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Abstract We consider the asymptotic method designed by�F.Olver ( Asymptotics and1

special functions. Academic Press, New York, 1974 ) for linear differential equations of2

the second order containing a large ( asymptotic ) parameter 3: xmy′′−32 y = g(x)y,3

with m ∈ Z and g continuous. Olver studies in detail the cases m 6= 2, especially the4

cases m = 0,±1, giving the Poincaré-type asymptotic expansions of two independent5

solutions of the equation. The case m = 2 is different, as the behavior of the solutions 16

for large 3 is not of exponential type, but of power type. In this case, Olver’s theory7

does not give many details. We consider here the special case m = 2. We propose two8

different techniques to handle the problem: ( �i1) a modification of Olver’s method that9

replaces the role of the exponential approximations by power approximations, and10

( �ii2) the transformation of the differential problem into a fixed point problem from11

which we construct an asymptotic sequence of functions that converges to the unique12

solution of the problem. Moreover, we show that this second technique may also be13

applied to nonlinear differential equations with a large parameter.14
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1 Introduction18

19 The most famous asymptotic method for second-order linear differential 
e
((

quations containing a large parameter is, no doubt, Olver’s method. In [5, Chaps.20

10, 11, 12] , Olver considers the differential equation21

u′′ − 3̃2

zm
u = h(z)u, 3̃ → ∞, (1)22

where m = 0,−1, 1, 3̃ is a complex parameter, z is a complex variable and h is23

an analytic function in a certain region of the complex plane, although Olver also24

considers cases in which h(z) could have a double pole. Correspondingly to these25

three different m-cases, Olver divides the study of (1) into three canonical cases,26

say I, II and III, analyzed in Chapters 10, 11, and 12, respectively. In Case I, Olver27

completes the theory developed in the well-known Liouville–Green approximation,28

giving a rigorous meaning to the approximation and providing error bounds for the29

expansions of solutions of (1) for m = 0. In Cases II and III, Olver extends the30

theory introduced in Case I considering, respectively, the case m = −1 ( differential31

equations with a turning point ) and the case m = 1 ( differential equations with a32

regular singular point ) .33

In [5, Chap.12,Sec.14] , we can also find indications about the generalization of34

the study of the asymptotics of the solutions of (1) for general m ∈ Z, except m = 2.35

In summary, we have that for any m ∈ Z\{2}, two independent solutions of (1) have36

the form37

u(z) = Pm(z)

[

n−1
∑

k=0

Ak(z)

3̃2k
+ Rm,n(z)

]

+ 1

3̃2
P′

m(z)

[

n−1
∑

k=0

Bk(z)

3̃2k
+ R̄m,n(z)

]

, (2)38

where Rm,n(z), R̄m,n(z) = O(3̃−2n) uniformly for z in a certain region in the complex39

plane. In this formula, Pm(z) is one of the two following basic solutions of (1) , that40

is, independent solutions of (1) for h = 0:41

Pm(z) :=
{√

z Im̂(2m̂3̃z1/(2m̂)),
√

zKm̂(2m̂3̃z1/(2m̂)),
m̂ := 1

2 − m
. (3)42

In this formula and in the remainder of the paper, the symbols Iν(z) and Kν(z)43

denote the principal values of the modified Bessel functions. For example, for44

m = 0, 1, 3, 4, 5, . . ., the coefficients Ak and Bk are given by the following system of45

123

Journal: 365 Article No.: 9298 TYPESET DISK LE CP Disp.:2015/6/8Pages: 19 Layout: Small-X



u
n
co

rr
ec

te
d
 p
ro

o
f

Constr Approx

recurrences: A0(z) = 1 and46

Bn(z) =zm/2

2

∫

zm/2[h(z)An(z) − A′′
n(z)]dz,

An+1(z) = − 1

2
B′

n(z) + 1

2

∫

h(z)Bn(z)dz,

n = 0, 1, 2, . . .47

Both families of coefficients An and Bn are analytic at z = 0 when h(z) is also analytic48

there. Olver’s important contribution is the proof of the asymptotic character of the49

two expansions (2) −(3) and the derivation of error bounds for the remainder Rm,n(z).50

For large 3̃ and fixed z, both solutions have an asymptotic behavior of exponential51

type [6, (((
Sec. 10.30( ii ) ]52

√
z Im̂(2m̂3̃z1/(2m̂)) = O

(

zm/4

√

3̃
e2|m̂<(3̃z1/(2m̂))|

)

,53

√
zKm̂(2m̂3̃z1/(2m̂)) = O

(

zm/4

√

3̃
e−2m̂<(3̃z1/(2m̂))

)

,54

both valid in the sector |Arg(3̃z1/(2m̂))| < 3π/2. Therefore, for any m 6= 2, two55

independent solutions of (1) have an exponential asymptotic behavior for large 3̃ and56

fixed z. The above approximations obviously fail for m = 2. This case is considered by57

