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Abstract
Recent advances in the study of networked systems have highlighted that our interconnectedworld is
composed of networks that are coupled to each other through different ‘layers’ that each represent one
ofmany possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate
multilayer networks into a single weighted network in order to take advantage of existing tools. This is
admittedly convenient, but it is also extremely problematic, as important information can be lost as a
result. It is therefore important to developmultilayer generalizations of network concepts. In this
paper, we analyze triadic relations and generalize the idea of transitivity tomultiplex networks. By
focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept
and computation of clustering coefficients tomultiplex networks.We showhow the layered structure
of such networks introduces a newdegree of freedom that has a fundamental effect on transitivity.We
computemultiplex clustering coefficients for several realmultiplex networks and illustrate why one
must take great care when generalizing standard network concepts tomultiplex networks.We also
derive analytical expressions for our clustering coefficients for ensemble averages of networks in a
family of randommultiplex networks. Our analysis illustrates that social networks have a strong
tendency to promote redundancy by closing triads at every layer and that they thereby have a different
type ofmultiplex transitivity from transportation networks, which do not exhibit such a tendency.
These insights are invisible if one only studies aggregated networks.

1. Introduction

The quantitative study of networks is fundamental for investigations of complex systems throughout the
biological, social, information, engineering, and physical sciences [1–3]. The broad applicability of networks,
and their success in providing insights into the structure and function of both natural and designed systems, has
generated considerable excitement acrossmyriad scientific disciplines. Numerous tools have been developed to
study networks, and the realization that several common features arise in a diverse variety of networks has
facilitated the development of theoretical tools to study them. For example,many networks constructed from
empirical data have heavy-tailed degree distributions, satisfy the small-world property, and/or possessmodular
structures. Such structural features can have important implications for information dissemination, robustness
against component failure, andmore.

Traditional studies of networks generally assume that nodes are adjacent to each other by a single type of
static edge that encapsulates all connections between them. This assumption is almost always a gross
oversimplification, and it can lead tomisleading results and even the fundamental inability to address certain
problems.Most real systems havemultilayer structures [4, 5], as there are almost alwaysmultiple types of ties or
interactions that can occur between nodes, and it is crucial to take them into account. For example,
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transportation systems includemultiplemodes of travel, biological systems includemultiple signaling channels
that operate in parallel, and social networks includemultiple types of relationships andmultiplemodes of
communication.Wewill represent such systems using the formalism ofmultiplex networks, which allow one to
incorporatemultiple types of edges between nodes.

Thenotionofmultiplexitywas introduced years ago infields such as engineering [6, 7] and sociology [1, 8–10],
but thediscussions included fewanalytical tools to accompany them.This situation arose for a simple reason:
althoughmany aspects of single-layer networks arewell understood, it is challenging to properly generalize even the
simplest concepts tomultiplexnetworks. Theoretical developments onmultilayer networks (including both
multiplexnetworks and interconnectednetworks) have gained steamonly in the last fewyears [11–20], and even
basic notions like centrality anddiffusionhavebarely been studied inmultiplex settings [21–30].Newdegrees of
freedomarise from themultilayer structure ofmultiplexnetworks, and this brings bothnewchallenges [4, 31] and
newphenomena.Thenewphenomena includemultiplexity-induced correlations [19], new types of dynamical
feedbacks [26], and ‘costs’of inter-layer connections [32]. For reviews aboutnetworkswithmultiple layers, see [4, 5].

In the present article, we focus on one of themost important structural properties of networks: triadic
relations, which are used to describe the simplest andmost fundamental type of transitivity in networks
[1, 3, 33–35].We developmultiplex generalizations of clustering coefficients, which can be done inmyriadways,
and (aswewill illustrate) themost appropriate generalization depends on the application under study. Such
considerations are crucial when developingmultiplex generalizations of any single-layer (i.e., ‘monoplex’)
network diagnostic. There have been several attempts to definemultiplex clustering coefficients [36–40], but
there are significant shortcomings in these definitions. For example, some of themdonot reduce to the standard
single-layer clustering coefficient or are not properly normalized (see appendix B).

The fact that existing definitions ofmultiplex clustering coefficients aremostly ad hocmakes themdifficult
to interpret. In our definitions, we start from the basic concepts of walks and cycles to obtain a transparent and
general definition of transitivity. This approach also guarantees that our clustering coefficients are always
properly normalized. It reduces to aweighted clustering coefficient [41] of an aggregated network for particular
values of the parameters; this allows comparisonwith existing single-layer diagnostics.We also address two
additional, very important issues: (1)multiplex networks havemany types of connections, and ourmultiplex
clustering coefficients are (by construction) decomposable, so that the contribution of each type of connection is
explicit; (2) because our notion ofmultiplex clustering coefficients builds onwalks and cycles, we do not require
every node to be present in all layers, which removes amajor (and very unrealistic) simplification that is used in
existing definitions.

