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de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

RESUMEN 

 

En este proyecto final de carrera se aborda el aprovechamiento de la energía proveniente del Sol 

para la generación eléctrica mediante sistemas de concentración solar cilindro parabólicos. La 

metodología que se va a utilizar este proyecto para profundizar en el conocimiento de dichos 

sistemas consiste en estudiar con detenimiento una central termosolar de colectores cilindro 

parabólicos de tecnología HTF. Para ello, como herramienta principal, se utilizará el programa 

de ordenador “Solar Advisor Model”, que permite configurar centrales eléctricas de este tipo y 

realizar un análisis de las mismas tanto desde un punto de vista termodinámico como 

económico. 

 

Capítulo 1. Sirve como introducción al estudio de los sistemas cilindro parabólicos y a su uso 

en las denominadas centrales termosolares. 

 

Al principio se dan unas nociones básicas sobre la energía solar, de que forma llega, en que 

cantidad, como se puede aprovechar, etc. 

 

Seguidamente, se introducen los sistemas de concentración solar. Concentrar la radiación solar 

mediante superficies reflexivas consigue aumentar el flujo energético, pudiéndose así utilizar en 

aplicaciones de generación eléctrica vía ciclos de potencia de vapor.  

 

Como este proyecto se va a centrar en los sistemas cilindro parabólicos, en este capítulo se van a 

abordar los mismos desde un punto de vista estructural y funcional. Se explicara de qué partes 

consta un colector cilindro parabólico, como consigue concentrar la radiación solar, como 

transfiere la energía al fluido de trabajo y las pérdidas que llevan aparejados estos procesos. 

 

Para finalizar el capítulo se trataran los ciclos de potencia asociados a este tipo de sistemas, que 

son básicamente los mismos que los de cualquier central térmica convencional pero con alguna 

particularidad derivada de la forma en que se capta y transforma la energía solar en los 

colectores. 

 

Capítulo 2. Se da a conocer en este capítulo el programa de ordenador “Solar Advisor Model”, 

que servirá para el análisis de la central termosolar objeto de este proyecto. 

 

Dicho programa, combina el análisis termodinámico con el análisis financiero de la mayoría de 

tecnologías solares existentes en la actualidad (no sólo de concentración). Es una herramienta 
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muy útil pensada para facilitar la toma de decisiones de toda persona implicada en la industria 

solar: jefes de proyecto, ingenieros, diseñadores, investigadores, etc.  

 

A lo largo del capítulo, se ponen de manifiesto las enormes posibilidades que ofrece el 

programa en cuanto al diseño y configuración de la planta, así como también, algunos aspectos 

que se han considerado mejorables según la opinión del autor de este proyecto. Además, se 

informa de los resultados que se obtienen con él, y de las opciones que proporciona para poder 

desarrollar análisis paramétricos, de sensibilidad y de optimización, para ver como afectan las 

distintas variables que entran en juego en los sistemas solares de concentración, al rendimiento 

y costes de los mismos. 

 

Capítulo 3. Se dedica a analizar la elección de los parámetros y elementos más importantes de 

la central termosolar: localización, potencia, estructura del colector, tubo absorbedor, fluido de 

trabajo, turbina, sistema de almacenamiento, sistema auxiliar de combustible fósil, etc. 

 

Estos parámetros y elementos serán los que se introduzcan en el programa de ordenador para 

realizar la simulación de la central termosolar, y como se vera, en ellos influirán una gran 

variedad de factores: tecnológicos, económicos, normativos, empresariales, etc. 

 

Capítulo 4. Se presentan y analizan los datos obtenidos al llevar a cabo la simulación de la 

central termosolar mediante el programa de ordenador citado anteriormente. Se exponen los 

resultados de tal manera que se pueda ver con claridad la forma en que este tipo de plantas 

aprovechan la energía solar que les llega.                

 

También se realiza en este capítulo un análisis económico de la planta, a la vista del cual, 

resulta más fácil entender el porque del gran desarrollo que han tenido las centrales termosolares 

en España en los últimos años.  

 

Finalmente para acabar, se expondrán las conclusiones que el autor de este proyecto a obtenido 

al realizarlo, también se citaran las líneas de investigación más actuales en el campo de la 

energía solar de térmica de concentración y una serie de recomendaciones para el buen 

desarrollo del sector en un futuro próximo.  
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de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

CAPÍTULO 1 

 

ESTUDIO DE LAS TECNOLOGÍAS DE 

CONCENTRACIÓN SOLAR MEDIANTE COLECTORES 

CILINDRO PARABÓLICOS 

 

En el capítulo 1 se aborda el aprovechamiento de la energía solar mediante tecnologías de 

concentración para generación eléctrica. Se exponen los beneficios que se obtienen al 

concentrar la radiación solar vía superficies reflexivas, así como las limitaciones tanto físicas 

como tecnológicas que tiene estos sistemas. 

 

Dentro de las tecnologías de concentración solar, este proyecto se va a centrar en los sistemas de 

colectores cilindro parabólicos, consecuentemente en este capítulo se va a hablar en profundidad 

de ellos, tanto desde un punto de vista estructural, exponiendo las partes que los componen, 

como desde un punto de vista funcional, explicando como captan la radiación solar y como la 

transforman en energía térmica para su posterior aprovechamiento.  

 

El ultimo apartado del capítulo se dedica a tratar los ciclos de potencia asociados a este tipo de 

sistemas de concentración, que son básicamente los mismos que los de cualquier central térmica 

convencional pero con alguna particularidad derivada de la forma en que se capta y transforma 

la energía solar en los colectores. 

 

1.1. INTRODUCCIÓN 

 

El planeta necesita de una fuente de energía que sea limpia, inagotable, segura, fácilmente 

accesible y gratuita para todos aquellos que posean los medios necesarios para utilizarla. Dicha 

fuente de energía existe ya: “ El Sol ”. 

 

La creciente preocupación por los problemas medioambientales, ha estimulado la creación y 

puesta en marcha de tecnologías que funcionan a base de energías renovables como la radiación 

solar, el viento, etc., ya que son una opción sostenible para el desarrollo de procesos industriales 

que requieren grandes consumos de energía, como lo son las centrales eléctricas, las 

desalinizadoras de agua marina, el tratamiento de aguas contaminadas, etc. Para ello ya se han 
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diseñado equipos capaces de captar estos tipos de energía y transformarla para su 

aprovechamiento. 

 

Cuando hablamos de concentración solar, nos referimos a una serie de sistemas basados en 

distintas tecnologías desarrolladas para la conversión de la componente directa de la radiación 

solar en otra forma de energía, apta para su utilización inmediata o para su almacenamiento, 

mediante el uso de concentradores. 

 

Entre estas tecnologías existen cuatro que destacan sobre las demás por su elevado grado de 

desarrollo: los sistemas de colectores cilindro parabólicos, los concentradores lineales tipo 

Fresnel, los sistemas de receptor central y los discos parabólicos. Los dos primeros concentran 

la radiación solar en un eje (dos dimensiones), mientras que los dos últimos lo hacen en un 

punto (tres dimensiones), pudiendo alcanzar así mayores relaciones de concentración. 

 

 

 

 

 

 

 

 

     

Figura 1.1. De izquierda a derecha, un disco parabólico, un concentrador lineal tipo Fresnel, un 

sistema de receptor central y un colector cilindro parabólico. 

 (Fuente: http://www.rankingsolar.com) 

 

Los campos de aplicación de la energía solar térmica de concentración son muy amplios: calor 

de proceso, desalación, combustibles solares, etc., pero donde estos sistemas han alcanzado su 

mayor grado de desarrollo ha sido en el campo de la generación eléctrica, dando lugar a las 

conocidas como Centrales Termosolares. Estas centrales constituyen el medio más económico 

para la generación de electricidad a partir de la energía solar y añaden las ventajas 

correspondientes a una fuente renovable y respetuosa con el medio ambiente. Será en este 

campo, la generación eléctrica, en el que se va a centrar este proyecto. 

 

Esquemáticamente, una central termosolar se compone de un sistema colector, un sistema 

receptor y un sistema de conversión de potencia, pudiendo además incorporar un sistema de 

almacenamiento térmico y un sistema de apoyo de combustible fósil. 

 

 

 

 

 

 

  
 

 

|

} 
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de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

El sistema colector capta y concentra la radiación solar sobre el receptor, donde la energía 

radiante se convierte en energía térmica, la cual finalmente se transforma en energía eléctrica en 

el sistema de conversión de potencia (ciclo termodinámico + alternador eléctrico). 

 

Estas centrales termosolares pueden integrarse con un sistema de almacenamiento térmico o en 

operación híbrida con otros combustibles, así ofrecen una potencia firme y energía eléctrica 

despachable a las necesidades de la demanda. También de este modo son aptas para cargas 

punta y cargas base y la electricidad que generan se inyecta directamente a la red eléctrica. 

 

Las centrales termosolares pueden llegar a sustituir algún día a las centrales eléctricas 

convencionales basadas en la quema de combustibles fósiles, lo que reduciría las emisiones de 

gases de efecto invernadero que provocan el cambio climático. 

 

 

Figura 1.2. Esquema general de una central termosolar.  

(Fuente: Mendieta Cruz y Pérez Montes, 2008)  

 

Antes de comenzar con el estudio de las tecnologías solares de concentración, se estima 

oportuno dedicar un apartado a ciertos aspectos importantes relativos a la energía solar, como 

son los tipos de radiación solar que existen a nivel de la superficie terrestre, y los distintos 

aprovechamientos que se hacen de ella. 

 

1.2. EL SOL Y LA RADIACIÓN SOLAR 

 

La energía del sol llega a la tierra a través de los rayos solares que se propagan por el espacio en 

forma de ondas electromagnéticas de energía. Este fenómeno físico es conocido comúnmente 

con el nombre de radiación solar. 
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Las ondas electromagnéticas se caracterizan por la frecuencia con que se repiten completamente 

por unidad de tiempo. La frecuencia se mide en hercios y cuanto mayor sea ésta o lo que es lo 

mismo, mayor sea el número de oscilaciones, mayor es la cantidad de energía transportada por 

la onda. 

 

Se denomina longitud de onda al cociente entre la velocidad de la luz (3·10
8 

m/s) y la 

frecuencia. Así, cuanto más pequeña sea la longitud de onda mayor será la frecuencia y más 

energía transportará. 

 

1.2.1. La constante solar 

 

La constante solar es la intensidad del flujo de radiación solar que incide sobre una unidad de 

superficie, medida en la parte externa de la atmósfera terrestre en un plano perpendicular a los 

rayos del sol. 

 

La constante solar tiene un valor de 1367 W/m
2
. No es un valor fijo ya que sufre ligeras 

variaciones a lo largo del año (aproximadamente ± 7 W/m
2
) debido a que la órbita terrestre no 

es circular sino elíptica. Supone un aporte energético anual sobre el planeta equivalente a 20 

veces la energía almacenada en todas las reservas de combustibles fósiles del mundo (López 

Cózar, 2006). 

 

1.2.2. Componentes de la radiación solar 

 

Hay que tener en cuenta que toda la radiación solar que incide sobre la atmósfera no llega hasta 

la superficie de la tierra. Los rayos solares al entrar en contacto y atravesar el obstáculo que 

supone la atmósfera sufren una serie de fenómenos físicos entre los que cabe destacar: 

 

• Reflexión. Una parte de la radiación se refleja en la parte superior de las nubes (tipo un 

espejo). 

 

• Difusión. Los rayos solares chocan con las moléculas gaseosas y partículas de polvo en 

suspensión difundiéndose en todas direcciones, de forma que una parte vuelve al espacio. 

 

•  Absorción. Una parte de la radiación es absorbida por las moléculas presentes en la atmósfera. 

Por ejemplo, a una altura de la superficie terrestre de entre 15 y 40 km se encuentra la capa de 

ozono, la cual absorbe principalmente las radiaciones de los rayos ultravioletas. 
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Como resultado de los anteriores fenómenos físicos, un objeto situado en la superficie terrestre 

recibirá los siguientes tipos de radiación: 

 

•  Radiación directa. Es la radiación solar que alcanza la superficie terrestre sin que haya 

sufrido ningún cambio de dirección en su recorrido. Esta radiación en días nublados es muy 

pequeña y provoca sombras. 

 

•  Radiación difusa. La que llega a la superficie terrestre después de haber cambiado varias 

veces de dirección debido a los procesos de reflexión y difusión al atravesar la atmósfera. A 

mayor nubosidad más importante es la radiación difusa. 

 

•  Radiación reflejada. La parte de radiación reflejada por el terreno y otros elementos de la 

superficie terrestre y que puede ser reabsorbida por otros objetos. Al cociente entre la radiación 

reflejada y la incidente en la superficie terrestre se le llama radiación de albedo. 

 

En días despejados la radiación directa será mucho mayor que la difusa. La radiación difusa 

puede llegar a significar el 10-15% en días claros y hasta un 95% en días nublados. A lo largo 

del año la radiación difusa supone aproximadamente un tercio de la radiación total que llega la 

superficie terrestre (AVEN, 2009). 

 

La radiación total será la suma de la radiación directa, difusa y reflejada. La palabra radiación a 

secas se suele utilizar como concepto genérico. 

 

Para definir la energía solar que llega a una superficie se utilizan las siguientes magnitudes: 

 

•  Irradiancia: Potencia solar incidente por unidad de superficie sobre un plano dado. Se expresa 

en W/m
2
. 

 

•  Irradiación: Energía incidente por unidad de superficie sobre un plano dado, obtenida por 

integración de la irradiancia durante un intervalo de tiempo dado, normalmente una hora o un 

día. Se expresa en MJ/m
2
 o kWh/m

2
. 

 

La cantidad de radiación directa que una superficie recibe depende del ángulo formado entre 

ésta y los rayos solares incidentes, (ángulo de incidencia). Si la superficie está situada 

perpendicularmente a los rayos solares la radiación directa será máxima, disminuyendo a 

medida que aumenta el ángulo que forman los rayos con la normal al plano en que inciden. 
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1.2.3. El movimiento solar 

 

Diariamente la tierra efectúa una rotación completa sobre sí misma dando lugar a los días, 

aunque habitualmente se dice que el sol sale por el Este y se oculta por el Oeste como si fuese el 

sol quien realizase el movimiento. 

 

Con el fin de definir correctamente la posición del sol en cada momento con respecto a un punto 

situado en la tierra se utilizan dos coordenadas, el azimut solar y la altura solar. El azimut es el 

ángulo de giro del sol con respecto al sur geográfico medido sobre el plano horizontal. Un valor 

de 0º del azimut se dará cuando el sol esté exactamente sobre el Sur geográfico y coincidirá con 

el mediodía solar. 

 

La altura solar es el ángulo que forman los rayos solares sobre la horizontal. Este valor varía a 

lo largo del día y del año. El sol sale desde la horizontal para llegar a su máxima altura al 

mediodía solar y luego ir disminuyendo hasta que se pone por el Oeste. Además, cada día del 

año el sol alcanza una altura diferente consiguiendo la altura máxima durante el solsticio de 

verano (21 de junio en el hemisferio Norte) y la altura mínima durante el solsticio de invierno 

(21 de diciembre en el hemisferio Norte). 

 

El azimut y la altura solar, así como las horas de sol diarias y la radiación solar, varían con la 

posición que se ocupe en la tierra. 

 
Figura 1.3. Mapa solar de España. 

La cifra superior representa la 

energía en kWh por m
2
. La inferior 

el numero de horas de sol al año. 

(Fuente: López Cózar, 2006) 
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Para determinar la posición de un objeto en la tierra recurrimos a los siguientes parámetros: 

 

•  Latitud. Ángulo que forma la vertical de un punto de la superficie de la tierra y el plano del 

ecuador. Se considera positiva en el hemisferio Norte y negativa en el hemisferio Sur. 

 

•  Longitud. Arco del ecuador comprendido entre el meridiano de un lugar y un meridiano de 

referencia, el meridiano de Greenwich. 

 

1.2.4. Aprovechamiento de la energía solar 

 

Conviene subrayar que el nivel de radiación solar que llega a la superficie de la tierra es 

relativamente moderado e incluso muy bajo para las aplicaciones industriales, lo cual comporta 

numerosos problemas que en definitiva se manifiestan como dificultades de coste y de 

tecnología para aprovechar esta energía. En el caso de necesitarse flujos de energía no muy 

altos, se puede utilizar radiación difusa, que tiene la ventaja de no requerir ningún tipo de 

movimiento de los paneles solares para hacer un seguimiento del sol a lo largo de su trayectoria 

diurna. Por el contrario, si las aplicaciones energéticas requieren mayores valores de flujo de 

radiación, hay que concentrar la radiación solar, y ello sólo puede hacerse con la radiación 

directa, lo cual restringe la ubicación de estas aplicaciones a lugares de gran insolación, ya que 

de otra forma se encontrarían muy pocas horas al año de radiación útil a los efectos buscados 

por este tipo de colectores. 

 

1.3. SISTEMAS TERMOSOLARES DE CONCENTRACIÓN 

 

Como se ha comentado anteriormente, en una central termosolar la energía primaria es la 

radiación solar. Esta energía, cuando llega a la superficie de la tierra, tiene una densidad 

energética insuficiente para poder alcanzar, mediante los procesos de absorción térmica 

convencionales, temperaturas de trabajo suficientemente elevadas como las requeridas por los 

ciclos de potencia de las centrales termosolares para funcionar con rendimientos aceptables. Se 

hace necesario entonces concentrar la radiación del sol de tal forma que el flujo energético se 

multiplique.  

 

Por lo tanto, los sistemas termosolares de concentración se van a caracterizar por el uso de 

dispositivos que redireccionan la radiación solar incidente sobre una determinada superficie, 

superficie captadora, AC, y la concentran sobre una superficie de menor tamaño superficie 
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receptora, ARec o simplemente, receptor. El cociente de las áreas de estas dos superficies se 

denomina razón de concentración, C. 

 

cRe

C

A

A
C   

 

La máxima razón de concentración que puede obtenerse depende de la distribución angular de la 

radiación. Si se supone que los rayos solares son perfectamente paralelos, no existe límite 

teórico a la razón de concentración, siendo la geometría óptima del concentrador la de un 

paraboloide de revolución que se mueve de tal forma que siempre esté orientado hacia el sol. 

Cuanto mayor sea la razón de concentración solar de un colector, mayor es la temperatura 

alcanzable, pero a la vez más complicado el seguimiento del movimiento aparente del sol.  

 

Aspectos positivos del uso de concentradores 

 

 La cantidad de energía sobre la superficie de absorción por unidad de área crece, con lo 

cual se pueden alcanzar las altas temperaturas requeridas por los ciclos termodinámicos 

de potencia convencionales. 

 

 Reducen las pérdidas de calor al utilizar un receptor de menor área mejorando el 

rendimiento térmico. 

 

 Los costes se reducen pues se reemplaza un receptor costoso por un área reflectora  

menos cara y más duradera. 

 

 Se obtienen altas temperaturas incluso en invierno. 

 

Aspectos negativos del uso de concentradores 

 

 Trabajan sólo con la componente directa de la radiación solar, quedando restringido su 

uso a lugares con altas tasas de insolación. 

 

 Las superficies reflectivas pueden perder su reflectancia con el tiempo, además 

requieren de una protección selectiva y de limpieza y mantenimiento periódicos. 
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 Cuanto más alta sea la temperatura a la cual la energía tiene que ser entregada en un 

concentrador, mayor deberá ser la razón de concentración. Para lograr esto, la geometría 

del concentrador necesita ser la más precisa posible, así como del sistema que permite 

el seguimiento solar, lo que se ve reflejado en los costes de los sistemas termosolares. 

 

1.3.1. Clasificación de los sistemas termosolares de concentración 

 

Conforme a la razón de concentración se distinguen los siguientes sistemas termosolares de 

concentración: 

 

i) Sistemas cilindro parabólicos: estos sistemas utilizan espejos en forma de canales 

parabólicos que enfocan la luz solar sobre receptores tubulares de alta eficiencia, por los cuales 

circula un fluido térmico. Este fluido, normalmente aceite, es calentado a temperaturas de hasta 

400°C y se bombea a través de una serie de intercambiadores de calor para producir vapor 

sobrecalentado, el cual acciona una turbina de vapor y un generador eléctrico convencional para 

producir electricidad mediante un ciclo Rankine. La eficiencia solar-eléctrica alcanzada por 

estas centrales está sobre el 15%. Con estos sistemas se consiguen razones de concentración 

entre 70 y 100.  

 

 
 

Figura 1.4. Colector cilindro parabólico. 

(Fuente: http://www.solarweb.net) 

 

ii) Concentradores lineales tipo Fresnel: es también una tecnología de un solo eje de 

seguimiento, pero difiere del colector cilindro parabólico porque el absorbedor está fijo en el 

espacio, en la zona focal. Utiliza reflectores planos, simulando un espejo curvo por variación del 

ángulo ajustable de cada fila individual de espejos, en relación con el absorbedor. Destaca por la 
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sencillez constructiva y por su bajo coste. Las eficiencias solar-eléctrica alcanzadas por estas 

centrales están en el rango de 8 a 10%. Se consiguen razones de concentración entre 30 y 70. 

 

 

Figura 1.5. Concentrador lineal tipo Fresnel. 

(Fuente: http:// www.solarpaces.org) 

 

iii) Sistemas de receptor central: utilizan un gran campo de espejos planos con seguimiento en 

dos ejes, llamados helióstatos, que siguen al sol para enfocar la radiación solar en un receptor 

central (intercambiador de calor) montado en lo alto de una torre y producen temperaturas 

aproximadas de 500 a 1500ºC. Estas plantas son ideales para escalarse en el rango de 30 a 400 

MW. Las eficiencias solar-eléctrica alcanzadas por estas centrales están en el rango del 15- 

20%. Los factores de concentración que se consiguen en este caso oscilan entre 600 y 1000. 

 

 

Figura 1.6. Sistema de receptor central. 

(Fuente: http://www.solarweb.net)  

 

iv) Discos parabólicos: estos sistemas consisten en un concentrador en forma de plato 

parabólico con un receptor en la zona focal. Estos concentradores se montan en una estructura 



    
 

 - 25 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

con un sistema de seguimiento en dos ejes. El calor colectado es utilizado directamente por un 

motor térmico montado en el receptor que se mueve con la estructura del plato. Los motores de 

ciclo Stirling y de ciclo Brayton se utilizan actualmente para la conversión de energía térmica a 

mecánica-eléctrica. Este tipo tecnología es actualmente la más eficiente de todas las tecnologías 

solares, con cerca de 25% de eficiencia neta de conversión de la energía solar a eléctrica. Las 

razones de concentración también son las más altas, entre 1000 y 5000. 

 

 

Figura 1.7. Discos parabólicos. 

 (Fuente: www.sitiosolar.com) 

 

1.3.2. Comparación de los distintos sistemas termosolares de 

concentración 

 

En este apartado se comparan las distintas tecnologías de concentración solar existentes 

actualmente y también se van a exponer los motivos por los que se ha elegido la tecnología de 

colectores cilindro parabólico para la realización de este proyecto final de carrera. 

 

Las razones de dicha elección se pueden resumir en los siguientes tres puntos: 

 

 De las tres tecnologías actuales de centrales térmicas solares descritas anteriormente, las 

plantas con colectores cilindro parabólicos son las que cuentan actualmente con una 

mayor experiencia comercial. 

 

 Las centrales térmicas solares con colectores cilindro parabólicos son las que presentan 

actualmente un menor coste para generar electricidad. 
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 El escaso riesgo, desde el punto de vista tecnológico que conlleva la instalación de este 

tipo de plantas.   

 

En la tabla 1.1 se comparan los cuatro sistemas termosolares de concentración actuales más 

relevantes utilizados en las plantas termosolares de generación eléctrica, en función de sus 

parámetros técnicos, estado comercial, etc. 

 

 
CILINDRO 

PARABÓLICOS 
RECEPTOR 
CENTRAL 

DISCO 
PARABÓLICO 

CONCENTRADOR 
LINEAL FRESNEL 

Generación 

eléctrica 

Plantas conectadas a la red 

eléctrica 

 

 

 

 

 

 

Máxima potencia por central 

hasta la fecha: 80MW. 

Potencia total 

construida: más de 500MW y 

más de 10GW en 

desarrollo 

Plantas conectadas a la 

red eléctrica 

 

 

 

 

 

 

Máxima potencia por 

central hasta la fecha: 

20MW en 

construcción, 

Potencia total ~50MW 

con al menos 100MW 

en desarrollo 

Sistemas pequeños 

independientes, 

sin conexión a red o 

centrales más grandes de 

discos conectados a la red 

eléctrica 

 

 

Máxima potencia por 

central hasta la fecha: 

140kW,  

propuestas 

para 100MW y 500MW 

en Australia y EE.UU.) 

Plantas conectadas a 

la red, o generación 

de vapor para su uso 

en plantas térmicas 

convencionales. 

 

 

 

Máxima potencia por 

central hasta la fecha: 

5MW en EE.UU.,  

con 177MW en 

proceso de desarrollo) 

Ventajas 

• Ya en el mercado 

– más de 16.000 

millones de kWh de 

experiencia operativa; 

temperatura operativa 

potencial de hasta 

500°C (400°C probado 

comercialmente) 

 

• Eficiencia neta anual de 

probado rendimiento de la 

planta del 15% 

(radiación solar a 

potencia eléctrica neta) 

 

• Inversión y costes 

operativos probados 

comercialmente 

 

• Modularidad 

 

• Buen uso del terreno 

 

• La menor demanda de 

materiales 

 

• Concepto híbrido probado 

 

• Capacidad de 

almacenamiento 

• Buenas perspectivas 

a medio plazo para 

grandes eficiencias 

de conversión, 

temperatura operativa 

potencial de más 

de 1000°C (565°C 

probado a escala de 

10 MW) 

 

• Almacenamiento a 

altas 

temperaturas 

 

• Posible operación 

híbrida 

 

• Mejores para 

refrigeración en seco 

que los cilindro 

parabólicos 

 

• Mejores opciones 

para usar en lugares no 

llanos 

• Eficiencias de 

conversión muy altas 

– conversión solar pico 

a electricidad neta de 

más del 30% 

 

• Modularidad 

 

• Integra de la forma 

más efectiva el 

almacenamiento 

térmico en una central 

grande 

 

• Experiencia operativa 

de primeros proyectos 

de demostración 

 

• Fácil fabricación y 

producción en serie de 

piezas disponibles 

 

• No requiere agua para 

refrigerar el ciclo 

• Ya disponible 

 

• Pueden adquirirse 

espejos planos y 

doblarse in situ, menos 

costes de fabricación 

 

• Posible operación 

híbrida 

 

• Muy alta eficiencia 

solar alrededor del 

mediodía solar. 
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Desventajas 

• El uso de medio de 

transferencia térmica a base 

de aceite restringe hoy las 

temperaturas operativas a 

400°C, por lo que se obtienen 

sólo calidades de vapor 

moderadas 

• Los valores anuales 

de rendimiento 

previstos, los costes 

de inversión y su 

operación necesitan 

pruebas a mayor 

escala en operaciones 

comerciales 

• No hay ejemplos de uso 

comercial a gran escala 

 

• Objetivos de 

costes previstos de 

producción en serie 

aún por probar 

 

• Menor potencial de 

disponibilidad para 

integración a la red 
 

• Receptores híbridos aún 

en proceso de I+D 

• Reciente entrada en 

el mercado, sólo hay 

pequeños proyectos 

operativos 

 

 

 

Tabla 1.1. Comparación entre las principales tecnologías termosolares de concentración. 

(Fuente: Greenpeace, 2009) 

 

Las centrales de receptor central, los colectores cilindro parabólicos y Fresnel, son más 

apropiados para proyectos de gran tamaño conectados a red, en el rango de 30-250 MW, 

mientras que los sistemas de disco parabólicos son modulares y pueden ser usados en 

aplicaciones independientes o en grandes proyectos. 

 

Un reflejo del distinto grado de madurez tecnológica de las distintas tecnologías lo constituyen 

los actuales proyectos en desarrollo. Aunque pudiera parecer que el desarrollo de nuevas 

tecnologías como los sistemas de receptor central, los discos parabólicos o los concentradores 

lineales de Fresnel están desplazando en importancia a los sistemas cilindro parabólicos, esto 

esta todavía lejos de ocurrir. Para corroborar esta afirmación, se aporta el dato de que según la 

agencia española de la industria solar termoeléctrica (Protermosolar) y basándose en la 

resolución del registro de preasignaciones, ha principios del 2013, en España deberían estar 

funcionando 60 centrales termoeléctricas (actualmente hay operativas 10). De esas 60 centrales, 

el 80% utilizarán sistemas cilindro parabólicos. 

 

Como cualquier otro captador de concentración, los colectores cilindro parabólicos sólo pueden 

aprovechar la radiación solar directa, lo que exige que el colector vaya modificando su posición 

durante el día. Este movimiento se consigue mediante el giro alrededor de un eje paralelo a su 

línea focal. 

 

El tipo de fluido de trabajo que se utiliza en los colectores cilindro parabólicos depende de la 

temperatura a la que se desee alcanzar. Para aplicaciones en el campo de la generación eléctrica 

se utilizan aceites sintéticos porque posibilitan alcanzar altas temperaturas cercanas a los 400ºC, 

a presiones moderadas, sobre 18 bares. 
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De las cuatro tecnologías actuales, las plantas con colectores cilindro parabólicos son las que 

cuentan actualmente con una mayor experiencia comercial. Las nueve plantas SEGS
1
 (Solar 

Electricity Generating Systems) construidas en California en los años ochenta, con sus más  de 

2.5 millones de metros cuadrados de concentradores, son el mejor ejemplo del estado del arte de 

esta tecnología. Con una capacidad de producción en régimen comercial de 354 MW, las plantas 

SEGS han acumulado una gran experiencia. 

 

Las plantas SEGS típicas carecen de almacenamiento térmico, pero cuentan con calderas de gas 

auxiliares  que  pueden ser usadas tanto como complemento del campo solar, como para general  

electricidad en periodos en los que no existe radiación solar disponible (días nublados y durante 

la noche). 

 

La centrales termosolares de colectores cilindro parabólicos son las que presentan actualmente 

un menor coste para generar electricidad. El coste de la electricidad generada por las plantas de 

colectores cilindro parabólicos que se están implementando en estos momentos está entre los 10 

y 20 c€/kWhe (CSP Today),  dependiendo del tamaño de la planta y de la insolación disponible. 

Además, la tecnología de las plantas termosolares de colectores cilindro parabólicos está 

totalmente probada y disponible. 

 

El escaso riesgo, desde el punto de vista tecnológico que conlleva la instalación de plantas tipo 

SEGS es la causa de que existan en la actualidad varias empresas promoviendo la instalación de 

plantas termosolares de este tipo en un buen número de países con un buen nivel de insolación 

(Brasil, Egipto, España, Grecia, India, México y Pakistán). 

 

Las centrales termosolares pueden contar con un sistema de almacenamiento y/o de hibridación 

que ayuda a que la central siga funcionando cuando hay intervalos de nubes o periodos sin sol. 

Esto también aporta una capacidad de gestionabilidad que no tienen otras energías renovables, 

pues permite dosificar la energía según los picos y caídas de la demanda energética diaria. 

 

El almacenamiento puede complementarse o sustituirse con un sistema auxiliar de gas natural o 

biomasa, lo que ofrece una oportunidad importante de reducir los costes de la electricidad 

generada. 

 

1 
De las nueve plantas SEGS instaladas en California (EE.UU.), existen en la actualidad ocho en 

operación diaria, con una potencia nominal de 340MW. Un incendio ocurrido en febrero de 

1999 en la primera de las plantas (SEGS-I) la puso fuera de funcionamiento. 
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En La figura 1.8 se muestra el esquema básico operativo de las plantas termosolares de 

tecnología cilindro parabólica SEGS-VII y SEGS-IX. 

 

 

Figura 1.8. Esquema de funcionamiento de la planta SEGS-VIII y SEGS-IX. 

(Fuente: Abengoa Solar, 2009) 

 

En el esquema de las plantas SEGS de la figura 1.8, un campo solar compuesto por filas 

paralelas de colectores cilindro parabólicos conectados en serie convierte la radiación solar 

directa en energía térmica, calentando el aceite que circula por los tubos absorbentes de los 

colectores solares. El aceite así calentado, es posteriormente enviado a un generador de vapor de 

tres etapas (precalentador, evaporador y sobrecalentador) y también un recalentador. El vapor 

producido por el generador de vapor pasa a la turbina de alta presión, donde después de 

expandirse y transformar su energía térmica en energía mecánica, sale al recalentador nombrado 

anteriormente donde eleva su temperatura antes de introducirse en la turbina de baja presión, 

donde vuelve a expandirse y generar más energía mecánica. De la turbina de baja pasa al 

condensador. Una vez condensada, el agua vuelve al generador de vapor después de haber sido 

desaireada y precalentada en el desgasificador, el cual se nutre de una extracción realizada en la 

turbina de baja. También se puede observar en el esquema un calentador de aceite, el cual se 

utilizara para calentar el mismo en los periodos de baja radiación solar. Las plantas SEGS-VIII 

y SEGS-IX no cuentan con almacenamiento térmico como se puede ver. 

 

En la tabla 1.2 se muestra un resumen de las características principales de las nueve plantas 

SEGS, todo un referente y pioneras en el campo de la generación eléctrica mediante sistemas 

solares de concentración de tecnología cilindro parabólica. 
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Planta País 
Potencia 

( MWe) 

Fluido de 

Trabajo 

 

Medio de 

Almacenamiento 

 

Comienzo 

operación 

SEGS-I 

 

EE.UU. 

 

14 Aceite (ESSO 500) 
Aceite 

(ESSO  500) 
1984 

 

SEGS-II 

 

EE.UU. 30 

 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1985 

SEGS- III  EE.UU. 30 

 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1986 

 

SEGS- IV 

 

EE.UU. 30 

 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1986 

SEGS-V EE.UU. 30 

 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1987 

SEGS-VI EE.UU. 30 

 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1988 

SEGS-VII EE.UU. 30 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1988 

SEGS-VIII EE.UU. 80 

 

Aceite 

(Monsanto VP-1) 

 

Sin Almacenamiento 1989 

 

SEGS-IX 

 

 

EE.UU. 

 

 

80 

 

Aceite 

(Monsanto VP-1) 

 

 

Sin Almacenamiento 

 

 

 

1990 

 

 

Tabla 1.2. Cuadro resumen de las plantas SEGS. 

(Fuente: Fernández Salgado, 2008) 

 

1.3.3. Impacto ambiental  

 

Se ha considerado importante dedicar un apartado al impacto ambiental que este tipo de 

centrales ocasionan. No hay duda que este es uno de los aspectos más positivo de este tipo de 

tecnologías, sobre todo si se comparan con otras formas de generación eléctrica basadas en la 

quema de combustibles fósil. 
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La energía térmica solar de concentración forma parte del conjunto de energías renovables que 

generan energía eléctrica en ausencia de procesos de combustión y por tanto sin emisiones de 

gases que producen efecto invernadero.  

 

La gran ventaja de la energía solar termoeléctrica es poder producir electricidad de la misma 

forma que las centrales convencionales pero utilizando como energía primaria la radiación solar 

concentrada. Se trata de una tecnología que puede producir grandes cantidades de energía y 

contribuir por lo tanto de una manera significativa al abastecimiento de las necesidades 

energéticas del mundo, sin destruirlo, sin agotar sus reservas y sin cambiar el clima.  

 

No existen impactos sobre el medio físico, ni sobre la calidad del aire, ni sobre los suelos; 

tampoco se provocan ruidos ni se afecta a la hidrología existente. Tampoco entraña ningún 

riesgo para la seguridad de los operarios de las centrales.  

 

La energía solar termoeléctrica comparativamente con otras tecnologías causa pequeños 

impactos negativos al medioambiente. Las principales repercusiones se relacionan con el uso de 

fluidos de transferencia de calor, con los consumos de agua, con la ocupación de terrenos y con 

el impacto visual: 

 

Los fluidos de transferencia de calor normalmente utilizados en los cilindro parabólicos son 

hidrocarburos aromáticos como el óxido de biphenyl-diphenyl y producen algún nivel de 

emisiones de vapor durante la operación normal. En el caso de las plantas de receptor central no 

se emite ningún gas o líquido durante su operación. La sal utilizada como fluido caloportador no 

es tóxica y puede ser reciclada si es necesario. 

 

La disponibilidad de agua puede ser un factor significativo en las regiones áridas donde pueden 

instalarse mejor las plantas termoeléctricas, debido a que se requieren de 15000 a 20000 

m
3
/MW por año. 

 

Respecto a la ocupación de terrenos existen diferencias entre las distintas tecnologías. Mientras 

que en las centrales de colectores cilindro parabólicos, la ocupación es de aproximadamente una 

hectárea por MW, para los proyectos de receptor central este ratio se multiplica por 6-8. Aunque 

los colectores lineales de tipo Fresnel ocupan más terreno que los cilindro parabólicos, pero 

cuentan con la ventaja de que su configuración permite que se pueda usar el suelo debajo de los 

colectores con fines agrícolas o constructivos (ej. la estructura de un aparcamiento). 
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Esta ocupación de terrenos en algunos emplazamientos específicos podría tener incidencia sobre 

la flora y la fauna del emplazamiento, aunque el impacto no es superior al de cualquier planta 

convencional. 

 

En el caso del impacto visual, las plantas de tecnología cilindro parabólica la altura es inferior a 

4 metros, lo que significa que a 100 m de distancia el impacto visual es nulo por ser el ángulo 

visual menor de 2.5º (Mooney, 2006). 

 

Por otro lado, desmontar una central termoeléctrica no entraña ninguna dificultad por lo que se 

podría hablar de reversibilidad, ya que la mayoría de los materiales que se utilizan en las plantas 

(acero, cristal, etc.) se pueden reciclar. 