Olver in [5,(((((((
Chap.6,Sec.5.3Chap.6, Sec.5.3] , where he gives the first-order asymptotic58

approximation ( WKB approximation ) for two independent solutions of (1) . Also,59

in [5, Chap. 10, Sec. 4.1] , Olver gives some indications about the derivation of a60

complete asymptotic expansion in terms of the expansion given for the case m = 0,61

although details are not given there.62

The purpose of this paper is to analyze the asymptotic behavior of the solutions of the63

equation u′′−3̃2z−2u = h(z)u in detail. To this end, in the next section we introduce an64

appropriate change of the unknown in the differential equation. In����Section Sect. 3 , we65

use a fixed point theorem and the Green function of an auxiliary initial value problem66

to derive an asymptotic as well as convergent expansion of a couple of independent67

solutions of the equation in terms of iterated integrals of h(z); this technique is based68

on our previous investigations [4] . In ����Section Sect. 4 , we generalize this technique69

to nonlinear problems, where we obtain an asymptotic expansion of an initial value70

problem for a nonlinear equation. In ����Section Sect. 5 , we use Olver’s techniques to71

obtain asymptotic expansions, of Poincaré-type, of two independent solutions of the72

equation, different from those obtained in����Section Sect. 3 .����Section Section 6 contains73

an example and some numerical experiments and ����Section Sect. 7 a few remarks and74

conclusions.75
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2 Preliminaries76

Consider the differential equation (1) with m = 2. For later convenience, we define77

the function g(z) := zh(z) and a new large parameter78

3 := 1 +
√

43̃2 + 1

2
. (4)79

In terms of this parameter and the new function g(z), equation (1) with m = 2 reads80

z2u′′(z) − 3(3 − 1)u(z) = zg(z)u(z). (5)81

Because this equation is invariant under the transformation 3 → 1 − 3, in the82

remainder of the paper, and without loss of generality, we consider<3 ≥ 1/2, 23 6= 1.83

As we mentioned in the introduction, the general formula (2) is not directly applicable84

to this equation; for m = 2, the index m̂ of the basic Bessel functions approximants in85

(3) becomes infinite, the asymptotic behavior of the solutions of (5) is not exponential86

in 3. On the other hand, as explained in [3] , when we consider this equation with an87

initial condition at the point z = 0, a fixed point technique does not work either: the88

exponent m = 2 in the coefficient z2 of u′′ makes the iterated integrals related to the89

fixed point iterations divergent at z = 0.90

Both problems may be overcome by means of an appropriate change of unknown91

u → y that modifies the exponent m = 2. In order to perform the appropriate change92

of unknown, we consider here the Frobenius theory. When the function g(z) is analytic93

at z = 0, the exponents of the Frobenius solutions of the differential equation (5) at the94

regular singular point z = 0 are µ1 = 3 and µ2 = 1−3. Therefore, two independent95

solutions of this equation behave, at z = 0, as z3 and z1−3, respectively. This fact96

suggests the following change of unknown: u → y := z−3u. The new unknown y97

satisfies the differential equation98

zy′′(z) + 23y′(z) = g(z)y(z). (6)99

When g(z) is an analytic function at z = 0, we know, from the Frobenius theory,100

that this equation has two independent solutions that behave, at z = 0, as 1 and101

z1−23, respectively. Therefore, in the linear two-dimensional space of solutions of102

this equation, only one ray of solutions is bounded at z = 0. These facts determine103

the kind of possible well-posed problems for this equation. A well-posed initial value104

problem for the differential equation (6) with initial datum given at z = 0 is105

{

zy′′(z) + 23y′(z) = g(z)y(z) in D,

y(0) = ȳ0,
(7)106

where ȳ0 is any complex parameter, ȳ0 = O(1) as 3 → ∞, and D is a star-like107

domain ( bounded or unbounded ) in the complex plane centered at z = 0. In the next108

section, we will show that this problem has a unique solution, and we will obtain an109

asymptotic approximation of the unique solution of this problem. In order to derive an110
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asymptotic expansion of a second independent solution of (6) , we must consider an111

initial value problem with initial conditions prescribed at another point z0 ∈ D, z0 6= 0:112

{

zy′′(z) + 23y′(z) = g(z)y(z) in D,

y(z0) = ỹ0, y′(z0) = ỹ1,
(8)113

where ỹ0 and ỹ1 are complex parameters with ỹ0 = O(1) and ỹ1 = O(3) as 3 → ∞.114

The existence and uniqueness of solution of this problem follows from the Frobenius115

theory ( when g(z) is analytic at z = z0 ) or from Picard–Lindelof’s theorem ( when116

g(z) is continuous at z = z0 ) . In the following, y+(z) and y−(z) denote, respectively,117

the unique solutions of problems (7) and (8) .118

When we undo the above-mentioned change of unknowns, we find that u±(z) :=119

z3y±(z) are a couple of independent solutions of (5) whenever (u+(z0), u′
+(z0)) 6=120

(u−(z0), u′
−(z0)). Problem (7) for y+ is equivalent to the following problem for u+:121

{

z2u′′
+(z) − 3(3 − 1)u+(z) = zg(z)u+(z) in D,

lim
z→0

[z−3u+(z)] = ȳ0,
122

a problem that has a unique solution u+(z). Problem (8) for y− is equivalent to the123

following problem for u−:124

{

z2u′′
−(z) − 3(3 − 1)u−(z) = zg(z)u−(z) in D,

z−3
0 u−(z0) = ỹ0, lim

z→z0

[z−3u−(z)]′ = ỹ1,
125

a problem that has a unique solution u−(z).126

In the following section, for each problem, we design a sequence of functions that127

converges to the unique solution of the problem. For each problem, that sequence has128

the property of being an asymptotic sequence ( not of Poincaré-type ) for large 3. In129

����Section Sect. 5 , we apply Olver’s method to ����
equation Eq. (6) and find an asymptotic130

expansion of Poincaré-type of two independent solutions of this equation.131

3 A Fixed Point Method132

In this section, we consider that the function g(z) is continuous in the star-like domain133

