-C [31] sobre Oracle y DB2. Ambos utilizan un
sistema gestor de bases de datos para realizar un gran ntimero de pequenas transacciones.

e Sistema de soporte de decisiones: (decision suport systems o DSS) los sistemas DSS
se usan principalmente con propésitos de anéalisis comercial, en donde la informacién pro-
cedente del lado OLTP de un negocio se carga periddicamente en una base de datos DSS y
se analiza. Al contrario que OLTP, DSS se caracteriza por consultas (queries) largas, prin-
cipalmente solo lectura, que pueden explorar una gran fraccion de la base de datos. En este
proyecto utilizamos benchmarks DSS que se basan en el benchmark TPC-H [32]. Consisten
en queries y modificaciones de datos concurrentes en grandes bases de datos con el objetivo
de dar respuesta a cuestiones de negocios, examinar grandes volimenes de datos y ejecutar
consultas mucho mas complejas que la mayoria de las transacciones OLTP. Seleccionamos
para nuestro estudio queries scan-dominated (query 1), join-dominated (query 2) y queries
con compartamiento mixto o mized-behavior (query 17).

Web Server (SPECWeb99)

Apache Apache HTTP Server v2.0. 16K conexiones,
fastCGI, worker threading model

Zeus 16K conexiones, fastCGI

OLTP - Online Transaction Processing (TPC-C v3.0)

DB2 IBM DB2 v8 ESE. 100 warehouses (10 GB), 64
clientes, 2 GB buffer pool

Oracle Oracle 10g Enterprise Database Server. 100 wa-
rehouses (10 GB), 16 clientes, 1.4 GB SGA

DSS - Decision Support Systems (TPC-H)

Queries 1, 2, 17 IBM DB2 v8 ESE, 480 MB buffer pool, 1 GB

base de datos

Tabla 4.2: Parametros de las aplicaciones.

15

16

Capitulo 5
Resultados

Este capitulo presenta un resumen de los resultados obtenidos en este proyecto. El apéndice C recoge
todos los resultados de manera detallada, incluyendo mas detalles sobre los benchmarks que hemos

utilizado, asi como sobre las métricas empleadas.

5.1 Vision general de resultados

Hemos simulado las cargas de trabajo que aparecen en la tabla 4.2 y presentamos como nuestra
métrica de rendimiento el ntmero total de instrucciones ejecutadas (commited) por ciclo (user
instructions per cycle o UIPC), es decir, el nimero total de instrucciones ejecutadas por to-
dos los procesadores dividido por el total de ciclos ejecutados. Esta métrica es proporcional al
rendimiento global del sistema [33]. Exploramos los dos disenos presentados en el capitulo 3 y
variamos el tamano de la cache desde 128 KB hasta 1MB por procesador (lo que supone un total
de cache en chip desde 4MB hasta 16MB).

1,200
@ Baseline

O Cluster
1,000

0,800
0,600

ﬂnﬂﬂ[

0,000

UIPC per core (throughput)

Sp, &, /] 0,
% 55 1e. 55, %5, ’“349%
ﬁ Jo
gy 5 - o e e, e, W,
% 4, 9'9?5‘ E‘b& < Op 905 . o{/g . 006_ C%
4 C’Yg U, 2 4 ‘?yr 4?;-2 @y?) Ay

Figura 5.1: Mejor resultado (UIPC por core) para benchmarks comerciales.

La figura 5.1 muestra los mejores resultados para cada benchmark para los disenos Compar-
tido (Shared) y Cluster, asi como la media armonica. El tamano del altimo nivel de la jerarquia
de cache que proporciona el mejor rendimiento se puede ver en la tabla 5.1. En todos los casos,
excepto para SPECWeb99 sobre Zeus y DSS TPC-H Query 17, el disefio Cluster funciona me-

17

CAPITULO 5. RESULTADOS

Workload Tamano de cache (mejor)
Diseno Compartido (Shared) | Diseno Cluster

SPECWeb99 APACHE 16 MB 4 MB
SPECWeb99 ZEUS 16 MB 4 MB
OLTP TPC-C DB2 16 MB 4 MB
OLTP TPC-C ORACLE | 16 MB 4 MB
DSS TPC-H QUERY 1 8 MB 512 KB
DSS TPC-H QUERY 2 8 MB 4 MB
DSS TPC-H QUERY 17 | 4 MB 2 MB

Tabla 5.1: Tamano de la cache con el que se obtiene el mejor rendimiento para diferentes benchmarks/disenos.
El tamaifio de la cache corresponde al tamano de cache visible para cada procesador (es decir, en el diseno Cluster
una cache de 4MB corresponde a una cache de 16MB en chip).

jor. También tiene un mejor rendimiento en media. Los resultados en general siguen la misma
tendencia para todos los benchmarks y tamanos de cache.