Using the example of clustering coefficients, we illustrate how the newdegrees of freedomthat result from the
existence ofmultiple layers in amultiplex network yield rich newphenomena and subtle differences inhowone
shoulddefinekeynetworkdiagnostics. As an illustration of such phenomena,wederive analytical expressions for
the expected values of clustering coefficients onmultiplex networks inwhich each layer is an independent Erdős–
Rényi (ER) graph.Wefind that the clustering coefficients dependon the intra-layer densities in a nontrivialway if
theprobabilities for an edge to exist are heterogeneous across the layers.We thereby demonstrate formultiplex
networks that it is insufficient to generalize existing diagnostics in a naïvemanner and that onemust instead
construct their generalizations fromfirst principles (e.g., aswalks and cycles in this case).

2.Methods

2.1.Mathematical representation
We represent amultiplex network using afinite sequence of graphs G{ }α , with G V E( , )=α α α , where Lα ∈ is
the set of layers.Without loss of generality, we let L b{1, , }= … andV n{1, , }⊆ …α . For simplicity, we
examine unweighted and undirectedmultiplex networks.We define the intra-layer supra-graph as
G V E( , )A A= , where the set of nodes isV u u V{( , ) : }α= ⋃ ∈α α and the set of edges is
E u v u v E{[( , ),( , )] : ( , ) }A α α= ⋃ ∈α α .We also define the coupling supra-graph G V E( , )C C= using the
same sets of nodes and the edge set E u u u V u V{[( , ),( , )] : , , }C , α κ α κ= ⋃ ∈ ∈ ≠α κ α κ and its associated
adjacencymatrix  . If u u E[( , ),( , )] Cα κ ∈ , we say that u( , )α and u( , )κ are ‘interconnected’. The nonzero
entries of thematrix T = indicates the connections between corresponding nodes (i.e., between the same
entity) on different layers.We say that amultiplex network is ‘node-aligned’ [4] if all layers share the same set of
nodes (i.e., ifV V=α κ for allα and κ). The supra-graph is G V E¯ ( , ¯)= , where E E E¯ A C∪= . The
corresponding adjacencymatrix is the supra-adjacencymatrix ̄.

Supra-adjacencymatrices satisfy ̄  = + and A( ) = ⊕α α , where A( )α is the adjacencymatrix of layer α
(i.e., the adjacencymatrix associated to Gα) and⊕ denotes the direct sumof thematrices.We consider
undirected networks, so T = . For clarity, we denote nodes in a given layer and inmonoplex networks using
the symbols u v w, , ; andwe denote indices in a supra-adjacencymatrix using the symbols i j h, , .We also define
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l u u V L( ) {( , ) }α α= ∈ ∣ ∈ to be the set of supra-adjacencymatrix indices that correspond to node u, andwe
refer to the nodes u( , )α of a supra-graph as a node-layer pair. An entity u corresponds to a ‘physical node.’

The local clustering coefficient Cu ofnode u in anunweightedmonoplex network is the number of triangles
(i.e., triads) that include node u dividedby thenumber of connected triples (i.e., either 2-stars or triangles)with
node u in the center [3, 34]. The local clustering coefficient is ameasure of transitivity [33], and it can be
interpreted as the density of a focal node’s neighborhood. For our purposes, it is convenient to define the local
clustering coefficient Cu as the number of three-cycles tu that start and end at the focal node u divided by the
number of three-cycles du such that the second step of the cycle occurs in a complete graph (i.e., assuming that the
neighborhoodof the focal node is as dense as possible)7. Inmathematical terms, t A( )u uu

3= and d AFA( )u uu= ,
where A is the adjacencymatrix of the graphand F is the adjacencymatrix of a complete graphwith no self-edges.
(Inotherwords, F J I= − , where J is a complete squarematrix of 1s and I is the identitymatrix.)

The local clustering coefficient for node u is thus given by the formula C t du u u= . This is equivalent to the
usual definition of the local clustering coefficient: C t k k( ( 1))u u u u= − , where k 2u ⩾ is the degree of node u.
(The local clustering coefficient is often set to 0 for nodes of degree 0 and 1, and another option is to state that it is
not defined in such cases.) One can calculate a single global clustering coefficient for amonoplex network either

by averaging Cu over all nodes or by computing C
t

d

u u

u u
= ∑

∑ . Henceforth, wewill use the term global clustering

coefficient for the latter quantity.

2.2. Triads onmultiplex networks
In addition to three-cycles (i.e., triads) that occurwithin a single layer,multiplex networks also contain cycles
that incorporatemore than one layer but still have three intra-layer steps. Such cycles are important for the
analysis of transitivity inmultiplex networks. In social networks, for example, transitivity involves social ties
acrossmultiple social environments [1, 42]. In transportation networks, there typically exist severalmeans of
transport to return to one’s starting location, and different combinations of transportationmodes are important
in different cities [43]. For dynamical processes onmultiplex networks, it is important to consider three-cycles
that traverse different numbers of layers, so one needs to take them into account when defining amultiplex
clustering coefficient.We define a supra-walk as awalk on amultiplex network inwhich, either before or after
each intra-layer step, a walk can either continue on the same layer or change to an adjacent layer.We represent
this choice using the followingmatrix:

, (1)  β γ= +l

where  is the V V∣ ∣ × ∣ ∣ identitymatrix, V∣ ∣ is the number of node-layer pairs, the parameter β is a weight that
accounts for thewalk staying in the current layer, and γ is a weight that accounts for thewalk stepping to another
layer. In a supra-walk, a supra-step consists either of only a single intra-layer step or of a step that includes both
an intra-layer step and an inter-layer step, inwhich one changes fromone layer to another (either before or after
the intra-layer step). In the latter type of supra-step, note that we are disallowing two consecutive inter-layer
steps. The number of three-cycles for node i is then

( ) ( )t , (2)M i
ii

,
3 3⎡

⎣⎢
⎤
⎦⎥ = +l l

where thefirst term corresponds to cycles inwhich the inter-layer step is taken after an intra-layer one and the
second term corresponds to cycles inwhich the inter-layer step is taken before an intra-layer one. The subscript
M refers to the particular way thatwe define a supra-walk in amultiplex network through the supra-matrices
l and l . However, one can also define other types of supra-walks (see appendices C andD), andwewill use
different subscripts whenwe refer to them.We can simplify equation (2) by exploiting the fact that both  and
l are symmetric. This yields

( )t 2 . (3)M i
ii

,
3⎡

⎣⎢
⎤
⎦⎥= l

It is useful to decomposemultiplex clustering coefficients that are defined in terms ofmultilayer cycles into
so-called elementary cycles by expanding equation (3) andwriting it in terms of thematrices  and  . That is, we
write t w ( )M i ii,  = ∑ ∈ℰ , whereℰ denotes the set of elementary cycles and w areweights of different
elementary cycles.We can use symmetries in our definition of cycles and thereby express all of the elementary
cycles in a standard formwith terms from the set { , , , , }    ℰ = .
See figure 1 for an illustration of elementary cycles and appendix E for details on deriving the elementary cycles.

7
Note that we use the term ‘cycle’ to refer to awalk that starts and ends at the same physical node u. As wewill discuss later, in amultiplex

network, it is permissible (and relevant) to return to the samenode via a different layer from the one that was used originally to leave
the node.
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Note that some of the alternative definitions of a three-cycle—whichwe discuss in appendix C—lead tomore
elementary cycles than the ones that we just enumerated.

To definemultiplex clustering coefficients, we need both the number t* i, of cycles and a normalization d* i, .
The symbol * stands for any type of cycle: the three-cycle thatwe define in themain text, an elementary cycle, or
the alternatives definition of three-cycles that we give in appendix C. Choosing a particular definition coincides
to a givenway to calculate the associated expression for t* i, . To determine the normalization, it is natural to
follow the same procedure as withmonoplex clustering coefficients and use a completemultiplex network

F( ) = ⊕α α , where F J I( ) ( ) ( )= −α α α is the adjacencymatrix for a complete graph on layer α.We can then
proceed from any definition of t* i, to d* i, by replacing the second intra-layer stepwith a step in the complete

multiplex network. For example, we obtain d 2( )M i ii, = l l l for t 2[( ) ]M i ii,
3= l . Similarly, one can use

any other definition of a cycle (e.g., any of the elementary cycles or the cycles that we discuss in appendix C) as a
starting point for defining amultiplex clustering coefficient.

The above formulation allows us to define local and global clustering coefficients formultiplex networks
analogously to their definition inmonoplex networks.We can calculate a naturalmultiplex analog to the usual
monoplex local clustering coefficient for any node i of the supra-graph. Additionally, in amultiplex network, a
node u of an intra-layer network allows an intermediate description for clustering that lies between local and the
global clustering coefficients.We define

c
t

d*
*

*
, (4)i

i

i
,

,

,
=

C
t

d*
*

*
, (5)u

i l u i

i l u i
,

( ) ,

( ) ,

∑
∑= ∈

∈

C
t

d*
*

*
, (6)i i

i i

,

,

∑
∑=

where l u( ) is as defined before. Note that we refer to clustering coefficients defined either by equation (4) or by
equation (5) as local clustering coefficients. In equations (4)–(6), and in our subsequent formulas for clustering
coefficients, we are of course requiring denominators to be nonzero (as in themonoplex case). In situations in
which a denominator vanishes, we set the value of the associated clustering coefficient to 0.

We can decompose the expression in equation (6) in terms of the contributions from cycles that traverse
exactly one, two, and three layers (where m 1, 2, 3= indicates the number of layers) to give

t t t t* * * * , (7)i i i i, ,1,
3

,2,
2

,3,
3β βγ γ= + +

d d d d* * * * , (8)i i i i, ,1,
3

,2,
2

,3,
3β βγ γ= + +

C
t

d
*

*
. (9)m i m i

i m i
*
( )

, ,

, ,

∑
∑=

Wecan similarly decompose equations (4) and (5).Using the decomposition in equation (7) yields an alternative
way to average over contributions from the three types of cycles:

C C*( , , ) , (10)
m

m
m

1 2 3

3

*
( )∑ω ω ω ω=

where ω⃗ is a vector that gives the relative weights of the different contributions.We use the term layer-
decomposed clustering coefficients for C

*
(1), C

*
(2), and C

*
(3). There are also analogs of equation (10) for the

clustering coefficients defined in equations (4) and (5). Each of the clustering coefficients in equations (4)–(6)

Figure 1. Sketch of the elementary cycles ,  ,  , , and  . The orange node is the starting
point of the cycle. The intra-layer edges are the solid lines, and the intra-layer edges are the dotted curves. In each case, the yellow line
represents the second intra-layer step.
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depends on the values of the parameters β and γ, but the dependence vanishes if β γ= . Unless we explicitly
indicate otherwise, we assume in our calculations that β γ= .