D. The unique solution of the initial value problem134

{

zφ′′(z) + 23φ′(z) = 0 in D,

φ(0) = ȳ0,
(9)135

is φ+(z) := ȳ0. And the unique solution of the problem136

{

zφ′′(z) + 23φ′(z) = 0 in D,

φ(z0) = ỹ0, φ′(z0) = ỹ1,
(10)137
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Fig. 1 Domains D and integration paths associated with the respective problems (7) and (8) . In both

problems, the kernel of the operators T and T̃ is bounded by 2

is138

φ−(z) := ỹ0 + ỹ1
z0

1 − 23

[

(

z

z0

)1−23

− 1

]

. (11)139

After the change of unknown y±(z) → w±(z) = y±(z)−φ±(z), and using (9) and140

(10) , we find that problems (7) and (8) read, respectively,141

{

zw′′
+(z) + 23w′

+(z) = F+(z, w+) := g(z)[w+(z) + φ+(z)] in D,

w+(0) = 0,
(12)142

and143

{

zw′′
−(z) + 23w′

−(z) = F−(z, w−) := g(z)[w−(z) + φ−(z)] in D,

w−(z0) = w′
−(z0) = 0.

(13)144

For convenience, we restrict the differential equations in both problems, (12) and (13)145

( and hence (7) and (8) ) , to an open straight segment L ⊂ D ( that may be unbounded146

if D is unbounded ) with z = 0 as an end point. Moreover, for problem (13) , z0 ∈ L147

and |z| < |z0|. See ����Figure Fig. 1 below.148

For the first problem, we seek solutions of the equation L+[w+] := zw′′
++23w′

+−149

F+(z, w+) in the Banach space B+ := {w+ : L → C, w+(0) = 0}. For the second150

problem, we seek solutions of the equation L−[w−] := zw′′
− + 23w′

− − F−(z, w−)151

in the Banach space B− := {w− : L → C, w−(z0) = 0}. Both spaces are equipped152

with the supnorm:153

||w±||∞ := sup
z∈L

|w±(z)|.154

We write the equation L±[w±] = 0 in the form L±[w±] = M [w±] − F±(z, w±),155

with M [w] := zw′′ + 23w′. Then we solve the equation L±[w±] = 0 for w± using156

123

Journal: 365 Article No.: 9298 TYPESET DISK LE CP Disp.:2015/6/8Pages: 19 Layout: Small-X



u
n
co

rr
ec

te
d
 p
ro

o
f

Constr Approx

Green’s function G±(z, t) of the operator M with the appropriate initial conditions157

[7] . For problem (12) , G+(z, t) is the unique solution of the problem158

{

zGzz + 23Gz = δ(z − t) in L,

G(0, t) = 0, t ∈ L.
159

It is given by160

G+(z, t) = 1

23 − 1

[

1 −
(

t

z

)23−1
]

χ[0,z](t),161

where χ[0,z](t) is the characteristic function of the interval [0, z]. For problem (13) ,162

G−(z, t) is the unique solution of the problem163

{

zGzz + 23Gz = δ(z − t) in L,

G(z0, t) = Gz(z0, t) = 0, t, z0 ∈ L.
164

It is given by165

G−(z, t) = 1

23 − 1

[

1 −
(

t

z

)23−1
]

χ[z,z0](t).166

Then, any solutionw+(z)of (12) is a solution of the Volterra integral equationw+(z) =167

[Tw+](z), and any solution w−(z) of (13) is a solution of the Volterra integral equation168

w−(z) = [Tw−](z), where the integral operator T is defined by169

[Tw±](z) := 1

23 − 1

∫ z

z0

[

1 −
(

t

z

)23−1
]

g(t)[w±(t) + φ±(t)]dt,170

where z0 must be set equal to zero for w+. For later convenience, in the case of w−, we171

need to define a rescaledunknown w̃−(z) := z23−1w−(z) and consider the rescaled172

operator173

[T̃w̃−](z) := 1

23 − 1

∫ z

z0

[

(z

t

)23−1

− 1

]

g(t)[w̃−(t) + φ̃−(t)]dt,174

with φ̃−(z) := z23−1φ−(z).175

For any complex z in L, the kernel 1 − (t/z)23−1 of T is uniformly bounded in176

t ∈ [0, z] by 2, independently of 3 and z. Also, for any complex z in L, with |z| < |z0|,177

the kernel (z/t)23−1 − 1 of T̃ is uniformly bounded in t ∈ [z, z0] by 2, independently178

of 3 and z.179

From the Banach fixed point theorem [1, pp. 26, Theorem 3.1] it is well known that if180

any power of the operator T is contractive in B+, then the equation w+(z) = [Tw+](z)181

has a unique solution w+(z) ( fixed point of T ) and the sequence w+
n+1 = [Tw+

n ],182

w+
0 = 0, converges to that solution w+(z). Analogously, if any power of the operator183
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T̃ is contractive in B−, then the equation w̃−(z) = [T̃w̃−](z) has a unique solution184

w̃−(z) ( fixed point of T̃ ) and the sequence w̃−
n+1 = [T̃w̃−

n ], w̃−
0 = 0, converges to185

that solution w̃−(z).186

We show this for the operator T̃. The proof for the operator T is identical, replacing187

z0 by 0. It is straightforward to show the contractive character of the operator T̃: from188

its definition, we have that, for any couple u, v ∈ B−,189

|[T̃u](z) − [T̃v](z)| ≤ 2

|23 − 1|

∫ z

z0

|g(t)||u(t) − v(t)||dt|190

≤
∣

∣

∣

∣

2(z − z0)