 

1.3.4. Situación actual de la energía termosolar de concentración en 

España 

 

En la actualidad hay diez plantas termosolares operativas en territorio español. Andalucía es la 

Comunidad Autónoma que cuenta con más centrales (6), seguida de Extremadura (2), Castilla 

La Mancha (1) y Murcia (1). Por provincia, la que más tiene es Sevilla, donde operan cuatro 

plantas. Le siguen Granada y Badajoz, con dos centrales, y Ciudad Real y Murcia con una 

central cada una. Entre todas ellas totalizan una potencia nominal de 382.4 MW. A continuación 

se describen las características de cada una de estas plantas: 

 

TABLA 1.3. PS10, DE ABENGOA EN SANLUCAR LA MAYOR, SEVILLA. 

Entrada en funcionamiento Mediados de 2007 

Tipo de tecnología Receptor central 

Potencia nominal 11 MW 

Superficie total 55 ha 

Superficie de captación 75000 m
2
 

Fluido de trabajo Vapor saturado 

Temperatura 250ºC 

Capacidad de almacenamiento 0.5 horas 

Sistema de almacenamiento Tanques de vapor saturado 

Esta planta entró en la historia al convertirse en la primera planta de nueva generación en 

conectarse a la red 17 años después de que lo hiciera la última de las centrales SEGS en 

California en 1990. 
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TABLA 1.4. ANDASOL 1 Y 2, DE ACS COBRA EN ALDEIRE, GRANADA. 

Entrada en funcionamiento ANDASOL1: finales de 2008 y ANDASOL2: 

mediados de 2009 

Tipo de tecnología Cilindro parabólico con almacenamiento térmico 

Potencia nominal 50 MW 

Superficie total 195 ha 

Superficie de captación 510000 m
2
 

Fluido de trabajo Aceite sintético 

Temperatura 392ºC 

Capacidad de almacenamiento 7.5 horas 

Sistema de almacenamiento 2 tanques de sales fundidas 

Han sido las primeras plantas comerciales en el mundo en utilizar un sistema de 

almacenamiento térmico de gran tamaño en sales fundidas. 

 

TABLA 1.5. PS20, DE ABENGOA EN SANLUCAR LA MAYOR, SEVILLA. 

Entrada en funcionamiento Principios de 2009 

Tipo de tecnología Receptor central 

Potencia nominal 20 MW 

Superficie total 80 ha 

Superficie de captación 150000 m
2
 

Fluido de trabajo Vapor saturado 

Temperatura 250ºC 

Capacidad de almacenamiento 0.5 horas 

Sistema de almacenamiento Tanques de vapor saturado 

 

TABLA 1.6. SOLNOVA 1 Y SOLNOVA 2 EN SANLUCAR LA MAYOR, SEVILLA 

Entrada en funcionamiento SOLNOVA1 finales de 2009 y SOLNOVA 2 

principios de 2010 

Tipo de tecnología Cilindro parabólico sin almacenamiento térmico 

Potencia nominal 50 MW 

Superficie total 115 ha 

Superficie de captación 300000 m
2
 

Fluido de trabajo Aceite sintético 

Temperatura 392ºC 

Capacidad de almacenamiento - 

Sistema de almacenamiento - 
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TABLA 1.7. IBERSOL, DE IBERDROLA EN PUERTOLLANO, CIUDAD REAL 

Entrada en funcionamiento Mediados de 2009 

Tipo de tecnología Cilindro parabólico sin almacenamiento térmico 

Potencia nominal 50 MW 

Superficie total 140 ha 

Superficie de captación 300000 m
2
 

Fluido de trabajo Aceite sintético 

Temperatura 390ºC 

Capacidad de almacenamiento - 

Sistema de almacenamiento - 

 

TABLA 1.8. LA RISCA, DE ACCIONA EN ALVARADO, BADAJOZ. 

Entrada en funcionamiento Mediados de 2009 

Tipo de tecnología Cilindro parabólico sin almacenamiento térmico 

Potencia nominal 50 MW 

Superficie total 130 ha 

Superficie de captación 300000 m
2
 

Fluido de trabajo Aceite sintético 

Temperatura 390ºC 

Capacidad de almacenamiento - 

Sistema de almacenamiento - 

 

TABLA 1.9. EXTRESOL 1 DE ACS-COBRA EN TORRE DE MIGUEL,  
CIUDAD REAL. 

Entrada en funcionamiento Finales de 2009 

Tipo de tecnología Cilindro parabólico con almacenamiento térmico 

Potencia nominal 50 MW 

Superficie total 195 ha 

Superficie de captación 510000 m
2
 

Fluido de trabajo Aceite sintético 

Temperatura 392ºC 

Capacidad de almacenamiento 7.5 horas 

Sistema de almacenamiento 2 tanques de sales fundidas 
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TABLA 1.10. PE1, DE NOVATEC / PROINTEC  
EN PUERTO ERRADO, MURCIA. 

Entrada en funcionamiento Principios de 2009 

Tipo de tecnología 
concentradores lineales tipo Fresnel sin 

almacenamiento térmico 

Potencia nominal 1.4 MW 

Superficie total 5 ha 

Superficie de captación 18000 m
2
 

Fluido de trabajo Vapor saturado 

Temperatura 270ºC 

Capacidad de almacenamiento - 

Sistema de almacenamiento - 

 

Aparte de las centrales en operación ya comentadas,  existen en España otras dieciséis nuevas 

centrales en un estado de construcción avanzada, y que totalizan 768 MW. Entrarán en 

funcionamiento dentro de este año 2010 y junto con las ya operativas elevarán la potencia 

instalada a 831 MW, lo que triplicará prácticamente la capacidad instalada en la actualidad. 

 

 

Figura 1.9. Previsiones de conexiones de las próximas centrales termosolares en España. 

(Fuente: Protermosolar, 2010) 

 

Además de las centrales nombradas anteriormente, existen treinta y cuatro centrales con 

preasignación de retribución que totalizan 1372 MW. En total, en España se contará con sesenta 

plantas termosolares distribuidas en once provincias que estarán finalizadas en 2013, y la 

potencia instalada en España ascenderá a 2500 MW. 

 



 

 - 36 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

España se ha convertido en el país de referencia, en el número uno en cuanto a la cantidad de 

proyectos y a la potencia instalada de centrales termosolares. Pero eso sólo no es lo más 

significativo, lo más importante es que este gran desarrollo se esta llevando a cabo con 

tecnología nacional propia. 

 

A continuación, se van a citar las empresas españolas más importantes del sector, así como los 

proyectos más relevantes en los que participan. La información se ha obtenido de diversas 

fuentes: las propias empresas, prensa especializada, etc., intentando en todo momento que sea lo 

más actualizada posible. 

 

ABENGOA 

 

 Abengoa Solar centra su actividad en la promoción, diseño, construcción y operación de 

plantas de generación de energía eléctrica que aprovechan el sol como fuente primaria 

de energía. 

 

 Abengoa Solar dispone del conocimiento y la tecnología propia para la construcción de 

plantas solares termoeléctricas. 

 

 Es la empresa con más proyectos en promoción, estudio y autorizaciones 

administrativas concedidas en España (más de 70 proyectos). 

 

 En España, el proyecto más importante de la empresa Abengoa es la Plataforma 

Solúcar. Supondrá  una potencia instalada de 300 MW, 50 MW a partir de tecnología de 

torre, 250 MW obtenidos de colectores cilíndrico parabólicos, 1.2 MW de tecnología 

fotovoltaica y 80 kW a partir de tecnología de disco parabólicos. La plataforma Solúcar 

supone 1200 millones de euros de inversión. Actualmente y como ya se ha visto 

anteriormente ya están construidas y operativas en dicha plataforma las centrales PS10, 

PS20, Solnova1 y Solnova3. 

 

 Proyectos internacionales en los que participa Abengoa: 

 

Marruecos: Planta híbrida de ciclo combinado-solar de 470 MW, de los cuales 20 MW 

provienen de un campo de colectores cilindro parabólico con aceite térmico (en 

construcción). 
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Argelia: Planta híbrida de ciclo combinado-solar de 150 MW de los cuales 20 MW 

procede de un campo de colectores cilindro parabólico con aceite térmico (en 

construcción). 

 

Emiratos Árabes Unidos: Proyecto de 100 MW de tecnología cilindro parabólica 

llamado Shams-1, cuando se construya será la mayor planta solar de Oriente Medio. 

 

EE.UU.: Planta Solana de 280 MW de tecnología cilindro parabólica en Arizona, 

cuando este construida será la mayor planta solar del mundo. 

 

ACCIONA 

 

 Acciona Energía es el operador global en energías renovables líder a nivel mundial, 

gracias a que está presente en casi todas las tecnologías limpias (eólica, hidráulica, 

termosolar, fotovoltaica, biocombustibles) y en un gran número de países. 

 

 Acciona ocupa una posición de liderazgo en el desarrollo de plantas solares 

termoeléctricas. 

 

 En España en la actualidad, esta involucrada en cuatro proyectos de plantas 

termosolares, las cuales tienen su correspondiente autorización administrativa. 

  

 En España ya tiene operativa su primera planta termosolar en propiedad, La Risca, en 

Alvarado, Badajoz, de 50 MW de potencia.. La compañía tiene otras tres plantas en 

construcción de la misma potencia, Majadas (Cáceres), y Palma del Río 2 en Córdoba, 

que estarán terminadas a finales del 2010, y Palma del Río 1, que se prevé esté 

concluida para 2011. Las cuatro plantas implican una inversión total cercana a los 1000 

millones de euros. 

 

 En EE.UU. ha construido en el desierto de Nevada la mayor planta solar termoeléctrica 

de los últimos años la Nevada Solar One, 64 MW, tecnología cilindro parabólica y 

operativa desde el 2007. Además también ha construido otra planta, Saguaro, en 

Arizona, 1 MW, tecnología cilindro parabólica, operativa desde el 2006, que ha sido la 

primera planta en el mundo en incorporar tecnología de operación automática. 
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ACS - COBRA 

 

 El Grupo ACS es una referencia mundial en las actividades de construcción y servicios. 

Un grupo que participa en el desarrollo de sectores clave para la economía como las 

infraestructuras y la energía. 

 

 La empresa Cobra forma parte de dicho consorcio español de construcción ACS. 

 

 ACS tiene operativa la planta termosolar Extresol 1, en Badajoz, 50 MW de potencia, 

tecnología cilindro parabólica, sistema de almacenamiento térmico y 300 millones de 

inversión. Supone la primera de las tres que la compañía tiene previsto promover en 

Extremadura.  

  

 También tiene una participación del 75% del capital propio de las plantas Andasol 1 y 

Andasol 2 (el otro 25% Solar Millennium AG), ambas operativas en estos momentos. 

 

 ACS logró el pasado mes de diciembre autorización del Ministerio de Industria para 

desarrollar seis plantas termosolares que suman 300 MW (50 MW cada una), repartidas 

en Andalucía, Castilla-La Mancha y Extremadura, lo que supone una inversión global 

de unos 1800 millones de euros. 

 

 ACS también ha entrado en el negocio de las plantas termosolares en EE.UU. dado que 

actualmente está desarrollando dos, una en Nevada (50 MW) y otra en California (100 

MW), respectivamente. 

 

 

 

Figura 1.10. Andasol 1. 

(Fuente: http://news.soliclima.com) 
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IBEREÓLICA SOLAR 

 

 Ibereólica Solar fue creada en 1999 para la promoción, construcción y explotación de 

plantas termosolares a nivel nacional. 

 

 Actualmente Ibereólica Solar, promociona 22 plantas termosolares. Tiene actualmente 

4 autorizaciones administrativas de 4 plantas termosolares de 50 MW (todas ellas en 

Extremadura). 

 

 También ha desarrollado una fábrica de logística y ensamblaje de espejos, ubicada en 

Torresfresneda (Badajoz) . 

 

SAMCA 

 

 Opera a través de las sociedades GALILEO SOLAR, RENOVABLES SAMCA, 

PRODUCTOS RENOVABLES y HELIOS RENOVABLE. 

 

 Las plantas que proyecta están localizadas geográficamente en las comunidades 

autónomas de Aragón, Andalucía, Castilla-La Mancha, Castilla- León y Extremadura. 

 

 En total proyecta la instalación de varias centrales solares termoeléctricas de 50 MW, 

que en conjunto alcanzarán los 350 MW. 

 

 Actualmente tiene dos proyectos muy avanzados en su construcción como son las 

plantas de La Florida y La Dehesa, ambas en la localidad de Badajoz. Son instalaciones 

de 50 MW cada una, de tecnología cilindro parabólica, y con almacenamiento de sales 

fundidas (7.5 horas). Con autorizaciones administrativas concedidas en 2007 y 2008 

respectivamente. Puestas en marcha previstas para 2010 La Florida, y 2011 La Dehesa. 

 

SENER 

 

 SENER, ha constituido con MASDAR, la empresa Torresol Energy para promover, 

construir y operar plantas de energía solar térmica de concentración. 
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 Torresol Energy lanzará en España tres plantas termosolares de un valor total 

aproximado de 800 millones de euros, una de las cuales tendrá tecnología de receptor 

central. 

 

 Su proyecto más destacado es la central Gemasolar. Situado en la localidad de Fuentes 

de Andalucía (Sevilla) utiliza la tecnología de receptor central, con una potencia de 17 

MW y con la peculiaridad de ser la primera central de este tipo de tecnología con 

almacenamiento con tanques de sales fundidas (15 horas). 

 

 También está construyendo las centrales Valle 1 y Valle 2, en la provincia de Sevilla, de 

50 MW cada una y de tecnología cilindro parabólica. 

 

VALORIZA 

 

 La empresa Valoriza forma parte del consorcio empresarial Sacyr Vallehermoso. 

 

 Su campo de actuación se orienta hacia la ingeniería y construcción de proyectos 

energéticos, sobre todo relacionados con las energías renovables: biomasa, termosolar, 

fotovoltaica y eólica. 

 

 Valoriza Energía está desarrollando en la actualidad los proyectos Lebrija 1, 2 y 3 de 50 

MW de potencia cada una. 

 

 Alcanzo un acuerdo estratégico con la multinacional israelí Solel (ahora Siemens) con el 

objetivo de lograr 500 MW de potencia instalada par el 2014. 

 

 Siemens con la compra de Solel se ha convertido es la empresa líder en el diseño y 

fabricación de componentes de campos solares de concentración. 

 

 

Figura 1.11. Montaje de los colectores cilindro parabólicos  

en el campo solar de la central Lebrija 1. 

(Fuente: http://www.siemens.com) 
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1.4. COLECTORES CILINDRO PARABÓLICOS  

 

En este apartado del capítulo 1, se van a conocer en detalle los colectores cilindro parabólicos, 

de que partes constan, como funcionan y que rendimiento ofrecen. Para ello se ha consultado 

diversa bibliografía especializada, pero cabe reseñar que los trabajos realizados por Eduardo 

Zarza Moya
2
 ocupan un lugar prioritario. Sus estudios aúnan los aspectos científicos y docentes 

junto con una clara vocación de divulgación más allá de los ámbitos más especializados. 

 

1.4.1. Componentes de un colector cilindro parabólico 

 

Uno de los sistemas que más se ha desarrollado en los últimos años es el colector cilíndrico 

parabólico, conocido comúnmente con las siglas CCP. Este está compuesto básicamente por un 

espejo cilindro parabólico que refleja la radiación solar directa concentrándola sobre un tubo 

receptor colocado en la línea focal de la parábola. La radiación solar concentrada produce el 

calentamiento del fluido de trabajo que circula por el interior del tubo receptor, obteniendo de 

esta forma energía térmica a partir de la radiación solar. La Figura 1.12 muestra un esquema de 

un CCP e ilustra su modo de funcionamiento. 

 

 

 

Figura 1.12. Funcionamiento de un colector solar cilindro parabólico. 

(Fuente: http://www.renewables-made-in-germany.com) 

 

2
 Eduardo Zarza Moya es Ingeniero Industrial y Doctor por la Universidad de Sevilla. Nacido en 

el año 1958, lleva 25 años dedicado a los sistemas solares de concentración, participando en 

numerosos proyectos y actividades de I+D. Actualmente es el responsable de la Unidad de 

Sistemas de Concentración Solar de la Plataforma Solar de Almería, PSA. 
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Desde el punto de vista estructural, cuatro son los elementos principales de un CCP: 

 

 El reflector cilindro parabólico. 

 

 El tubo absorbedor o receptor. 

 

 El sistema de seguimiento solar. 

 

 La estructura metálica. 

 

i) El reflector cilindro parabólico 

 

Es el componente clave de un concentrador cilindro parabólico ya que su misión es reflejar y 

concentrar sobre el tubo receptor la radiación solar directa que incide sobre su superficie. Se 

trata en definitiva de un espejo curvado en una de sus dimensiones con forma de parábola, que 

concentra sobre su línea focal toda la radiación solar que atraviesa su plano de apertura. Para 

llevar a cabo la reflexión, se utilizan películas de plata o aluminio depositadas sobre un soporte 

que le da suficiente rigidez. Estos medios soporte pueden ser chapa metálica, plástico o cristal.. 

 

 
 

Figura 1.13. Espejos reflectantes de un concentrador cilindro parabólico. 

(Fuente: Solar Millennium AG, 2009) 

 

ii) El tubo absorbente o receptor 

 

El tubo absorbente es uno de los elementos más importantes de todo CCP, ya que de él depende 

en gran medida el rendimiento global del colector. El tubo absorbente de un CCP consta en 

realidad de dos tubos concéntricos. Un tubo interior metálico, por el que circula el fluido que se 
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calienta, y el exterior de cristal. El tubo metálico lleva un recubrimiento selectivo que posee una 

elevada absortividad (>90%) y una baja emisividad en el espectro infrarrojo (<30%), lo que le 

proporciona un elevado rendimiento térmico. El tubo de cristal que rodea al tubo interior 

metálico tiene la doble misión de reducir las pérdidas térmicas por convección en el tubo 

metálico y de proteger de las inclemencias meteorológicas su recubrimiento selectivo. Para ello, 

entre el tubo metálico y el tubo de vidrio se hace el vacío. 

 

Por el interior del tubo receptor circula el fluido de trabajo. El tipo de fluido que se utiliza en los 

CCP depende de la temperatura máxima de operación. Si las temperaturas que se desean son 

moderadas (<200ºC), se puede utilizar agua desmineralizada, o una mezcla con Etileno-Glicol, 

como fluido de trabajo. En cambio, se utiliza aceite sintético en aquellas aplicaciones donde se 

desean temperaturas más altas (200ºC < T < 400ºC). Este último es el caso que se va a dar en 

este proyecto, donde la aplicación va a ser la generación eléctrica. 

 

 

Figura 1.14. Esquema de un tubo absorbedor de un colector cilindro parabólico.  

(Fuente: Zarza, 2004) 

 

iii) El sistema de seguimiento del sol 

 

Con el fin de poder concentrar sobre el tubo absorbedor la radiación solar, los CCP deben seguir 

al sol durante el día, por eso van dotados de un mecanismo de seguimiento solar que va 

cambiando la posición del CCP conforme el sol se va moviendo. El sistema de seguimiento más 

común consiste en un dispositivo que gira los reflectores cilindro parabólicos del colector 

alrededor de un eje. Con este sistema se maximiza el tiempo de exposición a la radiación solar 

directa de la superficie captadora. 
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Figura 1.15. Seguimiento solar típico de un CCP. 

(Fuente: Silva Pérez, 2004) 

 

Normalmente los CCP se instalan de forma que su eje de giro queda orientado en la dirección 

Norte-Sur, o Este-Oeste según la latitud del emplazamiento. La orientación Norte-Sur es la más 

aconsejable para plantas ubicadas en España, ya que aunque existe una diferencia más acusada 

entre la energía colectada en invierno y en verano, el total de energía en un año es mayor que en 

el caso de orientación Este-Oeste (Montes Pita, 2008). 

 
 

Figura 1.16. Orientación Este-Oeste. 

(Fuente: Zarza, 2004) 

 

iv) La estructura metálica 

 

La misión de la estructura del colector es la de dar rigidez al conjunto de elementos que lo 

componen, a la vez que actúa de interfase con la cimentación del colector. Todos los colectores 

CCP actuales usan estructuras metálicas, que en algunos casos son del tipo espacial, como la del 

CCP modelo Eurotrough y en otros casos están fabricadas con perfiles llenos. 
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1.4.2. Balance energético de un colector cilindro parabólico 

 

Dos parámetros básicos de un colector cilindro parabólico son la razón de concentración (vista 

en el apartado 1.2.1. ahora se vuelve a ver pero para el caso en concreto de un colector cilindro 

parabólico) y el ángulo de aceptancia.  

 

La razón de concentración geométrica, C, es el cociente entre el área de apertura del colector y 

el área total del tubo absorbedor, para un CCP queda de la siguiente manera: 

 

2

4

DL

A
C







 

Siendo: 

 

 

A: El área de apertura del colector. 

 

D: El diámetro del tubo receptor. 

 

C: Longitud del colector. 

 

El ángulo de aceptancia, θ, es el ángulo máximo que pueden formar dos rayos en un plano 

transversal de la apertura del colector de manera que, una vez reflejados, dichos rayos 

intercepten el tubo absorbente. 

 

Los valores usuales de la razón de concentración de un colector cilindro parabólico están entre 

70 y 100, aunque el valor máximo teórico está en torno a 220. 

Figura 1.17. Estructura del colector Eurotrough. 

(Fuente: De VV.AA. EUROTROUGH - 

Parabolic Trough Collector, 2002) 
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Los colectores cilindro parabólicos actuales tienen un ángulo de aceptancia inferior a 1º y 

necesitan un sistema de seguimiento preciso, de lo contrario solamente captarían una pequeña 

fracción de la radiación solar directa disponible en cada momento, ya que necesitan seguir al sol 

con un error de seguimiento inferior al ángulo de aceptancia del colector. La precisión que 

tienen los sistemas de posicionamiento usados actualmente suele ser del orden de 0.25º. 

 

Los colectores cilindro parabólicos están diseñados para trabajar en un rango de temperaturas 

entre 150-400ºC. Para temperaturas superiores, las pérdidas térmicas asociadas a este tipo de 

colectores son altas y reducen su rendimiento. Para temperaturas inferiores a 150ºC hay otros 

colectores más económicos. 

 

 
 

Figura 1.18. Ángulo de aceptancia de un CCP. 

(Fuente: Zarza, 2004) 

 

1.4.2.1. Pérdidas en un colector cilindro parabólico 

 

En el proceso de aprovechamiento térmico de radiación solar directa que va a alcanzar la 

superficie de un colector cilindro parabólico, se va a perder una cantidad importante de ella 

debido a diferentes factores. Estas pérdidas se pueden dividir en tres grupos: 

 

 Pérdidas geométricas. 

 

 Pérdidas térmicas. 

 

 Pérdidas ópticas. 
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i) Pérdidas ópticas 

 

Las pérdidas ópticas se deben a que ni la superficie reflexiva del concentrador es un reflector 

perfecto, ni el vidrio que cubre al tubo absorbente metálico es totalmente transparente, ni la 

superficie selectiva del tubo metálico es un absorbente perfecto, ni la geometría del 

concentrador parabólico es perfecta. Estas imperfecciones provocan que sólo una parte de la 

radiación solar directa que incide sobre la superficie del concentrador parabólico llegue al fluido 

que circula por el interior del tubo absorbente. La Figura 1.19. se muestran gráficamente los 

cuatro parámetros que intervienen en las pérdidas ópticas de un colector cilindro parabólico, los 

cuales son: 

 

  

 

 

Figura 1.19. Pérdidas ópticas en un CCP. 

(Fuente: Sabugal, 2009) 

 

Reflectividad de la superficie del concentrador parabólico, ρ: Las superficies reflexivas de los 

colectores no son perfectas, por lo que sólo parte de la radiación incidente se refleja. Los valores 

típicos de la reflectividad están alrededor del 93.5%. Sin embargo, estos valores de reflectividad 

disminuyen progresivamente conforme aumenta la suciedad en la superficie, de ahí la 

importancia de que estas se limpien cada poco tiempo. 

 

Factor de intercepción, γ: Parte de los rayos reflejados por los espejos no alcanzan a la cubierta 

de cristal del tubo absorbedor debido a diversas causas, como imperfecciones microscópicas o 

macroscópicas de la cubierta especular, o por errores de posicionamiento del colector, o incluso 

por el bloqueo que pueden suponer los soportes del tubo receptor. Este tipo de pérdidas las tiene 

en cuenta el factor de intercepción. Un valor típico para este parámetro óptico es 95%. 
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Transmisividad de la cubierta de cristal, τ: El tubo receptor metálico está situado dentro de una 

cubierta de cristal cuya función es disminuir las pérdidas térmicas y proteger a la superficie 

selectiva. Parte de los rayos reflejados por los espejos y que alcanzan la cubierta de cristal del 

tubo absorbedor no son capaces de atravesarlo. La razón entre la radiación que pasa a través de 

la cubierta de cristal y la radiación total incidente sobre ella da la transmisividad de dicha 

cubierta de vidrio. Un valor típico de este parámetro esta entre el 92-96%, dependiendo de sí la 

cubierta ha sido objeto de un tratamiento antirreflexivo o no. 

 

Absortividad de la superficie selectiva, α: Este parámetro cuantifica qué cantidad de la radiación 

incidente es finalmente absorbida por el tubo. Un vapor típico de la absortividad se encuentra en 

el rango 90% – 96%. 

 

ii) Pérdidas geométricas 

 

Las pérdidas geométricas lo que provocan es una disminución del área efectiva de captación de 

los colectores. Las pérdidas geométricas en un colector cilindro parabólico se dividen a su vez 

en dos grupos: 

 

a) Las debidas a la posición relativa entre filas de colectores. 

 

b) Las inherentes a cada colector. 

 

El primer grupo engloba a las denominadas “pérdidas por sombreamiento” y están causadas por 

la sombra parcial que algunos colectores pueden proyectar en los colectores adyacentes. Esta 

claro que cuanta mayor distancia exista entre las filas paralelas de colectores, menor es el 

sombreado que unos pueden provocar sobre otros. La Figura 1.20 describe este tipo de pérdidas 

geométricas por sombra. 

 

Figura 1.20. Pérdidas geométricas debidas a sombras entre filas paralelas. 

(Fuente: Silva Pérez, 2004) 
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El segundo grupo de pérdidas geométricas, las inherentes a cada colector, son debidas a que 

estos colectores están provistos de un sistema de seguimiento solar en un solo eje, y por lo tanto, 

sólo pueden girar alrededor de este eje, lo que da lugar a la existencia del llamado ángulo de 

incidencia, φ, que es el ángulo formado por la radiación solar directa que incide sobre el plano 

de apertura del colector y la normal a dicho plano de apertura. Este ángulo de incidencia 

depende de la hora y el día del año y provoca que en los extremos del colector haya una pérdida 

de superficie reflexiva útil. 

 

La Figura 1.21 muestra un corte longitudinal de un colector cilindro parabólico. Fijarse en  que 

la radiación reflejada por el tramo de superficie reflexiva de longitud LE no puede interceptar el 

tubo absorbente. 

 

 

Figura 1.21. Corte longitudinal de un CCP, mostrando el ángulo de incidencia. 

(Fuente: Silva Pérez, 2004) 

 

La presencia de un ángulo de incidencia no sólo reduce el área efectiva de captación que tiene el 

colector, sino que también afecta a los valores de la reflectividad, absortividad y transmisividad, 

ya que estos parámetros presentan un valor máximo cuando el ángulo de incidencia es 0º. El 

efecto del ángulo de incidencia en el rendimiento del colector se cuantifica mediante un 

parámetro que se denomina modificador por ángulo de incidencia, K, que se va a comentar más 

adelante. 

 

iii) Pérdidas térmicas 

 

Las pérdidas térmicas ocupan el segundo lugar en orden de importancia en un colector cilindro 

parabólico después de las pérdidas ópticas. Se producen principalmente en dos sitios: en el tubo 
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absorbedor y en las tuberías de fluido térmico en el campo solar, siendo bastante más 

importantes las producidas en el tubo absorbedor. 

 

Las pérdidas térmicas en el tubo absorbedor se deben a: pérdidas de calor por conducción a 

través de los soportes de los tubos absorbentes, pérdidas por radiación, convección y 

conducción desde el tubo absorbente hacia la cubierta de cristal, y pérdidas por convección y 

radiación desde el tubo de cristal al ambiente. En aquellos tubos absorbentes en los que entre el 

tubo metálico y el de cristal hay vacío, las pérdidas térmicas por conducción y convección desde 

el tubo metálico hacia la cubierta de vidrio quedan eliminadas, y sólo hay entre el tubo metálico 

y la cubierta de cristal pérdidas por radiación. 

 

1.4.2.2. Rendimiento de un colector cilindro parabólico 

 

Debido a todas las pérdidas ópticas, geométricas y térmicas que existen en un colector cilindro 

parabólico, la energía térmica útil que da es menor que la que daría en condiciones ideales, sino 

existieran dichas pérdidas. Se va a comentar a continuación como se calcula la potencia térmica 

útil que puede dar un colector en función de la radiación solar directa disponible y de los 

parámetros característicos del colector. 

 

El flujo de energía solar incidente sobre un colector cilindro parabólico viene dada por: 

 

Qsol =Sc·I·cos(φ) 

 

Siendo: 

 

Qsol = energía solar incidente sobre el colector (W). 

 

Sc = área de apertura de la superficie reflexiva del colector (m
2
). 

 

I = radiación solar directa (W/m
2
). 

 

φ = ángulo de incidencia. 

 

Por otra parte, la energía térmica útil suministrada por el colector viene dada, en términos del 

incremento entálpico que experimenta el fluido de trabajo en el colector, por: 

 

Qútil = qm·(hsal – hent) 

 

Siendo: 

 

Qútil = energía térmica útil suministrada por el colector (W) 
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qm = caudal másico del fluido de trabajo (kg/s) 

 

hsal = entalpía del fluido de trabajo a la entrada al colector (J/kg) 

 

hent = entalpía del fluido de trabajo a la salida del colector (J/kg) 

 

En un colector cilindro parabólico se suelen definir tres rendimientos diferentes y un parámetro: 

 

Rendimiento global, ηglobal. Considera todas las pérdidas, tanto ópticas como geométricas y 

térmicas, que tienen lugar en el colector. 

 

Qsol

Qútil
global   

 

Rendimiento rendimiento óptico pico, ηopt0º. Tiene en cuenta todas las pérdidas ópticas que 

tienen lugar en el colector con un ángulo de incidencia de nulo, 0º.  

 

 ºoopt  

 

Rendimiento térmico, ηth. Considera todas las pérdidas térmicas que tienen lugar en el colector. 

 

Modificador por ángulo de incidencia, K. Considera todas las pérdidas ópticas y geométricas 

que tienen lugar en el colector para un ángulo de incidencia φ ≠ 0º y que no se tienen en cuenta 

en ηopt,0º.  

 

La relación entre los rendimientos y el modificador por ángulo de incidencia viene dada por la 

siguiente expresión: 

 

ηglobal = ηopt0º ·K(φ)· ηth 

 

La Figura 1.22 representa gráficamente el balance energético en un colector cilindro parabólico. 

En ella se puede observar como una parte del flujo de energía incidente sobre el colector se 

pierde a causa del rendimiento óptico, mientras que otra se pierde por la existencia de un ángulo 

de incidencia distinto de 0º. Las pérdidas térmicas que se dan en el tubo absorbedor completan 

las pérdidas en el CCP. 
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Figura 1.22. Diagrama de pérdidas y rendimientos de un CCP. 

(Fuente: Silva Pérez, 2004) 

 

Las plantas termosolares están compuestas esencialmente de dos partes: una que colecta la 

energía solar y la convierte en calor, y otra que convierte el calor en electricidad. En el punto 

1.4.1 y 1.4.2 se han estudiado los colectores cilindro parabólicos, ahora se va a analizar los 

ciclos de potencia asociados a dichas plantas termosolares. 

 

1.4 3. El ciclo de potencia en las plantas termosolares  

 

La energía térmica procedente del campo solar se comunica mediante los intercambiadores de 

calor al fluido de trabajo de un ciclo de potencia. Este fluido experimenta una serie de procesos 

(compresiones, expansiones, e intercambios de calor), mediante los cuales parte de la energía 

térmica que se le ha comunicado se convierte en energía mecánica. Las distintas organizaciones 

posibles de los procesos a los que se somete a este fluido de trabajo es lo que da forma a los 

distintos ciclos de potencia de las centrales. 

 

El ciclo termodinámico básico de referencia aplicado a un sistema termodinámico es el ciclo de 

Carnot, figura 1.23. 

 

   

Figura 1.23. Representación del ciclo termodinámico de 

Carnot en el diagrama T-S. 

(Fuente: Wagner, 2008) 
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El ciclo de Carnot consta de las siguientes fases: 

 

 Una etapa de compresión adiabática y reversible. 

 

 Una etapa de aportación de calor a temperatura constante en el foco caliente. 

 

 Una etapa de expansión adiabática y reversible. 

 

 Una cesión de calor a temperatura constante al foco frío. 

 

El ciclo de Carnot representa el límite máximo del rendimiento energético de un ciclo de 

potencia y  es función únicamente de la temperatura a la que entra la energía térmica en el ciclo 

(Tcaliente) y de la temperatura a la que se retira la energía térmica residual del ciclo mediante el 

sistema de refrigeración (Tfría). 

 

caliente

fria

Carnotmaxciclo
T

T
 1  

 

La temperatura mínima viene impuesta por la forma en que se refrigera el ciclo de potencia. 

Existen dos maneras de refrigerar el ciclo, mediante una gran masa de agua (río, mar, pantanos) 

o con el aire del ambiente. La primera forma es más favorable desde un punto de vista 

termodinámico a la hora de elevar el rendimiento del ciclo que la segunda. 

 

Normalmente, la temperatura máxima viene impuesta por limitaciones tecnológicas en los 

materiales empleados para implementar los equipos de la central, pero en el caso de las centrales 

termosolares de tecnología cilindro parabólica que usan aceite como fluido calorífico en el 

campo solar, la temperatura máxima esta limitada por el aceite elegido. 

 

1.4.3.1. Ciclos de Turbina de Vapor 

 

Los ciclos de turbina de vapor son los que se implementan normalmente en las centrales 

termosolares. El agua es uno de los fluidos de trabajo más disponibles y adecuados para emplear 

en un ciclo de potencia. La mayoría de las centrales termosolares que se han construido hasta la 

fecha y que se construirán en un futuro cercano emplean agua como fluido de trabajo en el ciclo 

de potencia.  
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El proceso termodinámico de comparación empleado para analizar el más elemental de estos 

ciclos es el denominado ciclo Rankine, porque en la practica el ciclo de Carnot presenta una 

serie de problemas tecnológicos a la hora de implementarlo con agua. Luego para resolver estos 

problemas y disponer por tanto de un ciclo de potencia práctico con agua como fluido de 

trabajo, se emplea el ciclo Rankine o sus variantes. 

 

 

 

 

Figura 1.24. Esquema básico de un ciclo de Rankine, donde se muestran todos los equipos físicos 

por los que pasa el agua al describir el ciclo. 

(Fuente: http://www.todomonografias.com) 

 

 

 

Figura 1.25. Diagrama T-S de un ciclo de Rankine básico. 

(Fuente: Ortega Montero, 2008) 

     Bomba 

Condensador 

     Turbina 

Generador de 

vapor 
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El agua que describe el ciclo pasa en primer lugar por el generador de energía térmica, (los 

intercambiadores de calor con el fluido utilizado en el campo) donde recibe el aporte de energía 

térmica, que provoca su evaporación y sobrecalentamiento. Posteriormente el vapor producido 

se dirige hacia la turbina de vapor donde se expansiona generando la energía mecánica que se 

usará para mover el generador eléctrico. A la salida de la turbina se extrae el calor residual del 

ciclo en el condensador, produciendo de nuevo el paso a fase líquida del agua, que a 

continuación se dirige a una bomba encargada de subir su presión hasta la necesaria en la 

entrada a la turbina. El rendimiento con el cual se convierte la energía térmica en trabajo en este 

ciclo depende de los siguientes factores: 

 

 Temperatura de entrada del vapor en la turbina. Cuanto más elevada, mayor el 

rendimiento. 

 

 Temperatura (o presión) de condensación del vapor. Cuanto más baja, mayor 

rendimiento. 

 

 Presión del vapor en la entrada a la turbina. Cuanto más elevada, mayor rendimiento. 

 

 Rendimiento de bombas y turbina. Cuanto más elevado, mejor. 

 

Señalar que las restricciones tecnológicas y del entorno son las que imponen limitaciones en el 

valor de los parámetros que condicionan el rendimiento del ciclo de Rankine. 

 

Las presiones de entrada en la turbina están limitadas por el contenido en humedad del vapor a 

la salida de la turbina: Si hay demasiadas gotas de agua en el vapor, se pueden romper los álabes 

de la turbina. Esta limitación es bastante severa, y obliga a introducir un recalentamiento del 

vapor antes de terminar su expansión en la turbina (ciclo Rankine recalentado) para poder 

trabajar con presiones elevadas. 

 

Normalmente, las temperaturas de entrada en turbina están limitadas por la resistencia 

estructural de los materiales con los que se construyen los componentes del ciclo. Debido a las 

elevadas presiones empleadas, los materiales empleados son aceros, limitando la temperatura 

máxima de entrada en turbina en valores del orden de 550ºC. Sin embargo, para el caso que se 

va a ver en este proyecto, esta temperatura va a estar condicionada por la temperatura máxima 

que puede alcanzar el fluido de trabajo en el campo solar. Cuando se utiliza aceite en un campo 

solar de colectores cilindro parabólicos dicha temperatura es bastante menor, ya que el aceite 
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sintético no admite trabajar por encima de 400ºC, y siempre hay que dejar cierto margen de 

seguridad, por lo que en general la temperatura máxima se limita a 393ºC. Si además de esto se 

tiene en cuenta el intercambio de calor aceite-agua que se realiza en el generador de vapor, la 

temperatura de entrada a turbina es de 380ºC aproximadamente. 

