

Grado en Ingeniería de Tecnologías Industriales 30015 - Procesos de fabricación y dibujo industrial

Guía docente para el curso 2015 - 2016

Curso: , Semestre: , Créditos: 6.0

Información básica

Profesores

- José Manuel Franco Gimeno jfranco@unizar.es
- Miguel García Garcés mggarces@unizar.es
- Javier Leopoldo Boira Cuevas jboira@unizar.es
- Enrique López Cardiel elopezc@unizar.es
- Rosana Sanz Segura rsanz@unizar.es
- José Luis Santolaya Sáenz jlsanto@unizar.es
- Carlos Alberto Velasco Ortiz velascoc@unizar.es
- Juan Antonio Peña Baquedano juanp@unizar.es
- Ángel Fernando Germán Bueno afgerman@unizar.es
- Ana Cristina Majarena Bello majarena@unizar.es
- José Antonio Dieste Marcial jadieste@unizar.es
- Ramón Miralbes Buil miralbes@unizar.es
- Jesús Velázquez Sancho jesusve@unizar.es

Recomendaciones para cursar esta asignatura

Esta materia no tiene prerrequisitos. No obstante, debería cursarse una vez superada la asignatura de "Expresión Gráfica y Diseño Asistido por Ordenador" de primer curso. También es recomendable haber cursado la asignatura de "Fundamentos de Ingeniería de Materiales".

Actividades y fechas clave de la asignatura

Las fechas de los trabajos, controles y entrega de informes prácticos se establecerán conjuntamente con los alumnos al inicio del curso y se realizarán tras finalizar el temario y las sesiones prácticas correspondientes.

Inicio

Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- Selecciona los procesos de fabricación más adecuados a partir del conocimiento de las capacidades y limitaciones de estos y según las exigencias tecnológicas, técnicas y económicas tanto de producto como de mercado
- 2:
 Reconoce y aplica las consideraciones básicas para configurar una hoja de procesos.
- Adquiere una actitud crítica ante soluciones ya utilizadas, de manera que el incite a profundizar en el estudio y análisis de los temas objeto de esta disciplina y a plantear estrategias de innovación.
- Conoce y comprende los fundamentos del dibujo industrial para aplicarlos a la interpretación de planos y para elaborar soluciones razonadas ante problemas geométricos en el plano y en el espacio
- Valora la normalización como convencionalismo idóneo para simplificar, no sólo la producción sino también la comunicación, dándole a ésta un carácter universal.
- **6:**Es capaz de integrar y seleccionar elementos normalizados y comerciales en el diseño de conjuntos mecánicos, interpretando prontuarios y catálogos
- 7:
 Conoce y comprende diversos conceptos como las tolerancias y las calidades superficiales y es capaz de aplicarlos a problemas específicos en el ámbito del Dibujo Industrial.

Introducción

Breve presentación de la asignatura

El objetivo de la asignatura es el aprendizaje de aspectos relativos al diseño y desarrollo de componentes mecánicos fabricados mediante procesos de fundición, deformación y unión, así como su representación mediante técnicas de dibujo industrial, estructurándolo en fases y aplicando una metodología.

En el campo de la Tecnología Mecánica, la asignatura trata que el estudiante conozca los fundamentos de los distintos procesos de fabricación de preformar, deformar y unir, con capacidad suficiente para observar la influencia de los principios mecánicos que los rigen en el diseño del producto y la planificación del proceso. Para una correcta selección del proceso y definición de sus parámetros y utillajes herramentales, la asignatura presenta al alumno las capacidades y limitaciones tecnológicas, técnicas y económicas de los procesos de fabricación de forma teórica y práctica.

Dentro del ámbito del Dibujo Industrial, la asignatura persigue que el alumno llegue a conocer la croquización, delineación, normalización, para que el estudiante adquiera, a la vez que conocimientos, una capacidad suficiente de abstracción que le permita visualizar y representar, tanto las más diversas piezas, como el conjunto de éstas formando mecanismos complejos, incluyendo diversos aspectos como son la aplicación de elementos normalizados, tolerancias y calidades superficiales.