23 − 1

∣

∣

∣

∣

||g||∞ ||u − v||∞.191

We also have192

|[T̃2u](z) − [T̃2v](z)| ≤ 2

|23 − 1|

∫ z

z0

|g(t)||[T̃u](t) − [T̃v](t)||dt|

≤
∣

∣

∣

∣

[2(z − z0)]2

2(23 − 1)2

∣

∣

∣

∣

||g||2∞ ||u − v||∞
193

and194

|[T̃3u](z) − [T̃3v](z)| ≤ 2

|23 − 1|

∫ z

z0

|g(t)||[T̃2u](t) − [T̃2v](t)||dt|

≤
∣

∣

∣

∣

2(z − z0)]3

3!(23 − 1)3

∣

∣

∣

∣

||g||3∞ ||u − v||∞.

195

It is straightforward to prove, by means of induction over n that, for n = 1, 2, 3, …,196

|[T̃nu](z) − [T̃nv](z)| ≤
∣

∣

∣

∣

(2(z − z0))
n

n!(23 − 1)n

∣

∣

∣

∣

||g||n∞ ||u − v||∞. (14)197

This means that, for bounded z, the operators Tn and T̃n are contractive for large198

enough n. From [1, pp.26,Theorem3.1] , we have that the sequence w+
n+1 = [Tw+

n ],199

n = 0, 1, 2, . . ., w+
0 = 0, converges, for any z ∈ L bounded, to the unique solution200

w+(z) of problem (12) and the sequence w̃−
n+1 = [T̃w̃−

n ], n = 0, 1, 2, . . ., w̃−
0 = 0,201

converges, for any z ∈ L bounded, to the unique solution w−(z) of problem (13)202

multiplied by z23−1. Or equivalently, the sequence y+
n := w+

n + φ+, that is,203

y+
n+1(z) = ȳ0 + z

23 − 1

∫ 1

0

[

1 − t23−1
]

g(zt)y+
n (zt)dt, y+

0 (z) = ȳ0, (15)204
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converges, for z ∈ L bounded, to the unique solution y+(z) of (7) . And the sequence205

y−
n := w−

n + φ−, with w−
n := z1−23w̃−

n , that is,206

y−
n+1(z) = φ−(z) + 1

23 − 1

∫ z

z0

[

1 −
(

t

z

)23−1
]

g(t)y−
n (t)dt,�� y−

0 (z) = φ−(z)�,,207

(16)208

converges, for z ∈ L bounded, to the unique solution y−(z) of (8) .209

Let’s define the remainder of the approximation by R±
n (z) := y±(z) − y±

n (z).210

Setting v(z) = w+(z) and u(z) = w+
0 (z) = 0 in (14) and using that [Tnw+] = w+211

and [Tnw+
0 ] = w+

n , or setting v(z) = w−(z) and u(z) = w−
0 (z) = 0 in (14) and using212

that [T̃nw̃−] = w̃− and [T̃nw̃−
0 ] = w̃−

n , we find213

|w±(z) − w±
n (z)| ≤ ||g||n∞|[2(z − z0)]n|

n!|23 − 1|n ||w±||∞.214

In this formula and formulas below involving w+ or y+ ( not w− or y− ) , we must215

set z0 = 0. Using that y±(z) = w±(z) + φ±(z) and y±
n (z) = w±

n (z) + φ±(z), we find216

that the remainder R±
n (z) is bounded by217

|R±
n (z)| ≤ ||g||n∞|[2(z − z0)]n|

n!|23 − 1|n ||y± − φ±||∞. (17)218

Moreover, we have that, for problem (7) ,219

y+
n+1(z) − y+

n (z) = z

23 − 1

∫ 1

0

[

1 − t23−1
]

g(zt)[y+
n (zt) − y+

n−1(zt)]dt,220

and, for problem (8) ,221

y−
n+1(z) − y−

n (z) = 1

23 − 1

∫ z

z0

[

1 −
(

t

z

)23−1
]

g(t)[y−
n (t) − y−

n−1(t)]dt.222

Then, for any problem,223

||y±
n+1 − y±

n ||∞ ≤ 2|z − z0| ||g||∞
|23 − 1| ||y±

n − y±
n−1||∞.224

This means that the expansion225

y±(z) = φ± +
n−1
∑

k=0

[y±
k+1(z) − y±

k (z)] + R±
n (z)226

is an asymptotic expansion for large 3 and bounded z ∈ L.227
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We see from (15) that the sequence y+
n (z) is a sequence of analytic functions in D.228

A sequence of analytic functions that converges uniformly in any compact contained229

in D, that is, the unique solution y+(z) of problem (7) , is analytic in D. Analogously,230

the sequence y−
n (z) in (16) is a sequence of analytic functions in D with, possibly, a231

branch point at z = 0. This means that the unique solution y−(z) of problem (8) is232

analytic in D except, possibly, for a branch point at z = 0.233

Observation 1 When g(z) is not analytic in D, but only continuous, from the above234

derivation, we still see that problems (7) and (8) have a unique solution and the235

recurrences (15) and (16) converge to the respective solutions.236

Observation 2 When g(z) is an elementary function ( analytic or not in D ) , the237

successive approximations yn of the unique solution of those problems are iterated238

integrals of elementary functions.239

4 The Nonlinear Case240

The technique used in the previous section may be easily generalized to nonlinear241

problems of the form242

u′′ − 3̃2

z2
u = f̃ (z, u), 3̃ → ∞,243

where the function f̃ (z, u) is continuous for (z, y) ∈ D×C and satisfies the following244