 

La temperatura de condensación está limitada por la temperatura de la masa de agua o el aire 

que empleemos para refrigerar el ciclo, encontrándonos en el rango de 30ºC al refrigerar con 

agua fría hasta 60ºC al refrigerar con aire.  

 

Los rendimientos de bombas y turbinas vienen dados por el diseño de las mismas, 

encontrándose en la actualidad entre el 80–90%. 

 

Dos modificaciones principales se aplican al ciclo de Rankine básico. Una de ellas ya se ha 

explicado, el recalentamiento intermedio del vapor antes de terminar su expansión en la turbina. 

El motivo fundamental de esta modificación es poder emplear mayores presiones de entrada en 

turbina, pero para valores elevados de dicha presión también contribuye a aumentar el 

rendimiento del ciclo. La otra modificación es el precalentamiento regenerativo, que consiste en 

hacer extracciones de vapor desde la turbina y emplearlas para precalentar el agua antes de 

entrar en la caldera (el campo solar en el caso que nos ocupa), lo cual tiene el efecto directo de 

aumentar el rendimiento del ciclo de potencia por incrementar la temperatura media a la cual 

introducimos la energía térmica en el mismo (García Casals, 2001). 
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CAPÍTULO 2 

 

SOLAR ADVISOR MODEL 

 

Se van a comentar a continuación, los aspectos que se consideran más relevantes del programa 

de ordenador utilizado en este proyecto para el diseño y análisis de una central termosolar de 

tecnología CCP. Se hace un fuerte hincapié en las enormes posibilidades que ofrece el programa 

en cuanto al diseño y configuración de la planta, así como también, en algunos aspectos que se 

han considerado mejorables según la opinión del autor de este proyecto. Si se quiere profundizar 

más en los cálculos que realiza este software, en la web https://www.nrel.gov/analysis/sam/ se 

puede descargar tanto el programa de ordenador como un manual completo donde aparece toda 

la formulación que usa en su análisis de los sistemas cilindro parabólicos. Se pensó introducirlo 

en el proyecto pero finalmente se desestimó por considerarlo bastante farragoso y largo (90 

páginas) y creyendo que lo verdaderamente importante era mostrar las fortalezas y debilidades 

de este  programa. 

 

2.1. INTRODUCCIÓN 

 

El programa de ordenador Solar Advisor Model (SAM), combina el análisis termodinámico con 

el análisis financiero de la mayoría de tecnologías solares existentes en la actualidad. Esta 

pensado para facilitar la toma de decisiones de toda persona implicada en la industria solar: 

jefes de proyecto, ingenieros, diseñadores, investigadores, etc. 

 

El programa hace predicciones y estimaciones económicas para proyectos de energía solar. 

Calcula el coste de la generación de electricidad basándose en informaciones como la ubicación 

geográfica del proyecto, instalaciones, equipos, costes de operación y mantenimiento, etc. 

 

En 2004, el “National Renewable Energy Laboratory” (NREL ),  junto con el “Sandia National 

Laboratory” y en colaboración con el “Department of Energy” de EE.UU. (DOE), desarrollaron 

SAM. Desde entonces el programa no ha dejado de evolucionar, introduciendo más aplicaciones 

cada día. 

 

Solar Advisor Model (SAM), es una implementación de TRNSYS del modelo EXCELERGY. 

El modelo de análisis SAM utiliza el motor de simulación de TRNSYS, (programa diseñado 

para simular el comportamiento transitorio de sistemas de energía térmica por la Universidad de 

Wisconsin) para hacer los cálculos de los flujos de energía por hora e incorpora EXCELERGY, 
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(programa de uso interno del National Renewable Energy Laboratory) para los cálculos 

económicos. 

 

El programa proporciona opciones para poder desarrollar análisis paramétricos, de sensibilidad 

y de optimización para ver como afectan las distintas variables que entran en juego en las 

tecnologías solares al rendimiento y costes de los mismos. 

 

 
 

Figura 2.1. Programa de análisis de sistemas solares “Solar Advisor Model”. 

 

El alcance del programa es bastante amplio. Las tecnologías solares a las que se destina 

incluyen actualmente: 

 

Energía solar térmica (baja temperatura) 

 

 Colectores planos 

 

Energía solar térmica de concentración (media-alta temperatura) 

 

 Colectores cilindro parabólicos 

 Discos parabólicos 

 Sistemas de receptor central 

 

Sistemas Fotovoltaicos 

 

 Sin concentración 

 Con concentración 
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Como se ha podido observar, la única tecnología térmica de concentración solar no disponible 

en estos momentos es la de los colectores lineales tipo Fresnel, aunque por la constante 

evolución que se lleva a cabo en el desarrollo de este programa, es de  esperar que esta situación 

no se prolongue mucho más tiempo. 

 

En este proyecto se va a utilizar el programa para el diseño y análisis una central termosolar de 

tecnología de colectores cilindro parabólicos. 

 

En la tabla 2.1 se muestran distintos programas de ordenador existentes actualmente, y que 

están pensados para el análisis de sistemas de concentración solar mediante colectores cilindro 

parabólicos. Algunos son modelos completos dentro del estudio de esta tecnología 

(rendimientos y costes) y otros se centran en algún aspecto concreto de la misma (diseño del 

colector, análisis del ciclo de potencia o del fluido calorífico del campo). 

 

Programas de análisis 

completos 

(rendimiento y costes) 

Programas de 

análisis del ciclo de 

potencia 

Programas de 

análisis del sistema 

HTF 

Programas de análisis 

de los colectores 

cilindro parabólicos 

EXCELERGY GATECYCLE FLUENT ASAP 

SAM IPSEPRO SAM CIRCE 

TRNSYS STEAMPRO SOLERGY FLUENT 

  TRNSYS SOLTRACE 

 

Tabla 2.1. Programas informáticos existentes para el análisis de tecnología de concentración solar 

mediante colectores cilindro parabólicos. (Fuente: Clifford K. Ho, 2008) 

 

Las razones por las que se eligió el programa Solar Advisor Model antes que otros fueron las 

siguientes: 

 

 Es un software libre, a disposición de todo el mundo y que se puede descargar 

gratuitamente en la pagina: https://www.nrel.gov/analysis/sam/ 

 

 Contiene manuales de ayuda bastante completos a disposición de los usuarios, donde se 

explica paso a paso como funciona el programa. Además, cuenta con uno específico 

para los sistemas cilindro parabólicos donde informa de la metodología empleada y las 

formula utilizadas. 
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 A parte de los manuales ofrece otra serie de recursos como son la posibilidad de 

conectar con el NREL mediante correo electrónico o un grupo en Google donde poder 

realizar consultas (resueltas por expertos) e intercambiar opiniones con otros usuarios 

del programa: http://groups.google.com/group/sam-user-group. 

 

 Es un programa muy completo ya que abarca todos los aspectos de una central 

termosolar, desde el campo solar, el sistema de almacenamiento, el bloque de potencia, 

el sistema de apoyo de combustible fósil, costes, etc.  

 

 Se basa en experiencias reales. El programa utiliza ecuaciones para representar el 

rendimiento de los sistema cilindro parabólicos basadas en los datos empíricos 

obtenidos del análisis de los resultados de los sistemas CCP actualmente existentes 

Sobre todo se basa en la experiencia acumulada durante cerca de  30 años en las plantas 

SEGS de California. 

 

 Es un programa de fácil manejo e intuitivo, gracias al  esfuerzo realizado en el diseño 

del mismo a la hora de la comunicación usuario-máquina. 

 

2.2. ANÁLISIS DE LOS SISTEMAS DE COLECTORES CILINDRO 

PARABÓLICOS MEDIANTE SAM (METODOLOGÍA) 

 

El programa utiliza un conjunto de ecuaciones para representar el rendimiento de los sistema 

cilindro parabólicos basadas en los datos empíricos obtenidos del análisis de los resultados de 

los sistemas CCP actualmente existentes. Se aprovecha de la experiencia acumulada durante 

cerca de  30 años en las plantas SEGS. 

 

El modelo de análisis de sistemas cilindro parabólicos consta de tres módulos. Cada uno de 

ellos está representado por una página de entrada en el programa, de esta manera se proporciona 

una manera sencilla de introducir los parámetros de entrada al sistema que se quiere diseñar. 

 

 El módulo del campo solar calcula la producción de energía térmica del campo 

basándose en los datos del tiempo del archivo meteorológico y en parámetros del campo 

solar, de los colectores y de los tubos absorbedores empleados. El módulo del campo 

solar calcula  también las pérdidas térmicas y ópticas, la energía de puesta en marcha 

del campo (energía de calentamiento) y la energía necesaria para la protección contra 

heladas. 
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 El módulo de distribución y almacenamiento calcula el flujo de energía de entrada y 

salida del sistema de almacenaje y la energía que entra al bloque de potencia basándose 

en la producción de energía térmica del campo solar y en parámetros del sistema de 

almacenamiento. Este módulo también calcula las pérdidas térmicas y parásitas 

relativas al almacenamiento y la energía necesaria para la protección contra heladas de 

dicho sistema. 

 

 El módulo del bloque de potencia calcula la producción eléctrica del sistema basándose 

en la entrada de energía térmica procedente del módulo de distribución y 

almacenamiento y en parámetros del bloque de potencia. Este módulo también calcula 

las pérdidas parásitas, y la entrada de energía térmica desde el sistema de apoyo de 

combustible fósil. 

 

El modelo de análisis de sistemas cilindro parabólicos es un modelo de flujos de energía por 

hora. Cada módulo calcula esos flujos de energía usando factores de eficiencia, los cuales son 

calculados basándose en los parámetros más relevantes. 

 

Como se observa en la figura 2.2, el módulo del campo solar calcula la energía térmica 

producida por el campo QSF. El módulo de distribución y almacenaje calcula el flujo de energía 

que entra QtoTES y el que sale QfromTES del sistema de almacenamiento y la energía que recibe 

el bloque de potencia QtoPB. Este módulo también determina cuando tiene que entrar o salir 

energía del sistema de almacenamiento y que flujos de energía son necesarios en cada momento 

en el  bloque de potencia. El módulo del bloque de potencia calcula la producción neta de 

energía eléctrica del sistema ENet. 

 

 

Figura 2.2. Diagrama de bloques de SAM.  

(Fuente: Solar Advisor Model Reference Manual, 2009). 
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A partir de aquí se va a entra a describir los aspectos que se consideran fundamentales para 

comprender como se trabaja con este programa. 

 

2.2.1. Archivo meteorológico 

 

La ubicación física de la central termosolar, tan importante en este tipo de proyectos, se define 

en el programa entrando en una sección llamada “clima”, en la cual podemos elegir entre 

decenas de sitios de todo el mundo donde instalar la central (ciudades de EE.UU., del Sur de 

España, Norte de África, etc.). Cada emplazamiento lleva asociado un archivo meteorológico 

muy completo con los datos geográficos y climatológicos más relevantes del lugar, muchos de 

los cuales serán usados en los cálculos que realiza el programa y entre los que se encuentran: 

 

 Radiación normal directa 

 Temperatura ambiente 

 Velocidad del viento 

 Precipitaciones 

 Días nublados 

 Latitud, longitud, etc. 

 

Si se busca un lugar en concreto y éste no aparece en la base de datos del programa, siempre se 

tiene la opción de poder insertar los archivos del lugar que se quiera desde fuera. Téngase en 

cuenta también, que los datos meteorológicos son horarios, se conoce el valor de cada variable 

en cada hora del año. 

 

2.2.2. Módulo del Campo Solar  

 

El módulo del campo solar calcula la energía térmica neta suministrada por el campo solar y 

otras cantidades de energía relacionadas para cada hora del año. 

 

Durante las horas donde hay sol, cuando el campo solar se encuentra a la temperatura de 

funcionamiento, la energía térmica suministrada por el campo solar es igual a la energía solar 

absorbida por los colectores menos las pérdidas de calor del campo. 

 

La cantidad de energía absorbida por los colectores depende del tamaño del campo solar, de la 

posición y de la orientación solar de los colectores, del tamaño y del número de colectores, del 

tipo de fluido caloportador utilizado y de las pérdidas térmicas y ópticas de los mismos.  
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Durante las horas que el campo solar no alcanza la temperatura necesaria de funcionamiento, el 

programa calcula la energía necesaria de protección contra heladas para la noche y la energía 

requerida para calentar el fluido caloportador existente en el campo (energía de calentamiento) 

para así lograr que este alcance la temperatura necesaria de funcionamiento por la mañana. 

 

Reseñar que el campo solar se puede encontrar en uno de estos cuatro posibles estados: No 

operativo, en calentamiento, con insuficiencia de energía de calentamiento y operativo. 

 

El campo solar es la parte más importante de una central termosolar. Es la diferencia principal 

que tienen con las centrales térmicas convencionales, la forma de generar la energía térmica en 

los colectores del campo, que posteriormente se trasladará a un ciclo de potencia. 

 

La pregunta clave es: ¿Qué tamaño va a tener el campo solar?, o lo que es lo mismo, ¿Cuánta 

energía térmica va a producir?. Parece una pregunta sencilla pero tiene su aquel. 

 

El tamaño del campo solar va a depender de múltiples factores, como son: la potencia nominal 

de la central, el tipo de colectores utilizados, el fluido caloportador usado en el campo, si se 

cuenta o no con un sistema de almacenamiento, etc. 

 

En el apartado 3.8 de este proyecto se explica detalladamente como elegir el parámetro más 

importante dentro de esta sección, el múltiplo solar
1
. Como se verá, se utiliza el poder de 

simulación del programa y la oportunidad que éste da de realizar análisis de paramétricos. Pero 

para ir haciéndose una idea, se dirá que lo que se busca en todo momento es optimizar el tamaño 

del campo solar. 

 

Un campo solar se diseña de manera que sea capaz de generar la energía térmica suficiente 

requerida por el bloque de potencia. Para ello, se toma como base de partida (punto de diseño) 

unas condiciones meteorológicas favorables (las de un día de verano soleado), donde el papel 

más relevante se lo lleva como no podía ser de otro modo la radiación solar normal directa, y en 

base a esas condiciones de referencia se calcula el número de colectores que harían falta  bajo 

esas premisas para suministrar al bloque de potencia la energía térmica necesaria (siempre 

según la potencia que tenga éste). 

 

1El múltiplo solar es un concepto específico de las centrales termosolares, y se define como el 

cociente entre la potencia térmica útil que proporciona el receptor solar en condiciones de 

diseño respecto a la potencia térmica que requiere el ciclo de potencia en condiciones de diseño. 
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Como es lógico, no siempre se va a contar con esas condiciones de radiación solar tan 

beneficiosas, por lo cual lo que se hace necesario sobredimensionar el campo solar, para que el  

bloque de potencia trabaje a pleno rendimiento más horas (sino trabajaría a plena carga muy 

poco tiempo), aunque esto conlleve el desperdicio de algo de energía en días con condiciones 

solares perfectas. 

 

La clave esta en cuanto se va a sobredimensionar el campo solar. Los colectores suponen el 

mayor coste dentro de una central de este tipo, por lo que se debe analizar con mucho detalle 

cuanta energía eléctrica se va a producir de más por el aumento del campo y que incremento de 

costes conlleva, con el fin de encontrar un equilibrio. 

 

Si además, la central termosolar cuenta con un sistema de almacenamiento térmico esto 

complica aún más las cosas. Habrá que aumentar el campo para cubrir las necesidades del 

sistema de almacenamiento, y entrará también en juego el coste del sistema, el cual como es 

lógico aumentará conforme lo haga su tamaño. 

 

Como se ha dicho, todo esto se explica más detalladamente en el apartado 3.8 de este proyecto. 

En el capítulo tres, se eligen razonadamente los elementos más importantes de la central 

termosolar como son: 

 

 Ubicación geográfica  

 

 Potencia nominal de la planta 

 

 Tipo de fluido caloportador empleado en el campo solar 

 

 Tipo de colectores cilindro parabólicos empleados 

 

 Tubos absorbedores elegidos 

 

 Tamaño del campo solar 

 

 Tamaño del sistema de almacenamiento 

 

 % de combustible de apoyo fósil a usar 

 

 Turbina del ciclo de potencia elegida 

 

Es importante comentar, que también es en este módulo del campo, donde se elige el tipo de 

fluido caloportador que se va a emplear en el campo solar. En la tabla 2.2 se ofrecen las distintas 

opciones de fluidos que da el programa. 
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de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

NOMBRE DEL FLUIDO TIPO DE FLUIDO 

Solar salt Sales fundidas 

Caloria HT 43 Hidrocarburo (aceite mineral) 

Hitec XL Sales fundidas 

Therminol VP-1 Aceite sintético 

Hitec Sales fundidas 

Dowtherm Q Aceite sintético 

Dowtherm RP Aceite sintético 

 

 

Tabla 2.2. Fluidos disponibles en SAM. 

 

Todos los fluidos que ofrece el programa, ya sean sales o aceites, corresponden a la tecnología 

HTF, Heat Transfer Fluid, la cual se caracteriza por emplear distintos fluidos de trabajo en el 

campo solar y en el bloque de potencia. No esta disponible la opción de la tecnología DSG, 

Direct Steam Generation, la cual utiliza agua directamente en los tubos absorbedores. 

 

No cabe duda que ésta es una de las limitaciones del programa aunque a efectos prácticos no 

tiene mucha importancia para la realización de este proyecto, puesto que la generación directa 

de vapor es una tecnología que todavía tiene que ser estudiada bastante para que se implemente 

definitivamente en los proyectos de plantas comerciales termosolares. No hay duda que traería 

muchísimas ventajas, tanto en el aspecto de costes, como en el de la eficiencia energética, pero 

las plantas comerciales actuales no se pueden arriesgar a implementar este sistema por el alto 

riesgo tecnológico que supone en estos momentos, y más cuando la tecnología HTF esta 

plenamente probada y se encuentra en plena etapa de madurez.  

 

Muy pronto, este programa de ordenador deberá disponer de la tecnología de generación directa 

de vapor ya que es una de las líneas de investigación más importante en estos momentos dentro 

de la energía solar de concentración y no cabe duda de que el desarrollo futuro de estos sistemas 

tiene que pasar por ella. 

 

Por ultimo, en la figura 2.3 se muestra la pagina de entrada al módulo del campo solar del 

programa. En ella se pueden observar la gran cantidad de variables que intervienen en su 

configuración. A parte del múltiplo solar y del fluido caloportador de los que ya se ha hablado, 

también influyen la temperatura ambiente, la radiación normal directa, la velocidad del viento, 

la distancia entre los colectores de una misma fila, la distancia entre filas, el número de 

colectores por fila, etc.   
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Figura 2.3. Pagina de entrada del módulo del campo solar. 

 

2.2.3. Colector cilindro parabólico y  tubo absorbedor 

 

La aplicación informática da la posibilidad de elegir el tipo de colector que se va a usar en el 

campo solar. El programa ofrece varios modelos de colectores cilindro parabólicos entre los que 

elegir. Alguno ya no esta disponible comercialmente (ej. Luz LS-2), pero sirven para hacer 

simulaciones de plantas ya existentes como las SEGS, aunque lo normal es elegir entre los 

últimos modelos si lo que vamos a hacer como ocurre en este proyecto es el diseño de una 

central termosolar actual. 

 

En la tabla 2.3 se pueden ver las distintas posibilidades que ofrece el programa en cuanto a la 

elección de los colectores solares del campo, se muestran los distintos modelos disponibles 

junto con alguna de sus características principales, tanto geométricas como técnicas. Si se quiere 

otro tipo de colector o modificar algún valor de las características del mismo el programa ofrece 

la opción de poder editarlos. 
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de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

Tipo de colector Longitud 
Área de 

apertura 

Error de 

seguimiento 

Precisión 

geométrica 

Reflectividad 

del espejo 

Luz LS-2 50 m 235 m
2
 0.99% 0.98% 0.935% 

Luz LS-3 100 m 545 m
2
 0.99% 0.98% 0.935% 

Solargenix SGX-1 100 m 470.3 m
2
 0.994% 0.98% 0.935% 

Eurotrough ET150 150 m 817.5 m
2
 0.99% 0.98% 0.935% 

 

Tabla 2.3. Colectores cilindro parabólicos disponibles en SAM. 

 

También se da la posibilidad de elegir el tipo de tubo absorbedor que se va a usar en los 

colectores del campo. El programa ofrece varios modelos de absorbedores entre los que elegir. 

Algunos están obsoletos ya, pero sirven para hacer simulaciones de plantas ya existentes como 

las SEGS, aunque lo normal es elegir entre los últimos modelos si lo que vamos a hacer como 

ocurre en este proyecto es el diseño de una central termosolar actual. 

 

En la tabla 2.4 se pueden ver las distintas posibilidades que ofrece el programa en cuanto a la 

elección de los tubos absorbedores. Se muestran los distintos modelos disponibles junto con 

alguna de sus características principales: 

 

Tipo de tubo absorbedor Transmisividad (%) Absorvitividad (%) 

2008 Schott PTR70 0.963 0.96 

Solel UVAC3 0.96 0.96 

Solel UVAC2 0.96 0.96 

Luz Cermet 0.935 0.925 

Schott PTR70 0.963 0.96 
 

Tabla 2.4. Tubos absorbedores disponibles en SAM. 

 

Un aspecto curioso del programa, es que permite considerar que todos los tubos absorbedores 

no tienen porque estar en perfecto estado. Para ello se puede elegir un porcentaje de los que se 

consideran que están en óptimas condiciones y otros porcentajes para los que se piensa que 

están rotos, o que les falla la cámara de vacío, etc. De esta forma se puede realizar un análisis 

más real del rendimiento de la central, y será muy útil para analizar rendimientos de la misma a 

largo plazo. 

 

Con las características de los colectores y de los tubos absorbedores el programa calcula la 

eficiencia óptica media de los colectores en conjunto y utiliza este valor para calcular las 

pérdidas que se dan en el campo solar. 

 



 

 - 68 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

2.2.4. Módulo del bloque de potencia 

 

En el módulo del bloque de potencia se calcula la producción neta de electricidad por hora ENet 

basada en la energía térmica suministrada al bloque de potencia QToPB calculado por el módulo 

de distribución y almacenamiento. 

 

El módulo de bloque de potencia calcula la producción neta de electricidad ENet calculando 

primero la producción eléctrica bruta en el punto de diseño, y luego aplica una serie de factores 

de corrección y suma la energía aportada por la caldera auxiliar y resta las pérdidas parásitas 

debidas a las cargas eléctricas presentes en el sistema. 

 

 

Figura 2.4. Diagrama del módulo del bloque de potencia. 

(Solar Advisor Model Reference Manual, 2009). 

 

En el módulo  del bloque de potencia  destacan tres aspectos fundamentales: Es aquí donde se 

introduce la potencia nominal de la central, el rendimiento que va a tener el ciclo de potencia 

asociado al sistema y además también se ofrece la opción de refrigeración húmeda o en seco.  

 

La potencia nominal de la planta es el primer dato que se debe introducir a la hora de comenzar 

con el diseño de la central termosolar. Va a marcar la energía térmica que debe entrar al bloque 

de potencia y por lo tanto interviene determinantemente en el tamaño del campo solar. 

 

La potencia nominal de la planta va a venir condicionada en este caso por la normativa legal 

vigente en España, ya que si se quiere incluir la central en el “régimen especial” de generación 

eléctrica esta potencia no podrá exceder de los 50 MW. Este aspecto hace que una de las 

variables de diseño se convierta en fija, con lo cual resultará más sencillo tal y como se ha dicho 

anteriormente optimizar el campo solar. 
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de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

El rendimiento de los ciclos de potencia asociados a este tipo de plantas suele andar entorno al 

38.5% (Sabugal S. 2009). Son ciclos de Rankine de vapor de agua con recalentamiento 

intermedio y regenerativos. Además de esta variable, se puede acceder a otros parámetros como 

son la energía necesaria de puesta en marcha del bloque de potencia, los rangos de carga 

máxima y mínima a los que puede operar la turbina, el rendimiento de la caldera auxiliar, etc. 

 

El bloque de potencia tiene tres modos de funcionamiento: no operativo, puesta en marcha y 

operativo. 

 

Recordar por último, que es en este módulo también donde se elige el tipo de refrigeración 

asociado al ciclo de potencia de la planta. Se puede elegir refrigeración húmeda (refrigeración 

directa con una gran masa de agua fría) o en seco (con aire del ambiente). Es importante 

recalcar, que dado que estas centrales necesitan estar ubicadas en lugares con muchas horas de 

sol directo, normalmente regiones semiáridas o directamente desérticas, en muchas ocasiones no 

se va a disponer de recursos hídricos muy abundantes, de ahí la gran importancia de poder 

contar con la posibilidad de la refrigeración en seco, que aunque conlleva mayores costes, 5-

10% más caro que la refrigeración húmeda (Greenpeace, 2009) y es menos eficiente 

termodinámicamente, se hace totalmente imprescindible en algunos emplazamientos.  

 

 
 

Figura 2.5. Pagina de entrada del módulo del bloque de potencia. 
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2.2.5. Módulo de distribución y almacenamiento 

 

El módulo de distribución y almacenamiento realiza dos funciones: Primero determina como se 

distribuye la energía procedente del campo solar, cuanta va ir al sistema de almacenamiento y 

cuanta al bloque de potencia. Se encarga al mismo tiempo de decidir cuanta energía del sistema 

del almacenamiento y del sistema de apoyo fósil tiene que salir y en que momentos. Segundo, 

modela el sistema de almacenamiento. Todas estas funciones las realiza siempre y cuando la 

central termosolar sea diseñada con un sistema de almacenamiento y con apoyo de combustible 

fósil. 

 

En este módulo es donde se va a fijar la capacidad del sistema de almacenamiento. La forma en 

el que el programa fija esa capacidad es introduciendo las horas equivalentes a plena carga que 

supone dicho sistema de almacenamiento. 

 

El único modo de almacenamiento que permite el programa es en dos tanques. Como ya se ha 

dicho, este programa se basa en experiencias reales y en la mayoría de aplicaciones prácticas 

realizadas hasta la fecha se ha implementado este tipo de sistemas de almacenamiento (tanque 

caliente y tanque frío), por lo que no supone mayor problema.  

 

 
 

Figura 2.6. Esquema del sistema de almacenamiento indirecto en dos tanques de sales fundidas. 

(Fuente: Solar Millennium AG, 2008) 

 

La SEGS-I ya incorporaba almacenamiento térmico con dos tanques. Para ello, utilizaba para 

almacenar el mismo aceite usado en el campo solar, lo que se suele denominar con el nombre de 

almacenamiento directo. 

 

Andasol 1, mucho más reciente, también incorpora un sistema de almacenamiento térmico en 

dos tanques pero en este caso es distinto el fluido del campo, aceite, que el fluido que se usa 
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para el almacenamiento, sales fundidas, esto se conoce con el nombre de almacenamiento 

indirecto.  

  

Continuando con la distribución y el almacenamiento, en este módulo también se va a fijar 

cuando se va a enviar la energía almacenada y en que cantidades, así como la energía de apoyo 

aportada por el sistema de combustible fósil. 

 

En el apartado 3.8.3 de este proyecto se explica razonadamente cuales van a ser los flujos de 

energía que se van a dar desde el sistema de almacenamiento y desde la caldera auxiliar, pero 

aquí se quiere hacer hincapié en otra de las limitaciones que se han encontrado al programa: 

donde se coloca el sistema de apoyo fósil dentro del esquema de la planta. 

 

Según la reglamentación española, sólo esta permitido el uso de combustible fósil para calentar 

el aceite del campo solar en periodos de insuficiencia de la radiación solar. El problema es que 

el programa supone que la caldera en vez de estar situada en el campo solar para calentar el 

aceite esta situada en el bloque de potencia para calentar el agua del ciclo, con lo que a la hora 

de diseñar la planta termosolar va a existir un pequeño desfase/error debido a esta circunstancia.  

 

A partir de ahora, se hablará en el proyecto que el sistema de apoyo fósil empleado es un 

calentador de aceite, aunque en la realidad el programa instala una caldera de vapor. Este error 

que se va a asumir no tiene mucha trascendencia, ya que no influye en la producción eléctrica 

final de la planta, pero debe recordarse y tener en cuenta porque se hablará de ello algunas veces 

más a lo largo del proyecto. 

 

2.2.6. Costes 

 

Otro apartado importante del programa es el de los costes. Esta aplicación permite asignar una 

serie de costes específicos a cada componente de la central termosolar:  

 

 Precio del terreno en €/m
2
  

 Precio del campo solar de colectores en €/m
2
  

 Precio del sistema de HTF en €/m
2
 

 Precio del sistema de almacenamiento €/MWht 

 Precio del sistema auxiliar de combustible fósil €/MWe  

 Precio del bloque de potencia en €/MWe 
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Cuando se habla de m
2
 se refiere en todo momento a la superficie reflectiva que suponen los 

colectores cilindro parabólicos. Al referirse a MWe, se esta considerando la potencia bruta de la 

planta y los MWht se refieren a la capacidad del sistema de almacenamiento térmico. 

 

Además de estos costes que se podrían considerar como fijos, el programa también posibilita la 

opción de costes indirectos, como pueden ser las licencias de obra, los gastos de ingeniería, 

impuestos, contingencias, etc. 

 

Los datos de costes o bien son asignados directamente por el programa, de la base de datos con 

que éste cuenta o bien pueden ser introducidos por el usuario. Esto a la vez que proporciona una 

gran flexibilidad, permite también comparar costes de otras fuentes con las del propio programa. 

 

Con estos datos, el programa calcula la inversión necesaria para llevar a cabo el proyecto. Si a 

esto sumamos que se conoce la energía eléctrica que se va a generar, la aplicación es capaz de 

darnos el coste a la que se produce la energía eléctrica en la planta termosolar objeto de análisis. 

 

 2.3. RESULTADOS QUE SE OBTIENEN DEL ANÁLISIS 

 

SAM muestra un resumen de los resultados en la página principal del programa, y resultados 

más detallados, incluyendo valores hora por hora, para una selección de variables en el Dview 

(visor de resultados). 

 

2.3.1. Resumen de resultados 

 

A continuación se ofrecen los resultados más relevantes que ofrece este programa en este 

apartado: 

 

Producción eléctrica anual: Es la suma de la electricidad generada en cada una de las horas del 

año según la simulación realizada por el programa. Dicha producción tiene en cuenta si se 

quiere la disponibilidad de la planta (dando un valor a la misma). 

 

LEC (Levelized Cost of Energy): Da una idea del coste de la energía eléctrica producida por la 

planta. Es una medida que se utiliza para estudiar y comparar la viabilidad económica de 

distintas alternativas de instalaciones de producción de energía eléctrica. El LEC se define como 

el coste anual dividido por la producción media anual prevista.  
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Factor de capacidad: El factor de capacidad es un concepto aplicable a cualquier central 

eléctrica, y se define como el cociente entre la energía anual que genera la central y la que 

produciría si estuviera trabajando las 8760 horas del año a su potencia nominal. 

 

Factor de conversión de energía bruta a neta: Sirve para estimar las pérdidas parásitas 

(consumos de cargas eléctricas: bombas, equipos electrónicos de control, calefacción, 

refrigeración, etc.) que se dan en la central. 

 

2.3.2. Resultados horarios simulación 

 

A continuación se ofrecen los resultados más relevantes que ofrece este programa dentro de su 

simulación horaria: 

 

Variables de salida por cada hora calculadas por el módulo del campo solar 

 

Radiación normal directa: Valor de radiación normal directa leída del archivo meteorológico. 

(W/m
2
). 

 

Insolación normal directa: La incidencia de la radiación normal directa sobre el campo solar 

en vatios térmicos, que es el producto de la radiación normal directa y el área de campo solar. 

(MWt) 

 

Energía solar absorbida: La energía térmica absorbida por los colectores. 

 

La energía absorbida en el campo solar: La energía absorbida por el campo solar antes de las 

pérdidas térmicas e incluidas las pérdidas ópticas.  

 

Energía suministrada por el campo solar: Energía térmica suministrada por el campo solar. 

 

Pérdidas de calor en las tuberías del campo solar: Energía perdida por las tuberías de los 

colectores en el campo solar. 

 

Pérdidas de calor en el tubo absorbedor (HCE): La energía perdida en los tubos 

absorbedores del campo solar. 
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Variables de salida por cada hora calculadas en el módulo del bloque de potencia 

 

Producción bruta de la turbina: Producción eléctrica de la turbina por hora teniendo en cuenta 

fuentes solares y fósiles, pero no se contabilizan las pérdidas parasitarias o por disponibilidad. 

 

Producción eléctrica neta: Producción eléctrica neta de la turbina por hora teniendo en cuenta 

fuentes solares y fósiles, contabilizando las pérdidas parasitarias pero no las producidas por 

disponibilidad. 

 

Pérdidas parásitas: Las pérdidas totales de energía eléctrica debido a las cargas eléctricas 

parásitas del sistema (bombas, controles electrónicos, etc.). No aportan energía y si la 

consumen, parásitos. 

 

Potencia mínima de la turbina: La producción solar bruta calculada durante las horas cuando 

la energía solar es insuficiente para hacer funcionar la turbina.  

 

El exceso de electricidad: Durante las horas cuando la potencia solar bruta sobrepasa el 

máximo de salida de diseño, la diferencia entre las dos se reporta como el exceso de 

electricidad.  

 

Energía de apoyo fósil: La energía térmica equivalente a la energía eléctrica generada por la 

caldera de apoyo de gas natural. 

 

Variables de salida por cada hora calculadas por el módulo de distribución y almacenamiento 

 

Energía para almacenamiento térmico: La energía térmica que llega al TES, (sistema de 

almacenamiento térmico). 

 

Energía a partir del almacenamiento térmico: La energía térmica que sale del TES (sistema 

de almacenamiento térmico). 

 

Energía que entra al bloque de potencia: La energía térmica suministrada al bloque de 

potencia. Puede incluir la energía desde el campo solar únicamente, o la energía del campo solar 

y de almacenamiento térmico conjuntamente si este existe. 
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Energía de almacenamiento desperdiciada: La energía desperdiciada cuando el TES esta 

lleno. Esto sucede en horas cuando la energía calculada para el TES excede de la máxima 

capacidad. 

 

Energía desperdiciada: La energía térmica desaprovechada bien porque la energía que entra al  

bloque de potencia o la que entra al TES excede del máximo fijado. 

 

Energía de puesta en marcha: La energía requerida para poner en marcha el bloque de 

potencia. Esto ocurre en horas en que la energía está disponible desde el campo solar o desde el 

almacenamiento térmico y el bloque de potencia no ha operado en la hora anterior. 

 

Energía de protección contra heladas suministrada por el TES: Energía suministrada por el 

TES cuando la temperatura del fluido caloportador cae por debajo de su punto de congelación. 

 

Energía de protección contra heladas suministrada por calentador auxiliar: Energía 

suministrada por la caldera auxiliar cuando la temperatura del fluido caloportador cae por 

debajo de su punto de congelación. 

 

Pérdidas de calor en el sistema de almacenamiento térmico: Las pérdidas de calor del tanque 

de almacenamiento. 

 

También el sistema informa sobre las pérdidas parásitas que se dan en los siguientes sistemas: 

 

 Equipos de seguimiento solar y controles electrónicos del colector 

 Bombeo del HTF en el campo solar 

 Bombeo de protección contra heladas 

 Bombas en el sistema de almacenamiento 

 Pérdidas fijas del bloque de potencia 

 Pérdidas relacionadas con el balance de planta 

 Pérdidas relacionadas con la caldera auxiliar 

 Pérdidas relacionadas con la torre de refrigeración 
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CAPÍTULO 3 

 

DISEÑO DE UNA PLANTA TERMOSOLAR EN ESPAÑA 

 

Casi la totalidad del capítulo 3 se va a dedicar a analizar y justificar la elección de los 

parámetros y elementos principales que componen una central termosolar. Una vez elegidos, se 

trasladaran al programa de ordenador Solar Advisor Model ya presentado en el capítulo 2, para 

posteriormente en el capítulo 4 realizar un análisis de los resultados obtenidos gracias a él, tanto 

desde el punto de vista del rendimiento energético como desde el punto de vista financiero. 

 

Los aspectos que se van a tratar abordan los siguientes campos: 

 

 Ubicación geográfica  

 Potencia nominal de la planta 

 Tipo de fluido caloportador empleado en el campo solar 

 Tipo de colectores cilindro parabólicos empleados en el campo solar 

 Tubos absorbedores empleados en el campo solar 

 Tamaño del campo solar 

 Tamaño y tipo del sistema de almacenamiento 

 % de combustible de apoyo fósil a usar en la central 

 Turbina del ciclo de potencia 

 

Como se irá viendo, en la elección de cada uno de esos parámetros o elementos influirán una 

gran variedad de factores, no sólo vale con buscar en cada uno de ellos el mayor rendimiento 

posible desde un punto de vista energético, aspectos tecnológicos, económicos, de normativa 

legal, de relaciones empresariales .... juegan un papel fundamental en la realidad diaria a la hora 

de su elección. 

 

Como base de partida decir que se prestará una atención preferente a los elementos que se usan 

ya en las plantas termosolares existentes en España o que se van a poner próximamente en 

funcionamiento, así como también se tendrá muy en cuenta la gama de posibilidades que da el 

programa de ordenador a la hora de diseñar una planta termosolar.  

 

Reseñar que los dos últimos apartados del capítulo se dedicaran a analizar dos cuestiones, que 

aunque son resueltas por el programa de ordenador, se considera interesante ver de donde 
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vienen: el dimensionamiento, estimaciones iniciales y cálculos de la central termosolar y el 

análisis termodinámico del ciclo de potencia. 

 

3.1. ELECCIÓN DEL EMPLAZAMIENTO ADECUADO POR SU 

IRRADIACIÓN SOLAR PARA LA PLANTA TERMOSOLAR 

 

La energía termosolar de concentración emplea la luz solar directa, conocida como “radiación 

normal directa”. Se trata de la luz del sol que no es desviada por las nubes, el humo o el polvo 

en suspensión existente en la atmósfera y que llega a la superficie terrestre en forma de rayos 

paralelos para poder ser concentrados.  

