doi:10.1007/s00209-016-1673-2engGallardo-GutiÃ©rrez, E.A.Partington, J.R.RodrÃguez, D.J.A continuous model for quasinilpotent operatorsART-2016-94962A classical result due to Foias and Pearcy establishes a discrete model for every quasinilpotent operator acting on a separable, infinite-dimensional complex Hilbert space (Formula presented.). More precisely, given a quasinilpotent operator T on (Formula presented.), there exists a compact quasinilpotent operator K in (Formula presented.) such that T is similar to a part of (Formula presented.) acting on the direct sum of countably many copies of (Formula presented.). We show that a continuous model for any quasinilpotent operator can be provided. The consequences of such a model will be discussed in the context of (Formula presented.)-semigroups of quasinilpotent operators.2016http://zaguan.unizar.es/record/5607310.1007/s00209-016-1673-2http://zaguan.unizar.es/record/56073oai:zaguan.unizar.es:56073info:eu-repo/grantAgreement/ES/MINECO/EEBB-I-14-08134MATHEMATISCHE ZEITSCHRIFT (2016), 1-10byhttp://creativecommons.org/licenses/by/3.0/es/info:eu-repo/semantics/openAccess