Lipschitz condition in its second variable:245

| f̃ (z, u) − f̃ (z, v)| ≤ L

z
|u − v|, ∀ u, v ∈ C and, z ∈ D, (18)246

with L a positive constant independent of z, u, v and D a star-like domain.247

After the change of unknown: u → y := z−3u, with the parameter 3 defined in248

(4) , the new unknown y satisfies the nonlinear differential equation249

zy′′(z) + 23y′(z) = f (z, y(z),3), (19)250

where f (z, y,3) := z1−3 f̃ (z, z3y). Then, two possible well-posed problems, each251

of which provides a unique solution of the ����
equation Eq. (19) , are252

{

zy′′(z) + 23y′(z) = f (z, y(z),3) in D,

y(0) = ȳ0,
(20)253

and254

{

zy′′(z) + 23y′(z) = f (z, y(z),3) in D,

y(z0) = ỹ0, y′(z0) = ỹ1,
(21)255
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where z0 6= 0, ȳ0 = O(1), ỹ0 = O(1) and ỹ1 = O(3) are complex numbers.256

A slight modification of the analysis of����Section Sect. 3 provides, for problems (20)257

and (21) , the same conclusions that we derived for problems (7) and (8) . We state258

them in the form of a theorem.259

Theorem 1 Let f : D × C → C continuous and satisfy(18) . Then, problems(20)260

and (21) have unique solutions that we denote by y+(z) and y−(z), respectively. They261

are independent whenever(y+(z0), y′
+(z0)) 6= (y−(z0), y′

−(z0)). Moreover:262

1. [ ( i ) ] For n = 0, 1, 2, . . ., the sequences263

y+
n+1(z) = ȳ0 + z

23 − 1

∫ 1

0

[

1 − t23−1
]

f
(

tz, y+
n (zt),3

)

dt,�� y+
0 (z) = ȳ0,264

y−
n+1(z) = φ−(z) + 1

23 − 1

∫ z

z0

[

1 −
(

t

z

)23−1
]

f
(

t, y−
n (t),3

)

dt,�� y−
0 (z) = φ−(z),265

with φ−(z) defined in(11) , converge, for z∈ L bounded, to the unique solutions266

y+(z) of (20) and y−(z) of (21) , respectively.267

2. [ ( ii ) ] The remainder R±n (z) := y±(z) − y±
n (z) is bounded by268

|R±
n (z)| ≤ Ln|[2(z − z0)]n|

n!|23 − 1|n ||y± − φ±||∞.269

And, in consequence, the expansion270

y±(z) = φ± +
n−1
∑

k=0

[y±
k+1(z) − y±

k (z)] + R±
n (z)271

is an asymptotic expansion for large3 and bounded z∈ L.272

Proof It is similar to the analysis of the previous section. Therefore, we only give273

here a few significant details. After the change of unknown y±(z) → w±(z) :=274

y±(z) − φ±(z), problems (20) , (21) read, respectively,275

{

zw′′
+(z) + 23w′

+(z) = F+(z, w+) := f (z, w+(z) + φ+(z),3) in D,

w+(0) = 0,
276

and277

{

zw′′
−(z) + 23w′

−(z) = F−(z, w−) := f (z, w−(z) + φ−(z),3) in D,

w−(z0) = w′
−(z0) = 0.

278

The solutions of these problems satisfy the Volterra integral equations of the second279

kind w+(z) = [Tw+](z), and w−(z) = [Tw−](z), where now the operator T is280
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nonlinear and defined by281

[Tw±](z) := 1

23 − 1

∫ z

z0

[

1 −
(

t

z

)23−1
]

f (t, w±(t) + φ±(t),3) dt,282

where z0 must be set equal to zero for w+. From (18) , we have the Lipschitz condition283

| f (z, u,3) − f (z, v,3)| ≤ L|u − v|, ∀ u, v ∈ C and z ∈ D, (22)284

with L given in (18) . From here, and using (22) , the proof is identical to the one of285

the previous section replacing ‖g‖∞ by L .286

5 Olver’s ����methodMethodfor �����equationEq. (6)287

In this section, we assume that the function g(z) is infinitely differentiable in the star-288

like domain D. We consider two ( at this moment unknown ) independent solutions289

Y+(z) and Y−(z) of (6) and propose the following representations in the form of formal290

asymptotic expansions for large 3:291

Y+(z) = Y+
n (z) + R+

n (z), Y−(z) = Y−
n (z) + z1−23R−

n (z), (23)292

with293

Y+
n (z) :=

n−1
∑

k=0

Ak(z)

(23)k
, Y−

n (z) := z1−23

n−1
∑

k=0

Ak(z)

[2(1 − 3)]k , (24)294

and the obvious definition of R±
n (z). When we introduce (23) and (24) in the equation295

zy′′ + 23y′ = gy, we find that both Y+(z) and Y−(z) formally satisfy the respective296

differential equations, term-wise in (23)k or [2(1 − 3)]k, if, for n = 0, 1, 2, . . .,297

An+1(z) = An(z) − z A′
n(z) +

∫ z

0

g(t)An(t)dt (25)298

and299

z[R+
n (z)]′′ + 23[R+

n (z)]′ = A′
n(z)

(23)n−1
+ g(z)R+

n (z),

z[R−
n (z)]′′ + 2(1 − 3)[R−

n (z)]′ = A′
n(z)

[2(1 − 3)]n−1
+ g(z)R−

n (z).