 

Por lo tanto, este tipo de centrales para que sean viables sólo tendrán sentido que se instalen en 

lugares que reciban una gran cantidad de sol al año. Especialmente son propicias las regiones 

áridas y semiáridas del planeta, donde la poca nubosidad no interfiere en los valores de la 

radiación directa. 

 

Las regiones que cuentan con mejores condiciones atmosféricas para instalar centrales 

termosolares son: Norte y Sur de África, los países mediterráneos, lugares desérticos de la India 

y Pakistán, Oriente Próximo y Oriente Medio, partes de Brasil y Chile, México y la zona Sur-

Oeste de Estados Unidos, Australia. Decir que se han elegido conforme al siguiente criterio 

(Greenpeace 2009): 

 

- Que cuenten con una cuota de irradiación solar anual de al menos 2000 kWh/m
2
/año.             

(Las mejores localizaciones para este tipo de plantas reciben más de 2800 kWh/m
2
/año). 

 

 

 

Figura 3.1. Zonas geográficas adecuadas para la instalación de centrales termosolares. 

(Fuente: International Energy Agency, 2010) 
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La ubicación de la planta que va a ser objeto de análisis en este proyecto va a corresponder con 

las coordenadas geográficas de la Plataforma Solar de Almería (PSA), que está situada en el 

desierto de Tabernas, Almería. Se quería que la ubicación fuera nuestro país y que mejor sitio 

que éste, un referente dentro de la energía solar, ya no sólo en España sino a nivel mundial. 

 

Aún así se va a llevar acabo un estudio sobre tres posibles emplazamientos (el desierto del 

Sahara, el desierto de Tabernas en Almería, y el desierto de Bardenas Reales en Navarra) para 

poner de manifiesto un par de aspectos: 

 

 Que no es casualidad que la gran parte de las centrales termosolares que se han 

construido o se están proyectando en nuestro país, estén ubicadas en el Sur de España. 

 

 Que no es descabellado que grandes empresas como las alemanas E.ON, Münchener 

Rück, Deutsche Bank... o la española Red Eléctrica se estén embarcando en proyectos 

como “Desertec”, el cual contempla instalar centrales solares térmicas en el desierto del 

Norte de África para la producción de electricidad, para ser transportada a Europa 

mediante redes de alta tensión.  

 

Los datos de radiación normal directa que a continuación se van a presentar para los tres 

distintos emplazamientos se han obtenido de base de datos siguiente:  

 http://eosweb.larc.nasa.gov/sse/ 

 

En dicha base de datos, introduciendo los datos de longitud y latitud de un lugar geográfico se 

puede obtener toda clase de datos solares y atmosféricos, y de esta manera analizar conforme a 

los criterios anteriormente nombrados que emplazamientos son más adecuados y porque. 

 

Análisis de los distintos emplazamientos: 

 

1.- África, desierto del Sahara, situación geográfica 21º 50´ Latitud Norte y 10º 50‟ Longitud 

Este: 

 

Monthly Averaged Direct Normal Radiation (kWh/m
2
/day) 

Lat 21  

Lon 10 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Annual 

Average 

22-year 

Average  
6.23 7.88 8.15 8.42 8.13 8.68 8.84 8.99 8.48 8.34 7.43 6.30 7.99 

 

Tabla 3.1. Radiación normal directa, desierto del Sahara, medias diarias mensuales y la anual. 
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Figura 3.2. Ubicación geográfica del emplazamiento estudiado del desierto del Sahara. 

 

Se observa que el resultado medio anual es de 7.99 kWh/m
2
/día, para poder compararlo con los 

criterios anteriores multiplicamos ese valor por 365 días obteniéndose una irradiación solar 

anual de 2916.35 kWh/m
2
/año, mayor que los 2000 kWh/m

2
/año requeridos, y mayor que los 

2800 kWh/m
2
/año, lo que hace que esta zona se considere como óptima desde el punto de vista 

solar para la instalación de una central termoeléctrica. 

 

Según un estudio realizado por Siemens, sería suficiente una superficie de 300 kilómetros 

cuadrados en el Sahara para instalar los espejos parabólicos necesarios para cubrir la necesidad 

de electricidad de toda la tierra. 

 

2.- Desierto de Tabernas (Almería), situación geográfica: 37º05‟ Latitud Norte y 2 21‟ Longitud 

Oeste: 

 

Monthly Averaged Direct Normal Radiation (kWh/m
2
/day) 

Lat 37  

Lon -3 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Annual 

Average 

22-year 

Average  
4.29 4.85 5.44 5.87 6.15 7.68 7.89 6.92 5.63 4.57 4.05 3.74 5.59 

 

Tabla 3.2. Radiación normal directa, desierto de Tabernas, medias diarias mensuales y la anual. 
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Figura 3.3. Ubicación geográfica del emplazamiento estudiado del desierto de Tabernas. 

 

Se observa que el resultado medio anual es de 5.59 kWh/m
2
/día, para poder compararlo con los 

criterios anteriores multiplicamos ese valor por 365 días obteniéndose una irradiación solar 

anual de 2040.35 kWh/m
2
/año, mayor que los 2000 kWh/m

2
/año requeridos, siendo por lo tanto 

el desierto de Tabernas una zona idónea para la instalación de una central termosolar. 

 

3.- Desierto de Bardenas Reales (Navarra), situación geográfica: 42º20´ Latitud Norte y 1º45´ 

Longitud Oeste. 

 

Monthly Averaged Direct Normal Radiation (kWh/m
2
/day) 

Lat 42  

Lon -2 
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Annual 

Average 

22-year 

Average  
2.84 3.73 4.73 4.23 4.88 5.96 6.39 6.01 5.11 3.61 2.86 2.63 4.42 

 

Tabla 3.3. Radiación normal directa, desierto de Bardenas Reales (Navarra), medias diarias 

mensuales y anual. 
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Figura 3.4. Ubicación geográfica del emplazamiento estudiado del desierto de Bardenas Reales. 

 

Se observa que el resultado medio anual es de 4.42 kWh/m
2
/día, para poder compararlo con los 

criterios anteriores multiplicamos ese valor por 365 días obteniéndose una irradiación solar 

anual de 1613.3 kWh/m
2
/año, menor que los 2000 kWh/m

2
/año requeridos. Se concluye 

entonces que en este caso que el desierto de Bardenas Reales no sería una buena ubicación para 

la instalación de una central termosolar. 

 

Comentar por último que en este apartado no se ha tenido en cuenta la disponibilidad de agua 

cerca del emplazamiento físico porque se piensa que el factor clave es la irradiación solar, ya 

que aunque las centrales termosolares necesitan de refrigeración en su extremo „frío‟ del ciclo 

de potencia, este puede conseguirse mediante refrigeración evaporativa (húmeda) cuando se 

dispone de agua, o mediante refrigeración en seco (con aire), ambas tecnologías convencionales. 

Eso si, la refrigeración en seco supone una mayor inversión y sus costes son entre un 5% y un 

10% mayores (Greenpeace 2009). 

 

Luego como ya se ha dicho, la elección para el emplazamiento de la planta termosolar va a 

corresponder con las coordenadas de la Plataforma Solar de Almería (PSA), en el desierto de 

Tabernas, Almería. 
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Figura 3.5. Vista aérea de la Plataforma Solar que el CIEMAT tiene en Almería. (Fuente: PSA) 

 

Localización 
Desierto del Sahara 

(Níger) 

Desierto de Tabernas 

(Almería) 

Desierto de Bardenas 

Reales (Navarra) 

Radiación Normal Directa 

(media diaria anual) 

(kWh/m
2
/día) 

7.99 5.59 4.42 

 

Tabla 3.4. Resumen de la radiación normal directa media diaria anual  de los distintos 

emplazamientos estudiados. 

 

3.2. ELECCIÓN DEL TAMAÑO DE LA PLANTA TERMOSOLAR 

 

En este caso en concreto, el tamaño de la planta va a venir condicionado fundamentalmente  por 

la localización elegida: desierto de Tabernas en la provincia de Almería, España. 

 

El gobierno español estableció en el REAL DECRETO 661/2007, de 25 de mayo un techo de 50 

MW para proyectos de concentración solar, por encima del cual, no se aplicarían las tarifas del 

régimen especial. Sin estas tarifas sería muy difícil el desarrollo comercial de proyectos 

termoeléctricos en estos momentos. 

 

También impuso inicialmente un límite inicial de 500 MW en capacidad total instalada. El techo 

de los 50 MW intentaba asegurar que  las 10 plantas de 50 MW fueran puestas en marcha por 

varias compañías diferentes evitando así la construcción de sólo unas pocas plantas de mayor 

tamaño por una o dos empresas, para así lograr promover la innovación y competitividad en el 

sector. 
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Diferentes estudios apuntan a que el tamaño óptimo para las plantas de concentración solar en 

España asciende a 150 MW (CSP Today), aunque la experiencia también muestra que mantener 

las instalaciones en tamaños más bajos tiene sus ventajas. 

 

En plantas cilindro parabólicas, el aumento del tamaño de las instalaciones, aparte del 

incremento del coste de la planta, implicaría también la necesidad de mayor aislamiento para 

evitar pérdidas de calor debido al aumento del tamaño y por lo tanto de las distancias. 

 

Por lo tanto la planta de concentración solar de colectores cilindro parabólicos se dimensionará 

para un tamaño de 50 MW. 

 

En la tabla 3.5 se ha querido mostrar la evolución del marco regulatorio español para el sector 

termoeléctrico. 

 

Marco regulatorio Tarifas (Historia) 

RD 2366/1994 

Tarifa Regulada 
Sin tarifa específica para Solar Termoeléctrica. 

RD 2818/1998 

Tarifa Regulada 

Revisión de tarifas y tecnologías. 
 

Se establecen grupos específicos. Grupo b.1 para todas las 

tecnologías solares. 

RD 841/2002 

Subgrupo b.1.2 

Modificación del RD 2818/1998 
 

Se establece el subgrupo b.1.2. Solar Termoeléctrica 
 

Se establece la primera tarifa regulada específica para solar 

termoeléctrica: 0.120202 c€/kWh (2002) 

RD 436/2004 

Tarifa Regulada 

Primas 

Revisión de las tarifas y tecnologías. 
 

Se establece una tarifa regulada que permite la viabilidad 

económica de las centrales solares termoeléctricas. Objetivo: 

200 MW. 

RD 661/2007 

Tarifa Regulada 

Primas 

Objetivo: 500 MW. Incremento de Tarifas y Primas.  
 

Cap & Floor para venta en el mercado eléctrico. 
 

Hibridación con Biomasa y Biogás. 

RD-LEY 6/2009 

Registro de preasignación 

Se crea el Registro de preasignación de retribución. 
 

La inscripción es condición necesaria para el otorgamiento 

del derecho al régimen económico establecido en el R.D. 

661/2007. 

Resolución del registro de 

preasignaciones 15-21-09 

Asignados proyectos hasta 2013. 

2339 MW – 56 proyectos 

 

Tabla 3.5. Evolución del marco regulatorio español para el sector termoeléctrico. 
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En la figura siguiente 3.6 se puede observar el calendario que van a seguir los distintos 

proyectos de centrales termoeléctrica españolas incluidas en el registro de preasignaciones. 

 

 
 

Figura 3.6. Fases de entrada en funcionamiento de los proyectos incluidos en el registro de 

preasignaciones.  (Fuente: Martín Hernanz, 2010) 

 

 3.3. ELECCIÓN DEL FLUIDO CALORÍFERO A EMPLEAR EN LA  

PLANTA TERMOSOLAR  

 

El funcionamiento de las plantas termosolares de colectores cilindro parabólicos depende en 

gran medida del fluido calorífero que se utilice en el campo solar, ya que no sólo condiciona el 

rango de temperaturas de trabajo, sino que determina otros aspectos de ingeniería como el 

almacenamiento térmico o la elección de materiales. 

 

Existen dos tipos de tecnologías asociadas al fluido calorífico usado en el campo solar, la 

denominada Heat Transfer Fluid conocida con las siglas HTF, que se basa en el uso de un 

medio caloportador (aceite o sales fundidas) para transportar la energía térmica desde el campo 

solar al bloque de potencia y se caracteriza por emplear distintos fluidos de trabajo en el campo 

y en el bloque de potencia, y la tecnología de DSG, Direct Steam Generation, conocida con las 

siglas DSG, la cual utiliza agua directamente en los tubos absorbedores y que elimina la 

necesidad de utilizar dos fluidos diferentes, con lo que se prescinde de los intercambiadores de 

calor intermedios para la generación de vapor, además de otras diferencias notables que 

conlleva el uso de agua-vapor como fluido calorífico. 

 

Como se vió en el capítulo 2, el programa de ordenador que se va a utilizar para realizar el 

diseño y simulación de la central termosolar objeto de este proyecto sólo tiene disponible la 



    
 

 - 85 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

tecnología HTF, aún así se ha considerado de interés analizar también la tecnología DSG, 

todavía en estado precomercial, pero en la que se centran muchos proyectos de investigación 

actuales. Como ejemplo, citar el lazo de ensayo DISS, en funcionamiento desde 1998 en la 

Plataforma Solar de Almería, que es el único campo de colectores cilíndrico parabólicos 

existente en el mundo que genera directamente vapor a alta presión y temperatura (100bar / 

400ºC) dentro de los propios concentradores en condiciones solares reales. 

 

 
 

Figura 3.7. Lazo de colectores cilindro parabólico del proyecto DISS en la PSA.                     

(Fuente: PSA) 

 

A continuación se analizan los distintos tipos de fluidos caloríficos que se están utilizando 

actualmente en las plantas de concentración solar, indicando en cada caso sus principales 

características, fortalezas y limitaciones. Para realizar dicho análisis se ha tomado como 

referencia diversas publicaciones, entre ellas destacar las Tesis de María José Montes Pita y de 

Javier Muñoz Antón, ambas del 2008 y las cuales aparecen citadas adecuadamente en la 

bibliografía general del proyecto. 

 

3.3.1. Uso de aceite como fluido de trabajo en el campo solar 

 

Dentro de las tecnologías HTF, el uso de aceite como fluido calorífero en el campo solar es la 

más extendida. 

 

Tipos de aceites utilizados en el campo solar de colectores cilindro parabólicos: 

 

Existen diversos tipos de aceite que se pueden emplear en el campo solar y la elección de uno u 

otro esta en función de la temperatura máxima de trabajo que se desea. Para temperaturas de 

hasta 400ºC se suele utilizar el Therminol VP-1. Este aceite sintético trabaja bien a 400ºC, 
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aunque tiene el problema de que su punto de congelación igual a 12ºC, lo que obliga a mantener 

todo el circuito de aceite, de forma permanente, a una temperatura superior a este valor. No 

suele ser un problema, ya que la energía auxiliar necesaria para mantener la temperatura del 

aceite por encima del punto de congelación es baja, debido a que las pérdidas térmicas asociadas 

son pequeñas. 

 

Si se quiere obviar el problema de la congelación, existen aceites que permiten trabajar a 

temperaturas del orden de 400ºC y no tienen un punto de congelación tan alto. Por ejemplo, el 

punto de congelación del Syltherm-800 es -40ºC, aunque este dato no es del todo representativo 

ya que a igualdad de temperaturas, el Syltherm es más viscoso que el Therminol, y puede que 

antes de llegar a los –40ºC ya sea inviable su uso por un aumento excesivo de su viscosidad. 

Otro problema de este aceite es su precio, tres veces superior aproximadamente al Therminol 

VP-1. 

 

Las propiedades de ambos aceites se presentan la tabla 3.6, y las variaciones de sus propiedades 

con la temperatura en las figuras contiguas (en la figura 3.8 calor específico, figura 3.9 

densidad, figura 3.10 conductividad térmica y figura 3.11 viscosidad). 

 

Aceites térmicos Therminol VP-1 Syltherm 800 

Precio (€/kg) 2-3 ~10 

Rango de funcionamiento (ºC) 12 – 400 -40 – 400 

 

Tabla 3.6. Propiedades de los aceites térmicos. 

 

 

Figura 3.8. Variación de las propiedades del Syltherm 800 y del Therminol VP-1 con la 

temperatura – Calor específico (Fuente: Muñoz Antón, 2008). 
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Figura 3.9. Variación de las propiedades del Syltherm 800 y del Therminol VP-1 con la 

temperatura – Densidad (Fuente: Muñoz Antón, 2008). 

 

 

Figura 3.10. Variación de las propiedades del Syltherm 800 y del Therminol VP-1 con la 

temperatura – Conductividad térmica (Fuente: Muñoz Antón, 2008). 

 

 

Figura 3.11. Variación de las propiedades del Syltherm 800 y del Therminol VP-1 con la 

temperatura – Viscosidad (Fuente: Muñoz Antón, 2008). 
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3.3.2 Uso de sales fundidas como fluido de trabajo en el campo solar 

 

Las sales fundidas son fluidos que funden a temperaturas superiores a 150ºC, pero que debido a 

su alta densidad y a su capacidad para trabajar a elevadas temperaturas de funcionamiento hacen 

de ellas fluidos muy interesantes desde un punto de vista térmico. 

 

El uso de sales fundidas como fluido calorífico es una de las líneas de investigación más 

importantes que se están llevando a cabo en estos momentos. Actualmente en las plantas 

comerciales de colectores cilindro parabólicos sólo son usadas en el sistema de almacenamiento 

y no en el campo solar. Este fluido si se usa en sistemas de receptor central, como por ejemplo 

la planta Solar Two. 

 

Tipos de sales utilizadas en el campo solar de colectores cilindro parabólicos: 

 

Las sales empleadas en aplicaciones solares han sido las sales de nitrato, por sus buenas 

propiedades en comparación con otras. Estas sales producen bajas tasas de corrosión en los 

materiales habituales para tuberías, son térmicamente más estables en los altos rangos de 

temperatura requeridos por los ciclos Rankine, tienen presiones de vapor muy bajas, lo que 

permite trabajar a presiones moderadas en el campo solar, se pueden conseguir fácilmente y son 

relativamente baratas. Una sal muy usada (sobre todo es sistemas de torre central) es la Solar 

Salt, ya que tiene una temperatura límite de operación (600ºC) que permite acoplar a estos 

sistemas a los ciclos de Rankine más avanzados. Además, es una de las sales de nitrato más 

baratas. Su mayor desventaja es que tiene un punto de congelación muy alto, 220ºC. La sal 

ternaria Hitec presenta un punto de congelación mucho más bajo, en torno a 140ºC, pero su 

coste es más alto y su temperatura límite más baja. Existe otra sal, la Hitec XL, con un punto de 

congelación todavía más bajo, alrededor de los 120ºC.  

 

En las siguientes figuras (figura 3.12 calor específico, figura 3.13 densidad, figura 3.14 

conductividad térmica y figura 3.15 viscosidad) se pueden ver las propiedades de una sal 

fundida de uso en sistemas solares, la Hitec XL comparada con el aceite Therminol VP-1 y 

como varían sus propiedades con la temperatura. 
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Figura 3.12. Comparación de la sal fundida Hitec XL y del aceite Therminol VP-1 para ver como 

varían sus propiedades físicas con la temperatura - Calor específico (Fuente: Muñoz Antón, 2008). 

 

 

Figura 3.13. Comparación de la sal fundida Hitec XL y del aceite Therminol VP-1 para ver como 

varían sus propiedades físicas con la temperatura – Densidad (Fuente: Muñoz Antón, 2008). 

 

        

Figura 3.14. Comparación de la sal Hitec XL y del aceite Therminol VP-1 para ver como varían sus 

propiedades físicas con la temperatura - Conductividad térmica (Fuente: Muñoz Antón, 2008). 
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Figura 3.15. Comparación de la sal fundida Hitec XL y del aceite Therminol VP-1 para ver  como 

varían sus propiedades físicas con la temperatura – Viscosidad (Fuente: Muñoz Antón, 2008). 

 

3.3.3 Uso de agua-vapor como fluido de trabajo en el campo solar 

 

El empleo de agua-vapor a través de los colectores cilindro parabólicos de un campo solar 

puede reducir el coste de la energía generada, aumentando el rendimiento de producción, al 

suprimir el intercambiador de calor intermedio entre el campo solar y el bloque de potencia.  

 

Otras ventajas de la generación directa de vapor son: 

 

 El fluido de trabajo en el campo solar no es, en ningún caso, ni contaminante ni 

peligroso: se elimina el riesgo de fugas o, en el caso del aceite, de incendios. 

 

 La temperatura máxima de operación no está limitada por el fluido de trabajo, como en 

el caso del aceite (400ºC), y los problemas de congelación no son tan acusados como en 

el caso del empleo de sales (con temperaturas de congelación entre 140ºC y 220ºC).  

 

 Se suprimen muchos de los sistemas auxiliares del circuito de aceite (sistema 

antiincendios, piscina de recogida del aceite en caso de fugas, sistema de purga de 

inconfesables del aceite y sistema de inertización del aceite) o al circuito de sales 

(elementos calefactores, procedimientos y sistemas asociados a la protección frente a las 

congelaciones nocturnas, etc.). 

 

No todo son ventajas, también hay inconvenientes: 
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 Se necesitan tuberías, válvulas y accesorios metálicos del campo solar más fuertes, con 

paredes más gruesas, capaces de soportar unas mayores presiones de trabajo. 

 

 Los tubos absorbedores también necesitan ser mejorados para poder soportar las altas 

temperaturas y presiones de esta tecnología. 

 

La tecnología de Generación Directa de Vapor es muy interesante pero necesita que se dé un 

salto tecnológico en el diseño de componentes y nuevos materiales para que ésta sea usada a 

nivel comercial. 

 

Conclusión: 

 

A las temperaturas de trabajo a las que operan los colectores cilindro parabólicos actualmente 

(125ºC < T < 400ºC), el fluido de trabajo que parece más adecuado es el aceite, por tener un 

punto de congelación y una presión de vapor bastante adecuadas para esas temperaturas. 

Concretamente se empleará en la planta termosolar el Therminol VP-1, que es el aceite que se 

esta usando en casi todos los proyectos de plantas de tecnología HTF de cilindro parabólicos 

debido a sus buenas propiedades y a su precio competitivo (en comparación con el Syltherm-

800).  

 

Con el Therminol VP-1 se pueden alcanzar temperaturas de trabajo cercanas a los 400ºC con 

presiones que no encarecen en exceso la instalación (~16 bar).Esta  temperatura constituye un 

límite, el Therminol VP-1 es susceptible de degradación química cuando superan los 390ºC, 

pero esto no es un problema debido al estado actual de la tecnología, que hace que no se superen 

esos valores. 

 

Los otros fluidos analizados presentan mayores problemas: 

 

Las sales cuentan con los problemas típicos de corrosión y de taponamiento por solidificación 

en puntos fríos, además de un punto de congelación alto. 

 

La problemática de trabajar con agua, es que a presión ambiente cambia de fase a los 100ºC, lo 

que implica, que para trabajar con este fluido, hay que ir a presiones elevadas para alcanzar 

temperaturas elevadas de trabajo Como ya se ha comentado anteriormente, esto hace 

imprescindible el uso de espesores elevados en las tuberías para poder trabajar a presión 

elevada. Otro problema es la dificultad añadida del acoplamiento con un sistema de 

almacenamiento térmico. 
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3.4. ELECCIÓN DEL COLECTOR CILINDRO PARABÓLICO A 

EMPLEAR DE LA PLANTA TERMOSOLAR 

 

En este apartado se va a elegir el tipo de colector que se va a colocar en el campo solar de la 

central termosolar objeto de este proyecto. Tener en cuenta que cuando se habla del tipo de 

colector se hace referencia en todo momento a la estructura del mismo, lo que ocurre es que se 

le atribuye el nombre de colector de forma genérica. La estructura del colector esta diseñada 

para proporcionar la rigidez necesaria al conjunto de elementos que lo componen, se podría 

decir que es el esqueleto del colector. 

 

Funciones que realiza la estructura de un colector: 

 

 Soporta los espejos y los tubos absorbedores, manteniéndolos alineados óptimamente. 

 

 Resiste las fuerzas externas como las del viento.  

 

 Permite que el colector gire, por lo que los espejos y los tubos absorbedores pueden 

llevar a cabo el necesario seguimiento solar.  

 

 Actúa de interfase con la cimentación del colector. 

 

El programa de ordenador usado en este proyecto y ya presentado en el capítulo 2, ofrece los 

siguientes cuatro tipos de colectores para poder elegir: LS-2, LS-3, Eurotrough y Solargenix. A 

continuación se va a pasar a comentar las características más importantes de cada uno de ellos, 

aunque hay que decir antes de nada, que los colectores LS-2 y LS-3 ya no están disponibles 

comercialmente, pero debido a que aparecen en el programa y sobre todo a la gran importancia 

que han tenido en el desarrollo de los colectores cilindro parabólicos más actuales, se ha creído 

conveniente estudiarlos.  

 

Colectores Luz (LS-2 y LS-3) 

 

Los colectores Luz representan el estándar en el cual se han fijado todos los colectores (también 

los más recientes) a la hora de su diseño y desarrollo. El carácter económico de estos colectores, 

fabricados en acero galvanizado, los ha hecho idóneos para aplicaciones comerciales en 

centrales termosolares. Han demostrado ser altamente eficientes a lo largo de sus años de 
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experiencia. Como ejemplo decir, que han sido los colectores utilizados en casi todas las plantas 

SEGS de California. 

 

Hay dos tipos de colectores Luz principalmente, el LS-2 y el LS-3: 

 

El colector LS-2 posee un diseño muy preciso. Cuenta con una estructura de tubo de soporte 

central (torque tube), es muy sencillo de montar y proporciona una gran resistencia a la torsión. 

Cuenta con seis módulos, tres a cada lado de la unidad de movimiento y cada módulo tiene dos 

tubos absorbedores de cuatro metros de largo cada uno. El principal inconveniente que presenta 

es que el sistema que lleva de tubo de soporte central utiliza una gran cantidad de acero y 

además requiere de una fabricación muy precisa para que después sea montado sin problemas. 

 

Para reducir los costes de fabricación, Luz diseño un colector más grande, el LS-3, con una 

tolerancia de fabricación más baja y un requerimiento de acero menor. Demostró ser también un 

diseño muy fiable. El LS-3 utiliza una estructura espacial en lugar de la de tubo de soporte 

central. El colector LS-3 tiene tres módulos espaciales a cada lado de la unidad de movimiento. 

Cada módulo espacial, tiene tres tubos absorbedores de cuatro metros de largo. 

 

Aún así, el colector LS-3 con su nuevo diseño no consiguió bajar los costes de fabricación tanto 

como se esperaba. También tenía el inconveniente de que contaba con una resistencia a la 

torsión algo insuficiente, lo que condujo a un menor rendimiento óptico y térmico de lo 

esperado. 

 

En las dos figuras siguientes, se puede ver un colector LS-2 y un LS-3, pudiéndose observar el 

diferente diseño utilizado en cada uno a la hora de llevar a cabo su estructura. 

 

                

 

 

 

En la siguiente tabla 3.7 se muestran las características principales de ambos colectores: 

Figura 3.16. Parte de atrás de la estructura de un 

colector LS-2. (Fuente: http://www.nrel.gov/) 

Figura 3.17. Parte de atrás de la estructura de un 

colector LS-3. (Fuente: http://www.nrel.gov/) 
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 LS-2 LS-3 

Estructura 
Tubo soporte central 

(torque tube) 

Estructura espacial 

en “V” 

Apertura (m) 5 5.76 

Distancia focal (m) 1.49 1.71 

Longitud de un módulo (m) 8 12 

Longitud de un colector (m) 49 99 

Área de espejo por colector (m
2
) 235 545 

Diámetro del receptor (m) 0.07 0.07 

Concentración geométrica 71:1 82:1 

Mecanismo de accionamiento Mecánico Hidráulico 

Peso (kg/m
2
) 29 33 

Rendimiento óptico 76 80 

Proyectos más significativos SEGS II-VII SEGS V-IX 

 

Tabla 3.7. Características principales de los colectores LS-2 y LS-3. 

(Fuente: Kearney, 2007) 

 

Ahora se verán los otros dos tipos de colectores nombrados anteriormente, el Solargenix y el 

Eurotrough, son dos conceptos de colectores algo diferentes como se podrá comprobar pero 

ambos han demostrado una gran eficiencia en los proyectos en los que han intervenido. 

 

Colector Eurotrough  

 

Tras la desaparición de Luz, un consorcio de empresas y laboratorios de investigación europeos 

(Inabensa, Fichtner Solar, Flabeg Solar, SBP, Iberdrola, Ciemat DLR, Solel, CRES), inicio el 

desarrollo del diseño de un nuevo colector basándose en las experiencias de los colectores Luz y 

con la intención de aunar en él todos los conocimientos adquiridos en el diseño del LS-2 y LS-3. 

El colector Eurotrough utilizó un diseño de armazón soporte o torque box. Consiste básicamente 

en un armazón rectangular con brazos soporte, así consigue combinar una mayor  resistencia a 

la torsión con una menor cantidad de acero utilizado en su fabricación. Menos componentes, 

menos costos, más eficiente. 
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Figura 3.18. Filas de colectores SKAL-ET en la planta solar Andasol 1. 

(Fuente: Solar Millennium AG, 2009) 

 

Colector Solargenix  

 

La empresa Solargenix Energy apoyada por el departamento de energía de EE.UU. ha 

desarrollado un nuevo colector cilindro parabólico también de última generación. La estructura 

del colector de Solargenix está hecha de aluminio extruido y utiliza una estructura de diseño 

espacial. Las ventajas de este tipo de colector son que pesa menos que los de acero, requiere de 

muy pocos elementos de fijación, no necesita de una soldadura o fabricación especializada, se 

monta fácilmente y no requiere de una alineación en el campo solar.  

 

 

Figura 3.19. Parte de atrás de la estructura de un colector Solargenix. 

(Fuente: http://www.nrel.gov) 

 

En la siguiente tabla 3.8 se muestran las características principales de ambos colectores. Los 

datos que se aportan corresponden a los modelos de última generación dentro de cada tipo de 

colector. Para el modelo Solargenix se dan las características del SGX-2, y para el modelo 

Eurotrough se dan las características del SKAL-ET, dicho colector esta fabricado por la empresa 

Flagsol: 
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       Solargenix  Eurotrough 

Estructura 
Estructura espacial de 

aluminio extruido 

Estructura tipo 

armazón soporte 

(torque box) 

Apertura (m) 5 5.77 

Distancia focal media (m) 1.8 2.1 

Longitud de un módulo (m) 8 12 

Longitud de un colector (m) 100 150 

Área de espejo por colector (m
2
) 470 817.5 

Diámetro del receptor (m) 0.07 0.07 

Concentración geométrica 71:1 82:1 

Mecanismo de accionamiento Hidráulico Hidráulico 

Peso (kg/m
2
) 22 28 

Rendimiento óptico 77 80 

Proyectos más significativos Nevada Solar One Andasol 1 y 2 

 

Tabla 3.8. Características principales de los colectores Solargenix y Eurotrough. 

(Fuente: Kearney, 2007) 

 

El colector que se va a elegir para la planta termosolar va a ser el Eurotrough y más 

concretamente el modelo de ultima generación SKAL-ET de la empresa Flagsol. Los puntos 

fuertes de este colector son: 

 

 Su reduciendo peso específico (28 kg/m
2
). 

 

 La elevada rigidez del colector, lo que le posibilita obtener un rendimiento óptico del 

80% y le permite operar en condiciones de viento más desfavorables, aumentando su 

rendimiento. 

 

 Es un colector producido a gran escala, lo que hace que comercialmente tenga un precio 

bastante competitivo 190 €/m
2
. 

 

 Permite su construcción en el mismo campo solar reduciendo así los costes de 

fabricación. 

 

Es un colector que está diseñado para que sea sencillo de manejar, tanto en las operaciones 

normales diarias como a la hora de realizar los trabajos de mantenimiento correspondientes. 
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3.5. ELECCIÓN DEL TUBO ABSORBEDOR A EMPLEAR EN LA 

PLANTA TERMOSOLAR 

 

El tubo absorbedor es uno de los elementos más importantes que componen un colector cilindro 

parabólico, es en él donde la energía solar radiante se convierte en energía térmica por lo que el 

rendimiento global del colector depende en gran medida de este elemento. 

 

Esquemáticamente, los tubos absorbedores que se utilizan en las plantas termosolares están 

constituidos por dos tubos concéntricos, uno interior metálico, por el que circula el fluido 

caloportador, y otro exterior de vidrio. 

 

Es básico que el tubo metálico cuente con un recubrimiento selectivo el cual le va conferir una 

elevada absortividad  y una baja emisividad en el espectro infrarrojo, así se consigue que los 

tubos absorbedores tengan elevados rendimientos térmicos.  

 

El tubo de vidrio que rodea exteriormente al tubo metálico tiene una doble función la de  reducir 

las pérdidas térmicas por convección en el tubo metálico y la de proteger el recubrimiento 

selectivo de las inclemencias meteorológicas, para ello entre el tubo metálico y el tubo de vidrio 

se hace el vacío. El tubo de cristal suele llevar también un tratamiento antirreflexivo en sus dos 

caras, para aumentar su transmisividad a la radiación solar y consiguientemente, el rendimiento 

óptico del colector. 

 

En la actualidad sólo dos fabricantes suministran tubos absorbedores para los nuevos proyectos 

de plantas termosolares comerciales, los dos son alemanes Siemens
1
 y Schott. 

 

A continuación se muestran los dos modelos de tubos absorbedores de última generación que 

ofrecen cada una de estas dos marcas, el receptor SCHOTT PTR 70 y el SIEMENS UVAC 

2010. Ambos incorporan los últimos avances tecnológicos proporcionados por la gran 

experiencia acumulada por estas empresas en los últimos años en los distintos proyectos 

termosolares en los que han participado. 

 

 

 

 

1
Siemens ha fortalecido su posición en el mercado de las centrales eléctricas termosolares al 

haber adquirido recientemente Solel Solar Systems, que era la empresa israelí que hasta ahora 

desarrollaba los tubos receptores Solel UVAC ahora Siemens. 
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Figura 3.20. Tubo absorbedor SIEMENS UVAC 2010.  

(Fuente: Siemens, 2010) 

 

 

Figura 3.21. Esquema de los componentes del tubo absorbedor Siemens UVAC 2010.  

(Fuente: Siemens, 2010) 

 

                              Componentes del tubo absorbedor Siemens UVAC 2010 
 

                              1. Tubo metálico 

                              2. Tubo de vidrio 

                              3. Unión mediante soldadura vidrio-metal 

                              4. Fuelle metálico 

                              5. Getter  para mantenimiento de la cámara de vacío 

                              6. Protectores externos 

                              7. Protectores internos 

 

 

Figura 3.22. Tubo absorbedor SCHOTT PTR 70. 

(Fuente: Schott, 2010) 

2 

1 
3 

4 

5 
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                             Componentes del tubo absorbedor Schott PTR 70 

 

   1. Unión mediante soldadura vidrio-metal 

                             2. Tubo de vidrio con tratamiento antirreflexivo 

                             3. Tubo metálico recubrimiento selectivo 

                             4. Cámara de vacío 

                             5. Acoplamiento de los tubos con el fuelle 

 

En la tabla 3.9 se muestran y comparan las características técnicas principales de ambos tubos 

absorbedores: 

 
SCHOTT  PTR 70 SIEMENS UVAC 2010 

Longitud 4060 mm 4060 mm 

Ø exterior tubo metálico 70 mm 70 mm 

Tipo de metal Acero inoxidable Acero inoxidable 

recubrimiento selectivo Cermet Cermet 

Ø exterior tubo vidrio 125 mm 115 mm 

Tipo de vidrio Vidrio borosilicatado
2
 Vidrio borosilicatado 

Transmisividad  %96  %.596  

Tratamiento antirreflexivo 
En las dos caras del tubo de 

vidrio 

En las dos caras del tubo de 

vidrio 

Absortividad %95  %96  

Emisividad  10 % a 400 °C  9 % a 400 °C 

Superficie útil ~ 95% ~ 96% 

Cámara de vacío Vida útil > 25 años Vida útil > 25 años 

 

Tabla 3.9. Características técnicas del receptor SCHOTT PTR 70 y del SIEMENS UVAC 2010. 

(Fuente: Schott, 2010 y Siemens, 2010) 

 

Como se puede apreciar, las diferencias que existen entre ambos son mínimas, tanto a nivel de 

diseño como a nivel de rendimiento térmico. 

 

En ambos, los extremos del tubo de vidrio van soldados, mediante una soldadura vidrio-metal, a 

un fuelle metálico que, a su vez, va soldado al tubo metálico. De esta forma se logra que exista 

una  cámara de vacío entre el  tubo metálico y el de vidrio, y al  mismo tiempo  se compensa  la  

 

2 
Vidrio borosilicatado: es un tipo particular de vidrio que se emplea muy a menudo en 

instrumentos ópticos por sus buenas propiedades ópticas y mecánicas (baja dilatación). 
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diferente dilatación térmica de los tubos de vidrio y metal mediante el fuelle metálico. 

 

Los dos modelos utilizan recubrimientos selectivos tipo cermet
3
 en el tubo metálico absorbedor, 

realizados mediante procesos de sputtering o PVD (Physical Vapour Deposition)
4
. El principal 

problema de la mayoría de este tipo de recubrimientos es que se degradan en contacto con el 

aire, de ahí la necesidad de que exista una cámara de vacío entre el tubo metálico y el tubo de 

vidrio. 

 

En ambos, para asegurar la cámara de vacío se colocan unos dispositivos denominados getters, 

que tienen la función de absorber las posibles moléculas de diferentes substancias (sobre todo 

hidrogeno) que con el paso del tiempo, pudieran ir penetrado en la cámara. 

 

También cuentan con un recubrimiento antirreflexivo de alta resistencia al desgaste y que al 

mismo tiempo  permite una elevada transmisión de la radiación solar. 

 

Las únicas diferencias reseñables que existen entre ambos modelos se pueden resumir en las dos 

siguientes: 

 

 Los getters, en el tubo diseñado por Siemens van adheridos al tubo metálico, mientras 

que en el tubo de Schott se adhieren al fuelle metálico. 

