000056071 001__ 56071
000056071 005__ 20200221144249.0
000056071 0247_ $$2doi$$a10.1103/PhysRevB.93.174410
000056071 0248_ $$2sideral$$a95050
000056071 037__ $$aART-2016-95050
000056071 041__ $$aeng
000056071 100__ $$aVivas, L.G.
000056071 245__ $$aPerpendicular magnetic anisotropy in granular multilayers of COPD alloyed nanoparticles
000056071 260__ $$c2016
000056071 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056071 5203_ $$aCo-Pd multilayers obtained by Pd capping of pre-deposited Co nanoparticles on amorphous alumina are systematically studied by means of high-resolution transmission electron microscopy, x-ray diffraction, extended x-ray absorption fine structure, SQUID-based magnetometry, and x-ray magnetic circular dichroism. The films are formed by COPD alloyed nanoparticles self-organized across the layers, with the interspace between the nanoparticles filled by the non-alloyed Pd metal. The nanoparticles show atomic arrangements compatible with short-range chemical order of L10 strucure type. The collective magnetic behavior is that of ferromagnetically coupled particles with perpendicular magnetic anisotropy, irrespective of the amount of deposited Pd. For increasing temperature three magnetic phases are identified: hard ferromagnetic with strong coercive field, soft-ferromagnetic as in an amorphous asperomagnet, and superparamagnetic. Increasing the amount of Pd in the system leads to both magnetic hardness increment and higher transition temperatures. Magnetic total moments of 1.77(4) µB and 0.45(4) µB are found at Co and Pd sites, respectively, where the orbital moment of Co, 0.40(2) µB, is high, while that of Pd is negligible. The effective magnetic anisotropy is the largest in the capping metal series (Pd, Pt, W, Cu, Ag, Au), which is attributed to the interparticle interaction between de nanoparticles, in addition to the intraparticle anisotropy arising from hybridization between the 3d-4d bands associated to the Co and Pd chemical arrangement in a L10 structure type.
000056071 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/MAT2014-53921-R$$9info:eu-repo/grantAgreement/ES/DGA/IMANA-E34
000056071 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056071 590__ $$a3.836$$b2016
000056071 591__ $$aPHYSICS, CONDENSED MATTER$$b18 / 67 = 0.269$$c2016$$dQ2$$eT1
000056071 592__ $$a2.339$$b2016
000056071 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ1
000056071 593__ $$aCondensed Matter Physics$$c2016$$dQ1
000056071 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056071 700__ $$0(orcid)0000-0003-1029-3751$$aRubín, J.$$uUniversidad de Zaragoza
000056071 700__ $$0(orcid)0000-0002-8498-9383$$aFigueroa, A.I.
000056071 700__ $$0(orcid)0000-0002-0047-1772$$aBartolomé, F.$$uUniversidad de Zaragoza
000056071 700__ $$0(orcid)0000-0003-1165-0087$$aGarcía, L.M.$$uUniversidad de Zaragoza
000056071 700__ $$aDeranlot, C.
000056071 700__ $$aPetroff, F.
000056071 700__ $$aRuiz, L.
000056071 700__ $$aGonzález-Calbet, J.M.
000056071 700__ $$aPascarelli, S.
000056071 700__ $$aBrookes, N.B.
000056071 700__ $$aWilhelm, F.
000056071 700__ $$aChorro, M.
000056071 700__ $$aRogalev, A.
000056071 700__ $$aBartolomé, J.
000056071 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000056071 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000056071 773__ $$g93, 17 (2016), 174410[18 pp]$$pPhys. Rev. B, Condens. matter mater. phys.$$tPhysical Review B. Condensed Matter and Materials Physics$$x1098-0121
000056071 8564_ $$s1911520$$uhttps://zaguan.unizar.es/record/56071/files/texto_completo.pdf$$yVersión publicada
000056071 8564_ $$s95245$$uhttps://zaguan.unizar.es/record/56071/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056071 909CO $$ooai:zaguan.unizar.es:56071$$particulos$$pdriver
000056071 951__ $$a2020-02-21-13:26:56
000056071 980__ $$aARTICLE