300

Without loss of generality, we may fix A0(z) = 1.301

We seek a solution Y+(z) regular at z = 0 and a solution Y−(z) regular at z =302

z0 6= 0. Therefore, without loss of generality, we may set R+
n (0) = 0 and R−

n (z0) =303
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[R−
n ]′(z0) = 0. Then, these remainders are solutions of the respective initial value304

problems:305







z[R+
n (z)]′′ + 23[R+

n (z)]′ = A′
n(z)

(23)n−1
+ g(z)R+

n (z) in D,

R+
n (0) = 0,

306

and307







z[R−
n (z)]′′ + 2(1 − 3)[R−

n (z)]′ = A′
n(z)

[2(1 − 3)]n−1
+ g(z)R−

n (z) in D,

R−
n (z0) = [R−

n ]′(z0) = 0.

308

The first problem for R+
n (z) is identical to problem (12) for w+(z), replacing309

g(z)φ+(z) by A′
n(z)/(23)n−1. The second problem for R−

n (z) is identical to problem310

(13) for w−(z), replacing g(z)φ−(z) by A′
n(z)/(23)n−1 and then 3 by 1 −3. There-311

fore, proceeding as in����Section Sect. 3 , we find that R+
n (z) and R−

n (z) are solutions of312

the respective Volterra integral equations313

R+
n (z) = 1

23 − 1

∫ z

0

[

1 −
(

t

z

)23−1
]

[

A′
n(t)

(23)n−1
+ g(t)R+

n (t)

]

dt,314

R−
n (z) = 1

1 − 23

∫ z

z0

[

1 −
(z

t

)23−1
] [

A′
n(t)

[2(1 − 3)]n−1
+ g(t)R−

n (t)

]

dt.315

Using that |1 − (t/z)23−1| ≤ 2 for t ∈ [0, z] and |1 − (z/t)23−1| ≤ 2 for t ∈ [z, z0],316

we derive the bound317

|R−
n (z)| ≤ 2

|23 − 1|

∫ z

z0

|g(t)R−
n (t)||dt| + 2

|23 − 1|

∫ z

z0

∣

∣

∣

∣

A′
n(t)

[2(1 − 3)]n−1

∣

∣

∣

∣

|dt|318

and the same bound for R+
n (z), replacing 3 by 1 − 3 and setting z0 = 0. Applying319

Gronwall’s lemma [2] we obtain320

|R−
n (z)| ≤ 2e

2
|23−1|

∫ z
z0

|g(t)||dt|

|(23 − 1)[2(1 − 3)]n−1|

∫ z

z0

|A′
n(t)||dt|321

and the same bound for R+
n (z), replacing 3 by 1 −3 and setting z0 = 0. When A′

n(t)322

and g(t) are integrable in L ( this is granted when L is bounded ) , we also have the323

bounds:324

��||R+
n (z)| ≤ 2||A′

n||1
|(23 − 1)(23)n−1|e

2||g||1/|23−1|,

��||R−
n (z)| ≤ 2||A′

n||1
|(23 − 1)[2(1 − 3)]n−1|e

2||g||1/|23−1|,

(26)325
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where326

||g||1 :=
∫

L

|g(t)||dt|, ||A′
n||1 :=

∫

L

|A′
n(t)||dt|.327

These bounds show the asymptotic character of the expansions (23) .328

Observation 3 The unique solution y−(z) of problem (8) is approximated by329

y−
n (z) := anY+

n (z) + bnY−
n (z), where the coefficients an and bn must be approxi-330

mated at any order n of the approximation by using the conditions y−(z0) = ỹ0 and331

y′
−(z0) = ỹ1, and depend on the function g, 3 and the point z0. The situation is simpler332

for the unique solution y+(z) of problem (7) . It is approximated by y+
n (z) := cnY+

n (z),333

where the coefficient cn must be approximated at any order n of the approximation by334

using the condition y+(0) = ȳ0. It is easy to see that An(0) = 1 for n = 0, 1, 2, . . .335

Then, when we impose the condition y+
n (0) = ȳ0, we find that the coefficient cn is336

indeed independent of the function g(z):337

cn = ȳ0
(23)n−1(23 − 1)

(23)n − 1
, (27)338

and is of order O(1) as |3| → ∞.339

Observation 4 We see from (25) that the coefficients An(z), n = 0, 1, 2, . . ., are340

infinitely differentiable in D. Moreover, when g(z) is analytic in D, the coefficients341