 

 La forma de colocación del fuelle metálico es otra de las diferencias entre ambos 

modelos. Mientras que en el diseño de Siemens la unión tubo de cristal-fuelle–tubo 

metálico se da de manera consecutiva, el fuelle se une a cada tubo por uno de sus 

extremos, en el diseño de Schott no están dispuestos los elementos consecutivamente, 

sino unos encima de los otros, esto es, el fuelle queda en mitad. Así se consigue  algo 

más de superficie útil en el tubo absorbedor y permite que los getters se pueden colocar 

en el fuelle. 

 

3 
Un cermet es un material compuesto formado por materiales metálicos y cerámicos. Los 

cermets están diseñados para combinar la resistencia a altas temperaturas y a la abrasión de los 

cerámicos con la maleabilidad de los metales. 

 

4 
Deposición física a partir de la fase vapor: esta técnica esta basada en la formación de un vapor 

del material que se pretende depositar como recubrimiento. Para ello, el material en forma de 

sólido es sometido bien sea a un proceso de calentamiento hasta la evaporación o bien se 

pulveriza mediante un bombardeo intenso con partículas cargadas en forma de iones, sputtering.  
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Como se ha podido ver, cualquiera de los dos modelos de tubos absorbedores analizados cumple 

perfectamente con los requisitos que se le exigen a un elemento tan importante como este dentro 

de un colector cilindro parabólico. El programa de ordenador que se va a utilizar en este 

proyecto para el diseño y análisis de la central termosolar tiene disponibles para ser elegidos 

ambos modelos, eso si,  el UVAC de Siemens existente es un modelo más antiguo, debido a que 

la nueva generación acaba de salir en este año 2010. Esto no supone ningún problema porque 

basta con editar el tubo absorbedor y cambiar sus características por las nuevas y arreglado. 

Luego a la hora de elegir un tubo absorbedor u otro daría más o menos lo mismo. En la vida real 

entrarían en juego otros factores más de tipo económicos y de acuerdo entre las distintas 

empresas participantes en los proyectos termosolares.  

 

Para este proyecto se contará con el SCHOTT PTR 70 porque a diferencia del modelo de 

Siemens, este receptor se fabrica en España, en la planta que la empresa tiene en el Parque de 

Actividades Medioambientales de Andalucía (PAMA) en Aznalcollar (Sevilla) y para el autor 

de este trabajo ello es razón suficiente. 

 

 

 

3.6. ELECCIÓN DE LA TURBINA DE VAPOR A EMPLEAR EN LA 

PLANTA TERMOSOLAR 

 

La turbina de vapor juega un papel fundamental dentro de las plantas termosolares. Por las 

características específicas de este tipo de plantas, las cuales no funcionan las 24 horas del día,  

se requiere de turbinas de vapor con las que se puedan alcanzar altos rendimientos y por lo tanto 

que ayuden a generar el beneficio económico que en todo proyecto empresarial de este tipo se 

busca. 

 

A continuación, se muestran las características principales con que cuentan las turbinas 

comerciales que actualmente se están implementando en los ciclos de potencia de las plantas de 

colectores cilindro parabólicos de tecnología HTF: 

Figura 3.23. Imagen de la planta que tiene la 

firma Schott en Aznalcóllar (Sevilla) para la 

fabricación de tubos absorbedores. 

(Fuente: www.erasolar.es) 
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 Son turbinas que usan la idea del recalentamiento para mejorar la eficiencia y reducir 

los costes de inversión de la planta. La solución del recalentamiento mejora la eficiencia 

general de la planta y reduce problemas relacionados con la corrosión y la humedad en 

la turbina. 

 

 Son turbinas que suelen estar divididas en dos módulos diferentes: una turbina de alta 

presión (HP) y una de baja presión (LP). Como se va a hacer uso de recalentamiento, es 

imprescindible una sección de alta presión y otra de baja presión. Un ciclo con 

recalentamiento permite que la turbina de vapor proporcione un rendimiento mayor con 

la misma entrada de calor. El vapor se recalienta una vez que se ha expandido a través 

de la turbina de alta. Esto reduce la cantidad de  humedad en la turbina de baja, 

incrementando la eficiencia y minimizando la erosión causada por las gotas de agua.  

 

 Son turbinas que permiten el precalentamiento regenerativo, esto es, extracciones de 

vapor desde la turbina de baja las cuales se emplean para precalentar el agua antes de 

entrar en el generador térmico, lo cual tiene el efecto directo de aumentar el rendimiento 

del ciclo de potencia. 

 

 Son turbinas diseñadas para proporcionar arranques y paradas rápidas. Los arranques 

rápidos son muy positivos a la hora de comenzar lo antes posible a generar electricidad 

cuando se dan las condiciones necesarias, con los beneficios que esto conlleva. Las 

paradas rápidas son muy necesarias para permitir la desactivación nocturna de la planta. 

 

 Poseen una carga mínima bastante baja, permitiendo de esta manera que la planta 

funcione durante mayores periodos de tiempo. 

 

 Poseen carcasas diseñadas especialmente para que protejan a la turbina de vapor del 

excesivo enfriamiento nocturno y para acortar significativamente la fase de 

calentamiento durante los arranques. 

 

 Los rotores que utilizan están fabricados con materiales de alta calidad especialmente 

elegidos para  resistir los desgastes y las roturas debidos a la corrosión y la humedad, y 

así  poder lograr una operatividad de la planta lo mayor posible. 

 

Existe una marca líder en el mercado mundial para la fabricación de este tipo de turbinas, 

Siemens. Proyectos tan emblemáticos en España como los de Andasol, Ibersol o Extrasol han 
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confiado en ella, así como casi todas las plantas que se están ahora mismo construyendo como 

las de Helios, Manchasol, etc.  

 

Turbina SST-700 de Siemens 

 

La turbina que actualmente ofrece Siemens para aplicaciones de generación de energía en 

centrales termosolares es la SST-700. Una turbina de dos carcasas consistente en dos módulos: 

un módulo de AP (alta presión) con reductor y otro de BP (baja presión). Cada módulo se puede 

usar independientemente o combinado en una configuración ideal. 

 

Datos técnicos 

 

• Potencia entregada de hasta 175 MW 

• Presión de entrada (con recalentamiento) de hasta 165 bar 

• Temperatura de entrada (con recalentamiento) de hasta 585°C 

• Temperatura de recalentamiento de hasta 415°C 

• Velocidad de giro de 3000 – 13200 rpm 

• Extracción controlada de hasta 40 bar y hasta 415°C 

• Hasta 7 tomas; hasta 120 bar 

• Presión del vapor de salida: contrapresión de hasta 40 bar o condensación de hasta 0,6 bar 

• Presión del vapor de escape (recalentado) de hasta 3 bar 

• Área de escape 1.7 – 11 m
2
 

 

Dimensiones típicas 

 

Longitud 22 m* 

Ancho 15 m* 

Altura 6 m*                        (*incluyendo condensador) 

 

Características 

 

• Contrapresión / Condensación 

• Módulos de turbina prefabricados 

• Posible disposición paralela 

• AP como unidad de contrapresión, BP como cola de condensación 

• Trayecto de vapor a medida del cliente 
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• Extracción simple en tubo de comunicación 

• Escape radial / axial 

• Aplicaciones de recalentamiento 

 

 

 

Figura 3.24. Turbina SST-700 de Siemens. 

(Fuente: Siemens, 2008) 

 

 

 

Figura 3.25.  Proyectos que utilizan la turbina SST-700 de Siemens. 

(Fuente: Siemens, 2008) 
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En la figura 3.25 se muestra primeramente la gran experiencia que tiene la empresa Siemens con 

esta turbina SST-700. Se indica el número de proyectos termosolares en los que se utiliza o se 

va a utilizar, con fondo rojo los que corresponden a tecnología de colectores cilindro 

parabólicos (40), con fondo verde los correspondientes a tecnología de receptor central (3) y con 

fondo azul las instaladas en plantas ISCCS
5
 (2). Además sobre el mapa del mundo, se pueden 

observar las zonas más propicias para la instalación de este tipo de plantas en función a sus 

niveles de irradiación solar, color gris zonas no apropiadas,  color amarillo suave zonas buenas, 

color amarillo fuerte zonas muy buenas y color naranja zonas excelentes. 

 

Existen otras marcas que fabrican turbinas para aplicaciones termoeléctricas. Como ejemplo 

citar las de la empresa Mitsubishi Heavy Industries (MHI). Las turbinas que se utilizaron en las 

primeras plantas SEGS de California eran de la marca MHI, luego esta empresa tiene también 

una gran experiencia en este campo. El problema es que dentro de la gama de productos que 

ofrece para este sector, no hay turbinas de potencia tan baja como la que se necesita en este 

proyecto, 50 MW. Actualmente MHI ofrece dos tipos de turbinas: turbinas de recalentamiento 

de un sólo cilindro (de 75 a 200 MW) y turbinas de recalentamiento con dos cilindros (de 75 a 

200 MW). Las primeras tienen la ventaja de una menor necesidad de espacio, de una 

construcción y montaje en períodos más cortos y de una menor inversión inicial. Las segundas 

tienen la ventaja de que obtienen mayores eficiencias energéticas. 

 

 

 

Figura 3.26. Esquema de una turbina MHI de 150 MW con recalentamiento de dos cilindros. 

(Fuente: http://www.mhi.co.jp/en/products/category/steam_turbine.html) 

 

 

5
 ISCCS (Integrated Solar Combined Cycle System). La energía solar de los campos solares 

de cilindros parabólicos se puede integrar con un ciclo combinado para incrementar la 

eficiencia aún más y disminuir las ya bajas emisiones. Esto se logra con un sistema ciclo 

combinado integrado con el solar. 
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Figura 3.27. Vista de una turbina MHI de 150 MW con recalentamiento de un cilindro. 

(Fuente: http://www.mhi.co.jp/en/products/category/steam_turbine.html) 

 

Luego para el proyecto se va a elegir la turbina Siemens SST-700, Por que entra dentro de los 

tamaños que se buscan (50 MW), por su gran experiencia, por su buen rendimiento (~39% a 

plena carga en plantas como Andasol, Ibersol.....) y porque además, el programa de ordenador 

que vamos a utilizar cuenta con ella. 

 

3.7. ELECCIÓN DEL SISTEMA DE ALMACENAMIENTO A 

EMPLEAR EN LA PLANTA TERMOSOLAR  

 

Los sistemas de almacenamiento permiten a las centrales termosolares una generación de 

energía eléctrica más estable e independiente de la variabilidad del recurso solar. Y no sólo eso, 

sino que la economía, el rendimiento y las estrategias de operación de las plantas se ven 

favorecidas por dichos sistemas al poder adaptarse mejor a las necesidades de la demanda del 

mercado eléctrico, por todo ello la planta termosolar objeto del proyecto contara con él. 

 

Existe una gran variedad de tecnologías de almacenamiento que se pueden implementar en los 

sistemas termosolares: 

 

 Almacenamiento en baterías 

 Almacenamiento mecánico (aire comprimido, volantes de inercia o elevación mediante 

bombeo de agua en embalses) 

 Almacenamiento magnético en superconductores. 

 Almacenamiento térmico  

 

La tecnología que se está usando actualmente en las plantas termosolares de colectores cilindro 

parabólicos corresponde exclusivamente a la del almacenamiento térmico, caracterizada 
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principalmente porque las entradas y las salidas energéticas del sistema de almacenaje son, 

como su nombre bien indica, en forma de energía térmica. 

 

Las propiedades que debe cumplir un buen medio de almacenamiento térmico son: 

 

 Elevada densidad energética 

 Tener una buena transferencia de calor con el fluido caloportador del campo 

 Tener una buena estratificación térmica 

 Ser estable 

 Tener unos costes relativamente bajos 

 

El almacenamiento térmico puede realizarse con el material en distintos estados de agregación, 

sólido, líquido, cambio de fase, con mezcla de lecho de rocas con fluido de trabajo, etc. 

 

Los medios de almacenamiento más frecuentes utilizados en las plantas termosolares se 

resumen a continuación en la tabla 3.10: 

 

Sólido Líquido Materiales de cambio de fase 

Arena-Roca-Aceite Aceite mineral NaNO3 

Hormigón armado Aceite sintético KNO3 

NaCl (sólido) Aceite de silicona KOH 

Hierro colado Sales de nitrito 
Solución salina - cerámicos 

(Na2CO3-BaCO3 /MgO) 

Acero colado Sales de nitrato NaCl 

Ladrillos refractarios de  sílice Sales de carbonato Na2CO3 

Ladrillos refractarios de magnesia Sodio líquido K2CO3 

 

Tabla 3.10. Medios de almacenamiento utilizados en las plantas termosolares. 

 

El almacenamiento en un medio de cambio de fase es una tecnología que se encuentra en 

proceso de desarrollo y utiliza el punto de fusión o congelación de sales como los nitratos de 

sodio o de potasio para almacenar y obtener calor para la condensación y evaporación. Sólo ha 

sido probada en algunos prototipos, y no hay de momento aplicaciones comerciales. 

 

Dentro del almacenamiento térmico la opción más extendida es la del almacenamiento en 

forma de calor sensible, en el cual se almacena energía térmica en un medio sólido, líquido o 

una combinación de ambos mediante un aumento de temperatura, y esa temperatura se mantiene 
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mediante las propiedades del fluido (calor específico y densidad) y gracias al correcto 

aislamiento térmico del recipiente que lo contiene. 

 

El almacenamiento de energía térmica en fase sólida es conveniente para los procesos de alta 

temperatura (ej. sistemas de receptor central). El almacenamiento en fase líquida es conveniente 

para las medias temperaturas (ej. colectores cilindro parabólicos), porque para las altas 

temperaturas, la necesidad de presurizar el tanque y en muchos casos de tener una atmósfera 

inerte para evitar la oxidación, lo hace poco aconsejable. Además, en el almacenamiento líquido 

se puede emplear simultáneamente el mismo fluido en el sistema de almacenamiento y en los 

colectores del campo solar. Los materiales líquidos más adecuados son el agua, los aceites 

naturales o sintéticos, las sales fundidas y los metales líquidos. 

 

El almacenamiento puede realizarse: 

  

 En un tanque 

 En dos tanques  

 En un sistema multitanque 

 

Los tipos de almacenamiento, independientemente de esta clasificación, pueden ser directos o 

indirectos. En un sistema directo se emplea como fluido de almacenamiento el mismo que se 

usa en el campo solar. Los sistemas indirectos emplean como fluido de almacenamiento uno 

distinto al que se usa en el campo solar. 

 

Almacenamiento en un tanque 

 

Hay dos opciones: 

 

A) Almacenamiento en un tanque con efecto termoclino (fluido de trabajo único) 

 

Este sistema se basa en la estratificación que se produce en el tanque por diferencia de densidad 

del fluido de trabajo, al existir diferentes niveles de temperatura. El funcionamiento es en doble 

ciclo, carga y descarga. La carga se produce extrayendo el fluido frío de la parte baja del tanque 

y calentarlo en el campo solar, de donde se envía de nuevo, ya caliente, a la parte alta del 

tanque. Al ser menos denso, quedará en la parte fría sin mezclarse. El proceso continúa hasta 

que termina de cargarse completamente. El proceso de descarga consiste en sacar el fluido 

caliente de la parte alta y, una vez enfriado, devolverlo a la parte baja del tanque. El proceso de 

carga y descarga se puede realizar simultáneamente manteniendo unos caudales y temperaturas 
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semejantes en ambos procesos o creando previamente una reserva que permita extraer más de lo 

que entra. 

 

B) Almacenamiento dual en un tanque 

 

Este sistema se basa en la estratificación producida en el material contenido en el tanque, 

consecuencia de su gran inercia térmica. Durante la carga, se hace pasar el fluido de trabajo a 

través del tanque, en sentido descendente, cediendo su energía al material de relleno. La parte 

superior de dicho material aumentará su temperatura rápidamente, pero la que se encuentra 

próxima a la salida permanecerá a una temperatura muy cercana a la inicial. Conforme aumenta 

el tiempo, el frente de temperaturas se va moviendo hacia la salida, hasta que alcanza dicho 

extremo y entonces la temperatura del fluido de trabajo a la salida comienza a aumentar. Se dice 

que el lecho está completamente cargado cuando su temperatura es uniforme. En ese momento 

se invierte el sentido del flujo, cediendo la energía a la carga, es el período de descarga. 

 

Almacenamiento en dos tanques 

 

En este sistema se tienen dos tanques aislados térmicamente, denominados generalmente como 

tanque caliente y tanque frío, de tal manera que el volumen de cada uno sea tal que pueda 

contener la totalidad del fluido de trabajo. Cada unos de ellos contiene el material de 

almacenamiento a temperatura aproximadamente constante Durante la carga, se llena el tanque 

caliente con el fluido de trabajo procedente del campo solar, y se vacía el tanque frío, de donde 

sale el fluido que alimenta el campo solar. En la descarga, el fluido caliente cede su energía para 

posteriormente introducirse en el tanque frío. 

 

Almacenamiento en un sistema multitanque 

 

Este sistema consiste en disponer de más de dos tanques. En este caso, cada tanque no tendrá 

porqué contener todo el fluido, ya que estará repartido entre todos, lo que conlleva un menor 

tamaño de los mismos. Si por ejemplo fueran tres tanques, el volumen total se repartiría entre 

dos de ellos, de forma que siempre se podría separar la parte caliente de la fría. 

 

Las fortalezas y debilidades de dichos sistemas se resumen en la siguiente tabla 3.11: 
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Almacenamiento en un único tanque 

Almacenamiento 

en dos tanques 

Almacenamiento 

en un sistema 

multitanque 

Almacenamiento en 

un tanque con efecto 

termoclino 

Almacenamiento 

dual en un tanque 

 

-Valido para fluidos 

con baja 

conductividad 

térmica: agua, aceite, 

sales fundidas a bajas 

temperaturas 

 

-Se emplea el mismo 

fluido en el campo 

solar que en el sistema 

de almacenamiento, 

no existiendo por 

tanto intercambio de 

calor 

 

-El sistema de un 

tanque es un 25% más 

barato que el de dos. 
 

 

-Existen pérdidas al 

producirse 

intercambio de calor 

entre el fluido del 

campo y el material 

utilizado de relleno 

 

-Es sistema de un 

tanque es un 25% más 

barato que el de dos. 

 

-Este sistema de 

almacenamiento es 

imprescindible cuando 

se usa un fluido de 

conductividad térmica 

relativamente alta para 

almacenar como por 

ejemplo las sales 

fundidas. 

 

-Mayores costes de 

inversión se requieren 

al implantar este 

sistema. 

 

-Menor tamaño de los 

tanques y se 

aprovecha mejor el 

volumen. 

 

-Es el sistema más 

caro, incluso que el de 

dos tanques sobre todo 

porque necesita de una 

mayor cantidad de 

equipos para su 

control. 

 

Tabla 3.11. Fortalezas y debilidades de los sistemas de almacenamiento de un tanque, dos tanques y 

del multitanque. 

 

La opción que se va a elegir para implantar en la central termosolar objeto de este proyecto es la 

del almacenamiento indirecto en dos tanques de sales fundidas. Es la solución más viable para 

aplicar a las plantas termosolares actuales de colectores cilindro parabólicos, por ello, es la 

única opción que el programa de ordenador que se va a utilizar en este proyecto ofrece a la hora 

de diseñar el sistema de almacenamiento. Recordar que el programa se basa en experiencias 

reales y este tipo de sistemas es el más implementado y este tipo de tecnología esta probada y 

testada. 

 

Para refrendar este dato, todas las centrales termosolares de colectores cilindro parabólicos que 

cuentan con un sistema de almacenamiento, que se han desarrollado en España y que se 

desarrollaran hasta el 2013 (datos del registro de preasignaciones), utilizan este tipo de sistemas. 

Como ejemplo las dos plantas Andasol (ya construidas) o las plantas Manchasol 1 y 2, Arcosol-

50 (actualmente en construcción).  

 

El proceso consiste en hacer pasar las sales frías por un intercambiador térmico con el aceite que 

ha sido previamente calentado en los colectores del campo solar, este transfiere su energía 
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térmica a las sales, y éstas se almacenan después en el tanque caliente para uso futuro. Para 

extraer el calor se invierte el proceso por el intercambiador, con el fin de transferir el calor de 

nuevo al aceite y producir vapor en el generador para el bloque de potencia.  

 

En este apartado se ha elegido el tipo de sistema de almacenamiento con el que contará la 

planta, la capacidad de dicho sistema se razonará en el punto 3.8. 

 

3.8. ELECCIÓN DE LA CONFIGURACIÓN DE LA PLANTA 

TERMOSOLAR 

 

Dentro de este apartado se van a tratar aspectos tan importantes como el tamaño del campo 

solar, se expondrán con detalle las razones de porque la planta contará con un sistema de 

almacenamiento y cual será su tamaño, y se abordará el asunto del apoyo de combustible fósil, 

que importancia tiene y cuanto porcentaje va a suponer (dentro de la producción eléctrica anual 

de la planta). 

 

3.8.1. Apoyo de combustible fósil 

 

La planta va a contar con una caldera auxiliar de apoyo que se utilizará para calentar el fluido 

caloportador procedente del campo solar mediante la combustión de gas natural. Aunque este 

proyecto final de carrera se comenzó con la idea de profundizar en el conocimiento de las 

tecnologías de concentración solar, por considerarlas una alternativa respetuosa y sostenible con 

el medio ambiente a la hora de producir energía, y la quema de combustible fósil (gas natural) 

combina mal con esta idea, no se pueden obviar las ventajas que para este tipo de centrales tiene 

el uso de un combustible fósil de apoyo: 

 

 Aumenta la capacidad de producción eléctrica. 

 

 Permite una generación de energía más estable, reduciendo las irregularidades  

generadas por las intermitencias del recurso solar. 

 

 Consigue abaratar el coste de la energía eléctrica producida mediante este tipo de 

tecnologías. 

 

Pero también tiene sus inconvenientes: 
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 La quema de combustibles fósiles es la causa principal del cambio climático que está 

afectando al planeta. 

 

 Las fluctuaciones del precio del petróleo y de sus derivados, causadas por los conflictos 

internacionales, el aumento de la demanda por parte de los países en vías desarrollo, los 

límites físicos del recurso, etc., generan incertidumbres, y más si se piensa que una 

planta como ésta va a estar operativa al menos 30 o 40 años.   

 

La cantidad de combustible fósil que utilizaremos en la central va a venir marcada por la 

normativa legal vigente. Según el REAL DECRETO 661/2007, del 25 de mayo, por el que se 

regula la actividad de producción de energía eléctrica en régimen especial, existen dos 

posibilidades de venta para este tipo de plantas: a tarifa regulada o mediante prima de 

referencia.  

 

El Real Decreto también dice que en estas instalaciones se podrán usar equipos que utilicen un 

combustible para el mantenimiento de la temperatura del fluido transmisor de calor para 

compensar la falta de irradiación solar que pueda afectar a la entrega prevista de energía. 

 

La generación eléctrica a partir de dicho combustible deberá ser inferior, en cómputo anual al 12 

por ciento de la producción total de electricidad si la instalación vende su energía de acuerdo 

con la opción de tarifa regulada, que estipula la posibilidad de ceder la electricidad al sistema a 

través de la red de transporte o distribución,  percibiendo por ella una tarifa regulada, única para 

todos los períodos de programación, expresada en céntimos de euro por kilovatio hora. 

 

Dicho porcentaje podrá llegar a ser el 15 por ciento si la instalación vende su energía de acuerdo 

a la opción prima de referencia, que posibilita vender la electricidad en el mercado de 

producción de energía eléctrica. En este caso, el precio de venta de la electricidad será el precio 

que resulte en el mercado organizado o el precio libremente negociado por el titular o el 

representante de la instalación, complementado en su caso, por una prima en céntimos de euro 

por kilovatio hora. 

 

Se va a elegir esta última opción: vender la electricidad acogiéndose a la prima de referencia, 

luego el combustible de apoyo fósil supondrá el 15 por ciento de la producción total de 

electricidad. La justificación de dicha elección es porque como se verá más adelante en el 

estudio económico apartado 4.3, se considera la opción más rentable económicamente hablando, 

para este tipo de plantas.  
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3.8.2. Tamaño del campo solar y del sistema almacenamiento térmico 

 

El uso de almacenamiento térmico ayudará a aumentar la capacidad de la planta y por lo tanto la 

producción eléctrica. 

 

El almacenamiento esta íntimamente ligado con el tamaño del campo solar. Habrá que optimizar 

el tamaño del campo con  la capacidad de almacenamiento en base al coste de la energía 

producida. 

 

Para realizar esta operación se va a utilizar el programa de ordenador que se presento en el 

capítulo 2, Solar Advisor Model. 

 

Dicho programa ofrece la posibilidad de hacer simulaciones para así ver la influencia que 

distintas variables tienen sobre el coste de la energía, la producción eléctrica, etc. En este caso 

se va a presentar la simulación paramétrica que realiza para la optimización del campo solar: 

 

Optimización del tamaño del campo solar (del múltiplo solar) con SAM: 

 

Datos de partida: 

 

 Tamaño de la planta 50 MW. 

 

 El 15% de la electricidad generada por la central se consigue a partir de la combustión 

de gas natural. 

 

Parámetros utilizados en la simulación: 

 

Horas de 

almacenamiento 
0 2.5 5 7.5 10 

Múltiplos 

solares 
1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 

 

Tabla 3.12. Parámetros de la simulación. 

 

 

Resultados de la simulación: 
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Figura 3.28. Optimización del múltiplo solar en función del almacenamiento y del coste de la 

energía. 

 

Como se observa en la grafica, para un sistema de colectores cilindro parabólicos sin 

almacenamiento (horas del TES = 0), el coste óptimo normalizado de la energía se produce 

aproximadamente a un múltiplo solar de 1.25. Debido a que sino el sistema sólo funciona en su 

punto de diseño (múltiplo solar uno) muy pocas horas al año, sobredimensionar el sistema 

(múltiplos solares mayores que uno) le permite a este operar cerca del punto de diseño más 

horas al año. Un sistema con un campo solar de gran tamaño produce más electricidad, 

reduciendo así el coste normalizado de la energía. Esto ocurre hasta cierto punto, donde el 

mayor costo de la instalación supera el beneficio de la producción más alta de energía.  

 

Si se añade almacenamiento al sistema (horas del TES ≠ 0), este introduce un nivel de 

complejidad mayor. Los sistemas con almacenamiento pueden aumentar su producción 

almacenando energía del campo solar para luego usarla durante los periodos en que la 

producción del campo está por debajo de la del punto de diseño, pero el coste del aumento del 

tamaño del campo, del sistema de almacenamiento de energía y las pérdidas térmicas, tienen un 

efecto negativo sobre el coste normalizado de la energía.  

 

El análisis realizado indaga sobre el coste normalizado de la energía (LEC o LCOE) buscando 

su valor mínimo para distintos tamaños de campos solares y para distintos tamaños de sistemas 

de almacenamiento. 
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Cuando el campo solar tiene un tamaño por encima de su punto de diseño, el análisis tiene en 

cuenta cualquier energía que podría desaprovecharse durante los períodos en que el campo solar 

produce más energía que la que el bloque de potencia y el sistema de almacenamiento puede 

manejar.  

 

Como se observa en la figura 3.28 para un sistema con dos horas y media de almacenamiento, el 

coste óptimo normalizado de la energía se produce aproximadamente para un múltiplo solar de 

1.5, para el de cinco horas  de 1.75, para el de siete horas y media de 2 y para el de diez horas de 

2.25. 

 

Con estos datos ya se sabe el tamaño del campo solar que consigue optimizar el coste de energía 

para una capacidad de almacenamiento dada. 

 

Para elegir las horas de almacenamiento que se elegirán, se cree oportuno fijarse en la influencia 

que éstas tienen en la capacidad de la planta para a la hora de producir energía eléctrica, así 

como en otros factores como el coste de la instalación.  

 

Se utiliza de nuevo el simulador: 

 

 

 
 

Figura 3.29. Variación del factor de capacidad en función de las horas de almacenamiento y de los 

múltiplos solares asociados a estas. 

Tipo de interés de cambio que se va a 

utilizar en este proyecto: 1$ = 0.769€ 
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Figura 3.30. Variación de la producción eléctrica anual en función de las horas de almacenamiento 

y de los múltiplos solares asociados a estas. 

 

Horas de 

almacena- 

miento 

múltiplo 

solar 

(optimizado) 

Producción 

anual 

eléctrica 

(kWh) 

LCOE 

c$/kWh 

LCOE 

c€/kWh 

Factor de 

Capacidad 

(%) 

Coste 

de la 

planta 

M$ 

Coste 

de la 

planta 

M€ 

0 1.25 128.000.000 17.27 13.28 29.45 185 142 

2.5 1.5 147.000.000 18.31 14.08 33.95 213 164 

5 1.75 166.000.000 19.24 14.8 38.21 250 192 

7.5 2 184.000.000 20.07 15.43 42.04 290 223 

10 2.25 204.000.000 20.79 15.99 46.33 330 254 

 

Tabla 3.13. Resumen de los datos obtenidos. 

 

En la tabla 3.13 se muestra un resumen de los datos obtenidos al llevar a cabo las distintas 

simulaciones de la planta termosolar con el programa de ordenador. 

 

Para la planta termosolar objeto del proyecto se va a elegir 7.5 horas de almacenamiento. Luego 

el múltiplo solar que le corresponde optimizado como se ha explicado anteriormente es de dos. 

A continuación y basándonos en la tabla 3.13 se explican los motivos de porque esta elección: 
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 Se busca producir la máxima cantidad de electricidad posible. 

 

 El factor de capacidad cuanto mayor sea mejor. Este factor nos da una idea del partido 

que se saca a las posibilidades de generación de la planta. 

 

 El coste de la electricidad producida esta dentro de los parámetros aceptables para este 

tipo de plantas, 10-20 c€/kWh, (Castro Gil, 2006). 

 

Cualquiera de las posibles configuraciones eran aceptables porque optimizaban los recursos, 

tanto físicos como económicos. Por supuesto que con un sistema de almacenamiento de energía 

de diez horas se lograría producir más electricidad y se tendría un factor de capacidad mayor. 

Pero esta configuración no se ha elegido por no existir ninguna central comercial en la 

actualidad de estas dimensiones. La razón es que campos solares tan extensos ( M.S=2.25) y 

sistemas de almacenamiento tan grandes (10 horas) conllevan bastantes más problemas en las 

operaciones diarias de control del campo. 

 

3.8.3. Envíos desde los sistemas de almacenamiento y de apoyo fósil 

 

En este ultimo apartado se fijará cuanta energía se va enviar y en que momentos desde el 

sistema de almacenamiento y desde el sistema auxiliar de apoyo fósil, el programa ofrece para 

ello una serie de calendarios, donde todas las horas del año se distribuyen en seis posibles 

periodos de envío. 

  

En la figura 3.27 se muestran los seis periodos de envío de energía posible desde el sistema de 

almacenamiento y desde la caldera auxiliar de gas natural y los parámetros elegidos a tal efecto: 

 

 

Figura 3.31. Periodos de envío. 

 

A continuación se muestra el calendario, de entre los cuatro distintos ofrecidos por el programa, 

elegido para la realización de este proyecto.  
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Figura 3.32. Calendario de distribución. 

 

Para el sistema de almacenamiento, se ha optado por elegir envíos de energía que si el estado de 

llenado del sistema lo permite, podrían cubrir hasta el 100% de las necesidades del ciclo de 

potencia durante esa hora. Esto se consigue al poner en la columna tercera de la figura 3.31 un 

uno en cada periodo, que representa que se puede enviar hasta el 100% de la entrada de energía 

necesaria al bloque de potencia (de diseño), así se consigue que pueda funcionar a plena carga 

únicamente con la energía procedente del sistema de almacenamiento. Las dos primeras 

columnas sirven para fijar el mínimo de energía que debe haber en el sistema de 

almacenamiento para que este se ponga a funcionar. Este mínimo se marca al poner una fracción 

de energía de la capacidad máxima total de almacenamiento del sistema, en este caso se ha 

puesto un mínimo del 10%, esto son 106.589 MWt. Si no se dispone de esa energía en el 

sistema de almacenamiento se considera que no merece la pena ponerlo en marcha. La razón por 

la que existen dos columnas es porque el programa diferencia entre si hay energía procedente 

del campo solar que entra al bloque en esa hora (con sol) o no (sin sol).  

 

Fijarse que se han rellenado los seis periodos de envíos posibles. Esto es porque nos interesa 

gastar siempre la energía almacenada en el mismo día, porque así se tiene el sistema preparado 

para cargarse al día siguiente. No tiene sentido no descargar casi completamente el sistema de 

almacenamiento. Sólo se conservará algo de energía para la protección contra heladas y para la 
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puesta en marcha de algunos sistemas, aunque al contar también la central con combustible fósil 

de apoyo, estas necesidades también pueden ser cubiertas por éste. 

 

Como se puede observar en la figura 3.32, se diferencia en el calendario entre las horas que caen 

en fines de semana y las que no. Esto es debido a que la demanda de energía de energía es 

menor en los fines de semana, por lo tanto el precio de venta de la energía en el mercado será 

menor. Interesa sobre todo producir electricidad en las horas de mayor consumo eléctrico, en las 

horas pico, que es cuando más cara se pagara la energía y por lo tanto el beneficio será mayor. 

 

Las dos graficas que se muestra a continuación representan la demanda eléctrica en España para 

un día del mes de junio (11/6/2009 jueves) y (14/6/2009 domingo).  

 

 

  

 

  

Figuras 3.33. Comparación de la demanda eléctrica entre un día entre semana y un día de fin de 

semana. (Fuente: REE, 2009) 

 

Como se puede observar, para la distribución del combustible fósil sólo hay una columna, la 

cuarta de la figura 3.31. No tiene sentido preguntarse como en el almacenamiento cuando debe 
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ponerse en marcha ya que el flujo de gas natural disponible es continuo, cosa que no ocurre con 

el sistema de almacenamiento que depende de su nivel de llenado. 

 

La fracción que se elige de envío también se toma respecto de la entrada de energía necesaria al 

bloque de potencia (de diseño).  

 

Para la distribución de la energía procedente del sistema auxiliar de combustible fósil, se ha 

optado primero por reforzar el periodo de distribución número uno, que corresponde con las 

horas centrales de los días de verano, cuando el consumo de electricidad es mayor y por lo tanto 

la energía se paga más cara. Cierto es que casi no se va a quemar gas natural en esos periodos, 

porque con el campo solar y el sistema de almacenamiento se bastan, pero no se puede dejar que 

un día nublado dentro de este periodo deje a la central sin sus ingresos más elevados. El 

porcentaje de electricidad generado en este periodo número uno mediante el aporte auxiliar de 

gas natural supone el 2.23% de la electricidad generada al año. La fracción elegida para este 

periodo corresponde con el 100% de la entrada al bloque de potencia de diseño, esto es, si es 

necesario podrá hacer funcionar la turbina a plena carga. 

 

Energía eléctrica producida anualmente sin 
aporte fósil en el periodo uno (MWh) 

Energía eléctrica producida anualmente 
con el 15% de apoyo fósil (MWh) 

 
180032 

 
184139 

Porcentaje anual de electricidad generada mediante  
el aporte de combustible fósil en el periodo uno 

2.23%  

 

Tabla 3.14. Aporte de electricidad en el periodo uno gracias al combustible fósil. 

 

La segunda decisión que se ha tomado a la hora de la distribución de la engría procedente del 

sistema auxiliar de combustible fósil, es reforzar el periodo de envío número cuatro. Las razones 

estriban en que es un periodo muy grande que engloba a todos los meses del año excepto los de 

verano, de horas más o menos centrales y pertenecientes a días entre semana (no fines de 

semana). Además al quemar combustible fósil en ese periodo se logra que la central funcione 

mejor a cargas pico y también a cargas base. Además se soluciona uno de los problemas que al 

hacer las simulaciones con el programa (sin aporte de combustible fósil en este periodo) se 

había observado: en los días parcialmente nublados, sobre todo de invierno, la central no llegaba 

muchos días ni a ponerse en marcha por falta de aporte solar. 
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A continuación se muestran las graficas de generación eléctrica para un día como los 

comentados anteriormente. La primera corresponde a lo que ocurriría en la central si no se 

contase con el sistema auxiliar de apoyo fósil, y la segunda muestra como se soluciona el 

problema quemando gas natural en un día tipo como el comentado. 

 

 

Figura 3.34. Producción eléctrica sin apoyo de combustible fósil. 

 

La simulación realizada por el programa en base a los datos del archivo tiempo, muestra que el 

día 27 de diciembre no se produciría electricidad en la central termosolar, figura 3.34. Aparece 

la energía producida como negativa debido a ciertos consumos eléctricos que tiene la central 

este operativa o no. 

 

 

Figura 3.35. Producción eléctrica con apoyo de combustible fósil. 

 

Aportando combustible fósil en el periodo de envío número cuatro, a razón del 39% de la 

entrada necesaria de energía al bloque de potencia (de diseño), se logra generar en ese día una 

potencia constante de ocho de la mañana a ocho de la tarde cercana a los 20 MW, lo que supone 

una producción eléctrica de 231.59 MWh para el día 27 de diciembre, figura 3.35. Además se 

logra también no tener parada la planta, con todos los problemas que esto conlleva relacionados 

con el mantenimiento de la misma. 
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Hora del día Producción eléctrica (MWh) 

0 -0.839 

1 -0.839 

2 -0.839 

3 -0.839 

4 -0.839 

5 -0.839 

6 -0.839 

7 -0.839 

8 18.357 

9 18.357 

10 18.357 

11 18.357 

12 18.855 

13 18.906 

14 18.357 

15 18.925 

16 18.925 

17 18.357 

18 18.357 

19 18.357 

20 18.357 

21 -0.839 

22 -0.839 

23 -0.839 

Total 231.59 
 

Tabla 3.15. Producción eléctrica del día 27 de diciembre (Con aporte de combustible fósil). 