Contexto y competencias

Sentido, contexto, relevancia y objetivos generales de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo de la asignatura es el aprendizaje de aspectos relativos al diseño y desarrollo de componentes mecánicos fabricados mediante procesos de fundición, deformación y unión, así como su representación mediante técnicas de dibujo industrial, estructurándolo en fases y aplicando una metodología.

En el campo de la Tecnología Mecánica, la asignatura trata que el estudiante conozca los fundamentos de los distintos procesos de fabricación de preformar, deformar y unir, con capacidad suficiente para observar y analizar la influencia de los principios mecánicos que los rigen en el diseño del producto y la planificación del proceso. Asimismo, se deben adquirir conocimientos suficientes para estructurar hojas de proceso donde se planteen parámetros de proceso y utillaje herramental para las fases de fundición o deformación de componentes mecánicos no muy complejos.

En el ámbito del Dibujo Industrial, el objetivo de la asignatura es conseguir que el alumno adquiera los conocimientos necesarios para interpretar y desarrollar un conjunto industrial en todos los aspectos relacionados con la Expresión Gráfica (normalización, representación, escalado, cortes, secciones, etc.). Además deben ser capaces de utilizar prontuarios y tablas para definir correctamente los elementos normalizados más habituales: rodamientos, chavetas, lengüetas, tornillos, tuercas, etc. integrándolos en el plano de conjunto y en la lista de materiales. También se deben adquirir los conocimientos necesarios para establecer y representar correctamente los acabados superficiales y las tolerancias dimensionales de las piezas y para seleccionar adecuadamente los materiales de cada pieza no comercial. El alumno deberá ser capaz de manejar las herramientas de diseño asistido por ordenador y profundizar en el diseño tridimensional.

Contexto y sentido de la asignatura en la titulación

La asignatura pretende profundizar en la capacitación de los estudiantes para "planificar procesos de fabricación mecánica y su repercusión en el diseño de producto y su representación mediante un lenguaje propio de ingenieros como es el Dibujo Industrial". Por este motivo esta asignatura tiene un marcado carácter práctico para el ejercicio profesional del graduado en esta titulación.

Esta asignatura mantiene relación directa con la asignatura "Tecnologías de Fabricación", y "Expresión Gráfica y Diseño Asistido por Ordenador", ambas de carácter obligatorio, con la que se complementa la visión de los procesos de fabricación, integrando los procesos de mecanización, el lenguaje gráfico de representación en la Ingeniería, así como la metrología y el control de calidad.

Otras asignaturas relacionadas son "Fundamentos de Ingeniería de Materiales" y "Resistencia de Materiales".

Al superar la asignatura, el estudiante será más competente para...

1:

Competencias generales:

- 1. Capacidad para usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma
- 2. Capacidad para planificar, presupuestar, organizar, dirigir y controlar tareas, personas y recursos.
- 3. Capacidad para combinar los conocimientos básicos y los especializados de Ingeniería para generar propuestas innovadoras y competitivas en la actividad profesional.
- 4. Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.
- 5. Capacidad para la gestión de la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias para la práctica de la Ingeniería.
- 6. Capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo.

2:

Competencias específicas:

- 1. Capacidad para aplicar los conocimientos básicos de los sistemas de producción y fabricación.
- 2. Conocimiento aplicado de sistemas y procesos de fabricación, metrología y control de calidad.
- 3. Capacidad de visión espacial y conocimiento de las técnicas de representación gráfica, tanto por métodos tradicionales de geometría métrica y geometría descriptiva, como mediante las aplicaciones de diseño asistido por ordenador.