An(z), n = 0, 1, 2, . . ., are analytic in D too.342

6 Example and Numerical Experiments343

Consider the differential equation344

zy′′(z) + 23y′(z) = y(z).345

To find asymptotic approximations for large 3 of two independent solutions of this346

equation, we consider the two associated initial value problems:347

{

zy′′(z) + 23y′(z) = y(z) in C,

y(0) = 1,
(28)348

and349

{

zy′′(z) + 23y′(z) = y(z) in C,

y(1) = K23−1(2), y′(1) = −K23(2).
(29)350

The unique solution of (28) is a modified Bessel function ( analytic in C )351

y+(z) = 0(23)z1/2−3 I23−1(2
√

z),352
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and the unique solution of (29) is a modified Bessel function353

y−(z) = z1/2−3K23−1(2
√

z),354

analytic in C\R
−.355

The iterative method introduced in ����Section Sect. 3 provides a convergent as well356

as an asymptotic expansion of these functions for large 3 in terms of elementary357

functions. The recurrence relation (15) for problem (28) is given by358

y+
0 (z) = 1,

y+
n+1(z) = 1 + z

23 − 1

∫ 1

0

[

1 − t23−1
]

y+
n (zt)dt,

(30)359

and the recurrence relation (16) for problem (29) is defined by360

y−
0 (z) = K1−23(2) − K23(2)

1 − 23

(

z1−23 − 1
)

,

y−
n+1(z) = y−

0 (z) + 1

23 − 1

∫ z

z0

[

1 −
(

t

z

)23−1
]

y−
n (t)dt.

(31)361

It is noteworthy that y+
n (z), n = 0, 1, 2, . . ., are just the partial sums of the power362

series expansion of y+(z) [6, Sec. 25, p. 249, eq. 10.25.2] :363

y+
n (z) =

n
∑

k=0

zk

k!(23)k
.364

On the other hand, applying Olver’s method as it is specified in Observation 3, we365

know that an asymptotic approximation of the order n of the unique solution y+(z)366

of problem (28) is y+
n (z) = cnY+

n (z), with cn given in (27) and Y+
n (z) in (24) . An367

asymptotic approximation of the order n of the unique solution y−(z) of problem368

(29) is y−
n (z) = anY+

n (z) + bnY−
n (z), with Y+

n (z) and Y−
n (z) given in (24) . The369

coefficients an and bn are computed at any order n of the approximation by solving370

the algebraic system of two equations that we obtain when we impose the conditions371

y(1) = K23−1(2) and y′(1) = −K23(2).372

From (25) with g(z) = 1, we find:373







A0(z) = 1,

An+1(z) = An(z) − z A′
n(z) +

∫ z

0

An(t)dt.
374
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Table 1 Numerical experiments about the relative errors in the approximation of the solution of problem

(28) using Olver’s method and the iterative method (30) for different values of 3 and n

3 n Olver’s method Formula (30) 3 n Olver’s method Formula (30)

z = 1 z = −2

0.75 1 0.22798242 0.080931451 0.5 1 1.00000000 4.08781323

3 0.06396403 0.00040353 3 0.69593774 0.13062516

5 0.01879412 3.69e−7 5 6.00987600 0.00060326

5 1 0.01246076 0.00423127 5 1 0.00118982 0.02105883

3 0.00010294 2.22e−6 3 0.00027873 0.00004621

5 5.66e−7 3.52e−10 5 0.00002455 2.96e−8

100 1 0.00003714 0.00001239 50 − 2i 1 1.31e−6 0.00020038

3 7.49e−10 2.51e−11 3 3.25e−8 6.36e−9

5 9.25e− 15 2.00e−17 5 2.8e−11 1.1e−13

500 1 1.49e−6 4.99e−7 100 1 1.65e−7 0.00005008

3 1.20e−12 4.13e−14 3 2.06e−9 4.07e−10

5 5.93e− 19 1.0e−21 5 5.0e−13 1.0e−14

For the given values of n, the relative errors correspond to the approximate solution y+
n (z) for the iterative

method and the approximate solution cn+1Y+
n+1(z) for Olver’s method

They are polynomials in the variable z:375

A0(z) = 1, A1(z) = 1 + z, A2(z) = 1 + z + z2

2
, A3(z) = 1 + z + z3

6
,

A4(z) = 1 + z + z2

2
− z3

3
+ z4

24
, A5(z) = 1 + z + 5z3

6
− 5z4

24
+ z5

120
, . . . .

376

Thus, Olver’s method also gives an asymptotic expansion of the unique solution377

y+(z) of (28) and the unique solution y−(z) of (29) for large |3| in terms of elementary378

functions of z.379

���Table Tables 1 and ���Table2 show some numerical approximations, for different380

values of z and 3, of the solutions of (28) and (29) , respectively, supplied by the381

iterative algorithm compared with the approximation given by Olver’s method.382

7 Final Remarks383

As Olver remarks in [5,
((((((((((((
Chap.12,p.475,Theorem14.1Chap.12, p.475, Theorem14.1] ,384

Olver’s asymptotic expansion (2) does not work for m = 2. In ����Section Sect. 2 , we385

have modified the differential equation in the case m = 2 that moves the asymptotic386

parameter 3 from the coefficient of the unknown u in the original differential equation387

to the coefficient of the derivative y′ in the new differential equation. Then, we have388

proposed two methods to obtain asymptotic expansions of two independent solutions389

of this equation: one method is just Olver’s idea applied to the new differential equation.390

The other method is a fixed point technique that gives an asymptotic expansion for391
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Table 2 Numerical experiments about the relative errors in the approximation of the solution of problem

(29) using Olver’s method and the iterative method (31) for different values of 3 and n