5.2 Resultados representativos

En esta seccion exploramos algunos resultados representativos para cada tipo de benchmark, en
concreto: OLTP TPC-C Oracle, Web server Zeus y DSS TPC-H Query 17. OLTP-C TPC-C Ora-
cle es un benchmark representativo para el conjunto considerado, ademés de corroborar nuestra
hipotesis inicial. Web server Zeus y DSS TPC-H Query 17 son los tnicos benchmarks para los
que el disefio Cluster no obtiene mejores resultados que el diseio Compartido. Las razones por
lo que esto ocurre se presentan también en esta seccion.

5.2.1 OLTP TPC-C: Oracle

Nuestros benchmarks OLTP includen TPC-C sobre DB2 y Oracle. En esta seccién nos centra-
mos en OLTP TPC-C sobre Oracle como un claro ejemplo de benchmark que corrobora nuestra
hipétesis.

Ailamaki et al. [17] ya observaron en su estudio sobre aplicaciones de bases de datos los
requerimientos de este tipo de aplicaciones. Siempre que el working set primario de la carga de
trabajo no supere la capacidad del altimo nivel de cache (LLC), el rendimiento incrementa. A
partir del punto en el que este working set cabe en la cache, caches méas grandes pueden empeorar
el rendimiento. Podemos ver esta tendencia claramente en la figura 5.2.

Es importante entender la diferencia entre nuestros disenos Baseline (Compartido) y Cluster.
Aunque ambos disefnos cuentan con la misma cantidad de cache en chip, la cantidad de cache que
cada procesador ve es diferente. Es decir, si consideramos 1MB por core de LLC, en el caso del
disenno Compartido, cada core puede acceder al total de la cache, 16MB; en el caso de Cluster, las
caches son privadas para cada cluster, por lo que el tamartio de LL.C visible para cada core es 4MB.

Oracle obtiene mejor rendimiento con un diseno Compartido con caches pequeinias. Una vez
que los requerimientos de cache se satisfacen (a la vista de la figura 5.2b, 512KB por core), el
disenio Cluster supera al diseno Compartido. De hecho, podemos ver como Oracle presenta una

18

5.2. RESULTADOS REPRESENTATIVOS

0,500
50,0 &
5
2 0,400
40,0 -:g‘,
2 30,0 . £ o0
& ¢ Baseline - @ Baseline
© 20 (Shared) 5 0,200 (Shared)
4 O Cluster 5 O Cluster
10,0 ® = S 0,100
® g <
0,0 0,000
128KB 256KB 512KB 1MB 128KB 256KB 512KB 1MB
LLC size (per core) LLC size (per core)
(a) LLC MPKI para OLTP Oracle. (b) UIPC para OLTP Oracle.

Figura 5.2: LLC MPKI y UIPC para OLTP Oracle.

diferencia de 0,1 UIPC (por core) cuando consideramos 1MB de cache por procesador.

La figura 5.2a muestra los fallos por 1000 instrucciones (MPKI) de LLC para Oracle. Esta
grafica sigue la misma tendencia: vemos como el ntimero de fallos por 1000 instrucciones baja
de manera considerable cuando pasamos de 128KB a 256KB por core (Cluster) pero apenas hay
variacion cuando aumentamos el tamano de 512KB a 1MB por core (tanto Shared como Cluster).

