000056092 001__ 56092
000056092 005__ 20200221144243.0
000056092 0247_ $$2doi$$a10.1117/1.JNP.10.012502
000056092 0248_ $$2sideral$$a92296
000056092 037__ $$aART-2016-92296
000056092 041__ $$aeng
000056092 100__ $$aLevshov, D.I.
000056092 245__ $$aStudy of collective radial breathing-like modes in double-walled carbon nanotubes: Combination of continuous two-dimensional membrane theory and Raman spectroscopy
000056092 260__ $$c2016
000056092 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056092 5203_ $$aRadial breathing modes (RBMs) are widely used for the atomic structure characterization and index assignment of single-walled carbon nanotubes (SWNTs) from resonant Raman spectroscopy. However, for double-walled carbon nanotubes (DWNTs), the use of conventional ¿RBM(d) formulas is complicated due to the van der Waals interaction between the layers, which strongly affects the frequencies of radial modes and leads to new collective vibrations. This paper presents an alternative way to theoretically study the collective radial breathing-like modes (RBLMs) of DWNTs and to account for interlayer interaction, namely the continuous two-dimensional membrane theory. We obtain an analytical ¿RBLM(do, di) relation, being the equivalent of the conventional ¿RBM(d) expressions, established for SWNTs. We compare our theoretical predictions with Raman data, measured on individual index-identified suspended DWNTs, and find a good agreement between experiment and theory. Moreover, we show that the interlayer coupling in individual DWNTs strongly depends on the interlayer distance, which is manifested in the frequency shifts of the RBLMs with respect to the RBMs of the individual inner and outer tubes. In terms of characterization, this means that the combination of Raman spectroscopy data and predictions of continuous membrane theory may give additional criteria for the index identification of DWNTs, namely the interlayer distance.
000056092 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/FIS2013-46159-C3-3-P$$9info:eu-repo/grantAgreement/EC/FP7/312483/EU/Enabling Science and Technology through European Electron Microscopy/ESTEEM 2
000056092 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000056092 590__ $$a1.325$$b2016
000056092 591__ $$aOPTICS$$b61 / 92 = 0.663$$c2016$$dQ3$$eT3
000056092 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b72 / 87 = 0.828$$c2016$$dQ4$$eT3
000056092 592__ $$a0.518$$b2016
000056092 593__ $$aCondensed Matter Physics$$c2016$$dQ2
000056092 593__ $$aNanoscience and Nanotechnology$$c2016$$dQ2
000056092 593__ $$aElectronic, Optical and Magnetic Materials$$c2016$$dQ2
000056092 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000056092 700__ $$aAvramenko, M.V.
000056092 700__ $$aThan, X.T
000056092 700__ $$aMichel, T.
000056092 700__ $$0(orcid)0000-0002-2071-9093$$aArenal, R.$$uUniversidad de Zaragoza
000056092 700__ $$aPaillet, M.
000056092 700__ $$aRybkovskiy, D.V.
000056092 700__ $$aOsadchy, A.V.
000056092 700__ $$aRochal, S.B.
000056092 700__ $$aYuzyuk, Y.I.
000056092 700__ $$aSauvajol, J.L
000056092 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada
000056092 773__ $$g10, 1 (2016), 012502 [7 pp.]$$pJournal of Nanophotonics$$tJournal of Nanophotonics$$x1934-2608
000056092 8564_ $$s595931$$uhttps://zaguan.unizar.es/record/56092/files/texto_completo.pdf$$yPostprint
000056092 8564_ $$s90580$$uhttps://zaguan.unizar.es/record/56092/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000056092 909CO $$ooai:zaguan.unizar.es:56092$$particulos$$pdriver
000056092 951__ $$a2020-02-21-13:22:46
000056092 980__ $$aARTICLE