 

Para el periodo de envío número cuatro se ha fijado una fracción que supone el 39% de la 

entrada de energía térmica al bloque de potencia. Este porcentaje es el máximo que se puede 

tomar para no superar el límite impuesto por la legislación del 15% de generación eléctrica a 

partir de combustibles fósiles si se quiere acogerse al régimen especial y más en concreto al 

sistema de prima de referencia.  

 

Energía eléctrica producida anualmente sin 
aporte fósil en el periodo cuatro (MWh) 

Energía eléctrica producida anualmente 
con el 15% de apoyo fósil (MWh) 

 
161165 

 
184139 

Porcentaje anual de electricidad generada mediante  
el aporte de combustible fósil en el periodo cuatro 

12.47%  
 

Tabla 3.16. Aporte de electricidad en el periodo cuatro gracias al combustible fósil. 
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Energía eléctrica producida sin aporte de 
combustible fósil (MWh) 

Energía eléctrica producida anualmente 
con el 15% de apoyo fósil (MWh) 

 
157058 

 
184139 

Porcentaje anual de electricidad generada mediante el  
aporte de combustible fósil (Periodos 1 y 4) 

14.71%  
 

Tabla 3.17. Aporte de electricidad gracias al combustible fósil (periodos 1 y 4). 

 

RESUMEN 

 

Por todo lo expuesto con anterioridad, se piensa que la configuración ideal para la planta es: 

 

 Contar con apoyo auxiliar fósil (15% G.N.) 

 

 Dimensionarla para un múltiplo solar igual a dos 

 

 Dotarla con 7.5 horas de almacenamiento térmico 

 

Este tipo de configuración elegida para la central no es inusual. Las plantas de Andasol en 

Granada ya lo están siguiendo, con caldera auxiliar, con almacenamientos térmicos de similares 

capacidades y campos solares con múltiplos también cercanos a dos.  

 

 
 

Figura 3.36. Esquema de la central termoeléctrica ANDASOL 1. 

(Fuente: SENER, 2007) 
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Los dos últimos apartados del tema 3, se van a dedicar a analizar dos cuestiones, que aunque 

son resueltas por el programa de ordenador, se considera interesante brevemente ver de donde 

vienen. 

- Dimensionamiento, estimaciones iniciales y cálculos de una central termosolar. 

 

- Análisis termodinámico del ciclo de potencia. 

 

Comencemos con el dimensionamiento: 

 

3.9. DIMENSIONAMIENTO, ESTIMACIONES INICIALES Y 

CÁLCULOS DE UNA CENTRAL TERMOSOLAR MEDIANTE EL 

PROGRAMA DE ORDENADOR “SOLAR ADVISOR MODEL”  

 

El modelo de análisis de sistemas cilindro parabólicos del programa Solar Advisor Model 

(SAM), es una implementación de TRNSYS del modelo EXCELERGY. El modelo de análisis 

SAM utiliza el motor de simulación de TRNSYS, (programa diseñado para simular el 

comportamiento transitorio de sistemas de energía térmica) para hacer los cálculos de los flujos 

de energía por hora e incorpora EXCELERGY, (programa de uso interno del National 

Renewable Energy Laboratory) para los cálculos económicos.  

 

Calcula la producción de energía eléctrica anual total del sistema mediante la suma de los 

valores de producción por hora calculados por el modelo de análisis. 

 

El modelo de análisis de sistemas cilindro parabólicos consta de tres módulos. 

 

 El módulo del campo solar calcula la energía térmica producida por el campo QSF. 

 

 El módulo de distribución y almacenaje calcula el flujo de energía que entra QtoTES y el que 

sale QfromTES del sistema de almacenamiento y la energía que recibe el bloque de potencia 

QtoPB. Este módulo también determina cuando tiene que entrar o salir energía del sistema de 

almacenamiento y que flujos de energía son necesarios en cada momento en el  bloque de 

potencia. 

 

 El módulo del bloque de potencia calcula la producción neta de energía eléctrica del sistema 

ENet. 
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Figura 3.37. Diagrama de bloques de SAM. 

(Fuente: Solar Advisor Model Reference Manual, 2009) 

 

Hay que tener en cuenta que SAM utiliza dos tipos de valores. Algunos parámetros y cantidades 

utilizadas en los cálculos representan un valor de diseño y otros un valor simulado. Calcula 

valores simulados durante los cálculos del análisis de resultados por hora, y utiliza los valores 

de diseño (se indican mediante la inclusión de la palabra "diseño" o de la letra "D") para 

cálculos de dimensionamiento y estimaciones iniciales. A continuación, en el dimensionamiento 

de la central termosolar se van a utilizar valores de diseño. 

 

3.9.1. Dimensionamiento de la central termosolar 

 

Tipo de colectores 

cilindro 

parabólicos 

Tipo de fluido 

caloportador 

Tipo de tubos 

absorbedores 

Potencia 

nominal de la 

central 

EuroTrough 

SKAL-ET 
Therminol VP-1 Schott PTR70 50 MW 

Ubicación Múltiplo solar 
Sistema de 

almacenamiento 

Combustible 

auxiliar 

Almería 2 7.5 horas 15% GN 

 

Tabla 3.18. Parámetros fundamentales de la central termosolar. 

 

El programa calcula el área del campo basándose en el múltiplo solar, en la capacidad de 

entrada de energía térmica nominal al bloque de potencia, en las condiciones de referencia 

meteorológicas, y en parámetros de pérdidas de calor (de diseño). Para un múltiplo solar de uno, 

se calcula el área del campo solar que en las condiciones meteorológicas de referencia y 
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teniendo en cuenta las pérdidas de calor del campo, genera una cantidad de energía térmica 

igual a la de la entrada en la turbina (de diseño).  

 

Múltiplo solar:  

 

Como se comento en el capítulo anterior, para este proyecto se ha elegido un múltiplo igual a 2. 

Con un múltiplo solar de 2, se produce dos veces la energía térmica necesaria para hacer 

funcionar el bloque de potencia a su capacidad nominal durante las horas en las que la radiación 

normal directa, la temperatura y la velocidad del viento son iguales a los condiciones de 

referencia. 

 

Condiciones meteorológicas de referencia: 

 

La temperatura ambiente: 18.5 ºC 

 

La radiación normal directa:  800 W/m
2 

 

La velocidad del viento: 6.7 m/s 

 

Las tres variables de condiciones meteorológicas de referencia, son las condiciones ambientales 

en las que la producción de energía térmica del campo solar es igual a la entrada de energía 

térmica al bloque de potencia (de diseño), multiplicada por el múltiplo solar. En otras palabras, 

en las condiciones de referencia, el  sistema opera a la capacidad de diseño del sistema.  

 

Las variables de referencia de la temperatura ambiente y de la velocidad del viento se utilizan 

para calcular las pérdidas de calor de diseño, y no tienen un efecto significativo en los cálculos 

del tamaño del campo solar. Los valores que se han tomado para estas dos variables son el 

promedio anual de las mediciones de la temperatura ambiente y de velocidad del viento del 

lugar de emplazamiento de la central. 

 

El valor de la radiación normal directa de referencia, en cambio, tiene un impacto muy 

importante en el cálculo del tamaño del campo solar. Por ejemplo, un sistema con condiciones 

de referencia de 25°C, 950 W/m
2
, y 5 m/s (temperatura ambiente, radiación normal directa, y 

velocidad del viento, respectivamente), con un múltiplo solar de 2, y un bloque de potencia de 

100 MW, requiere un área de campo solar de 871940 m
2
. El mismo sistema con una radiación 

normal directa de 800 W/m
2 

requiere un área de campo solar de 1055350 m
2
. (datos obtenidos 

mediante simulación realizada con el programa de ordenador). 

 



    
 

 - 127 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

Teniendo en cuenta las recomendaciones que se dan en el manual del programa se ha elegido 

una valor para la radiación normal directa de 800 W/m
2
, porque se entiende que como bien dice 

“para plantas del Sur de España es un valor razonable”. Si por ejemplo la planta fuese a 

instalarse en el desierto de Mojave de los Estados Unidos el programa recomienda 950 W/m
2
. 

 

Capacidad de entrada al bloque de potencia: 

 

QPBDesign: La energía térmica necesaria de entrada al bloque de potencia para generar la 

producción bruta de energía eléctrica en la turbina (de diseño). 

 

Este es el primer cálculo que se realiza a la hora de realizar el dimensionamiento de la central: 

 

MWt.
.

MWe

F

E
Q

neEffDGrossTurbi

Design
PBDesign 119142

3870

55
  

 
Siendo: 

 

EDesign: La producción eléctrica bruta de la turbina, normalmente se toma el 110% de la 

capacidad neta de la turbina. En este caso el 110% de 50 MW, que es la potencia nominal que 

marca el fabricante y que se mostró ya en el capítulo anterior. 

 

La diferencia entre la producción eléctrica bruta y neta de diseño, se debe a que las pérdidas 

parásitas reducen aproximadamente un 90% la producción eléctrica. 

 

FGrossTurbineEffD: Eficiencia del ciclo de potencia a plena carga al pasar de energía térmica a 

eléctrica. El valor elegido se ha tomado a partir de las experiencias de centrales como Andasol, 

Solnova e Ibersol, donde todas montan la misma turbina Siemens de potencia 50 MW que se va 

a usar en este proyecto.   

 

A continuación se calcula el área exacta (área de espejos concentradores): 

 

Calculo del área exacta 

 

Aexact: El área de campo solar requerida para que al bloque de potencia le entre la energía 

térmica necesaria (de diseño) QPBDesign, en las condiciones atmosféricas de referencia. Es 

equivalente a un múltiplo solar de uno. 
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2

222

6

254831
8176106336327514360800

10119142
m

m/W.m/W..xm/W

Wtx.

QQFQ

Q
A

DSFPipeLossHCELossDSFOptEffDfReDIN

PBDesign
Exact









 

 

Siendo: 

 

QPBDesign: Entrada de energía térmica al bloque de potencia de diseño (calculado anteriormente). 

 

QDinRef: La radiación normal directa de referencia en vatios por metro cuadrado.  

 

FSFOpticalEffD: Eficiencia óptica media del campo solar (de diseño). 

 

El factor de la eficiencia óptica del campo solar (de diseño) FSFOptEffD, tiene en cuenta la 

eficiencia óptica del colector, las pérdidas por sombreamiento entre filas, y las pérdidas por final 

de colector. El programa lo estima en 0.751436. Este valor de eficiencia óptica del programa, 

corresponde con el rendimiento óptico pico nombrado en el apartado 1.4.2.2. 

 

QHCELossD: Pérdidas térmicas de los tubos absorbedores (de diseño). 

 

Las pérdidas térmicas del tubo absorbedor (de diseño) QHCELossD son las pérdidas de calor del 

tubo absorbedor calculadas usando las variables de referencia y de diseño. Las variables de 

referencia y de diseño usadas son: la temperatura de entrada y de salida al campo solar TSFinD y 

TSFoutD, la radiación normal directa de referencia QDNIRef, la velocidad del viento de referencia 

vWindRef y la temperatura ambiente de referencia TAmbientRef. Dichas pérdidas son 32.6336 W/m
2
 

 

QSFPipeLossD: Pérdidas de calor en tuberías del campo solar (de diseño).  

 

El calculo de las pérdidas de diseño en las tuberías del campo solar QSFPipeLossD se realiza usando 

tres coeficientes de pérdidas de calor de tuberías FPHL1 ... 3, y las siguientes variables de 

referencia y de diseño: pérdidas de calor en las tuberías del campo a la temperatura de diseño 

QPHLatDsgnT, temperatura de diseño de entrada y de salida  al campo solar TSFinD y TSFoutD, y la 

temperatura ambiente de referencia TAmbientRef. El resultado es 10.82 W/m
2
. 

 

(Si se quieren ver las formulas que utiliza el programa para obtener FSFOpticalEffD, QHCELossD y 

QSFPipeLossD, como ya se dijo en el capítulo 2, en la web https://www.nrel.gov/analysis/sam/ hay  
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un manual del programa donde se detallan cada una de las formulas utilizadas. Para estos tres 

valores se ha preferido detallar lo que suponen y poner los resultados tal cual los da el programa 

de ordenador (una vez comprobados), para facilitar la claridad del texto y porque se entienden 

que con el valor ya se da una idea precisa de lo que suponen. 

 

Una vez calculada el área exacta, se calcula el número de colectores equivalentes a ese área de 

espejos concentradores: 

 

Calculo del número de colectores 

 

NSCAExact: Número exacto de colectores. El área exacta dividida por la superficie de la apertura 

del colector. SAM utiliza el número entero más cercano mayor o igual a este valor para calcular 

el área del campo solar. El número exacto de colectores representa el número de SCAs en un 

campo solar de  múltiplo solar uno. 

 

Colectores.
.A

A
N

Aperture

Exact
SCAExact 31272311

5817

254831
  

 

Siendo: 

 

Aexact:  El área exacta (calculada anteriormente) 

 

ASCAAperture: El área de apertura del colector. Es un dato del SCA elegido (EuroTrough ET150).  

 

Con esto se obtiene el verdadero área que va a tener el campo solar: 

 

AsolarField: El área de campo solar, expresada en metros cuadrados de espejos concentradores. 

 

22 51012025817312 mxm.xFANA pleSolarMultiSCAExact eSCAAperturSolarField   

 

Siendo: 

 
NSCAExact: Número exacto de colectores. (calculado anteriormente) 

 

ASCAAperture: El área de apertura del colector. 
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FsolarMultiple: El área de campo solar expresado como un múltiplo del área exacta. Es un dato de 

partida (=2) justificado en el capítulo anterior. 

 

Y se obtiene también la energía que debe producir el campo solar: 

 

Energía suministrada por el campo solar 

 

QSFDesign: La energía de diseño del campo de solar. Es la energía térmica que el campo debe 

producir bajo las condiciones de referencia del punto de diseño para así suministrar la energía 

térmica necesaria (de diseño) a la entrada del bloque de potencia QPBDesign.  

 

MWt.xMWt.FQQ pleSolarMultiPBDesignSFDesign 2382842119142   

 

Siendo: 

 

QPBDesign: Entrada de energía térmica al bloque de potencia de diseño (calculado anteriormente) 

 

FsolarMultiple: El área de campo solar expresado como un múltiplo del área exacta. Es un dato de 

partida (=2) justificado en el capítulo anterior. 

 

Flujo másico de fluido en el campo 

 

Otro dato que se calcula es el flujo másico de fluido caloportador: 

 

mSFMassFlowD: El flujo másico de diseño del fluido caloportador es una función de la energía de 

diseño suministrada por el campo solar QSFDesign, y de las entalpías de diseño a la entrada y a la 

salida del campo HSFinD y HSFoutD: 

 

s/Kg.
Kg/J.Kg/J.

Wtx.

HH

Q
m

SFinDSFoutD

SFDesign
DSFMassFlow 751188

073538788137777895

10238284 6









 

QSFDesign: La energía de diseño del campo de solar.(Calculada anteriormente). 

 

HSFinD y HSfoutD:  Entalpías de diseño del fluido caloportador a la entrada y a la salida del campo 

solar. 
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Las entalpías de diseño del fluido caloportador a la entrada y a la salida del campo solar HSFinD y 

HSFoutD dependen del tipo de fluido usado en el campo solar (en este caso Therminol VP-1) y 

son una función de las temperaturas de entrada y salida al campo solar, TSFinD y TSfoutD. Las 

tablas de propiedades del fluido caloportador determinan los valores de las entalpías una vez 

dados los valores de las temperaturas de entrada y de salida. 

 

TSFinD y TSfoutD son respectivamente 293ºC y 391ºC. Son las recomendadas para este tipo de 

aceite sintético en el manual del programa. 

 

 

 
 

Tabla 3.19. Entalpía del HTF en Julios por kilogramo como una función de la temperatura en 

grados Centígrados. (Fuente: Solar Advisor Model Reference Manual, 2009). 

 

En este tipo de centrales se suele dar el flujo másico que atraviesa por cada lazo. Si se tiene en 

cuenta que el número exacto de colectores era de 312 y que el múltiplo solar es igual a 2, eso 

nos da 624 colectores en el campo. Como cada lazo tiene 4 colectores obtenemos 156 lazos. 

Dividiendo el flujo total por el número de lazos se obtiene un flujo másico por lazo de 

colectores de 7.62 kg/s. 

 

s/Kg.
x

s/Kg.

FN

m
m

pleSolarMultiSCAExact

SFMassFlow
lazo/DSFMassFlow 627

4

2312

751188

4




  

 

En las plantas termosolares de colectores cilindro parabólicos actuales que emplean aceite como 

fluido caloportador, la configuración del lazo de colectores que se está utilizando es la siguiente: 

4 colectores EuroTrough ET150 en serie, compuestos a su vez por 12 módulos de 12.27 metros, 

por lo que se tienen lazos de 600 metros de longitud (300 metros de ida y 300 metros de vuelta).  
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Figura 3.38. Configuración de un lazo de  cuatro colectores EuroTrough ET150. 

(Fuente: Montes Pita, 2008) 

 

3.10. ANÁLISIS TERMODINÁMICO DEL CICLO DE POTENCIA 

 

En el apartado 1.4.3 se habló ya de los ciclos de potencia asociados a las plantas termosolares, 

de como los ciclos de turbina de vapor son los que normalmente se implementan en este tipo de 

centrales y de cómo el proceso termodinámico de comparación empleado para analizar el más 

elemental de estos ciclos es el denominado ciclo Rankine.  

 

También se vió que existían dos modificaciones principales al ciclo Rankine básico. Una el 

recalentamiento del vapor antes de terminar su expansión en la turbina. El motivo fundamental 

de esta modificación es poder emplear mayores presiones de entrada en turbina, lo cual 

contribuye a aumentar el rendimiento del ciclo. La otra modificación es el precalentamiento 

regenerativo, que consiste en hacer extracciones de vapor desde la turbina y emplearlas para 

precalentar el agua antes de entrar en el generador de vapor lo cual tiene el efecto directo de 

aumentar el rendimiento del ciclo de potencia por incrementar la temperatura media a la cual 

introducimos la energía térmica en el mismo.  

 

En este apartado se quiere analizar más en concreto el ciclo termodinámico que se da en estas 

plantas. Para ello en las siguientes páginas se muestra el esquema del generador de vapor desde 

el punto de vista del aceite y el esquema de todo el ciclo de agua–vapor del bloque de potencia. 

También se ofrece la información de los diversos estados termodinámicos por los que atraviesan 

ambas sustancias (aceite y agua) en sus distintos procesos. Además, se realizan una serie de 

cálculos para ver los flujos de energía que se dan en cada uno de los elementos del sistema de 

potencia y por último se calcula el rendimiento del ciclo.   
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Figura 3.39. Esquema de generador de vapor desde el punto de vista del aceite. 

 

 

 

Punto Temperatura (ºC) Densidad (kg/m
3
) H (kj/kg) S (kj/kgK) 

1 391 704 777.9 2.60 

2 249 868 439.8 2.18 

3 378 720 746.5 2.56 

4 327 788 617.2 2.39 

5 304 812 564.9 2.33 

6 293 824 538.9 2.30 

 

Tabla 3.19. Características principales del sistema de fluido térmico. 

(Fuente: NREL, 2010) 

 

Precalentador 
 

Evaporador 
 

Sobrecalentador 
 

Recalentador 
 

Campo solar 

de colectores 

cilindro- 

parabólicos 

 

X1 
 

1- X1 
 

1 
 

1 

2 

3 

4 

5 6 

X1=0.1 

1-X1=0.9 

Mezclador 
 



 

 - 134 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

       

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3.40. Esquema del ciclo de potencia agua-vapor. 

 

Punto Temperatura (ºC) Presión (bares) Titulo H (kj/kg) S (kj/kgK) 

1 280 100 Liq 1238.24 3.063 

2 311.03 100 0 1408.1 3.361 

3 311.03 100 1 2723.43 5.613 

4 371 100 Vap 3000.86 6.067 

5 290 51.84 Vap 2882.95 6.122 

6 371 51.84 Vap 3118.23 6.514 

7 169.3 7.791 1 2767.07 6.671 

8 38.96 0.07 0.829 2159.7 6.955 

9 38.96 0.07 0 163.106 0.55824 

10 39.03 7.791 Liq 163.92 0.55838 

11 159.5 7.791 Liq 673.25 1.937 

12 161 100 Liq 685.85 1.943 

13 171 51.84 Liq 726.34 2.047 

14 169.3 7.791 0.005 726.34 2.058 
 

Tabla 3.20. Características principales del sistema agua-vapor. 

(Fuente: NREL, 2010) 

Turbina 

de alta 

presión 

Turbina 

de baja 

presión 

Condensador 
 

Recalentador 
 

Evaporador 
 

Precalentador 
 

Sobrecalentador 
 

Precalentador 

de superficie 
 

Precalentador 

de mezcla 
 

G 

Purgador 
 

Y1 

1-Y1 

Y2 1-Y1 -Y2 

1 B1 B2 

1 

4 

 

2 

3 

5 

6 

7 8 

9 

10 

11 12 13 

14 

Extracciones: 
Y1=0.2543 
Y2=0.1416 

(Respecto de lo que 

llega antes de cada 

bifurcación) 
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Los datos de los distintos estados termodinámicos así como de los valores de las distintas 

extracciones han sido obtenidos de los existentes en plantas de este tipo como las SEGS 

californianas o como las de Andasol en la provincia de Granada. 

 

A continuación se ofrece la simulación realizada del ciclo de potencia en el programa de 

ordenador Termograf v5.5: 

 

 

Figura 3.41. Ciclo de potencia de la planta termosolar. 

 

Los parámetros fundamentales del ciclo de potencia son: 

 

 Potencia de 50 MW. Limitación de potencia nominal establecida por el RD 661. 

 Temperatura de entrada al ciclo de potencia del aceite 391ºC. Los aceites térmicos 

disponibles tienen un límite superior de temperatura ligeramente inferior a 400ºC. 

 Temperatura de salida del vapor recalentado 371ºC 

 Presión de entrada en la turbina 100 bares 

 Titulo a la salida de la turbina >0.85, para proteger los alabes de la turbina. 

 Condensador refrigerado con agua sin límites de caudal, se hará mediante torres de 

refrigeración. 
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CÁLCULOS 

 

Lo primero que se va a hacer es calcular los flujos másicos necesarios de ambas sustancia 

(aceite y agua). En el apartado 3.9.1 se calculo el flujo másico de fluido caloportador en el 

campo solar (aceite sintético Therminol VP-1), se recuerda a continuación:  

 

s/Kg.
Kg/J.Kg/J.

Wtx.

HH

Q
m

SFinDSFoutD

SFDesign
DSFMassFlow 751188

073538788137777895

10238284 6









 

Este flujo es para un múltiplo solar igual a dos, con un múltiplo así se generaba el doble de la 

energía térmica necesaria para hacer funcionar el bloque de potencia en condiciones nominales. 

Luego el flujo debe considerarse la mitad, 594.375 kg/s, como si se tratase de un campo 

diseñado para múltiplo solar de uno. 

 

Para conocer el flujo másico de agua necesaria en el sistema de potencia se va a realizar un 

balance de energía del generador de vapor, considerándolo como todo uno: 

 

aguams/Kg.)Kg/KJKg/KJ(aguam)Kg/KJ

.Kg/KJ.(s/Kg..)hh(aguam)hh(aceitem









397230001233

95389777903755940 4161

 

Una vez conocidos los flujos másicos vamos a analizar más en profundidad lo que ocurre en el 

generador de vapor: 

 

Precalentador: se va a calcular el calor cedido por el aceite al agua realizando un balance de 

energía a la línea del agua. 

 

kWt.Q

)kg/kJ.kg/kJ.(s/kg.Q)hh(aguamQ

1712296

1140824123839720 21









 

 

Evaporador: se va a calcular el calor cedido por el aceite al agua realizando un balance de 

energía a la línea del agua. 

 

kWt.Q

)kg/kJ.kg/kJ.(s/kg.Q)hh(aguamQ

7495216

4327231140839720 32








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Sobrecalentador: se va a calcular el calor cedido por el aceite al agua realizando un balance de 

energía a la línea del agua. 

 

kWt.Q

)kg/kJ.kg/kJ.(s/kg.Q)hh(aguamQ

1620083

86300043272339720 43









 

 

A continuación se va a calcular el calor cedido por la extracción de aceite X1 al agua en el 

recalentador, para ello se va a realizar un balance de energía a la línea del agua. 

 

kWt.Q

)kg/kJ.kg/kJ.(s/kg).(.Q)hh()y(aguamQ

712700

233118952882254301397210 651









 

A continuación se van a calcular los trabajos obtenidos en la turbina de alta y de baja: 

 

kW.)kg/kJ.kg/kJ.(s/kg.)hh(mAlta.TurbW 58535952882863000397254 


 

kW.kWkW.

)kg/kJ.kg/kJ.(s/kg).().(.)kg/kJ.

kg/kJ.(s/kg).(.)hh(m)hh(mBaja.TurbW

0547100281440518956

721590727671416012543013972072767

23311825430139728776








 

 

A continuación se van a calcular los trabajos consumidos por las bombas del sistema: 

 

kW.

)kg/kJ.kg/kJ.(s/kg).().(.)hh(mBombaW

7237

1061639216314160125430139721 910






 

kW.)kg/kJ.kg/kJ.(s/kg.)hh(mBombaW 11912256738568539722 1112 


 

 

Ya se está en disposición de calcular el rendimiento del ciclo: 
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%..

kW)....(

kW)....(

solarcampoQ

BombasWTurbinasW
térmicociclo

983838980

712700162008374952161712296

119127237054710058535













 






 

 

Por ultimo se calculan los calores cedidos en los intercambiadores del ciclo y empleados para 

llevar a cabo la regeneración: 

 

Precalentador con mezcla: se analiza el calor absorbido por el flujo de agua más fría de los otros 

dos flujos de agua que llegan al mismo provenientes de las extracciones. 

 

kW.Q)kg/kJ.

kg/kJ.(s/kg).().(.Q)hh(aguamQ

072360125673

9216314160125430139720 1110









 

 

Precalentasor de superficie: se analiza el calor absorbido por el flujo de agua más fría de la 

extracción Y1. 

 

kW.Q

)kg/kJ.kg/kJ.(s/kg.Q)hh(aguamQ

7539994

3412388568539720 112









 

 

Los rendimientos isoentrópicos de turbinas y bombas son:  

 

 Turbina de alta presión: 79.5% 

 Turbina de baja presión: 83.5% (hasta la extracción Y2). 87.2% (hasta la entrada al 

condensador). 

 Bomba 1: 95% 

 Bomba 2: 80.4% 
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CAPÍTULO 4 

 

ANÁLISIS DE RESULTADOS Y CONCLUSIONES 

 

4.1. INTRODUCCIÓN 

 

En el capítulo 4 se van a presentar y analizar los resultados obtenidos al llevar a cabo la 

simulación de la planta de concentración solar objeto de este proyecto. Posteriormente se 

realizará un análisis económico de la central termosolar y finalmente se expondrán las 

conclusiones que el autor de este proyecto a obtenido al realizarlo. El análisis como ya hemos 

comentado anteriormente se hará mediante el programa de ordenador Solar Advisor Model, ya 

presentado en el capítulo 2 y los parámetros y elementos fundamentales de la misma son los que 

se eligieron en el capítulo 3.  

 

Se recuerda con la siguiente tabla las características fundamentales de la planta: 

 

Tipo de 

colectores 

cilindro 

parabólicos 

Tipo de fluido 

caloportador 

Tipo de tubos 

absorbedores 

Tipo de 

Turbina 

Potencia 

nominal de 

la central 

Eurotrough  

SKAL-ET 
Therminol VP-1 Schott PTR 70 

Turbina SST-700 

de Siemens 
50 MW 

Ubicación Múltiplo solar 

Tipo de sistema 

de 

almacenamiento 

Capacidad del 

sistema de 

almacenamiento 

Combustible 

auxiliar 

Almería 2 

Indirecto en dos 

tanques de sales 

fundidas 

7.5 horas 15% GN 

 

Tabla 4.1. Características generales de la planta termosolar. 

 

4.2. ANÁLISIS DE RESULTADOS 

 

Se va a llevar a cabo el análisis de resultados dividiendo los mismos en dos apartados: 

 

Datos características planta: Aquí se muestra la producción de electricidad anual, el coste de 

la energía, la capacidad de la central y algunos otros datos más, siempre basados en los datos 

termodinámicos obtenidos durante la simulación horaria pero teniendo en cuenta factores de 

costes, de financiación y de disponibilidad  entre otros. 
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Datos termodinámicos: Los obtenidos de la simulación horaria, donde se reflejan los flujos de 

energía que se dan en el sistema (se obtienen ejecutando el  “visor de resultados” del programa). 

 

4.2.1. Datos características planta 

 

a) El primer dato que ofrece el programa al realizar el análisis es la producción eléctrica neta 

anual de la planta: 

 

Energía eléctrica neta producida 

anualmente en la planta 
184139000 kWh   184 GWh 

 

Tabla 4.2.  Producción eléctrica anual. 

 

Si tenemos en cuenta, que el consumo medio de los hogares españoles es de unos 3300 

kWh/hogar al año (CNE, datos 2009), esta central estaría en disposición de cubrir las 

necesidades eléctricas de unas  55000 familias. 

 

Como es lógico y se puede observar en la figura 4.1, la máxima producción de estas plantas se 

da en verano, cuando hay más horas de sol. Pero es que además, esa máxima producción se 

alcanza en las horas centrales del día, figura 4.2. Este es uno de los aspectos más positivos de 

este tipo de plantas, porque las horas punta o de mayor consumo eléctrico en verano se da en 

esas horas, cuando las temperaturas son más altas, figura 4.3. 

 

                                          

Figura 4.1. Producción eléctrica neta para cada mes del año en kWh. 
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Figura 4.3. Consumo horario en un día de verano en España (Fuente: CNE, datos 2009) 

 

Para optimizar la rentabilidad de este tipo de plantas es fundamental que se produzca la máxima 

energía posible durante las horas punta de demanda, que es cuando se paga el precio más alto de 

la energía eléctrica. 

 

Por poner un ejemplo, en las plantas SEGS, actualmente el 16% de la energía eléctrica neta se 

produce durante las horas de demanda punta en verano, siendo los ingresos de esta producción 

del orden del 55% del total anual (Fernández Salgado, 2008). Estas cifras ponen de manifiesto 

la gran importancia que tiene para la rentabilidad de estas plantas el producir el máximo de 

energía eléctrica durante las horas punta. 

 

En España, aunque el mercado eléctrico es distinto que el de Estados Unidos y cuenta con un 

régimen especial al que se acogen este tipo de plantas, también tiene gran importancia el 

producir la máxima electricidad en los momentos de máxima demanda. Como se verá más 

adelante en el análisis económico, en el sistema de prima de referencia también cuenta y mucho 

a que precio se vende la energía en el mercado eléctrico. 

Figura 4.2. Perfil medio de la 

producción eléctrica neta en términos 

de potencia (MW) de los días del mes 

de julio de la central termosolar.  
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b) Otro dato fundamental que aporta el programa es el LCOE o LEC (Levelized Cost of Energy), 

es una medida que se puede utilizar para comparar y estudiar la viabilidad económica de 

distintas alternativas de instalaciones de producción de energía eléctrica. El LEC se define como 

el coste anual dividido por la producción media anual prevista. Para calcularlo se considera el 

coste de capital anualizado para la vida útil de la planta, el coste anual de operación y 

mantenimiento, y el coste anual de combustible fósil utilizado. 

 

 

Enet

CfuelCopCinvestfcr
LEC




 

 

Siendo fcr el factor de amortización anual; Cinvest (M€) el coste de inversión; Cop (M€) el coste 

de operación y mantenimiento; y Cfuel (M€) el coste del consumo de combustible fósil. 

 

 

Kinsurance
)Kd(

)Kd(Kd
fcr

n

n







11

1
 

 

 

Se ha calculado el LEC mediante estas formulas para así poder compararlo con el que nos da el 

programa de ordenador. A continuación se muestran los datos de partida utilizados para dichos 

cálculos (tabla 4.3 y 4.4):  

 

 

DATOS DE LA CENTRAL TERMOSOLAR 

Metros cuadrados de espejos concentradores 510120 

Potencia (MWe) 50 

Terreno ocupado (hectáreas) 195 

Capacidad del sistema de almacenamiento (MWt) 1065.89 

Consumo de combustible fósil (MWht)  91055 

Producción eléctrica (MWhe) 184139 

Consumo de agua (m
3
) 570000 

 

Tabla 4.3. Dimensiones de nuestra central termosolar obtenidos del análisis de SAM. 
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Datos de costes planta termosolar 

Inversión 

Coste específico de inversión en el campo solar (€/m
2
)  190 

Coste específico de inversión en el bloque de potencia (€/kWe)  700 

Coste específico precalentador (€/kWe)  1.54 

Coste específico evaporador (€/kWe)  10.45 

Coste específico sobrecalentador (€/kWe)  1.625 

Coste específico recalentador (€/kWe)  4.22 

Coste específico caldera auxiliar (€/kWe)  300 

Coste específico del terreno (€/m
2
)  2 

Recargo por construcción, ingeniería y contingencias (%)  20% 

Operación y mantenimiento 

Coste por empleado y año (€/a)  48000 

Número de personas para la operación de la planta  30 

Número de personas para el mantenimiento del campo solar  10 

Porcentaje del coste de inversión en mantenimiento de equipos (%)  1% 

Parámetros financieros 

Tasa anual por seguro (%/año)  1 

Vida útil (años)  30 

Interés del dinero (%)  8.00 

Coste del almacenamiento térmico 

Coste específico del almacenamiento térmico (€/kWhth) 31.6 

Coste del combustible 

Tipo de combustible  Gas Natural 

Poder calorífico superior (HHV) (MJ/m
3
)  38.3 

Poder calorífico inferior LHV (MJ/m
3
)  34.6 

Precio del gas natural (€/kWh)  0.0242803 

Coste del agua 

Precio especifico del agua utilizada (€/m
3
) 0.25 

  

Total inversión (Millones euros) 222.48 

Total operación y mantenimiento + costes recursos (Millones euros) 6.50 
 

Tabla 4.4. Datos de costes planta termosolar. (Fuente: Montes Pita, 2008) 

 
 

LEC 

(Calculado en el proyecto) 
20.12 c$/kWh  15.478 c€/kWh 

LEC 

(Calculado por SAM) 
20.07 c$/kWh 15.4388 c€/kWh 

 

Tabla 4.5. Comparación entre el LEC calculado por el programa de ordenador y el calculado en el 

proyecto en base a las formulas, dimensiones y datos de costes citados anteriormente. 



 

 - 144 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

La tabla 4.6 sirve para comparar el LEC obtenido con el de otras tecnologías de producción 

eléctrica a partir de fuentes renovables y también con la generación en ciclo combinado, una de 

las tecnologías más competitivas actualmente. Lo primero que se observa es que la planta tiene 

unos costes de energía medios dentro de los sistemas termosolares existentes en la actualidad. 

Lo segundo que se observa es que la generación de electricidad a partir de sistemas solares de 

concentración, tiene unos costes de los más altos entre las diferentes tecnologías (sólo superados 

por la fotovoltaica), aunque según diversos informes, se espera que en un futuro no muy lejano, 

“sus costes puedan rondar entre los 6 y 8 c€/kWh” (Fuente IEA, 2010), gracias a los avances 

tecnológicos y a la madurez que están adquiriendo estos sistemas. 

 

Solar 

fotovoltaica 
Solar térmica Eólica 

Mini-

hidráulica 
Biomasa Ciclo combinado 

27-51 c€/kWh 10-20 c€/kWh 3.5-8.5 c€/kWh 4-15 c€/kWh 4-15 c€/kWh 2.9-6.4 c€/kWh 

 

Tabla 4.6. LEC de las tecnologías de producción eléctrica a partir de fuentes renovables y de ciclo 

combinado, en c€/kWh. (Fuente: Castro Gil, 2006) 

 

En la figura 4.4 se puede observar la evolución que han llevado y la que se prevé que lleven los 

costes de la generación eléctrica mediante centrales termosolares. Esta grafica ayuda a situar la 

planta objeto del proyecto comparándola con las ya existentes y las próximas que se van a 

incorporar. Así se puede observar que se encuentra a unos niveles de costes razonables. 

Recordar, LEC = 15.4388 c€/kWh para la planta de concentración solar objeto del proyecto. 

 

 
 

            Figura 4.4. Evolución de los costes de generación solar en c€/kWh.  

(Fuente: SENER, 2010) 
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c) Otro dato importante que aporta la simulación es el factor de capacidad de la planta, esto es, 

la energía generada partida de la que generaría si trabajase las 8760 horas del año a su máxima 

potencia. Ya se habló de ello en el capítulo 3, entonces se vió la influencia del almacenamiento 

sobre este factor. Una planta sin almacenamiento ni apoyo fósil, es decir sólo solar, suele tener 

una capacidad no superior al 25%. Las plantas SEGS no superan el 30% aunque cuentan con 

apoyo fósil. La planta diseñada al contar con almacenamiento (7.5 horas) y con apoyo de 

combustible fósil (15% GN) consigue un factor de capacidad del el 42.04%. Es un valor a tener 

en cuenta y además lo bueno que tiene es que generara su máxima potencia en los picos de 

demanda eléctrica como ya se ha visto. Configuraciones de plantas termosolares de este tipo 

(con almacenamiento térmico y apoyo de combustible fósil) suelen tener un factor de capacidad 

entre el 40-45% (Zarza, 2004). 

 

Factor de capacidad (%) 42.04 

 

Tabla 4.7. Factor de capacidad de la planta termosolar objeto de estudio. 

 

 

%.
horasMW

MWh

anualmenteteteóricamenproducidamáximaEnergía

anualmenteproducidanetaeléctricaEnergía
capacidaddeFactor

0442
876050

184139







 

 

En las figuras 4.5 y 4.6 se puede comparar el factor de capacidad de distintas tecnologías de 

producción eléctrica, a partir de fuentes renovables y también no renovables. Se observa que la 

planta tendría un factor de capacidad de los más altos dentro de las tecnologías de producción 

mediante energías renovables, esto es debido al tipo de configuración de la planta que la hace 

estar menos expuesta a las intermitencias del recurso solar.  