Tlustrando todo lo que hemos comentado, la figura 5.3 muestra el desglose del tiempo de
ejecucion (de usuario) para Oracle (diseno Cluster). Podemos ver que una cache de 512KB no es
capaz de capturar el working set primario del benchmark y por eso una gran parte del tiempo
de ejecucion se debe a comunicacion con la memoria fuera del chip (off-chip). Con 1MB de cache
por core vemos que ese tiempo se reduce desde el 50 % (128 KB por core) a menos del 10 % del
tiempo total de ejecuciéon de usuario. Este decremento se traduce en un aumento de dos veces el
rendimiento (figura 5.2b).

B Busy @L1 OL2 @ Offchip B Other

Cluster design
100%
. 90%
o 80%
5 0%
o 60%
E s
g 40%
'g 30%
2 20%
Lﬁ 10%
0%
128KB 256KB 512KB 1MB

LLC size (per core)

Figura 5.3: Desglose del tiempo de ejecucién (usuario) para OLTP Oracle (Cluster).

19

CAPITULO 5. RESULTADOS

5.2.2 Web server: Zeus

Nuestra categorfa de benchmarks de servidores web incluye SPECWeb99 sobre Apache y Zeus.
Ambas presentan una tendencia similar en lo que se refiere a rendimiento (UIPC aumenta con-
forme la capacidad de la LLC aumenta), pero Apache prefiere un diseno Cluster para todas las
configuraciones consideradas, mientras que Zeus se beneficia de un disefio Compartido. La figura
5.4b muestra el rendimiento (UIPC) para Zeus. Podemos observar que la diferencia entre los
disenos es muy pequena.

El nimero de fallos por mil instrucciones (MPKI) en la figura 5.4a muestra un decremento
en los MPKI de la LLC con caches mas grandes. Si observamos los dos graficos juntos (figura
5.4) podemos concluir que la reducciéon en la tasa de fallos compensa la latencia de acceso més
alta de una cache més grande. Estos resultados indican que los benchmarks web se benefician de
caches de dltimo nivel con més capacidad. De todas formas, Zeus parece que saca provecho de la
comparticion de datos, y el tamano de la cache es un parametro més critico que la latencia, que
es por lo que el diseno Compartido funciona mejor. Para ambos benchmarks, el mejor resultado
se obtiene con la cache mas grande considerada (1MB por core).

25,0 0,450
0,400
=
20,00 B 0,350
f=2]
2 0,300
o g "
z 150 £ 0,250
E ¢ o ¢ Baseline ‘é‘ 0.200 @ Baseline
o 10,0 o (Shared) 5 (Shared)
d * 8 Cluster g 0.150 @ Cluster
& o
5.0 . 2 0,100
< 0,050
0,0 0,000
128KB 256KB 512KB 1MB 128KB 256KB 512KB 1MB
LLC size (per core) LLC size (per core)
(a) LLC MPKI para Web Zeus. (b) UIPC para Web Zeus.

Figura 5.4: LLC MPKI y UIPC para Web Zeus.

5.2.3 DSS TPC-H: Query 17

Nuestros benchmarks DSS son TPC-H queries 1, 2 y 17 sobre DB2. Estos benchmarks se corres-
ponden con tres categorias: scan-based (query 1), join-dominated (query 2) y comportamiento
mixto o mized-behavior (query 17). En esta seccion presentamos los resultados para la query 17
(se muestran en la figura 5.5: la figura 5.5b muestra el rendimiento y la figura 5.5a muestra el
niamero de fallos por 1000 instrucciones para la LLC).

Para esta query una cache compartida es mejor en todos los casos excepto para tamano 512KB
por core. Si observamos el grafico de rendimiento (UIPC), figura 5.5b, podemos ver como nuestro
disennio Compartido presenta un incremento en el rendimiento cuando pasamos de una cache de
128KB a una cache de 256 KB (por core), pero el rendimiento empeora si continuamos anadiendo
capacidad a la cache. Para este diseno, 128 KB por core de memoria cache proporcionan mejores

20

5.2. RESULTADOS REPRESENTATIVOS

25,0
20,0

15,0.

¢0

10,0

LLC MPKI
&

5,0

0,0
128KB 256KB 512KB

LLC size (per core)

o
¢ @
o
iMB

0,150
0,100

0,450
. 0,400
=
£ 0,350
=
3 0,300
=
= 0,250

Baseline -

(Shared) £ 0,200

Cluster o
&
=
=)

o
=

0,050
0,000

(a) LLC MPKI para DSS Query 17.

