000056062 001__ 56062
000056062 005__ 20200221144201.0
000056062 0247_ $$2doi$$a10.1103/PhysRevB.93.134424
000056062 0248_ $$2sideral$$a94987
000056062 037__ $$aART-2016-94987
000056062 041__ $$aeng
000056062 100__ $$0(orcid)0000-0002-8173-1846$$aLaliena, V.
000056062 245__ $$aIncommensurate-commensurate transitions in the monoaxial chiral helimagnet driven by the magnetic field
000056062 260__ $$c2016
000056062 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056062 5203_ $$aThe zero-temperature phase diagram of the monoaxial chiral helimagnet in the magnetic-field plane formed by the components parallel and perpendicular to the helical axis is thoroughly analyzed. The nature of the transition to the commensurate state depends on the angle between the field and the helical axis. For field directions close to the directions parallel or perpendicular to the helical axis the transition is continuous, while for intermediate angles the transition is discontinuous and the incommensurate and commensurate states coexist on the transition line. The continuous and discontinuous transition lines are separated by two tricritical points with specific singular behavior. The location of the continuous and discontinuous lines and of the tricritical points depend strongly on the easy-plane anisotropy, the effect of which is analyzed. For high anisotropy the conical approximation locates the transition line very accurately, although it does not predict the continuous transitions and the tricritical behavior. It is shown that for high anisotropy, as in CrNb3S6, the form of the transition line is universal, that is, independent of the sample, and obeys a simple equation. The position of the tricritical points, which is not universal, is theoretically estimated for a sample of CrNb3S6.
000056062 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2015-68200-C2-2-P
000056062 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056062 590__ $$a3.836$$b2016
000056062 591__ $$aPHYSICS, CONDENSED MATTER$$b18 / 67 = 0.269$$c2016$$dQ2$$eT1
000056062 592__ $$a2.339$$b2016
000056062 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ1
000056062 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000056062 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056062 700__ $$0(orcid)0000-0002-3600-1721$$aCampo, J.$$uUniversidad de Zaragoza
000056062 700__ $$aKishine, J.I
000056062 700__ $$aOvchinnikov, A.S.
000056062 700__ $$aTogawa, Y.
000056062 700__ $$aKousaka, Y.
000056062 700__ $$aInoue, K.
000056062 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000056062 773__ $$g93, 13 (2016), 134424 [9 pp]$$pPhys. Rev. B, Condens. matter mater. phys.$$tPhysical Review B. Condensed Matter and Materials Physics$$x1098-0121
000056062 8564_ $$s1358982$$uhttps://zaguan.unizar.es/record/56062/files/texto_completo.pdf$$yVersión publicada
000056062 8564_ $$s129395$$uhttps://zaguan.unizar.es/record/56062/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056062 909CO $$ooai:zaguan.unizar.es:56062$$particulos$$pdriver
000056062 951__ $$a2020-02-21-13:08:52
000056062 980__ $$aARTICLE