Importancia de los resultados de aprendizaje que se obtienen en la asignatura:

El profesional que haya cursado el grado en Ingeniería de Tecnologías Industriales debe tener una formación polivalente y generalista en la que es fundamental el dominio de la interpretación de planos y la comunicación de sus ideas mediante el dibujo industrial. Asimismo, para el desarrollo de sus proyectos debe saber seleccionar los procesos de fabricación más apropiados a nivel tecnológico y económico.

Evaluación

Actividades de evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

1:

El estudiante puede optar por una evaluación continua. Así, durante el transcurso de la asignatura, deberá demostrar que ha alcanzado los resultados de aprendizaje de tipo teórico – práctico. En caso de no superar alguna prueba de la evaluación continua podrá presentarse al correspondiente apartado de la evaluación global a la que tiene derecho, en cualquiera de las dos convocatorias.

Se plantean actividades de evaluación diferenciadas en cada bloque. Para obtener la calificación de aprobado en la asignatura, el alumno ha de obtener una nota de al menos 4,0 (sobre 10) en la calificación de cada bloque y una media entre los mismos de al menos 5,0.

Bloque Procesos de Fabricación.

El sistema de evaluación consta de dos pruebas.

• Prueba 1: Supone el 30% de la calificación final de este bloque.

Esta prueba está asociada a las sesiones prácticas y corresponde al logro de resultados de aprendizaje 1 y 2.

Si el alumno opta por la evaluación gradual, esta prueba consiste en la elaboración por parte de los alumnos de un conjunto de informes.

Al finalizar la práctica, el alumno, en grupos reducidos deberá entregar un informe en el que se valorará el aprendizaje de los conocimientos adquiridos durante la sesión entregando dicho informe en un plazo máximo de 2 semanas tras finalizar la práctica.

La no entrega de informes en las fechas indicadas y/o la obtención de notas inferiores a 4.0 en algún informe, supondrá una evaluación negativa de la prueba 1. En tal caso, deberá realizar la correspondiente prueba relacionada con las sesiones prácticas en la evaluación global, además del examen escrito que se corresponde con la prueba 2.

• Prueba 2: Supone el 70% de la calificación final de este bloque.

Prueba escrita consistente en resolver un test de 60 preguntas con cuestiones teórico-prácticas y problemas relativos a la materia impartida en el bloque de Procesos industriales, en la que se evaluarán los resultados de aprendizaje 1, 2 y 3.

La calificación será de 0 a 10 y el alumno ha de obtener una nota de al menos 4,0 para poder promediar con el resto de las pruebas.

Bloque Dibujo Industrial.

El sistema de evaluación consta de dos partes:

- •50% Trabajo Práctico: Se encarga un proyecto a desarrollar entre varios alumnos. El tipo de trabajos planteados serán conjuntos industriales móviles, que contengan los elementos como tornillería, rodamientos, engranajes, etc.
- •50% Examen. Constará de un ejercicio teórico-práctico a desarrollar a partir de un conjunto industrial propuesto.

La calificación mínima en cada una de las partes deberá ser de 4 sobre 10. Si en alguna parte no se supera el 4, la calificación del bloque de Dibujo Industrial será como máximo 3.9 puntos sobre 10.

En caso de no superar alguna prueba de la evaluación continua podrá presentarse al correspondiente apartado de la evaluación global a la que tiene derecho, en cualquiera de las dos convocatorias.

Criterios de valoración

Criterios de valoración

Sistema de calificaciones: De acuerdo con el Reglamento de Normas de Evaluación del Aprendizaje de la Universidad de Zaragoza (Acuerdo de Consejo de Gobierno de 22 de diciembre de 2010), los resultados obtenidos por el alumno se calificarán en función de la siguiente escala numérica de 0 a 10, con expresión de un decimal, a la que podrá añadirse su correspondiente calificación cualitativa:

- 1) 0-4,9: Suspenso (SS).
- 2) 5,0-6,9: Aprobado (AP).
- 3) 7,0-8,9: Notable (NT).
- 4) 9,0-10: Sobresaliente (SB).