128KE 256KB 512KB
LLC size (per core)

Figura 5.5: LLC MPKI y UIPC para DSS Query 17.

iMB

(b) UIPC para DSS Query 17.

@ Baseline
{Shared)

O cluster

resultados que 1MB de cache por core. El disenio Cluster muestra la misma tendencia que el
disenno Compartido, pero esta vez el decremento se presenta cuando pasamos de 512KB a 1MB

(por core).

Ambos graficos para UIPC y LLC MPKI sugieren que esta query tiene una localidad baja y,

por tanto, caches grandes degradan el rendimiento (latencia de acceso més alta). El hecho de que

el diseno Compartido proporcione mejores resultados también sugiere que esta query se beneficia
de la comparticiéon de datos entre los procesadores.

El desglose del tiempo de ejecucion de usuario en la figura 5.6 (Shared) muestra que el tiempo

correspondiente a comunicacion fuera de chip esta alrededor del 30 %.

100%
90%
80%
0%
60%
50%
40%
30%
20%
10%

0%

Execution time (user)

B Busy @L1 OL2 @ Off-chip @ Other

Baseline (Shared) design

128KB

256KB 512KB
LLC size (per core)

1MB

Figura 5.6: Desglose del tiempo de ejecucion (usuario) para DSS Query 17 (Baseline).

Para las queries 1 y 2, el disenio Cluster consigue mejores resultados (figura 5.1). En estos

casos, incrementar el tamano de la cache no se traduce en un incremento del rendimiento. En el
caso de la query 1, el primer nivel de cache es capaz de capturar practicamente todos los accesos,
por lo que el rendimiento no varia. La query 2 no se beneficia de caches grandes, e incluso el

21

CAPITULO 5. RESULTADOS

rendimiento se degrada (ver apéndice C para méas detalles).

5.3 Resumen

Hemos visto como diferentes tipos de aplicaciones presentan diferentes caracteristicas en lo que
se refiere a comparticién, tamano y organizacion del ultimo nivel de memoria cache. En general,
una organizacion privada (Cluster) es preferible para la mayoria de los benchmarks que hemos
estudiado y en media.

En el caso de servidores web, éstos presentan un incremento en el rendimiento con caches de
altimo nivel mas grandes.

Los benchmarks OLTP tienen unos requerimientos minimos de LLC. Una vez que esos re-
querimientos se han satisfecho, el disefio que permita un acceso méas rapido (en nuestro caso, el
diseno Cluster) tiene un rendimiento mejor.

Los benchmarks DSS tienen distinto comportamiento segin la categoria a la que pertene-
cen: el rendimiento de la query scan-dominated (query 1) no cambia al variar el tamano de la
cache, ya que el primer nivel de la jerarquia captura practicamente todos los accesos; la query
join-dominated (query 2) se beneficia de un diseno privado (Cluster); finalmente, la query con
comportamiento mixto (query 17) tiene una localidad muy baja, lo que se traduce en un rendi-
miento mayor con caches mas pequenas (al proporcionar éstas menor tiempo de acceso).

22

Capitulo 6
Conclusiones y trabajo futuro

La jerarquia de memoria es uno de los factores clave en el rendimiento de multiprocesadores,
ademés de ser uno de los componentes que mas energia consumen. Por lo tanto, la organizaciéon
de la jerarquia de memoria y, especialmente, la jerarquia de memoria cache en chip juegan un
papel fundamental en el rendimiento de chips multiprocesadores.

En este proyecto hemos analizado dos organizaciones para el dltimo nivel de cache (en nuestro
caso L2) del chip de ARM para el proyecto EuroCloud: un disefio Compartido, donde pretende-
mos sacar el maximo partido de la capacidad efectiva de la cache, y un disefio Cluster, en donde
damos prioridad a colocar los datos cerca del procesador que los solicita y conseguir una latencia
de acceso baja.

Hemos modelado los dos disenos propuestos en nuestro entorno de simulacion FLEXUS [33].
Hemos simulado cargas de trabajo comerciales representativas de tres categorias distintas: servi-
dores web, procesamiento de transacciones en linea (OLTP) y sistemas de soporte de decisiones
(DSS). De los resultados obtenidos podemos concluir que nuestro disefio Cluster proporciona
mejor rendimiento en media; nuestro diseno Compartido tiene un rendimiento mayor si el ben-
chmark presenta baja localidad y/o el tamano de la cache es pequeno.