 

 

 

 

Figura 4.5. Factor de capacidad 

energías renovables.  

(Fuente: Ibañez Lopez, 2009). 
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Entre las causas más importantes que reducen el factor de capacidad de las distintas tecnologías 

de producción eléctrica se encuentran: 

 

 Las operaciones de mantenimiento, los fallos más o menos largos de los equipos, etc.  

 

 La ausencia de la demanda de electricidad que obliga a los administradores de red a 

disminuir o parar la producción en algunas unidades.  

 

 La intermitencia o irregularidad de la fuente de energía, como es por ejemplo el caso de 

la energía solar, la eólica o la mini-hidráulica. 

 

4.2.2. Datos simulación horaria 

 

A continuación se presentan y se analizan los flujos de energía por hora más importantes 

calculadas por el programa de ordenador en relación a la planta termosolar:  

 

En la figura 4.7 se observan los flujos de energía anuales principales de la central. De esta 

manera se puede hallar un dato tan importante como es el rendimiento de la central termosolar, 

que informa del grado de aprovechamiento que ésta hace de la energía solar disponible. 

También se hallará el rendimiento anual del campo solar y el del ciclo de potencia. 

 

Los flujos que se observan de izquierda a derecha son: la radiación incidente sobre el campo 

solar, la producción térmica del campo (ya sea para abastecer directamente al ciclo de potencia 

o indirectamente a través del sistema de almacenamiento), la energía térmica que entra al bloque 

de potencia y la energía eléctrica producida, bruta y neta. Todos los flujos son anuales y vienen 

en kWh. 

 

Figura 4.6. Factor de capacidad 

energías convencionales.  

(Fuente: Ibañez Lopez, 2009).  
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Figura 4.7. Flujos de energía anuales en nuestra central termosolar en kWh. 

 
Nota: Tener en cuenta que la energía que entra al bloque de potencia es mayor que la energía 

entregada por el campo solar porque la primera tiene en cuenta el aporte del gas natural en la 

caldera auxiliar. Ya se explicó en el tema 2, que aunque se iba a suponer que la caldera 

auxiliar calentaba el aceite del campo en momentos de baja irradiación solar, tal como exige la 

legislación española, el programa sólo permite poner la caldera auxiliar dentro del ciclo de 

potencia, luego va a calentar directamente el agua. 

 

Con estos datos se pueden sacar los rendimientos anuales de la central, del campo y del ciclo: 

 

%.
MWht

MWhe

disponiblesolarEnergía

producidanetaeléctricaEnergía
centralladeEficiencia 7417

1037930

184139


 

 

%.
MWht

MWht

disponiblesolarEnergía

campoelporentregadaEnergía
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%.
MWht
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 Rendimiento 

Nuclear 30-40% 

Ciclo combinado 42-58% 

Eólica 30-47% 

Mini-hidráulica 60-80% 

Fotovoltaica 10-20% 

Termosolar 12-19% 

 

Tabla 4.8. Rendimiento de conversión para diferentes tecnologías de generación eléctrica. 

 

En la tabla 4.8 se muestran los distintos rendimientos globales para distintos tipos de 

tecnologías de generación eléctrica. Se observa como la tecnología termosolar esta entre los 

sistemas con menor rendimiento, esto es debido a la forma de aprovechamiento que se hace de 

la energía disponible: Primero hay que colectar la radiación solar, pasarla a energía térmica 

apoyándose en un fluido caloportador, de éste al agua, y finalmente el ciclo de potencia. Todos 

estos procesos conllevan muchísimas pérdidas. 

 

Pero como dato positivo, dentro de la tecnología termosolar, la central tiene un rendimiento 

muy alto, 17.74%, debido a que cuenta con sistema de almacenamiento térmico y apoyo de 

combustible fósil. Para centrales sólo solares, el rendimiento suele oscilar entre el 12% o 14% 

según ubicaciones (García Casals, 2001 ). 

 

Ahora se va a ver y analizar más en profundidad los resultados, sobre todo para ver donde se 

dan esas pérdidas de la energía en un principio disponible. Al conocer estos datos, se podrá 

también ver en que puntos debe mejorar esta tecnología para obtener mayores eficiencias y con 

ellas menores costes de generación eléctrica. Para ello se van a examinar las variables de salida 

que ofrece el programa. 

 

a) Variables de salida por cada hora calculadas por el módulo del campo solar 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Radiación directa Q_nip 
Valor de radiación directa 

leída del archivo de datos 

meteorológicos. 

W/m
2 QNIP 

 

Tabla 4.9. Radiación directa. 
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Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Radiación 

normal directa 
Q_nip CosTh 

La componente normal de 

la radiación directa. 
W/m

2 QNIPICosTh 

 

Tabla 4.10. Radiación normal directa. 

 

 

 
 

             Figura 4.8. Radiación normal directa el día 21 de junio. 

 
En la figura 4.8 se observaba la radiación normal directa que se da el día 21 de junio. Se ha 

creído interesante mostrar este grafico porque como se vio en el apartado 3.9 del proyecto, a la 

hora de dimensionar el campo solar de la central se tenía que elegir una radiación normal directa 

de referencia que sirviera al programa para ir realizando los primeros cálculos. Esta debía ser la 

típica de un día de verano despejado en las horas centrales del día. Se eligió en su momento el 

valor 800 W/m
2
 tal como indicaba el programa para localizaciones del Sur de España. Con este 

grafico se quiere hacer ver como este valor elegido es bastante razonable. Casi todos los 

programas de diseño de centrales termosolares suelen coger las condiciones meteorológicas del 

día 21 de junio, solsticio de verano, como referencia para diseño. 

 
Se sigue analizando el campo solar viendo más variables: 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Radiación directa 

incidente 
Q_dni 

Es el producto de la 

radiación directa y el área 

de campo solar. 

MWt QDNI 

 

Tabla 4.11. Radiación directa incidente. 
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Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Radiación 

normal directa 

incidente 

QSF_nipCosTh 
Es el producto de la 

radiación normal directa y 

el área de campo solar. 

MWt QSFNIPCosTh 

 

Tabla 4.12. Radiación normal directa incidente. 

 

 

Figura 4.9. Limitación de la radiación solar directa que llega a la superficie de los colectores debida 

al ángulo de incidencia (medias horarias mensuales). 

 

En la figura 4.9 se compara la radiación directa incidente con la radiación normal directa 

incidente (medias horarias mensuales). La diferencia entre ambas se debe al ángulo de 

incidencia, que limita la cantidad de radiación solar que resulta aprovechable por los colectores.  

 

El ángulo de incidencia se ha visto ya en los apartados 1.2.2 y 1.4.2.1, pero como recordatorio 

decir que es el ángulo formado entre la superficie de los colectores y los rayos solares 

incidentes. Lo ideal sería que la radiación solar directa fuera perpendicular al plano de apertura 

del concentrador, así no se tendría dicha limitación, pero cuando se dispone de un único grado 

de libertad en el sistema de seguimiento solar, como es el caso de los colectores cilindro 

parabólicos, esto se consigue sólo en momentos muy puntuales. 

 

Según los datos obtenidos al realizar el análisis, esta limitación del ángulo de incidencia supone 

que el 13.46% de la radiación directa incidente sobre los colectores del campo solar no se pueda 

aprovechar debido a este motivo, 140 GWht de pérdida al año. 



    
 

 - 151 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

%.)
GWht

GWht
(

incidentedirectaRadiación

incidentedirectanormalRadiación
%PERDIDAS 4613100

1040

900
1   

 

Más variables a analizar: 

 

   Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

La energía 

absorbida en el 

campo solar 

QSF_abs 

Energía absorbida por los 

colectores del campo solar 

antes de las pérdidas 

térmicas e incluidas las 

pérdidas ópticas y 

geométricas. 

MWt QSFAbs 

 

Tabla 4.13. La energía absorbida en el campo solar. 

 

En la figura 4.10 de la página siguiente se compara la radiación normal directa incidente con la 

energía absorbida por el campo solar. La diferencia entre ambas corresponde a las pérdidas 

óptica más las geométricas que se dan en los colectores. En el apartado 1.4.2. de este proyecto, 

al analizar el balance energético de un colector ya se habló de ellas, pero para refrescar un poco 

la memoria se hace aquí un pequeño resumen de las pérdidas que se producen en un colector: 

 

1.- Pérdidas geométricas 

 

1.1- Debidas a la posición relativa entre las filas de colectores (pérdidas por sombreamiento). 

 

1.2- Las inherentes a cada colector (pérdidas debidas al ángulo de incidencia, que a parte de 

limitar la radiación solar aprovechable como se ha visto antes, también provoca una 

pérdida de superficie reflexiva útil del concentrador. 

 

2.- Pérdidas ópticas debidas a  que ni la superficie reflexiva del concentrador es un reflector 

perfecto, ni el vidrio que cubre al tubo absorbente metálico es totalmente transparente, ni la 

superficie selectiva del tubo metálico es un absorbente perfecto, ni la geometría del 

concentrador parabólico es perfecta. 

 

3.- Pérdidas térmicas, las cuales se producen principalmente en dos sitios: en el tubo 

absorbedor y en las tuberías de fluido térmico en el campo solar. 
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Figura 4.10. Comparación entre la radiación normal directa incidente con la energía absorbida por 

el campo solar. La diferencia entre ambas corresponde a las pérdidas óptica más las geométricas. 

 

Según los datos obtenidos las pérdidas ópticas más las geométricas suponen que se desperdicie 

un 31.44% de energía térmica respecto de la radiación normal directa incidente anual. 

 

%.)
GWh

GWh
(

incidentedirectanormalRadiación

solarcampoelporabsorbidaEnergía
%PERDIDAS 4431100

900

617
1   

 

De ese porcentaje del 31.44%, el 22.9% corresponden a las pérdidas ópticas y el 8.54% a las 

pérdidas geométricas. Como también se dijo en el apartado 1.4.2., por orden de importancia 

primero están las pérdidas ópticas, luego las térmicas, y finalmente las geométricas, vemos 

entonces como se cumple lo dicho hasta el momento. 
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Figura 4.11. Pérdidas ópticas y geométricas en los colectores del campo. 
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En la figura 4.11 se ha podido observar la distinta importancia de las pérdidas ópticas y las 

geométricas, así como la cantidad que de energía que dichas pérdidas suponen en GWht al 

año. 

 

Más variables a analizar: 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía 

suministrada por 

el campo solar 

Q_SF(MW) 
Energía térmica 

suministrada por el campo 

solar 

MWt QSolarField 

 

Tabla 4.14. Energía térmica suministrada por el campo solar. 

 

En la siguiente figura se compara la energía absorbida por el campo solar y la energía 

suministrada por el campo solar, la diferencia entre ambas corresponde con las pérdidas 

térmicas que se producen en el campo, las cuales suponen que se desperdicie el 18% de la 

energía absorbida por el campo anualmente. 

 

 

Figura 4.12. Influencia de las pérdidas térmicas en el campo solar (medias horarias mensuales). 

 

%)
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De ese porcentaje del 18%, el 13.5% corresponden a las pérdidas que se dan en el tubo 

absorbedor y el 4.5% a las pérdidas que se dan en las tuberías del campo solar.  
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En la figura 4.13 se muestra la distinta importancia de las pérdidas que se dan en el tubo 

absorbedor y en las tuberías del campo solar, así como la cantidad que de energía que dichas 

pérdidas suponen en GWht al año. 
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Figura 4.13. Pérdidas térmicas en los tubos absorbedores y en las tuberías del campo solar y 

geométricas en los colectores del campo. 

 

La última variable que se va a ver que se calcula en el módulo del campo solar es la energía de 

calentamiento del campo: 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía de 

calentamiento 

del campo solar 
QsfWarmup 

Es la energía necesaria 

para que el fluido del 

campo solar alcance la 

temperatura para poder 

hacer funcionar la 

instalación 

MWt QWarmup 

 

Tabla 4.15. Energía térmica suministrada por el campo solar. 

 

Esta energía no se pierde pero si se podría considerar en cierta medida como “desaprovechada”, 

ya que hasta que el fluido del campo no alcanza la temperatura operativa, la planta no puede 

entrar en funcionamiento. Según los resultados de la simulación realizada por el programa, esta 

energía supone al año 44.63 GWht. Esta cifra supone el 4.23% de la radiación directa incidente 

sobre el campo solar anualmente (Q_dni = 1040 GWht). 
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Figura 4.14. Energía de calentamiento del campo (media horaria mensual). 

 

En la figura 4.14 se observa la energía de calentamiento del campo para los distintos meses del 

año. Como es lógico, en los meses de invierno es cuando más energía se necesitará, puesto que 

el fluido partirá de una temperatura más baja al comenzar la mañana después de haber tenido 

que soportar las bajas temperaturas nocturnas. 

 

Ya se ha analizado lo que ocurre en el campo solar, el balance energético que se da en él, de ahí 

se entiende que se haya obtenido un rendimiento del 48.77% correspondiente al campo. 

Recordar que el campo solar es el principal elemento diferenciador de este tipo de plantas de 

generación eléctrica. 

 

Ahora se va a seguir analizando más flujos de energía, los correspondientes al bloque de 

potencia: 

 

b) Variables de salida por cada hora calculadas en el módulo del bloque de potencia 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Producción bruta 

de la turbina 
E_gross 

Producción eléctrica de la 

turbina por hora teniendo 

en cuenta fuentes solares y 

fósiles, no se contabilizan 

las pérdidas parásitas o por 

disponibilidad. 

MWe EGross 

 

Tabla 4.16. Producción eléctrica bruta de la turbina. 
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Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Producción 

eléctrica neta 
E_net 

Producción eléctrica neta 

de la turbina por hora 

teniendo en cuenta fuentes 

solares y fósiles, 

contabilizando las pérdidas 

parásitas pero no las 

producidas por 

disponibilidad 

MWe ENet 

 

Tabla 4.17. Producción eléctrica neta de la turbina. 

 

 

 

Figura 4.15. Producción eléctrica neta. 

 

La figura 4.15 muestra la producción eléctrica neta en MW de la planta termosolar, y a la vez 

informa de su valor en función de los distintos meses y horas del día. Se observa como en los 

meses de verano se alcanza fácilmente la potencia máxima (domina el color naranja), y como 

gracias al sistema de almacenamiento de 7.5 horas, es capaz de entregar esa potencia máxima 

hasta las doce o la una de la noche. Esto también ocurre aunque en menor medida en meses 

contiguos al verano como abril, mayo u octubre. En los meses de invierno, domina el color azul, 

lo que hace referencia a que al haber peores condiciones de radiación solar, la planta logra una 

potencia estable de unos 20 MW gracias al aporte del combustible fósil. En las horas centrales 

de los días de invierno entre el aporte del gas natural y la radiación solar si se logran en muchos 

casos unas potencias mayores. 

 

En la figura 4.16 se compara la producción bruta y neta (medias horarias mensuales). La 

diferencia entre ambas corresponde con las pérdidas parásitas del sistema, que no son otra cosa 

que las pérdidas totales de energía eléctrica debido a las cargas eléctricas del sistema (bombas, 
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controles electrónicos, etc. no aportan energía y si la consumen, parásitos). Dichos consumos 

eléctricos suponen unas pérdidas respecto de la electricidad bruta conseguida del 11.96%. 

 

 
 

Figura 4.16. Influencia de las pérdidas parásitas en la producción eléctrica. 

 

%.)
GWhe

GWhe
(

brutaelectricaEnergía

netaelectricaEnergía
%PERDIDAS 9611100

209

184
1   

 

Otro dato que se calcula en el módulo del bloque de potencia es la energía de apoyo fósil: 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía de apoyo 

fósil 
Q_gas 

La energía térmica 

equivalente a la energía 

eléctrica generada por la 

caldera auxiliar 

MWt QGas 

 

Tabla 4.18. Energía de apoyo fósil. 
 

 

Según los datos obtenidos al realizar el análisis, dicha energía de apoyo fósil equivale a 91.1 

GWht al año. 

Figura 4.17. Energía 

térmica equivalente a la 

energía eléctrica generada 

por la caldera auxiliar. 
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Por último, dentro del bloque de potencia, vamos a ver la energía necesaria para su puesta en 

marcha: 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía de puesta 

en marcha del 

ciclo de potencia 

Q_tur_SU 

La energía requerida para poner en marcha el 

bloque de potencia. Ocurre en horas en que la 

energía está disponible desde el campo solar o 

desde el almacenamiento térmico y el bloque 

de potencia no ha operado en la hora anterior. 

MWt QPBStartup 

 

Tabla 4.19. Energía de puesta en marcha del bloque de potencia. 

 

 
 

Figura 4.18. Energía de puesta en marcha del bloque de potencia (media horaria mensual) 

 

La razón por la que la energía de puesta en marcha es mayor en los meses de verano es porque 

en estos la planta se pone más veces en funcionamiento. Recordar que no se han reforzado los 

fines de semana de los meses fuera del verano con gas natural, luego si en esos días no se dan 

las condiciones climatológicas necesarias, la planta puede no ponerse en funcionamiento. Según 

los datos obtenidos dicha energía supone al año 9.49 GWht. Esta cifra representa algo menos 

del 2% de la energía que entrega el campo solar (Q_SF = 506 GWht).  

 

c) Variables de salida por cada hora calculadas por el módulo de distribución y 

almacenaje 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía que entra al 

sistema de 

almacenamiento 

térmico 

Q_to_ts 
La energía térmica que llega al TES 

(sistema de almacenamiento térmico) 
MWt QtoTES 

 

Tabla 4.20. Energía que entra al sistema de almacenamiento térmico. 



    
 

 - 159 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía 

entregada por el 

sistema de 

almacenamiento 

térmico 

Q_from_ts 
La energía térmica que 

sale del TES (sistema de 

almacenamiento térmico) 

MWt QfromTES 

 

Tabla 4.21. Energía entregada por el sistema de almacenamiento térmico. 

 

 

 
 

Figura 4.19. Influencia de las pérdidas en el sistema de almacenamiento. 

 

En la figura 4.19 se compara la energía que entra y la que sale del sistema de almacenamiento. 

La diferencia entre ambas se corresponde con las pérdidas térmicas que se dan en dicho sistema. 

Dichas pérdidas suponen un 5.75% respecto de la energía que entró. Parece mucho pero no lo 

es, se pierden más o menos 10 de GWht al año. Por ejemplo las pérdidas ópticas ya vistas en el 

campo solar suponen la pérdida de 206 GWht al año. 
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A continuación se va a hacer referencias a otras variables calculadas por el módulo de 

distribución y almacenaje que tienen que ver con la energía que se desperdicia en dicho sistema: 
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Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía de 

almacenamiento 

desperdiciada 

Q_ts_Full 

La energía que se  

desperdicia cuando el TES 

esta lleno. Esto sucede en 

horas cuando la energía 

calculada para el TES 

excede de la máxima 

capacidad. 

MWt QTESDump 

 

Tabla 4.22. Energía de almacenamiento desperdiciada. 

 

Nombre 

Nombre en los 

resultados de la 

simulación 

Descripción Unidades Símbolo 

Energía 

desperdiciada 
Q_dump 

La energía térmica 

desaprovechada bien 

porque la energía que 

entra al  bloque de 

potencia o la que entra 

al TES excede del 

máximo permitido 

MWt QDump 

 

Tabla 4.23. Energía desperdiciada. 

 

Las dos variables de las tablas 4.22 y 4.23 reflejan la energía térmica enviada por el campo solar 

que se desperdicia. Q_ts_Full es la energía que se desaprovecha porque el sistema de 

almacenamiento esta lleno y por lo tanto los envíos de energía asignados no se pueden realizar. 

Q_dump es la energía que se desperdicia porque aunque el sistema de almacenamiento no esta 

lleno, los envíos asignados sobrepasan su límite y no puede entrar toda esa energía, sólo parte. 

Lo mismo ocurre a la entrada al bloque de potencia si enviamos más de la que puede admitir. 

 

 
 

Figura 4.20. Comparativa entre la energía desperdiciada porque el TES esta lleno y la energía 

desperdiciada por rebosar la capacidad de entrada al TES o al bloque de potencia. 
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En la figura 4.20 se comparan ambos tipos de energías desperdiciadas. Como se ve tiene más 

importancia Q_ts_Full que Q_dump. La primera va a suponer al año 15.82 GWht, mientras que la 

segunda 5.488 GWht. Como se observa también, se desperdicia sólo energía en verano, ya que 

es cuando se pueden dar radiaciones solares mayores a las de diseño. 

 

La energía desaprovechada tiene una importancia relativa. A groso modo se pierden 20 GWht al 

año por ambos conceptos. Por ejemplo, las pérdidas térmicas en los tubos absorbedores del 

campo solar suponen como ya se ha visto unas pérdidas de 85 GWht al año. Además hay que 

pensar que estas pérdidas son inevitables, si se quiere sacar un buen rendimiento al sistema de 

almacenamiento, y que a la hora de dimensionar y optimizar dicho sistema se tuvieron muy en 

cuenta, apartado del proyecto 3.9. 

 

Por último las siguientes figuras que se van a mostrar sirven para comprender un poco mejor el 

funcionamiento de la central termosolar. Para ello se ha tomado como ejemplo un día 

cualquiera, el 21 de septiembre. 

 

En la figura 4.21, se ve para cada hora del día en términos de potencia (MW) la radiación solar 

incidente sobre el campo solar en MW, se muestra como esta se reduce por la influencia del 

ángulo de incidencia, y al final la energía térmica que entrega el campo después de las pérdidas 

que se dan en él ya analizadas. 

 

 

Figura 4.21. Funcionamiento de la planta termosolar-1. 

 

En la figura 4.22, se ve como se distribuye la energía térmica entregada en el campo, como sirve 

para hacer funcionar el bloque de potencia a máximo rendimiento y como gracias al 

sobredimensionado del campo también se puede entregar energía térmica al sistema de 

almacenamiento. 

 

También se observa que al disminuir la energía entregada por el campo, debido a que disminuye 

la radiación solar al caer la tarde-noche, el sistema de almacenamiento por si solo, sin ayuda de 
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combustible fósil, es capaz de hacer funcionar la turbina del bloque a plena carga durante al 

menos cinco horas. 

 

 

Figura 4.22. Funcionamiento de la planta termosolar-2. 

 

En la figura 4.22 se ve que hay un pico de energía que entrega el sistema de almacenamiento 

sobre las nueve de la mañana. Esa energía sirve para la puesta en marcha del bloque de 

potencia, como se puede observar en la figura 4.23. En esta última figura también se puede ver 

la energía necesaria de calentamiento del campo en ese día. Esa energía es suministrada por el 

sol directamente. Si el programa dejase incluir la caldera de apoyo fósil en el campo solar, ésta 

podría ser suministrada por éste también. 

  

 

Figura 4.23. Funcionamiento de la planta termosolar-3. 

 

4.3.  ESTUDIO ECONÓMICO 

 

A continuación se va a realizar la descripción del modelo económico del proyecto. Para ello se 

va a llevar a cabo una evaluación de la inversión, detallando los diversos conceptos que entran a 

formar parte de la misma y también se realizara un balance económico donde se identificarán 

los ingresos y los costes, y se definirán los flujos monetarios del proyecto. 
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4.3.1. Inversión 

 

Llamamos inversión al capital necesario para la adquisición de los activos necesarios para poner 

en ejecución y producción el proyecto. 

 

En el apartado 4.2.1 de este proyecto, al calcular el LEC, se realizó la estimación de la inversión 

para la central termosolar objeto del proyecto. Se recuerda mediante las dos siguientes tablas 

como se llevó a cabo: 

 

 

DATOS DE LA CENTRAL TERMOSOLAR 

Metros cuadrados de espejos concentradores 510120 

Potencia (MWe) 50 

Terreno ocupado (hectáreas) 195 

Capacidad del sistema de almacenamiento (MWt) 1065.89 

Consumo de combustible fósil (MWht) 91055 

Producción eléctrica (MWhe) 184139 

Consumo de agua (m
3
) 570000 

 

Tabla 4.24. Dimensiones de nuestra central termosolar obtenidos del análisis de SAM. 

 

DATOS INVERSIÓN CENTRAL TERMOSOLAR 

Coste específico de inversión en el campo solar (€/m
2
)  190 

Coste específico de inversión en el bloque de potencia (€/kWe)  700 

Coste específico precalentador (€/kWe)  1.54 

Coste específico evaporador (€/kWe)  10.45 

Coste específico sobrecalentador (€/kWe)  1.625 

Coste específico recalentador (€/kWe)  4.22 

Coste específico caldera auxiliar (€/kWe)  300 

Coste específico del almacenamiento térmico (€/kWhth) 31.6 

Coste específico del terreno (€/m
2
)  2 

Recargo por construcción, ingeniería y contingencias (%)  20% 

Total inversión (Millones euros) 222.48 

 

Tabla 4.25. Datos de costes planta termosolar. (Fuente: Montes Pita, 2008). 
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El desembolso más fuerte corresponde a la partida del campo solar supone más del 30 % de la 

inversión total. Como ya se comento en otros apartados nuestro campo solar será de múltiplo 

solar igual a dos, con lo que se genera el doble de energía térmica que se necesita en el bloque 

de potencia en condiciones nominales (de diseño). Un múltiplo tan elevado conlleva mayor 

gasto en colectores cilindro parabólicos pero también permite disponer y beneficiarse de un 

sistema de almacenamiento térmico y dar una mejor respuesta de generación eléctrica cuando 

las condiciones ambientales son tan favorables como las de diseño.  

 

Otra inversión bastante fuerte es la del apartado de la obra civil. Hay que tener en cuenta que la 

manera en que generan electricidad estas centrales termosolares conlleva una ocupación del 

terreno muy amplia para instalar los concentradores solares con su correspondiente cimentación 

a base de pilotes de hormigón, y si además se tiene en cuenta los colectores cilindro parabólicos 

y el sistema de almacenamiento en dos tanques de sales fundidas,  se obtiene que la inversión en 

este tipo de plantas es muy superior en relación a la que se debe acometer en una central térmica 

convencional. 

 

De la inversión realizada en el bloque de potencia, aproximadamente el 50% corresponde a la 

fabricación y puesta en marcha de la turbina de vapor. El otro 50% corresponde a gastos en 

bombas, tuberías, válvulas, sistemas de agua, sistemas de refrigeración, precalentadores. 

 

La inversión correspondiente al sistema de aceite térmico (HTF), supone aproximadamente el 

5% del total de la inversión. Incluye el intercambiador de calor con sus tres etapas, más la de 

recalentamiento y también la caldera de auxiliar de gas natural. 

 

La inversión correspondiente al sistema de almacenamiento térmico, supone aproximadamente 

el 9% del total e incluye el costo del sistema de almacenamiento indirecto en dos tanques 

mediante sales fundidas capaces de hacer funcionar a la turbina durante aproximadamente 7.5 

horas a plena carga.  

 

La inversión correspondiente al BOP incluyen las conexiones necesarias para aprovisionarse de 

agua, el sistema antiincendios, el sistema de aguas residuales, los equipos necesarios para el 

manejo del gas natural, sistemas de aire comprimido, de aire acondicionado, etc. 

 

4.3.2. EVALUACIÓN DE INGRESOS Y GASTOS 

 

En este tipo de proyectos, el análisis económico viene condicionado principalmente por la 

elevada inversión inicial requerida, vista en el apartado anterior, y por la diferencia existente 
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entre los ingresos obtenidos por la venta de la electricidad generada y los gastos derivados del 

uso de combustible auxiliar fósil y del mantenimiento general de la planta. 

 

Un proyecto a lo largo de su vida útil, generará unos determinados ingresos a costa de incurrir 

en ciertos gastos, y esa diferencia entre ingresos y gastos anuales constituye el flujo de caja 

(cash flow) previsto para los distintos años de vida del proyecto. En el año cero del proyecto 

(año en que se realiza la inversión inicial) se lleva acabo un desembolso de 222.48 millones de 

euros. Para la realización del estudio económico se considera que en los dos primeros años se 

construye la planta y es a partir de entonces cuando comienzan los ingresos por la venta de 

electricidad. La vida útil de la instalación se ha fijado en 30 años desde su puesta en 

funcionamiento. 

 

MARCO REGULATORIO 

 

Este tipo de proyectos están sujetos a las disposiciones del Real Decreto 661/2007 en el que se 

regula la producción de energía eléctrica sujeta al régimen especial de generación, y donde se 

garantiza la venta de la electricidad a un precio mínimo para las diferentes instalaciones de 

energías renovables. 

 

Las plantas termosolares se enmarcan dentro del subgrupo b.1.2: 

 
Dentro del Grupo b.1. “ Instalaciones que utilicen como energía primaria la energía solar”,  se 

incluye el Subgrupo b.1.2. “Instalaciones que utilicen únicamente procesos térmicos para la 

transformación de la energía solar, como energía primaria, en electricidad”.  En estas 

instalaciones se podrán utilizar equipos que utilicen un combustible para el mantenimiento de 

la temperatura del fluido transmisor de calor para compensar la falta de irradiación solar que 

pueda afectar a la entrega prevista de energía. 

 

La generación eléctrica a partir de dicho combustible deberá ser inferior, en cómputo anual al 

12 por ciento de la producción total de electricidad si la instalación vende su energía de 

acuerdo a la opción a ) del artículo 24.1 de este real decreto que estipula la posibilidad de 

ceder la electricidad al sistema a través de la red de transporte o distribución,  percibiendo por 

ella una tarifa regulada, única para todos los períodos de programación, expresada en 

céntimos de euro por kilovatio hora. 

 

En todo caso, dicho porcentaje podrá llegar a ser el 15 por ciento si la instalación vende su 

energía de acuerdo a la opción b ) del citado artículo 24.1, que posibilita vender la electricidad 
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en el mercado de producción de energía eléctrica. En este caso, el precio de venta de la 

electricidad será el precio que resulte en el mercado organizado o el precio libremente 

negociado por el titular o el representante de la instalación, complementado, en su caso, por 

una prima en céntimos de euro por kilovatio hora. 

 

 

Luego como se ha podido leer en el Real Decreto, los ingresos y costes de la instalación van a 

estar condicionados por la normativa legal vigente. Según se elija una opción u otra de venta de 

la energía eléctrica producida, se obtendran unos ingresos y gastos algo distintos, porque variara 

la energía eléctrica producida, el consumo de gas natural y los precios de venta de la 

electricidad. 

 

Con el objetivo de hallar los flujos de caja para el primer año de funcionamiento de la central se 

van a analizar los ingresos y los costes a los que va a ver sometida la central: 

 

4.3.2.1 COSTES 

 

Se va a incluir en este apartado de costes los relativos al combustible para la caldera auxiliar de 

gas natural, los consumos de agua de la central, los costes de operación y mantenimiento, los 

costes de personal y los gastos financieros. 

 

Para calcular el incremento de los costes en los próximos 30 años se ha supuesto un incremento 

del IPC del 2% fijo anual. 

 

COSTES DEL COMBUSTIBLE AUXILIAR 

 

Para valorar el coste del gas natural se ha tomado como referencia el CbmpGN: coste base de la 

materia prima del gas natural. que aparece en la resolución de 7 de abril de 2010, de la 

Secretaría de Estado de Energía, en la cual se publican los valores del coste del coste base de la 

materia prima del gas natural para el primer trimestre 2010, a los efectos del cálculo del 

complemento de eficiencia y los valores retributivos de las instalaciones de cogeneración y otras 

en el Real Decreto 661/2007, de 25 de mayo, por el que se regula la actividad de producción de 

energía eléctrica en régimen especial.  

 

CbmpGn = 2,2073 c€/kWh PCS. 
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Se va a hacer una pequeña modificación para pasar de PCS a PCI, por considerarlo más 

restrictivo, y así obtener el coste que se considera como definitivo, PCS/PCI = 1.1 

 

CbmpGn = 2,42803 c€/kWh PCI. 

 

Opción tarifa regulada: 

 

Mediante esta opción, el aporte de gas natural sirve para generar el 12% de la energía eléctrica 

de la planta, esto supone un consumo de combustible de 86000 MWh/año y una producción 

eléctrica neta total de 177000 MWh/año, según los datos obtenidos durante la simulación de la 

central termosolar. 

 

Coste combustible = 2,42803 c€/kWh x 86000000 kWh = 2088105 € 

 

Opción prima de referencia + mercado: 

 

Mediante esta opción el aporte de gas natural sirve para generar el 15% de la energía eléctrica 

de la planta, esto supone un consumo de combustible de 90000 MWh/año y una producción 

eléctrica neta total de 184000 MWh/año, según los datos obtenidos durante la simulación de la 

central termosolar. 

 

Coste combustible = 2,42803 c€/kWh x 90000000 kWh = 2185227 € 

 

COSTES DE OPERACIÓN Y MANTENIMIENTO 

 

El coste de operación y mantenimiento para este tipo de plantas según el estudio “energías solar 

térmica de concentración, perspectiva mundial 2009” elaborado por Greenpeace, solarPACES y 

ESTELA es actualmente de 3 c€/kWh siendo por lo tanto el coste actual de este apartado para 

los dos sistemas de retribución estudiados son: 

 

Tarifa regulada: 3 c€/kWh x 177000000 kWh = 5.31 M€/año 

Prima de referencia + mercado: 3 c€/kWh x 184000000 kWh = 5.52 M€/año 

 

COSTE DEL AGUA 

 

El precio del agua superficial bruta para uso industrial según la Junta de Andalucía para 

localización elegida en Almería esta sobre los 25 c€/m
3
. Teniendo en cuenta que la planta tendrá 
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unos consumos de agua para refrigeración y limpieza de aproximadamente 570000 m
3
/año 

(datos obtenidos durante la simulación  realizada mediante el programa de ordenador Solar 

Advisor Model ) se obtiene que el coste del agua supone 142000 €/año. 

 

Coste agua = 0.25 €/ m
3
 x 570000 m

3
= 142000 €/año 

 

COSTE DE LOS SEGUROS DE LA PLANTA 

 

En este apartado se tiene en cuenta los costes de los seguros del periodo de operación de la 

planta, que ascenderán a un 0.4% anual de la inversión total del proyecto: 

 

Coste seguros = 0.4% x 222480000 € = 889920 €/año 

 

4.3.2.2 INGRESOS 

 

PRECIO DE VENTA DE LA ELECTRICIDAD 

 

La retribución que se recibirá gracias a la venta de electricidad cambia dependiendo de la 

opción elegida entre las dos opciones que propone el artículo 24.1 del Real Decreto 661/2007: 

 

a) Ceder la electricidad al sistema a través de la red de transporte o distribución,  percibiendo 

por ella una tarifa regulada, única para todos los períodos de programación, expresada en 

céntimos de euro por kilovatio hora. 

 

b) Vender la electricidad en el mercado de producción de energía eléctrica. En este caso, el 

precio de venta de la electricidad será el precio que resulte en el mercado organizado o el 

precio libremente negociado por el titular o el representante de la instalación, complementado, 

en su caso, por una prima en céntimos de euro por kilovatio hora. 

 

Para el subgrupo b.1.2, existe, por tanto la posibilidad de venta a tarifa regulada o mediante 

prima de referencia (prima + mercado). Los valores correspondientes son los siguientes según el 

real decreto: 
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   Plazo 

  
    Tarifa  
 regulada 
  c€/ kWh 
 

 
   Prima de 
  referencia  
   c€/ kWh 
 
 

 
     Límite  
  Superior 
    c€/ kWh 
 

 
  Límite  
 Inferior 
c€/ kWh 
 

 
Primeros 
25 años 

     26.9375        25.4000  
 

34.3976 
 

 
  25.4038  

A partir de 
entonces 

21.5498 20.3200 

 

Tabla 4.26. Valores tarifa regulada y prima de referencia. 

 

Para la realización del estudio económico se han tomado las tarifas actualizadas de la Orden 

ITC/3519/2009, de 28 de diciembre, por la que se revisan los peajes de acceso a partir de 1 de 

enero de 2010 y las tarifas y primas de las instalaciones del régimen especial. 

 

 
 
 
   Plazo 

  
    Tarifa  
 regulada 
  c€/ kWh 
 

 
   Prima de 
  referencia  
   c€/ kWh 
 
 

 
     Límite  
  Superior 
    c€/ kWh 
 

 
  Límite  
 Inferior 
c€/ kWh 
 

 
Primeros 
25 años 

     28.4983        26.8717  
 

36.3906 
 

 
  26.8757  

A partir de 
entonces 

22.7984 21.4973 

 

 

Tabla 4.27. Valores actualizados tarifa regulada y prima de referencia. 

 

Comparando los dos cuadros se puede observar como se han actualizado las tarifas desde su 

inicio hasta la fecha actual de realización de este proyecto. La revisión se produce anualmente 

aumentando con la inflación menos un punto porcentual. 

 

Para calcular el precio de venta de la electricidad generada por la central, se debe de tener en 

cuenta los siguientes aspectos: 

 

 Precio medio del mercado: Como referencia del precio de venta de la energía, se ha 

tomado la media del Pool medio anual de mercado en base a 24 horas de los últimos 
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cuatro años, obteniéndose un precio de venta para la energía eléctrica del proyecto de 

5.007 c€/kWh - 50 €/MWh. 
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Media del mercado base 24 horas

 

Figura 4.24. Pool media anual (Fuente: REE, 2009). 

 

 Complemento por reactiva: Según lo dispuesto en el articulo 29 del Real Decreto 

661/2007: 

 

Toda instalación acogida al régimen especial, en virtud de la aplicación de este real decreto, 

independientemente de la opción elegida en el artículo 24.1, recibirá un complemento por 

energía reactiva por el mantenimiento de unos determinados valores de factor de potencia. Este 

complemento se fija como porcentaje, en función del factor de potencia con el que se entregue 

la energía del valor de 7.8441 c€/kWh, que será revisado anualmente. 

 

El valor que se va a tomar para dicho complemento se va a coger de la actualización realizada 

en la Orden ITC/3519/2009, de 28 de diciembre, por la que se revisan los peajes de acceso a 

partir de 1 de enero de 2010 y las tarifas y primas de las instalaciones del régimen especial. En 

ella el complemento por energía reactiva, queda fijado en 8.2954 c€/kWh. 