2.3. Clustering coefficients for aggregated networks
A commonway to studymultiplex networks is to aggregate layers to obtain eithermulti-graphs orweighted
networks, where the number of edges or theweight of an edge is the number of different types of edges between a
pair of nodes [4]. One can then use any of the numerousways to define clustering coefficients for weighted
monoplex networks [44, 45] to calculate clustering coefficients for the aggregated network.

One of theweighted clustering coefficients is a special case of ourmultiplex clustering coefficient (for others,
see appendix A). References [41, 46, 47] calculated aweighted clustering coefficient as

(11)C
W W W

w W W w

W

W F W

( )

( ( ) )
,Z u

vw uv vw wu

v w uv uw

uu

uu
,

max

3

max

∑
∑= =

≠

whereWuv i l u j l v ij( ), ( )
∑= ∈ ∈ is an element of theweighted adjacencymatrix W . The elements of W are the

weights of the edges, the quantity w Wmaxu v uvmax ,= is themaximumweight in W , and F is the adjacency
matrix of the complete unweighted graph.We can define the global versionCZ of CZ u, by summing over all of
the nodes in the numerator and the denominator of equation (11) (analogously to equation (6)).

Fornode-alignedmultiplexnetworks, the clustering coefficientsCZ u, andCZ are related toourmultiplex clustering
coefficientsCM u, andCM. Letting 1β γ= = and summingover all layers yields (( ) )

i l u ii( )
3∑ =∈

l W( )uu
3 . That is,

in this special case, theweighted clustering coefficientsCZ u, andCZ are equivalent to the correspondingmultiplex
clustering coefficientsCM u, andCM. Inparticular,C C( )M u

w

b Z u, ,
maxβ γ= = andC ( )M β γ= = Cw

b Z
max .Weneed the

term w bmax tomatch thenormalizationsbecause aggregation removes the informationabout thenumberof layersb,
so thenormalizationmustbebasedon themaximumweight insteadof thenumberof layers.That is, a step in the
completeweightednetwork isdescribedbyusing w Fmax in equation (11) insteadofusing bF .

Note that this relationship between ourmultiplex clustering coefficient and theweighted clustering
coefficient in equation (11) is only true for node-alignedmultiplex networks. If some nodes are not shared
among all layers, then the normalization of ourmultiplex clustering coefficient depends on howmany nodes are
present in the local neighborhood of the focal node. This contrasts with the ‘global’normalization by wmax used
by theweighted clustering coefficient in equation (11).

2.4. Clustering coefficients in Erdős–Rényi networks
Almost all real networks contain some amount of transitivity, and it is often desirable to know if a network
containsmore transitivity thanwould be expected by chance. In order to examine this question, one typically
compares clustering-coefficient values of a network towhatwould be expected from some randomnetwork that
acts as a nullmodel. The simplest randomnetwork to use is an Erdős–Rényi (ER) network. In this section, we
give formulas for expected clustering coefficients in node-alignedmultiplex networks inwhich each intra-layer
network is an ERnetwork that is created independently of other intra-layer networks and the inter-layer
connections are created as described in section 2.1.

The expected value of the local clustering coefficient in an unweightedmonoplex ERnetwork is equal to the
probability pof an edge to exist. That is, thedensity of theneighborhoodof a node,measuredby the local clustering
coefficient, has the same expectation as the density of the entire network for an ensemble ofERnetworks. In
multiplex networkswith ER intra-layer graphswith connectionprobabilities pα, the same result holds onlywhen
all of the layers are statistically identical (i.e., p p=α for allα).Note that this is true even if thenetwork is not node-
aligned.However, heterogeneity among layers complicates thebehavior of clustering coefficients. If the layers have
different connection probabilities, then the expected value of themean clustering coefficient is a nontrivial
function of the connection probabilities. Inparticular, it is not always equal to themeanof the connection
probabilities. For example, the formulas for the expected global layer-decomposed clustering coefficients are

C
p

p

p

p
, (12)M

(1)

3

2

3

2

∑
∑= ≡α α

α α

C
p p

b p p p

3

( 1) 2
, (13)M

(2)

2

2

∑
∑ ∑=

− +
α κ α κ

α α α κ α κ

≠

≠

C
p p p

b p p( 2)
. (14)M

(3) , ,∑
∑=

−
α κ κ μ μ α α κ μ

α κ α κ

≠ ≠ ≠

≠
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See appendixG for analogous formulas for the localmultiplex clustering coefficients and for the numerical
validation of our theoretical results.

3. Results and discussions

We investigate transitivity in empiricalmultiplex networks by calculating clustering coefficients. In table 1, we
give the values of layer-decomposed global clustering coefficients formultiplex networks (four social networks
and two transportation networks) constructed from real data. Note that the two transportation networks have
different numbers of nodes in different layers (i.e., they are not node-aligned [4]). To help give context to the
values, the table also includes the clustering-coefficient values that we obtain for ERnetworks withmatching
edge densities in each layer. See appendixH for a similar table that uses an alternative nullmodel inwhichwe
shuffle the inter-layer connections.