En concreto distintos tipos de aplicaciones generan diferentes conclusiones.

e Aplicaciones Web presentan mejor rendimiento con caches de mas capacidad.

e Aplicaciones OLTP tienen requerimientos minimos en lo que se refiere al tamano del dltimo
nivel de memoria cache de la jerarquia. Por encima de ese tamano, organizaciones privadas
y sus latencias més bajas proporcionan mejores resultados.

e Aplicaciones DSS tienen diferentes caracteristicas dependiendo de la categoria. En gene-
ral, el disefio Cluster funciona mejor que el diseno Compartido y los requerimientos de
capacidad del ultimo nivel de cache son pequenos.

Corroboramos las conclusiones en [15] sobre requerimientos minimos en workloads de bases
de datos, ya que nuestros resultados demuestran que este tipo de cargas de trabajo necesitan un
minimo de cache para obtener un rendimiento adecuado. A partir de un determinado tamaifio,
continuar incrementando la capacidad de la cache nos lleva a resultados similares o incluso peores
debido a que el tiempo de acceso a la cache es mayor, mientras que la tasa de aciertos no aumenta
lo suficiente para compensar.

23

CAPITULO 6. CONCLUSIONES Y TRABAJO FUTURO

Caches privadas ofrecen otras ventajas sobre disefios compartidos que deben ser considerados.
Ademas de proporcionar latencias mas bajas, el diseno en si es méas escalable. Las caches privadas
son mas independientes (en el sentido de self-contained) y es méas facil implementar mecanismos
de prioridad o de calidad de servicio 37, 19].

Aunque inicialmente propusimos dos alternativas para caches privadas en Cluster (coheren-
tes y no coherentes), s6lo hemos explorado el modelo no coherente. Creemos que los mecanismos
hardware para gestionar la coherencia en LLC (L2) en servidores de arquitectura tiled que ejecu-
tan aplicaciones comerciales son innecesarios y deberian evitarse. Ademéas de complicar el disefio
hardware, mover bloques en chip debido a mecanismos de coherencia penaliza el tiempo medio
de acceso a la cache y suponen un aumento en el consumo de energia.

De todas formas, las caches privadas presentan una desventaja fundamental frente a las ca-
ches compartidas, que es el gran numero de peticiones fuera de chip. Como parte del proyecto
EuroCloud se pretende estudiar el impacto de la integracion de DRAM en 3D dentro del chip.
Esta integracion 3D permitird latencias mas bajas en el acceso a memoria (ya que se colocan
varios cientos de MBs de DRAM cerca de los procesadores). Creemos que una cantidad minima
de memoria cache LLC se debe mantener en chip, ya que la latencia de la DRAM en 3D es
muy alta para un segundo nivel de memoria cache. Dejamos para trabajo futuro un estudio mas
detallado en el tema.

También creemos que estudios futuros deberian incluir datos sobre el consumo de energia
para el chip considerado, ya que el ahorro de energia es una de las principales motivaciones para
el proyecto EuroCloud. Pensamos que caches privadas (diseno Cluster) presentaran un menor
consumo de energia que caches compartidas. Podriamos también, por ejemplo, estudiar la via-
bilidad de desconectar partes de la memoria como medida de ahorro de energia y el impacto
que esto supondria en el rendimiento. Los disenos hibridos parecen una buena forma de obtener
las ventajas de caches privadas y caches compartidas, pero deberiamos pensar en este tipo de
disenios desde una perspectiva de ahorro de energia y si efectivamente son una opcién para este
tipo de chips multiprocesadores.

Finalmente, deberiamos considerar que, ademés del tipo de aplicaciones estudiadas, la compu-
tacién en nube incluiré otro tipo de aplicaciones como streaming de video y audio, reconocimiento
de canciones o data mining. Cada tipo de aplicacidon presenta caracteristicas y comportamiento
Unicos, asi que benchmarks que incluyan este tipo de aplicaciones deberfan implementarse e in-
cluirse en el estudio de servidores para computacién en nube.