La mención de «Matrícula de Honor» podrá ser otorgada a estudiantes que hayan obtenido una calificación igual o superior a 9.0. Su número no podrá exceder del cinco por ciento de los estudiantes matriculados en el correspondiente curso académico.

Actividades y recursos

Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

La metodología que se propone trata de fomentar el trabajo continuado del estudiante y se centra en los aspectos más prácticos del dibujo industrial y los procesos de fabricación de fundición, deformación y unión, preferentemente.

En las sesiones con el grupo completo se tratan los aspectos más teóricos en forma de clase magistral y se completan con el estudio de casos técnicos. Las sesiones prácticas se desarrollan en grupos más reducidos para trabajar con aplicaciones informáticas especializadas y equipamiento de taller de fabricación. Se pretende fomentar un aprendizaje práctico, que se potencia con la exigencia de la entrega de guiones al finalizar las sesiones prácticas, por un lado, y con la elaboración de un trabajo/proyecto tutorizado por el otro.

Se pretende fomentar la visión integral de la profesión del Ingeniero permitiendo al alumno integrar dicho trabajo/proyecto

con otros posteriores de mecanizado e inspección en la asignatura de "Tecnologías de Fabricación".

Actividades de aprendizaje programadas (Se incluye programa)

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

1:

Bloque Procesos de Fabricación

Temario teórico-práctico

- 1) Concepto de fabricación y Clasificación general de los procesos de fabricación
- 2) Procesos para preformar
 - a. Fundamentos de fundición metálica
 - b. Procesos de fundición y moldeo
 - c. Conformación de plásticos
 - d. Metalurgia de polvos
- 3) Procesos de deformación metálica
 - a. Fundamentos de deformación metálica
 - b. Laminación
 - c. Forja
 - d. Extrusión y estirado
 - e. Conformación de chapa y tubo
- 4) Procesos de unión y ensamblaje
 - a. Metalurgia de la soldadura
 - b. Procesos de soldeo
 - c. Otros procesos de unión

Prácticas de laboratorio

- 1) Procesos de fundición y moldeo.
- 2) Procesos de deformación metálica.
- 3) Procesos de unión y soldeo.

2:

Bloque Dibujo Industrial

Temario teórico-práctico

- 1) Normalización en Dibujo Industrial.
- 2) Planos de conjunto y despieces.
- 3) Designación de materiales.
- 4) Notación de tolerancias y ajustes.

- 5) Notación de rugosidad, calidad superficial y otros símbolos.
- 6) Representación y designación de elementos roscados.
- 7) Representación y designación de elementos de unión y seguridad.
- 8) Representación y designación de cojinetes, rodamientos y sus accesorios.
- 9) Representación de engranajes y elementos de accionamiento.
- 10)Representación de equipos hidráulicos

Prácticas de laboratorio

- 1) Práctica guiada.
- 2) Diseño tridimensional de una pieza
- 3) Desarrollo tridimensional de las piezas del trabajo/proyecto

Prácticas de asignatura

En las clases de problemas se realizarán, comentarán y corregirán diversos problemas destinados a potenciar la adquisición y asimilación del conocimiento adquirido en la parte teórica; también se analizarán proyectos existentes y de años anteriores.

Las clases de prácticas se destinarán a la realización del trabajo/proyecto de asignatura, aplicando los conocimientos adquiridos en la parte teórica y de problemas de la de la misma.

Las prácticas tutorizadas se destinarán a la evaluación, corrección y aclaración de aspectos del trabajo/proyecto realizado por parte de los estudiantes, con el objeto de analizar las posibles deficiencias, errores y dudas relacionadas con los aspectos establecidos en la parte teórica que han sido desarrollados durante el trabajo de asignatura.

Recursos adicionales para el Bloque de Dibujo Industrial

- 1) Apuntes de la asignatura.
- 2) Enunciados de Problemas y Trabajos a realizar. Disponibles desde el ADD de la Unizar.
- 3) Libros de referencia: Se especificarán al comienzo del curso.