Aswewill nowdiscuss,multiplex clustering coefficients give insights that are impossible to infer by
calculatingweighted clustering coefficients for aggregated networks or by calculating clustering coefficients
separately for each layer of amultiplex network.

For each social network in table 1, note that C CM M
(1)< and C C CM M M

(1) (2) (3)> > . Consequently, the primary
contribution to the triadic structure of thesemultiplex networks arises from three-cycles that staywithin a given
layer. To check that the ordering of the different clustering coefficients is not an artifact of the heterogeneity of
densities of the different layers, we also calculate the expected values of the clustering coefficients in ERnetworks
with identical edge densities to the data.We observe that all clustering coefficients exhibit larger inter-layer
transitivities thanwould be expected in corresponding ERnetworks with identical edge densities, although the
same ordering relationship (i.e. C C CM M M

(1) (2) (3)> > ) holds. Fromour results in table 1, it seems that triadic-
closuremechanisms in social networks cannot be considered purely at the aggregated network level; these
mechanisms appear to bemore effective inside of layers than between layers. For example, if there is a
connection between individuals u and v and also a connection between v andw in the same layer, then it ismore
likely that u andw ‘meet’ in the same layer than in some other layer.

The transportation networks thatwe examine exhibit the opposite pattern from the social networks. For
example, for the LondonUnderground (‘Tube’) network, inwhich each layer corresponds to a line, we observe
that C C CM M M

(3) (2) (1)> > . This reflects the fact that single lines in the Tube are designed to avoid redundant
connections. A single-layer triangle would require a line tomake a loop among three stations. Two-layer
triangles, which are a bitmore frequent than single-layer ones, entail that two lines run in almost parallel
directions and that one line jumps over a single station. For three-layer triangles, the geographical constraints do
notmatter because one can construct a triangle with three straight lines.

We also analyze the local triadic closure of theKapferer tailor-shop social network by examining the local
clustering-coefficient values. Infigure 2(a), we show a comparison of the layer-decomposed local clustering

Table 1.Clustering coefficientsCM, CM
(1), CM

(2), and CM
(3) that correspond, respectively, to the global, one-layer, two-layer, and three-

layer clustering coefficients for variousmultiplex networks. ‘Tailor Shop’: Kapferer tailor-shop network (n=39, b=4) [48]. ‘Manage-
ment’: Krackhardt office cognitive social structure (n=21, b=21) [49]. ‘Families’: Padgett Florentine families social network (n=16,
b=2) [50]. ‘Bank’: Roethlisberger andDickson bankwiring-room social network (n=14, b=6) [51]. ‘Tube’: the LondonUnderground
(i.e., ‘the Tube’) transportation network (n=314, b=14) [52]. ‘Airline’: network of flights between cities, in which each layer corre-
sponds to a single airline (n=3108, b=530) [53]. The rows labeled ‘orig.’ give the clustering coefficients for the original networks, and
the rows labeled ‘ER’ give the expected value and the standard deviation of the clustering coefficient in an ER randomnetworkwith
exactly asmany edges in each layer as in the original network. For the original values, we perform a two-tailed Z-test to examinewhether
the observed clustering coefficients could have been produced by the ERnetworks.We designate the p-values as follows: *: p 0.05< ,
**: p 0.01< for Bonferroni-corrected tests with 24 hypothesis; ’: p 0.05< , ”: p 0.01< for uncorrected tests.We donot use any
symbols for values that are not significant.We symmetrize directed networks by considering twonodes to be adjacent if there is at least
one edge between them. The social networks in this table are node-alignedmultiplex graphs, but the transportation networks are not
node-aligned.We report values that aremeans over different numbers of realizations: 1.5 105× for Tailor Shop, 1.5 103× for Airline,
1.5 104× forManagement, 1.5 105× for Families, 1.5 104× for Tube, and 1.5 105× for Bank.

Tailor Shop Management Families Bank Tube Airline

CM orig. 0.319** 0.206** 0.223’ 0.293** 0.056 0.101**
ER 0.186± 0.003 0.124 ± 0.001 0.138 ± 0.035 0.195 ± 0.009 0.053 ± 0.011 0.038 ± 0.000

CM
(1) orig. 0.406** 0.436** 0.289’ 0.537** 0.013” 0.100**

ER 0.244± 0.010 0.196 ± 0.015 0.135 ± 0.066 0.227 ± 0.038 0.053 ± 0.013 0.064 ± 0.001

CM
(2) orig. 0.327** 0.273** 0.198 0.349** 0.043* 0.150**

ER 0.191± 0.004 0.147 ± 0.002 0.138 ± 0.040 0.203 ± 0.011 0.053 ± 0.020 0.041 ± 0.000

CM
(3) orig. 0.288** 0.192** — 0.227** 0.314** 0.086**

ER 0.165± 0.004 0.120 ± 0.001 — 0.186 ± 0.010 0.051 ± 0.043 0.037 ± 0.000
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coefficients (also see figure 6(a) of [40]). Observe that the condition c c cM i M i M i,
(1)

,
(2)

,
(3)> > holds formost of the

nodes. Infigure 2(b), we subtract the expected values of the clustering coefficients of nodes in a network
generatedwith the configurationmodel8 from the corresponding clustering-coefficient values observed in the
data to discernwhetherwe should also expect to observe the relative order of the local clustering coefficients in
an associated randomnetwork (with the same layer densities and degree sequences as the data). Similar to our
results for global clustering coefficients, we see that taking a nullmodel into account lessens—but does not
remove—the difference between the coefficients that count different numbers of layers.