24

Bibliografia

1]

2]

3]

4]

[5]

(6]

7]

8]

9]

[10]

[11]

Alaa R. Alameldeen and David A. Wood. Variability in architectural simulations of multi-
threaded workloads. In HPCA ’03: Proceedings of the 9th International Symposium on High-
Performance Computer Architecture, page 7, Washington, DC, USA, 2003. IEEE Computer
Society.

ARM. The ARM Cortex-A9 Processors, 2009. www.arm.com/files/pdf/
ARMCortexA-9Processors.pdf (last access October 2010).

M. Azimi, N. Cherukuri, D.N. Jayasimha, A. Kumar, P. Kundu, S. Park, I. Schoinas, and
A. Vaidya. Integration Challenges and Tradeoffs for Tera-scale Architectures. Intel Tech-
nology Journal, 11(3):173-184, August 2007.

Luiz André Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory system cha-
racterization of commercial workloads. SIGARCH Comput. Archit. News, 26(3):3-14, 1998.

Luiz André Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz
Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: a scalable
architecture based on single-chip multiprocessing. In ISCA ’00: Proceedings of the 27th
annual international symposium on Computer architecture, pages 282-293, New York, NY,

USA, 2000. ACM.

Bradford M. Beckmann, Michael R. Marty, and David A. Wood. ASR: Adaptive Selective
Replication for CMP Caches. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 443-454, Washington, DC, USA, 2006.
IEEE Computer Society.

K.G. Brill. The Invisible Crisis in the Data Center: The Economic Meltdown of Moore’s
Law. White Paper, 2007. Uptime Institute.

David Chaiken, Craig Fields, Kiyoshi Kurihara, and Anant Agarwal. Directory-Based Cache
Coherence in Large-Scale Multiprocessors. Computer, 23(6):49-58, 1990.

Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiprocessors. In IS-
CA ’06: Proceedings of the 83rd annual international symposium on Computer Architecture,
pages 264276, Washington, DC, USA, 2006. IEEE Computer Society.

Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing Replication, Com-
munication, and Capacity Allocation in CMPs. In ISCA ’05: Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 357-368, Washington, DC, USA,
2005. IEEE Computer Society.

William Dally and Brian Towles. Principles and Practices of Interconnection Networks.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

25

BIBLIOGRAFIA

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

26

John D. Davis, James Laudon, and Kunle Olukotun. Maximizing CMP Throughput with
Mediocre Cores. In PACT °05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, pages 51-62, Washington, DC, USA, 2005. IEEE
Computer Society.

Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power Provisioning for a
Warehouse-sized Computer. In ISCA ’07: Proceedings of the 34th annual international
symposium on Computer architecture, pages 13-23, New York, NY, USA, 2007. ACM.

Richard A. Hankins, Trung Diep, Murali Annavaram, Brian Hirano, Harald Eri, Hubert
Nueckel, and John P. Shen. Scaling and characterizing database workloads: Bridging the gap
between research and practice. In MICRO 36: Proceedings of the 36th annual IEEE/ACM In-
ternational Symposium on Microarchitecture, page 151, Washington, DC, USA, 2003. IEEE
Computer Society.

Nikolaos Hardavellas. Chip Multiprocessors for Server Workloads. PhD thesis, School of
Computer Science, Carnegie Mellon University, July 2009.

Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Reactive
NUCA: near-optimal block placement and replication in distributed caches. In ISCA ’09:

Proceedings of the 36th annual international symposium on Computer architecture, pages
184-195, New York, NY, USA, 2009. ACM.

Nikos Hardavellas, Ippokratis Pandis, Ryan Johnson, Naju Mancheril, Anastassia Ailamaki,
and Babak Falsafi. Database Servers on Chip Multiprocessors: Limitations and Opportu-
nities. In Proceedings of the Biennial Conference on Innovative Data Systems Research,
2007.

Ron Ho, Kenneth W. Mai, Student Member, and Mark A. Horowitz. The future of wires.
In Proceedings of the IEEE, pages 490-504, 2001.

Ravi Iyer. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In
ICS ’04: Proceedings of the 18th annual international conference on Supercomputing, pages

9257-266, New York, NY, USA, 2004. ACM.