3 n Olver’s method Formula (31) 3 n Olver’s method Formula (31)

z = 0.5 z = −1 + i /4

0.75 1 0.11724359 0.00308515 0.75 1 1.06271455 0.50808214

3 0.15072603 2.04e−7 3 0.87941096 0.01338941

5 0.22999718 1.98e−12 5 0.91915445 0.00005423

5 1 0.04701568 0.00080406 5 1 0.21929092 0.02356432

3 0.00120818 3.56e−8 3 0.00507404 0.00013029

5 0.00003105 2.86e−13 5 0.00013229 4.81e−7

25 + 5i 1 0.00974880 0.00004491 25 1 0.03935288 0.00089998

3 5.46e−6 2.66e−10 3 0.00002050 1.38e−7

5 3.67e−9 3.78e−14 5 1.39e−8 8.51e−12

50 1 0.00498611 0.00001207 50 1 0.01924853 0.00023144

3 6.85e−7 2.15e−11 3 2.35e−6 9.05e−9

5 1.15e− 10 7.93e−15 5 3.85e−10 1.44e−13

For the given values of n, the relative errors correspond to the approximate solution y−
n (z) for the iterative

method and the approximate solution an+1Y+
n+1(z) + bn+1Y−

n+1(z) for Olver’s method

large 3 that is also convergent. Moreover, this second method can also be applied to392

nonlinear differential equations. For m 6= 2, the asymptotic behavior for large 3 of393

the solutions of (1) is exponential. As a difference with the cases m 6= 2, in the case394

m = 2, the asymptotic behavior of the solutions is not exponential, but of power type.395

This is why the standard Olver’s method cannot be directly applied in this case.396

The approximations y+
n (z) to the unique solution y+(z) of problem (7) , derived with397

either the fixed point method of����Section Sect. 3 or Olver’s method of����Section Sect. 5 ,398

are analytic in D when g(z) is analytic. On the other hand, the approximation y−
n (z) to399

the unique solution y−(z) of problem (8) , derived with either the fixed point method400

or Olver’s method, are analytic in D when g(z) is analytic there, except, possibly,401

for a branch point at z = 0. In fact, when g(z) is analytic in D, the solution y+(z)402

of (7) is analytic in D, whereas the solution y−(z) of (8) is analytic in D except,403

possibly, for a branch point at z = 0. The difference between the approximations404

given by Olver’s method and the approximations given by the fixed point method is405

that the latter are convergent, whereas the former, in general, are not. Then, the analytic406

properties of the solution are the same as the analytic properties of the approximants in407

both methods. Also, in Olver’s method, the remainder R+
n (z) is analytic in D, whereas408

the remainder R−
n (z) is analytic in D except, possibly, for a branch point at z = 0.409

Another difference between the approximations supplied by the iterative and Olver’s410

technique is the following. The iterative technique gives the approximations y+
n (z)411

and y−
n (z) to the unique solutions of the respective problems (7) and (8) directly, from412

algorithm (15) and (16) . On the other hand, Olver’s technique gives, in a first instance,413

Y+
n (z) and Y−

n (z) from (24) and (25) ; then, we must compute the coefficients an, bn,414

and cn at every step n of the approximation to obtain y+
n (z) and y−

n (z) as the linear415

combinations y+
n (z) = cnY+

n (z) and y−
n (z) = anY+

n (z) + bnY−
n (z).416
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We start the sequence (15) at y+
0 (z) = ȳ0, a function bounded at z = 0. We observe417

in (15) that the iteration y+
n → y+

n+1 keeps this property, as all the terms of the418

sequence y+
n are bounded at z = 0. And the sequence converges to a function of the419

unique one-dimensional space of solutions of equation (6) that are bounded at z = 0.420

The situation is different with the recurrence (16) . Except for the above-mentioned421

one-dimensional space, the whole two-dimensional space of solutions of the equation422

(6) consists of functions unbounded at z = 0. Then, even if we start the sequence423

y−
n (z) with a function y−

0 (z) analytic at z = 0, that is, if we take ỹ1 = 0 and ỹ0 6= 0424

in (16) , the iteration y−
n → y−

n+1, in general, does not keep this property; it falls off425

the one-dimensional space of bounded solutions at z = 0.426

The situation described in the above paragraph is one side of the coin. The other side427

is the fact that, for the����
equation Eq. (6) , it is possible to get asymptotic approximations428

for the unique solution of an initial value problem with initial data prescribed at z = 0:429

problem (7) , using either the fixed point technique or Olver’s method. These methods430

do not work when we want to approximate a second solution independent of the431

previous one using an initial value problem with initial data prescribed at z = 0:432

observe that we cannot set z0 = 0 in the recursion (16) as the integrals become433

meaningless. Something similar occurs in Olver’s method: we cannot find a bound for434

the remainder R−
n (z) if we set z0 = 0, as the kernel 1 − (z/t)23−1 is not bounded for435

t ∈ [0, z]. That is why we have considered the initial value problem (8) with z0 6= 0.436

The error bounds (14) and (17) are not uniform in z. This means that the convergent437

and asymptotic character of the expansions of����Section Sect. 3 for the unique solutions438

of the initial value problems (7) and (8) is proved only over bounded subsets of D. On439

the other hand, when A′
n and g are integrable in unbounded paths L, the bound (26)440

shows the uniform character of Olver’s asymptotic expansions of ����Section Sect. 5 for441

two independent solutions of the differential equation zy′′ +23y′ = gy. The situation442

in Olver’s theory in the cases m 6= 2 is slightly different: Olver obtains asymptotic443

expansions of two independent solutions of the differential equation zmu′′ − 3̃2u =444

zmh(z)u in unbounded domains for z.445
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