We investigate the dependence of local triadic structure on degree for one social network and one
transportation network. Infigure 3(a), we showhow the differentmultiplex clustering coefficients depend on
the unweighted degrees of the nodes in the aggregated network for theKapferer tailor shop.Note that the relative
ordering of the values of themean clustering coefficient does not depend on degree. Infigure 3(b), we illustrate
that the aggregated network for the airline transportation network exhibits a non-constant difference between
the curves of CM u, and theweighted clustering coefficient CZ u, . Using a global normalization (see the discussion
in section 2.3) reduces the clustering-coefficient values for the small airportsmuchmore than it does for the
large airports. This, in turn, introduces a bias.

The airline network is organized differently from the LondonTube network.When comparing these
networks, note that each layer in the former encompasses flights from a single airline. For the airline network
(see figure 3(b)), we observe that the two-layer local clustering coefficient is larger than the single-layer one for
hubs (i.e., high-degree nodes), but it is smaller for small airports (i.e., low-degree nodes). However, the global
clustering coefficient counts the total number of three-cycles and connected triplets, and it thus givesmore
weight to high-degree nodes than to low-degree nodes.We thusfind that the global clustering coefficients for the

Figure 2.Comparison of different local clustering coefficients in theKapferer tailor-shop network. Each point corresponds to a node.
(A) The raw values of the clustering coefficients. (B) The value of the clustering coefficientsminus the expected value of the clustering
coefficient for the corresponding node from amean over 1000 realizations of a configurationmodelwith the same degree sequence in
each layer as in the original network. In a realization of themultiplex configurationmodel, each intra-layer network is an independent
realization of themonoplex configurationmodel.

Figure 3. Local clustering coefficients versus unweighted degree of the aggregated network for (A) the Kapferer tailor-shop network
and (B) the airline network. The curves give themean values of the clustering coefficients for a degree range (i.e., we bin similar
degrees). Note that the horizontal axis in panel (B) is on a logarithmic scale.

8
Weuse the configurationmodel instead of an ERnetwork as a nullmodel because the local clustering-coefficient values are typically

correlatedwith node degree inmonoplex networks [3], and anER-network nullmodel does not preserve degree sequence.
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airline network satisfy C C CM M M
(2) (1) (3)> > . The intra-airline clustering coefficients have small values,

presumably because it is not in the interest of an airline to introduce new flights between two airports that can
already be reached by twoflights via the same airline through somemajor airport. The two-layer cycles
correspond to cases inwhich an airline has a connection from an airport to two other airports and a second
airline has a direct connection between those latter two airports. Completing a three-layer cycle requires using
three distinct airlines, and this type of congregation of airlines to the same area is not frequent in the data. Three-
layer cycles aremore common than single-layer cycles only for a few of the largest airports.

4. Conclusions

Wederivedmeasurements of transitivity formultiplex networks by developingmultiplex generalizations of
triadic relationships and clustering coefficients. By using examples from empirical data in diverse settings, we
showed that different notions ofmultiplex transitivity are important in different situations. For example, the
balance between intra-layer versus inter-layer clustering is different in social networks versus transportation
networks (and even in different types of networkswithin each category, as we illustrated explicitly for
transportation networks), reflecting the fact thatmultilayer transitivity can arise fromdifferentmechanisms.
Such differences are rooted in the new degrees of freedom that arise from inter-layer connections and are
invisible to calculations of clustering coefficients on single-layer networks obtained via aggregation. In other
words, transitivity is inherently amultilayer phenomenon: all of these diverse flavors of transitivity reduce to the
same descriptionwhen one throws away themultilayer information. Generalizing clustering coefficients for
multiplex networksmakes it possible to explore such phenomena and to gain deeper insights into different types
of transitivity in networks. The existence ofmultiple types of transitivity also has important implications for
multiplex networkmotifs andmultiplex community structure. In particular, ourwork onmultiplex clustering
coefficients demonstrates that the definition of any clustering notion formultiplex networks needs to be able to
consider diverse forms of transitivity.
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AppendixA.Weighted clustering coefficients

There are two primaryweighted clustering coefficients formonoplex networks that provide alternatives to the
one that we discussed in themain text [54, 55]. They are

C
w k k

W W W
1

( 1)
( ) , (A.1)O u

u u v w

uv uw vw,
max ,

1 3∑= −

C
s k

W W
A A A

1

( 1)

( )

2
, (A.2)u

u u v w

uv uw
uv uw vwBa,

,

∑= −
+

where A is the unweighted adjacencymatrix associatedwith theweighted adjacencymatrix W, the degree of
node u is k Au v uv= ∑ , the strength of u is s Wu v uv= ∑ , and the quantity w Wmaxu v uvmax ,= is themaximum
weight in W .When using equations (A.1) and (A.2), one also has C 0O u, = and C 0uBa, = for nodes of degree
k 0u = and k 1u = .