 

Opción tarifa regulada:  

 

Precio de la energía = 28.4983 c€/kWh + 8.2954 c€/kWh x 6% = 28.996 c€/kWh 
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Opción prima de referencia + mercado: 

 

Precio de la energía = 5.007 c€/kWh + 26.8717 c€/kWh + 8.2954 c€/kWh x 6% =                       

32.3764 c€/kWh 

 

4.3.3. Análisis financiero 

 

A continuación se va a realizar el análisis financiero del proyecto, el balance económico. Para la 

realización del mismo se han  considerado los siguientes condicionantes: 

 

 Una disponibilidad de la planta del 94%. La disponibilidad es un concepto relacionado 

con el mantenimiento e indica “la probabilidad de que un bien realice la función 

asignada cuando se requiere de ella”. 

 

 Una pérdida de rendimiento de la planta del 0.10% anual, debido a la degradación de 

los colectores, tubos absorbedores, equipos de seguimiento solar, turbina, etc. 

 

 La inversión del proyecto asciende a 222.48 millones de euros. Se ha supuesto que el 

20% de dicha inversión se afrontara con recursos propios y el 80% restante se 

financiara. 

 

 El interés que se ha considerado para el capital a financiar es del 4%. Se ha considerado 

un valor actualmente adecuado a mercado. El Euribor en las fechas de realización de 

este proyecto está sobre el 1.4% por lo que un 4% parece ser un interés adecuado para la 

concesión de un préstamo de estas características por los bancos. 

 

Para realizar el balance económico se ha tomado como ejemplo uno realizado por la empresa 

Iberdrola y utilizado en el Máster Europeo de Energías Renovables 2010, que desarrolla la 

Universidad de Zaragoza. A continuación se muestran en las siguientes figuras los datos más 

relevantes del mismo, a la vez que se explican los conceptos más importantes que lo componen. 

 

Se han realizado dos balances, según la opción tarifa regulada y según la opción de prima + 

mercado, para al final ver cual de ellas es la más atractiva desde el punto de vista económico. 

Para que no resulte muy largo este apartado, sólo se mostraran las tablas correspondientes al 

balance de la primera opción: tarifa regulada. 
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A) Tarifa regulada 

 

Como se puede observar en la tabla 4.28, los dos primeros años se consideran los necesarios 

para construir la central termosolar. Es a partir de ahí, cuando se va a poner en funcionamiento 

la central. 

 

En la tabla 4.28 aparece la producción eléctrica anual, el precio a que se paga esa electricidad 

dentro de la opción de tarifa regulada, y los ingresos que se obtienen de su venta. Como se 

puede observar se ha estimado una vida útil de 30 años para dicha instalación. 

 

Cuenta de  

resultados 
Producción (MWh) Ingresos por Ventas (miles de €) €/MWh Tarifa 

2010       

2011       

2012               167,000  50,010  299 € 

2013               166,833  50,709  304 € 

2014               166,666  51,418  309 € 

2015               166,500  52,137  313 € 

2016               166,333  52,867  318 € 

2017               166,167  53,606  323 € 

2018               166,001  54,356  327 € 

2019               165,835  55,116  332 € 

2020               165,669  55,887  337 € 

2021               165,503  56,668  342 € 

2022               165,337  57,461  348 € 

2023               165,172  58,264  353 € 

2024               165,007  59,079  358 € 

2025               164,842  59,905  363 € 

2026               164,677  60,743  369 € 

2027               164,512  61,593  374 € 

2028               164,348  62,454  380 € 

2029               164,184  63,327  386 € 

2030               164,019  64,213  391 € 

2031               163,855  65,111  397 € 

2032               163,692  66,022  403 € 

2033               163,528  66,945  409 € 

2034               163,364  67,881  416 € 

2035               163,201  68,830  422 € 

2036               163,038  69,793  428 € 

2037               162,875  56,858  349 € 

2038               162,712  57,653  354 € 

2039               162,549  58,459  360 € 

2040               162,387  59,277  365 € 

2041               162,224  60,106  371 € 
 

Tabla 4.28. Balance económico-1 (Tarifa regulada). 

(Nota: La coma que aparece en las tablas del análisis financiero no es separador decimal sino de millares). 
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En la tabla 4.29 aparece el margen operativo, que son los ingresos de la central, los gastos 

operativos que incluyen el personal de la planta, los gastos de mantenimiento, el consumo de 

gas natural, el consumo de agua y el pago de los impuestos de del IAE e IBI (impuesto de 

actividades económicas e impuesto de bienes inmuebles). Por último se calcula el EBITDA, que 

es el margen bruto de la actividad, esto es, el beneficio sin contar las amortizaciones, los 

intereses y el impuesto de sociedades. 

 

 

Balance 
Margen Operativo 

(miles de €) 

Gastos Operativos 

(miles de €) 

EBITDA 

(miles de €) 

2010       

2011       
2012 50,010  14,046       35,964   

2013 50,709  14,327       36,382   

2014 51,418  14,613       36,805   

2015 52,137  14,906       37,232   

2016 52,867  15,204       37,663   

2017 53,606  15,508       38,098   

2018 54,356  15,818       38,537   

2019 55,116  16,134       38,981   

2020 55,887  16,457       39,429   

2021 56,668  16,786       39,882   

2022 57,461  17,122       40,339   

2023 58,264  17,464       40,800   

2024 59,079  17,814       41,265   

2025 59,905  18,170       41,735   

2026 60,743  18,533       42,210   

2027 61,593  18,904       42,688   

2028 62,454  19,282       43,172   

2029 63,327  19,668       43,659   

2030 64,213  20,061       44,152   

2031 65,111  20,462       44,649   

2032 66,022  20,872       45,150   

2033 66,945  21,289       45,656   

2034 67,881  21,715       46,166   

2035 68,830  22,149       46,681   

2036 69,793  22,592       47,201   

2037 56,858  23,044       33,814   

2038 57,653  23,505       34,148   

2039 58,459  23,975       34,484   

2040 59,277  24,454       34,822   

2041 60,106  24,944       35,162   
 

Tabla 4.29. Balance económico-2 (Tarifa regulada). 

 



 

 - 174 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

En la tabla 4.30 aparece las amortizaciones, representan la depreciación que tiene un bien. Se 

utiliza una tasa de amortización del 3.33% ya que como ya se ha dicho se considera que la 

planta va a tener una vida útil de 30 años.  

 

También aparece en la tabla el EBIT, que como el EBITDA pero incluyendo las amortizaciones.  

 

El servicio de deuda refleja los intereses que se pagan por el préstamo de 178 M€ al 4% durante 

15 años, y por ultimo aparece el BAT, que es el beneficio antes de impuestos. 

 

 

Balance 
Amortizaciones 

(miles de €) 
EBIT 

(miles de €) 
Servicio de deuda 

(miles de €) 
BAT 

(miles de €) 

2010         

2011         

2012 7,416       28,548   7,119       21,428   

2013 7,416       28,966  6,823       22,144   

2014 7,416       29,389   6,526       22,863   

2015 7,416       29,816  6,229       23,586   

2016 7,416       30,247   5,933       24,314   

2017 7,416       30,682   5,636       25,046   

2018 7,416       31,121   5,340       25,782   

2019 7,416       31,565   5,043       26,522   

2020 7,416       32,013   4,746       27,267   

2021 7,416       32,466   4,450       28,016   

2022 7,416       32,923  4,153       28,770   

2023 7,416       33,384  3,856       29,527   

2024 7,416       33,849   3,560       30,290   

2025 7,416       34,319   3,263       31,056   

2026 7,416       34,794   2,966       31,827   

2027 7,416       35,272   -      35,272   

2028 7,416       35,756   -      35,756   

2029 7,416       36,243   -      36,243   

2030 7,416       36,736   -      36,736   

2031 7,416       37,233   -      37,233   

2032 7,416       37,734   -      37,734   

2033 7,416       38,240   -      38,240   

2034 7,416       38,750   -      38,750   

2035 7,416       39,265   -      39,265   

2036 7,416       39,785   -      39,785   

2037 7,416       26,398   -      26,398   

2038 7,416       26,732   -      26,732   

2039 7,416       27,068   -      27,068   

2040 7,416       27,406   -      27,406   

2041 7,416       27,746   -      27,746   
 

Tabla 4.30. Balance económico-3 (Tarifa regulada). 
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En la tabla 4.31 aparece la casilla impuestos que refleja el 25% que se debe pagar por el 

impuesto de sociedades para este tipo de actividades con un beneficio tan elevado esperado. 

 

También se muestra el valor residual de la instalación al final de su vida útil, el cual se ha 

estimado en un 5% de la inversión. 

 

Por último aparece el resultado neto, que representa lo que se ha ganado al final de cada año y 

los flujos de caja, que es el resultado neto más la amortización, y que se utilizarán para sacar el 

V.A.N. y la T.I.R. un poco más adelante. 

 

Balance 
Impuestos 
(miles de €) 

Valor Residual 
(miles de €) 

Resultado neto 
(miles de €) 

Flujos de caja 
(miles de €) 

2010 25% 5%   -                222,48   

2011         

2012 5,357 - 16,071 23,487 

2013 5,536 - 16,608 24,024 

2014 5,716 - 17,147 24,563 

2015 5,897 - 17,690 25,106 

2016 6,078 - 18,235 25,651 

2017 6,261 - 18,784 26,200 

2018 6,445 - 19,336 26,752 

2019 6,631 - 19,892 27,308 

2020 6,817 - 20,450 27,866 

2021 7,004 - 21,012 28,428 

2022 7,192 - 21,577 28,993 

2023 7,382 - 22,146 29,562 

2024 7,572 - 22,717 30,133 

2025 7,764 - 23,292 30,708 

2026 7,957 - 23,870 31,286 

2027 8,818 - 26,454 33,870 

2028 8,939 - 26,817 34,233 

2029 9,061 - 27,183 34,599 

2030 9,184 - 27,552 34,968 

2031 9,308 - 27,924 35,340 

2032 9,433 - 28,300 35,716 

2033 9,560 - 28,680 36,096 

2034 9,688 - 29,063 36,479 

2035 9,816 - 29,449 36,865 

2036 9,946 - 29,839 37,255 

2037 6,599 - 19,798 27,214 

2038 6,683 - 20,049 27,465 

2039 6,767 - 20,301 27,717 

2040 6,852 - 20,555 27,971 

2041 6,937 11,124 31,934 39,350 
 

Tabla 4.31. Balance económico-4 (Tarifa regulada). 
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B) Prima + mercado 

 

Los conceptos del balance son los mismos del anterior pero con algunas diferencias: Se produce 

más electricidad con esta opción porque se permite utilizar hasta el 15% de gas natural como 

combustible de apoyo fósil frente al 12% de la otra opción. También cambia el precio de venta 

de la energía como ya se ha explicado en apartados anteriores. 

 

Como resumen, se muestra en la tabla 4.32 el resultado neto del balance y los flujos de caja: 

 

 

Balance 
Resultado neto 

(miles de €) 
Flujos de caja 

(miles de €) 

2010   -                222,48   

2011     

2012 21,768 29,184 

2013 22,416 29,832 

2014 23,070 30,486 

2015 23,729 31,145 

2016 24,393 31,809 

2017 25,063 32,479 

2018 25,739 33,155 

2019 26,420 33,836 

2020 27,107 34,523 

2021 27,799 35,215 

2022 28,498 35,914 

2023 29,202 36,618 

2024 29,912 37,328 

2025 30,628 38,044 

2026 31,350 38,766 

2027 34,081 41,497 

2028 34,593 42,009 

2029 35,111 42,527 

2030 35,636 43,052 

2031 36,167 43,583 

2032 36,704 44,120 

2033 37,248 44,664 

2034 37,799 45,215 

2035 38,356 45,772 

2036 38,920 46,336 

2037 29,309 36,725 

2038 29,744 37,160 

2039 30,185 37,601 

2040 30,630 38,046 

2041 42,205 49,621 
 

Tabla 4.32. Resumen balance económico (Prima + mercado). 
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4.3.4. Valoración del proyecto 

 

Existen diversos métodos o modelos de valoración de inversiones. Se dividen básicamente entre 

métodos estáticos y métodos dinámicos. 

 

Los estáticos son los siguientes: 

 

 El método del Flujo neto de Caja (Cash-Flow estático). 

 El método del Pay-Back o Plazo de recuperación. 

 El método de la Tasa de rendimiento contable. 

 

Estos métodos adolecen todos de un mismo defecto: No tienen en cuenta el tiempo. Es decir, no 

tienen en cuenta en los cálculos, el momento en que se produce la salida o la entrada de dinero y 

por lo tanto, su diferente valor. 

  

Los métodos dinámicos: 

 

 El Pay-Back dinámico o Descontado. 

 El Valor Actual Neto (V.A.N.) 

 La Tasa de Rentabilidad Interna (T.I.R.) 

 

Para el análisis de nuestra inversión utilizaremos el método del V.A.N. y de la T.I.R. porque 

presentan la ventaja de tener en cuenta el “tiempo” y porque son los dos métodos más utilizados 

y aceptados a nivel económico-empresarial. 

 

El Valor Actual Neto. (V.A.N.) 

 

Por Valor Actual Neto de una inversión se entiende la suma de los valores actualizados de todos 

los flujos netos de caja esperados del proyecto, deducido el valor de la inversión inicial. 
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Siendo I: la inversión, R: los flujos de caja (Resultado neto + amortización), j: el año del 

rendimiento, n: el número de años y r: la tasa de interés del mercado. 



 

 - 178 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

Si un proyecto de inversión tiene un V.A.N. positivo, el proyecto es rentable. Entre dos o más 

proyectos, el más rentable es el que tenga un V.A.N. más alto. Un V.A.N. nulo significa que la 

rentabilidad del proyecto es la misma que colocar los fondos en él invertidos en el mercado con 

un interés equivalente a la tasa de descuento utilizada. La única dificultad para hallar el V.A.N. 

consiste en fijar el valor para la tasa de interés, existiendo diferentes alternativas. 

 

Como ejemplo de tasas de descuento, se indican las siguientes: 

 

a) Tasa de descuento ajustada al riesgo = Interés que se puede obtener del dinero en inversiones 

sin riesgo (deuda pública) + prima de riesgo). 

 

b) Coste medio ponderado del capital empleado en el proyecto. 

 

c) Coste de la deuda, si el proyecto se financia en su totalidad mediante préstamo. 

 

d) Coste medio ponderado del capital empleado por la empresa. 

 

e) Coste de oportunidad del dinero, entendiendo como tal el mejor uso alternativo, incluyendo 

todas sus posibles utilizaciones. 

 

Tras consultar varias entidades financieras se decidió emplear una tasa de descuento del 6%. 

 

La principal ventaja de este método es que al homogeneizar los flujos netos de caja a un mismo 

momento de tiempo (t=0), reduce a una unidad de medida común cantidades de dinero 

generadas (o aportadas) en momentos de tiempo diferentes. Además, admite introducir en los 

cálculos flujos de signo positivos y negativos (entradas y salidas) en los diferentes momentos 

del horizonte temporal de la inversión, sin que por ello se distorsione el significado del 

resultado final, como puede suceder con la T.I.R. 

 

Dado que el V.A.N. depende muy directamente de la tasa de actualización, el punto débil de 

este método es la tasa utilizada para descontar el dinero (siempre discutible). Sin embargo, a 

efectos de “homogeneización”, la tasa de interés elegida hará su función indistintamente de cual 

haya sido el criterio para fijarla. 

 

Tasa Interna de Rentabilidad (T.I.R.) 

 

Se denomina Tasa Interna de Rentabilidad (T.I.R.) a la tasa de descuento que hace que el Valor 

Actual Neto (V.A.N.) de una inversión sea igual a cero. (V.A.N. =0).  
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Este método considera que una inversión es aconsejable si la T.I.R. resultante es igual o 

superior a la tasa exigida por el inversor, y entre varias alternativas, la más conveniente será 

aquella que ofrezca una T.I.R. mayor.  

 

Pero la más importante crítica del método (y principal defecto) es la inconsistencia matemática 

de la T.I.R. cuando en un proyecto de inversión hay que efectuar otros desembolsos, además de 

la inversión inicial, durante la vida útil del mismo, ya sea debido a pérdidas del proyecto, o a 

nuevas inversiones adicionales.  

 

La T.I.R. es un indicador de rentabilidad relativa del proyecto, por lo cual cuando se hace una 

comparación de tasas de rentabilidad interna de dos proyectos no tiene en cuenta la posible 

diferencia en las dimensiones de los mismos. Una gran inversión con una T.I.R. baja puede 

tener un V.A.N. superior a un proyecto con una inversión pequeña con una T.I.R. elevada. 
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RESULTADOS DEL ANÁLISIS FINANCIERO Y CONCLUSIONES 

 

V.A.N. 

Opción: Tarifa regulada 101.179 M€ 

Opción: Prima + mercado 193.015 M€ 

 

Tabla 4.33. V.A.N. obtenido de los dos análisis económicos realizados. 

 

T.I.R. 

Opción: Tarifa regulada 8.69% 

Opción: Prima + mercado 10.82% 

 

Tabla 4.34. T.I.R. obtenido de los dos análisis económicos realizados. 

 

A la vista del análisis, se puede concluir, que elegir la opción de venta de prima de referencia 

resulta más beneficioso desde el punto de vista económico que la opción de tarifa regulada, que 

si bien es una opción más segura, con el tiempo resulta mucho menos rentable como se ha 

podido comprobar. 
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4.4. CONCLUSIONES, RECOMENDACIONES Y LAS ACTUALES 

LÍNEAS DE I+D 

 

En este apartado se van a plasmar las conclusiones que el autor de este proyecto ha sacado con 

la realización del mismo. También se ofrecen algunas recomendaciones que desde distintos 

ámbitos relacionados con el sector de la energía solar térmica de concentración, se aportan para 

contribuir al desarrollo y consolidación de la misma. Por ultimo, se exponen las líneas de 

investigación y desarrollo más importantes que se están llevando a cabo en la actualidad.  

 

Al comenzar este proyecto, y hablaré por primera vez y única en primera persona, no tenía 

conocimiento de la existencia de este tipo de tecnologías de aprovechamiento solar. Buscando 

un tema para el proyecto final de carrera que fuera interesante y que me motivara para su 

realización, me encontré con la energía solar térmica de concentración. Aunaba todo lo que 

estaba buscando: Energía respetuosa con el medioambiente, sostenible, “real  ”, con una fuerte 

presencia en España y con unas grandes posibilidades tanto de presente como de futuro. 

 

Las tecnologías de concentración solar se encuentran en pleno desarrollo comercial en estos 

momentos. Con este proyecto, se ha podido seguir la evolución que han llevado en los últimos 

tiempos. Su aplicación puede llegar a constituir una forma de generación de energía 

competitiva, como alternativa a la generación eléctrica tradicional mediante combustibles 

fósiles o energía nuclear y con las ventajas que corresponden a una fuente renovable y 

respetuosa con el medio ambiente. Además, puede y debe ser una pieza clave en la estrategia 

energética de España así como en la de muchos otros países situados en las regiones más 

soleadas del planeta. 

. 

Conclusiones 

 

El Sol es una fuente de energía limpia, inagotable, segura, fácilmente accesible y gratuita. El sol 

emite anualmente una cantidad de energía de 1080000000 TWh, lo que corresponde a 60000 

veces la demanda mundial de energía eléctrica. La energía solar tiene por lo tanto el mayor 

potencial de entre todas las energías renovables. Que la energía solar esté disponible in-situ 

supone una ventaja decisiva, por lo que a parte de la construcción de las centrales y la 

distribución de la corriente, no se requieren otras infraestructuras y ninguna logística, a 

diferencia de la extracción y el aprovechamiento de fuentes de energía fósiles (plantas 

petrolíferas, refinerías, gaseoductos, etc.) 
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La utilización de centrales termosolares para la generación de electricidad es especialmente 

apropiada para el llamado "cinturón solar" de la tierra, ya que en estas zonas no sólo se registra 

una mayor cantidad de horas de sol sino que también la intensidad de la radiación solar es 

mayor.  

 

Tal es la importancia de la intensidad de la radiación solar, que si se cambiase por ejemplo 

únicamente la ubicación geográfica de la central termosolar objeto del proyecto, de la elegida en 

el desierto de Tabernas, Almería, al desierto de Mojave, EE.UU., esta produciría al año casi 42 

GWh más de electricidad, aumentando así su factor de capacidad en casi 10 puntos 

porcentuales, y reduciendo los costes de la electricidad producida entorno a 3 c€/kWh.  

 

Localización 

Electricidad 

anual 

producida 

(GWh) 

LEC  

(c€/kWh) 

Factor de  

capacidad 

(%) 

Radiación normal directa 

(media horaria anual) 

(Wh/m
2
) 

Desierto de 

Tabernas, Almería 
184.14 15.44 42.04 232.3 

Desierto de Mojave, 

EE.UU. 
225.76 12.59 51.54 318.7 

 

Tabla 4.35. Importancia de la intensidad de la radiación solar en las centrales termosolares. 

 

Tabernas, Mojave, ambos sitios idóneos para la instalación de centrales termosolares por 

encontrarse situadas en  el cinturón solar terrestre, el cual se extiende aproximadamente entre 40 

grados de latitud Norte y 40 grados de latitud Sur, figura 4.25. En el cinturón solar existen zonas 

con un potencial altísimo, (desiertos del Norte de África o de China), pero es que además se 

concentra en él más del 75% de la población mundial. 

 

 

Figura4.25. El cinturón solar terrestre. (Fuente: Solar Millennium AG, 2010) 
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Centrales termosolares como la analizada en el proyecto, pueden proporcionar potencia de 

forma segura, planificable y estable al sistema de generación eléctrica, pudiendo producir 

electricidad incluso en períodos con bajos niveles de radiación y también por la noche. Esto lo 

consiguen mediante sistemas de almacenamiento térmico y/o mediante la hibridación con otros 

combustibles, reduciendo así las irregularidades generadas por las intermitencias del recurso 

solar lo cual permite aumentar el aporte total de las energías renovables y por tanto la 

sostenibilidad del sistema eléctrico. 

 

También las tecnologías de concentración solar se pueden integrar en centrales térmicas 

convencionales. La utilización combinada comporta una considerable reducción de los costes de 

la energía eléctrica producida y facilita de esta forma la introducción en la explotación de las 

energías renovables en países de reciente industrialización. 

 

Las centrales termosolares de colectores cilindro parabólicos son aptas para aplicaciones a gran 

escala, de entre 30 a 250 MW de potencia eléctrica. El carácter modular del campo solar permite 

adaptar a las necesidades locales la potencia de las plantas. Las dimensiones óptimas se sitúan 

actualmente entre los 150 y 250 MW, según localizaciones, para así poder aprovechar las 

economías de escala de esta tecnología. La central termosolar analizada en el proyecto esta 

diseñada para una potencia nominal de 50 MW, el límite máximo permitido si se quiere acoger 

la planta al régimen especial de generación eléctrica español. Por ello, en las recomendaciones 

que se darán un poco más adelante se sugiere cambiar este límite máximo de potencia. 

 

Las centrales de colectores cilindro parabólicos pueden reemplazar a las centrales térmicas 

convencionales y además sin comportar alteraciones de las estructuras actuales de las redes 

eléctricas. 

 

El rendimiento de las centrales termosolares de colectores cilindro parabólico esta entre el 12 y 

el 19% según la configuración de las mismas. La central analizada en el proyecto logra un 

rendimiento del 17.74%, bastante alto dentro del rango citado debido a que cuenta con sistema 

de almacenamiento térmico y apoyo de combustible fósil. Para centrales sólo solares, el 

rendimiento suele oscilar entre el 12% o 14%. 

 

Si se compara este rendimiento con otras tecnologías es bastante bajo. Las centrales térmicas de 

ciclo combinado por ejemplo están en el rango del 42-58%. Pero la comparación no es justa. 

Las centrales termosolares utilizan energía renovable, el sol, y las centrales térmicas de ciclo 

combinado queman gas natural, con todo lo que esto conlleva.  
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Además, las centrales termosolares consiguen potencias como ya se ha dicho bastante 

respetables de hasta 250 MW, nada que ver con el otro aprovechamiento eléctrico de la energía 

solar como es el fotovoltaico que produce comparativamente poco y caro (27-51 c€/kWh). 

 

Las centrales de colectores cilindro parabólicos son capaces en la actualidad de producir 

electricidad a precios competitivos de entre 10 y 20 c€/kWh, en función de la intensidad de la 

radiación solar de cada emplazamiento. El coste de la energía eléctrica producida por la central 

analizada en el proyecto es de 15.44 c€/kWh. Además, los elevados costes durante la fase de 

inversiones se contrarrestan con unos costes de explotación reducidos, que actualmente se cifran 

en tan sólo 3 c€/kWh. 

 

El aprovechamiento de la energía solar hace posible la seguridad de los proyectos, dado que los 

costes de explotación no dependen de la fluctuación de los precios de los combustibles y que la 

energía solar está disponible de forma ilimitada, se pueden calcular de forma segura los costes 

para la totalidad del período de inversión. Únicamente, los sistemas retributivos de ayudas al 

fomento de estos sistemas diferentes en cada país, crean algún tipo de incertidumbre. Aún así, 

estos sistemas solares de concentración llegaran en poco tiempo a ser competitivos por si solos.  

 

Otra consideración relevante es que estas centrales son ideales para dar servicio a los picos de 

demanda en las horas centrales del verano. Precisamente, en el periodo en el que en las regiones 

del cinturón solar existe una mayor demanda de corriente eléctrica para uso de climatización, es 

cuando las centrales termosolares producen de forma más efectiva.  

 

Las líneas de transporte de corriente continua de alta tensión, son capaces de transportar la 

corriente a través de grandes distancias. Sus costes de explotación ascienden aproximadamente 

a 2 c€/kWh. Por lo tanto estas centrales termoeléctricas podrían generar electricidad por ejemplo 

en el Norte de África y esta ser consumida en Europa Central. La radiación solar en esa zona del 

planeta es muy elevada, el único inconveniente es la inestabilidad política de muchos de los 

países del Norte de África lo que puede retraer de realizar las costosas inversiones necesarias. 

 

Las centrales de colectores cilindro parabólicos son una tecnología experimentada. A diferencia 

de las otras tecnologías solares de concentración (receptor central, disco parabólico, Fresnel), la 

tecnología de colectores solares cilindro parabólicos esta totalmente operativa, cuenta con un 

elevado grado de experiencia y madurez y en contraposición a los demás sistemas, disfruta de 

una ventaja tecnológica de como mínimo 20 años. 
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Las centrales termosolares de colectores cilindro parabólicos utilizan materiales de construcción 

de presencia masiva en todo el mundo, reciclables y de bajo coste: acero, vidrio y hormigón. 

Además, gran parte de los trabajos de construcción lo realizan empresas locales, fomentando el 

desarrollo económico de las zonas donde se implantan.  

 

Las centrales termosolares de colectores cilindro parabólicos presentan un balance ecológico 

muy bueno. El tiempo que se tarda en recuperar la energía invertida (EPBT, Energy PayBack 

Time), es reducido, de 5 meses, poco comparado con otras energías renovables. Además, la 

tecnología de colectores cilindro parabólicos presenta los menores requerimientos de materiales 

de entre todas las tecnologías solares de concentración. 

 

Recomendaciones 

 

Potenciar el desarrollo de centrales termosolares en nuestro país tiene múltiples consecuencias 

positivas. 

 

España es el país de referencia en cuanto a la energía solar térmica de concentración, no sólo a 

nivel de centrales operativas sino también por ser sus empresas poseedoras de la tecnología más 

avanzada. El sector termoeléctrico, puede ayudar al cambio de sistema económico tan necesario 

en España, basado en los últimos tiempos en el sector inmobiliario y que como se ha 

demostrado no era sostenible. 

  

Este tipo de tecnologías contribuyen a aumentar el aporte de las renovables en el sistema de 

generación nacional (y por tanto su grado de sostenibilidad). Esta tecnología puede ser una 

pieza clave en la elaboración de un modelo de desarrollo sostenible, no sólo en España, sino en 

muchos países del cinturón solar, donde se va a concentrar el mayor aumento de la demanda 

eléctrica en el futuro, contribuyendo por tanto a la sostenibilidad global.  

 

La limitación de la potencia de las plantas a 50 MW de la legislación española carece 

actualmente de sentido. Se introdujo para favorecer su desarrollo repartiendo el negocio 

termoeléctrico entre varias empresas, ya que había un límite de potencia instalada de sólo 500 

MW (RD 661/2007). Una vez que el objetivo se ha cumplido, ya no tiene razón de ser. Las 

centrales termosolares pueden acceder a significativas economías de escala al subir por encima 

de los 50 MW, consiguiendo de esta forma introducir más sostenibilidad en nuestro sistema de 

generación a un menor coste. No parece adecuado que la legislación penalice precisamente esto. 
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Los costes de la electricidad termosolar todavía se pueden reducir mucho al acceder a 

economías de escala, llegando a resultar competitivos con los costes actuales de las tecnologías 

de generación eléctrica convencionales. Además, las tecnologías convencionales, a medida que 

vayan subiendo los costes de los combustibles fósiles y que se vayan añadiendo sus costes 

externos, van a ir aumentando su LEC respecto a los costes de generación que tienen en la 

actualidad.  

 

Las tecnologías convencionales han alcanzado los LEC actuales gracias a las ayudas del pasado 

y presente que han permitido su desarrollo e introducción comercial. Las tecnologías 

termosolares también necesitan ayudas y políticas específicas por parte de las instituciones para 

permitir así su desarrollo comercial. 

 

Principales líneas de investigación actuales en la tecnología de 

colectores cilindro parabólicos 

 

Nuevos Tubos Absorbedores 

 

 Tubos de bajo vacío y sin soldadura vidrio-metal 

 

La soldadura vidrio-metal será sustituida por un cierre mecánico. Estos tubos durarán más y 

serán más fiables, pero su eficiencia será algo menor que la de los tubos de vacío. 

 

 Nuevos tubos con vacío y soldadura vidrio-metal 

 

Los nuevos diseños de estos tubos serán muy parecidos a los actuales de Schott y Siemens. El 

principal beneficio será si se logra incrementar la oferta con la introducción de nuevos 

fabricantes, lo que reduciría los precios. 

 

 Nuevos recubrimientos selectivos y antirreflexivos 

 

Ya existen a nivel experimental nuevos recubrimientos selectivos con emisividad menores a 0.1 

a los 500ºC y alta durabilidad térmica. Lo que ocurre es que la comercialización de estos 

recubrimientos está pendiente aún de llevarse a cabo. 
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Nuevos diseños de estructuras soporte (colectores) 

 

Existen varios nuevos diseños que se están actualmente desarrollando con el objetivo de reducir 

el coste total del colector (fabricación + montaje). Algunos de los nuevos diseños usan un tubo 

central sobre el que se montan los brazos soportes de los espejos. La reducción del peso no es el 

objetivo primordial, sino alcanzar unos costes de montaje menores sin bajar la calidad, 

resistencia y precisión final del colector. 

 

Nuevos fluidos a emplear en los colectores cilindro parabólicos 

 

La tecnología HTF que usa aceite sintetico es la predominante en estos momentos en las 

aplicaciones solares de concentración por su amplia experiencia y eficacia contrastada. Los 

principales inconvenientes de esta tecnología son: 

 

-Temperatura máxima del vapor limitada (380ºC) 

 

-Contaminación en caso de fugas y riesgo de incendio 

 

Actualmente, dos nuevos fluidos están siendo investigados para sustituir al aceite sintético y 

generación directa de vapor (GDV), de ellos ya se habló convenientemente en el apartado 3.3 de 

este proyecto. Como resumen, la tabla 4.36: 

 

Fluido Ventajas sobre el aceite Desventajas sobre el aceite 

Sales 

Fundidas 

- Temperatura de vapor más alta 

 

- Sin riesgo de contaminación o incendio 

 

- Mejor almacenamiento térmico 

- Alta temperatura de cristalización 

(>125ºC) 

 

- Diseño del campo solar más complejo 

 

- Mayores consumos 

Generación 

Directa de 

Vapor 

- Diseño simple de la planta 

 

- Temperatura de vapor más alta 

 

- Sin riesgo de contaminación o 

incendio 

- Falta de un almacenamiento térmico 

adecuado 

 

- Sistema de control del campo solar 

más complejo 

 

- Mayor presión en el campo solar 

 

Tabla 4.36. Comparación entre los distintos fluidos que se pueden emplear en tecnologías 

de concentración solar. 
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Nuevos sistemas de almacenamiento térmico 

 

Hay tres líneas fundamentales de investigación actualmente relacionadas con el 

almacenamiento: 

 

Calor sensible utilizando sales fundidas (< 580ºC) 

 

En la actualidad, enormes sistemas de almacenamiento (1 GWht) con dos tanques de sales 

fundidas están siendo construidos en plantas de 50 MW de colectores cilindro parabólicos, 

como se ha podido ver en este proyecto, donde la central analizada cuenta con ellos. El único 

inconveniente que presentan es que es necesario evaluar el comportamiento a largo plazo de 

estos sistemas para ver como resultan. 

 

Calor latente con sales fundidas (cambio de fase) (< 320ºC) 

 

Las plantas generación directa de vapor necesitan sistemas de almacenamiento térmico que usen 

cambio de fase. Varias opciones para almacenamientos de este tipo están siendo investigadas 

actualmente, y un prototipo de 200 kWh ha sido evaluado en la Plataforma Solar de Almería. 

 

Calor sensible con hormigón 

 

El objetivo de estas actividades de I+D es lograr un coste específico de 20 €/kWh de capacidad. 

Un prototipo de 2x350 kWh ha sido ensayado en la Plataforma Solar de Almería con buenos 

resultados. Recientemente se ha ensayado un módulo de 400 kWh en Alemania con buenos 

resultados también (Greenpeace, 2009). 
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ANEXO I  

LISTADO DE VARIABLES QUE UTILIZA LA 

APLICACIÓN “SOLAR ADVISOR MODEL” 

 

Nombre de las variables y abreviaturas 

 

En las tablas siguientes se muestran los nombres de las variables que son utilizadas por el 

programa de ordenador. Para cada variable, una letra en cursiva indica el tipo de magnitud de la 

variable, y el subíndice describe con más detalle la misma. Por ejemplo, la letra F indica un 

factor, y FTempCorr representa el factor de corrección de la temperatura. 

 

Nombre Descripción Unidades 

A Area m
2
 

Cp Capacidad calorífica J/kg-m
3
 

D Longitud m 

E Potencia eléctrica We 

F Factor multiplicador - 

H Entalpía J/kg 

h Hora h 

m Flujo másico kg/s 

N Número - 

[N] 
El mayor entero más cercano o igual al número encerrado entre 

corchetes 
- 

P Potencia We or Wt 

Q Energía térmica Wh 

T Temperatura °C 

t Tiempo hr 

v Velocidad m/s 

V Volumen gal 

y Año y 

θ Ángulo ° 

ρ Densidad kg/m
3
 

 

. Nombre de las variables y unidades. 

 

Algunas variables utilizan abreviaturas para ahorrar espacio. Por ejemplo, la variable FTempCorr 

utiliza la abreviatura "corr" para referirse a "corrección". En la tabla siguiente se muestran las 

abreviaturas utilizadas en el programa: 
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Abreviatura Descripción 
abs Absorbido 

adjust Ajustado 

avg Promedio / media 

BOP Balance de planta 

clean Limpio 

corr Corrección 

costh Coseno de th 

CT Torre de refrigeración 

D Diseño 

DNI Irradiancia normal directa 

eff Eficiencia 

env Sobre 

ET Electro-térmica 

FP Punto de congelación 

geom Geométrico 

HCE Tubo absorbedor 

HL Pérdidas de calor 

HTF Fluido caloportador 

htr Caldera 

IAM Modificador del ángulo de incidencia 

len Longitud 

LHV Valor calorífico inferior 

max Máximo 

min Mínimo 

NIP Radiación normal directa 

norm Normalizado 

opt Óptico 

par Pérdidas parásitas 

parasit Pérdidas parásitas 

PB Bloque de potencia 

PF Factor de rendimiento 

refl Reflectividad 

SCA Colector 

SF Campo solar 

SU Puesta en marcha 

TC Corrección de la temperatura 

TE Termo-eléctrico 

TES Almacenamiento de energía térmica 

trans Transmisividad  

ts Almacenamiento de energía térmica 

tur Turbina 
 

. Abreviaturas en los subíndices de las variables. 
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ANEXO II 

LOCALIZACIÓN DE LAS CENTRALES TERMOSOLARES 

EN ESPAÑA 
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ANEXO III 

ESPECIFICACIONES TÉCNICAS DEL COLECTOR 

EUROTROUGH 
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ANEXO IV 

ESPECIFICACIONES TÉCNICAS DEL FLUIDO DE 

TRANSFERENCIA DE CALOR THERMINOL VP-1 

 

 

 

 



 

 - 204 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

 

 

 

 

 

 



    
 

 - 205 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

 

 

 

 

 



 

 - 206 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

 

 

 

 

 

 

 



    
 

 - 207 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

 

 

 

 

 

 

 

 



 

 - 208 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

 

 

 

 

 

 

 



    
 

 - 209 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

 

 

 

 

 

 

 

 



 

 - 210 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

 

 

 

 

 

 

 



    
 

 - 211 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

 

 

 

 

 

 

 



 

 - 212 - 

 

Proyecto Final de Carrera                                                                              Ignacio Ciria Repáraz 

 

 

 

 

 

 

 



    
 

 - 213 - 

 Análisis de la tecnología  

de concentración solar mediante colectores cilindro parabólicos para generación eléctrica. 

ANEXO V  

ESPECIFICACIONES TÉCNICAS DEL RECEPTOR 

SCHOTT PTR70 
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ANEXO VI 

ESPECIFICACIONES TÉCNICAS DE LA TURBINA 

SIEMENS SST-7000 DHR 
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