Taeho Kgil, Shaun D’Souza, Ali Saidi, Nathan Binkert, Ronald Dreslinski, Trevor Mudge,
Steven Reinhardt, and Krisztian Flautner. PicoServer: using 3D stacking technology to

enable a compact energy efficient chip multiprocessor. SIGARCH Comput. Archit. News,
34(5):117-128, 2006.

Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages and operating

systems, pages 211-222, New York, NY, USA, 2002. ACM.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-way mul-
tithreaded sparc processor. IEEE Micro, 25(2):21-29, 2005.

Gabriel H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In ISCA ’08:
Proceedings of the 35th Annual International Symposium on Computer Architecture, pages
453-464, Washington, DC, USA, 2008. IEEE Computer Society.

BIBLIOGRAFIA

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Ha-
llberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A
Full System Simulation Platform. Computer, 35:50-58, 2002.

Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing NUCA
Organizations and Wiring Alternatives for Large Caches with CACTI 6.0. In MICRO 40:
Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 3—14, Washington, DC, USA, 2007. IEEE Computer Society.

Emre Ozer, Krisztian Flautner, Sachin Idgunji, Ali Saidi, Yiannakis Sazeides, Bushra Ahsan,
Nikolas Ladas, Chrysostomos Nicopoulos, Isidoros Sideris, Babak Falsafi, Almutaz Adileh,
Michael Ferdman, Pejman Lotfi-Kamran, Mika Kuulusa, Pol Marchal, and Nikolas Minas.
EuroCloud: Energy-conscious 3D Server-on-Chip for Green Cloud Services. In 2nd Workshop
on Architectural Concerns in Large Datacenters in conjunction with ISCA-2010, June 2010.

Brian M. Rogers, Anil Krishna, Gordon B. Bell, Ken Vu, Xiaowei Jiang, and Yan Solihin.
Scaling the bandwidth wall: challenges in and avenues for CMP scaling. In ISCA ’09:
Proceedings of the 36th annual international symposium on Computer architecture, pages

371-382, New York, NY, USA, 2009. ACM.

S. Rusu, S. Tam, H. Muljono, D. Ayers, and J. Chang. A Dual-Core Multi-Threaded Xeon
Processor with 16MB L3 Cache. In IEEFE International Solid-State Circuits Conference
Digest of Technical Papers, pages 315 —324, feb. 2006.

Standard Performance Evaluation Corporation (SPEC). Specweb99 benchmark, 2000. http:
//www . spec.org/web99/ (last access October 2010).

Per Stenstrom. A Survey of Cache Coherence Schemes for Multiprocessors. Computer,
23(6):12-24, 1990.

Transaction Processing Performance Council (TPC). TPC Benchmark C Standard Specifi-
cation, 2010. http://www.tpc.org/tpcc/ (last access October 2010).

Transaction Processing Performance Council (TPC). TPC Benchmark H (Decision Support)
Standard Specification, 2010. http://www.tpc.org/tpch/ (last access October 2010).

Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anastassia Ailamaki, Babak
Falsafi, and James C. Hoe. SimFlex: Statistical Sampling of Computer System Simulation.
IEEE Micro, 26(4):18-31, 2006.

Steven J. E. Wilton and Norman P. Jouppi. CACTI: An Enhanced Cache Access and Cycle
Time Model. IEEE Journal of Solid-State Circuits, 31:677-688, 1996.

Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe. SMARTS:
accelerating microarchitecture simulation via rigorous statistical sampling. SIGARCH Com-
put. Archit. News, 31(2):84-97, 2003.

J. Wuu, D. Weiss, C. Morganti, and M. Dreesen. The Asynchronous 24MB on-chip Level-3
cache for a dual-core Itanium®)-Family Processor. In Solid-State Circuits Conference, 2005.
Digest of Technical Papers. ISSCC. 2005 IEEFE International, pages 488 —612 Vol. 1, feb.
2005.

27

BIBLIOGRAFIA

[37] Michael Zhang and Krste Asanovic. Victim Replication: Maximizing Capacity while Hiding
Wire Delay in Tiled Chip Multiprocessors. In ISCA ’05: Proceedings of the 32nd annual
international symposium on Computer Architecture, pages 336345, Washington, DC, USA,
2005. IEEE Computer Society.

28