Appendix B.Multiplex clustering coefficients in the literature

Let A( )α denote the intra-layer adjacencymatrix for layerα. For aweightedmultiplex network, we use W( )α to
denote the intra-layer weightmatrix (i.e., theweighted intra-layer adjacencymatrix) for layerα.We use W to
denote theweightmatrix of the aggregated network. (See section 2.3 in themain text.) The clustering coefficient
thatwas defined in [36] for node-alignedmultiplex networks is
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( )
C

A A A

A A Amax ,
, (B.1)u

v w uv uw vw
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,

( ) ( ) ( )

,
( ) ( ) ( )

∑ ∑ ∑ ∑
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which can be expressed in terms of the aggregated network as

( )
C

W W W

W A Amax ,
. (B.2)u

v w uv uw vw

v w uv uw vw

Be,
,

,
( ) ( )

∑
∑ ∑=

α
α α

The numerator of equation (B.2) is the same as the numerator of theweighted clustering coefficient CZ u, , but
the denominator is different. Because of the denominator in equation (B.2), the values of the clustering
coefficient C uBe, do not have to lie in the interval [0, 1]. For example, C n b n( 2)uBe, = − for a complete
multiplex network (where n is the number of nodes in themultiplex network), so C 1uBe, > when b n

n 2
> − .

References [37, 38] defined a family of local clustering coefficients for directed andweightedmultiplex
networks:

( )
C

W W

N u t b2 ( , )
, (B.3)u t

L v w N u t wv vw

Br, ,
, ( , )

( ) ( )∑ ∑
=

+α
α α

∈ ∈

where N u t v A A t( , ) { : { : 1 and 1} }uv vu
( ) ( )α= ∣ = = ∣ ⩾α α , t is a threshold, andwe recall that L b{1, , }= … is

the set of layers. The clustering coefficient (B.3) does not yield the ordinarymonoplex local clustering coefficient
for unweighted (i.e., networkswith binaryweights) and undirected networks when it is calculated for the special
case of amonoplex network (i.e., amultiplex networkwith b = 1 layer). Furthermore, its values are not
normalized to lie between 0 and 1. For example, consider a completemultiplex networkwith nnodes and an
arbitrary number of layers. In this case, the clustering coefficient (B.3) takes the value of n 2− for each node. If a
multiplex network is undirected (and unweighted), then C u tBr, , can always be calculatedwhen one is only given
an aggregated network and the total number of layers in themultiplex network. As an example, for the threshold
value t= 1, one obtains

C
k b

W
A A A

1

2
, (B.4)u

u v w

vw
uv uw vwBr, ,1

,

∑=

where A is the binary adjacencymatrix corresponding to theweighted adjacencymatrix W and k Au v uv= ∑ is
the degree of node u.

Reference [39] defined a clustering coefficient formultiplex networks that are not necessarily node-aligned
as

C
E u

u u

2 ( )

( ) ( ( ) 1)
, (B.5)u

L
Cr,

∑
∑ Γ Γ

=
−

α α

α α α

∈

where L b{1, , }= … is again the set of layers, u u V( ) ( ) ∩Γ Γ=α α , the quantity u( )Γ is the set of neighbors of
node u in the aggregated network,Vα is the set of nodes in layerα, and E u( )α is the set of edges in the
subgraph induced by u( )Γα in the aggregated network. For a node-alignedmultiplex network,V V=α and

u u( ) ( )Γ Γ=α , so one canwrite

C
A W A

b A A
, (B.6)u

vw uv vw wu

v w uv wu
Cr,

∑
∑=

≠

which is a local clustering coefficient for the aggregated network.
Battiston et al [40] defined two versions of clustering coefficients for node-alignedmultiplex networks:

C
A A A

b A A( 1)
, (B.7)u

v u w u uv vw wu

v u w u uv wu
Bat1,

,
( ) ( ) ( )

,
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∑ ∑ ∑
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−
α κ α

α κ α

α
α α

≠ ≠ ≠

≠ ≠

C
A A A

b A A( 2)
. (B.8)u

v u w u uv vw wu

v u w u uv wu
Bat2,

, ,
( ) ( ) ( )

,
( ) ( )

∑ ∑ ∑ ∑
∑ ∑ ∑=

−
α κ α μ α κ

α μ κ

α κ α
α κ

≠ ≠ ≠ ≠

≠ ≠ ≠

Thefirst definition, C uBat1, , counts the number of -type elementary cycles; and the second definition,
C uBat2, , counts the three-layer elementary cycles  . In both of these definitions, the sums in the
denominators allow terms inwhich v=w, so a completemultiplex network has a local clustering coefficient of
n n( 1) ( 2)− − for every node.
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Reference [31] proposed definitions for global clustering coefficients using a tensorial formalism for
multilayer networks; when representing amultiplex network as a third-order tensor, the formulas in [31] reduce
to the clustering coefficients that we propose in the present article. (See equation (6) of themain text.)