Planificación y calendario

Calendario de sesiones presenciales y presentación de trabajos

6 créditos ECTS: 150 horas / estudiante repartidas como sigue:

La distribución cronológica se realizará comenzando una semana introductoria al bloque de fabricación para posteriormente desarrollar el bloque completo de Dibujo Industrial y finalmente en el mes de abril retomar el bloque de Fabricación hasta finalizar el curso.

En el Bloque de Procesos de Fabricación, la distribución será de 21 h. de clase magistral (teórica) y de casos técnicos y resolución de problemas.

En el Bloque de Dibujo Industrial, la distribución será de:

- 14h de clase magistral y 7 h de problemas.
- 9 h. de sesiones prácticas (3 sesiones de 3 horas presenciales) en grupos reducidos
- 40 h. de estudio
- 40 h. de trabajo práctico
- 10 h. de controles teórico-prácticos, entre las que se incluyen el seguimiento de los ejercicios prácticos del bloque de Dibujo Industrial

Semana	1	2	3	4	5	6	7	8	9	10	11	12	II -	14	15

Prácticas	1D	1D	2D	2D	3D	3D	1P	1P	2P	2P	3P	3P	

Referencias bibliográficas de la bibliografía recomendada

- Altemir Grasa, José María. Dibujo industrial / J.M. Altemir Grasa . Ed. revisada [Zaragoza] : Copy Center, cop. 2006
- Auría Apilluelo, José M.. Dibujo Industrial : conjuntos y despieces / José M. Auria Apilluelo, Pedro Ibáñez Carabantes, Pedro Ubieto Artur . 2º ed., 2º reimp. Madrid : Thomson, 2008
- Calvo Lalanza, Manuel. Dibujo industrial: normalización / M. Calvo Lalanza [s.l.]: [s.n.], D.L.2003(Zaragoza:Gorfisa)
- DeGarmo, E. Paul. Materiales y procesos de fabricación / E. Paul DeGarmo, J. Temple Black, Ronald A. Kohser; [versión española por J. Vilardell] . 2ª ed., reimp. Barcelona : Reverté, imp. 2002 [Procesos de fabricación]
- Félez, Jesús. Dibujo industrial / Jesús Félez, Mª Luisa Martínez . 3ª ed. rev., 1ª reimp. Madrid : Síntesis, 2002
- Groover, Mikell P.. Fundamentals of modern manufacturing: materials, processes, and systems / Mikell P. Groover. 2nd. ed. New York [etc.]: John Wiley & Sons, cop. 2002 [Procesos de fabricación]
- Hernández Riesco, Germán. Manual del soldador / Germán Hernádez Riesco; Asociación Española de Soldadura y Tecnologías de Unión . 18ª ed. Madrid : CESOL, D.L. 2007 [Procesos de fabricación]
- Jensen, C. H.. Dibujo y diseño en ingeniería / Cecil Jensen, Dennis R. Short, Jay D. Helsel; traducción, Ma. de Lourdes Amador Araujo ... [et al.]; revisión técnica, Sergio Saldaña Sánchez ... [et al.]. - 2ª ed. en español México [etc.]: McGraw-Hill, cop. 2004
- Kalpakjian, Serope. Manufacturing processes for engineering materials / Serope Kalpakjian . 2nd. ed. Reading, Massachussets [etc.] : Addison-Wesley, cop. 1991 [Procesos de fabricación]
- Miralbés Buil, Ramón. Dibujo técnico industria: apuntes de teoría / Ramón Miralbés Buil. Zaragoza: Copy Center, cop.
 2016
- Rodriguez de Abajo, F.Javier. Normalización del dibujo industrial / F.Javier Rodriguez de Abajo, Roberto Galarraga Astibia
 San Sebastián: Editorial Donostiarra, D.L. 1993