Parshani et al [56] defined an ‘inter-clustering coefficient’ for two-layer interdependent networks that can be
interpreted asmultiplex networks [4, 57–59]. Their definition is similar to edge ‘overlap’ [40]; in our
framework, it corresponds to counting two-cycles of type C( )2 . A few other scholars [60, 61] have also defined
generalizations of clustering coefficients formultilayer networks that cannot be interpreted asmultiplex
networks [4].

In table B1 , we show a summary of the properties satisfied by several different (local and global)multiplex
clustering coefficients. In particular, we check the following properties. (1) The value of the clustering coefficient
reduces to the values of the associatedmonoplex clustering coefficient for a single-layer network. (2) The value
of the clustering coefficient is normalized so that it takes values that are less than or equal to 1. (All of the
clustering coefficients are non-negative.) (3) The clustering coefficient has a value of p in a large (i.e., when the
number of nodes n → ∞) node-alignedmultiplex network inwhich each layer is an independent ERnetwork
with an edge probability of p in each layer. (4) Suppose thatwe construct amultiplex network by replicating the
same givenmonoplex network in each layer.We indicate whether the clustering coefficient for themultiplex
network has the same value as for themonoplex network. (5) There exists a version of the clustering coefficient
that is defined for each node-layer pair separately. (6) The clustering coefficient is defined formultiplex
networks that are not node-aligned.

AppendixC.Other possible definitions of cycles

There aremany possible ways to define cycles inmultiplex networks. If we relax the condition of disallowing two
consecutive inter-layer steps, thenwe canwrite

( )t , (C.1)i
ii

SM,
3⎡

⎣⎢
⎤
⎦⎥= l l

( )t , (C.2)i
ii

SM ,
3⎡

⎣⎢
⎤
⎦⎥  = ′ + ′′ l l

where 1

2
  β γ′ = +l . (Our discussion in appendixD is helpful for understanding the factor of 1/2.) Unlike the

matrix l in equation (3) in themain text, thematrices l l and   ′ + ′l l are symmetric.We can thus
interpret them asweighted adjacencymatrices of symmetric supra-graphs, andwe can then calculate cycles and
clustering coefficients in these supra-graphs (see appendixD).

It is sometimes desirable to forbid the option of staying inside of a layer in the first step of the second termof
equation (C.2). In this case, one canwrite

( ) ( )t . (C.3)M i
ii

,
3 2⎡

⎣⎢
⎤
⎦⎥  γ= +′ l l

With this restriction, cycles that traverse two edges of the focal node i are only calculated two times instead of
four times.We simplify equation (C.3) to obtain

( )t 2 , (C.4)M i
ii

,
2⎡

⎣⎢
⎤
⎦⎥ = ′′ l l

which is similar to equation (3) in themain text. In table C1 , we show the values of the clustering coefficients
that we calculate using this last definition of cycle for the empirical networks that we studied in themain text.

Table B1. Summary of the properties of the differentmultiplex clustering coefficients. The notation C* u(, ) means that the property holds for
both the global version and the local version of the associated clustering coefficient (C.C.).

Property CM u(, ) CBe u, CZ u(, ) C uBa, CO u, C uBr, C uCr, C uBat(1,2),

(1) Reduces tomonoplex C.C. ✓ ✓ ✓ ✓ ✓ ✓
(2) C* 1⩽ ✓ ✓ ✓ ✓ ✓ ✓

(3) C p* = inmultiplex ER graph ✓ ✓
(4)Monoplex C.C. for copied layers ✓ ✓ ✓ ✓ ✓
(5)Defined for node-layer pairs ✓
(6)Defined for non-node-aligned ✓ ✓
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AppendixD.Definingmultiplex clustering coefficients using auxiliary networks

An elegantway to generalize clustering coefficients formultiplex networks is to define a new (possibly weighted)
auxiliary supra-graphGM so that one can define cycles of interest as weighted three-cycles inGM. Oncewe have a
function that produces the auxiliary supra-adjacencymatrix ( , )   = , we can define the auxiliary
complete supra-adjacencymatrix ( , )F   = . One can then define a local clustering coefficient for node-
layer pair iwith the formula

c
( )

( )
. (D.1)i

ii

F
ii

3
 =

Aswith amonoplex network, the denominator written in terms of the completematrix F is equivalent to the
usual onewritten in terms of connectivity.We thereby consider the connectivity of a node in the supra-
graph induced by thematrix .We refer to thematrix  as themultiplex walkmatrix because it encodes the
permissible steps in amultiplex network.When  is equal to l or to l , the induced supra-graph is
directed, so one needs to distinguish between in-degrees and out-degrees.

A key advantage of defining clustering coefficients using an auxiliary supra-graph is that one can thenuse it to
calculate other diagnostics (e.g., degree or strength) for nodes.One can thereby investigate correlations between
clustering-coefficient values and the size of themultiplex neighborhoodof a node. (The size of the neighborhood is
thenumber of nodes that are reachable in a single step via connections definedby thematrix .)

We canwrite the symmetricmultiplexwalkmatrices in equations (C.1) and (C.2) as

, (D.2)SM = l l

( ). (D.3)SM   = ′ + ′′ l l

To avoid double-counting intra-layer steps in the definition of SM ′, we need to rescale either the intra-layer
weight parameter β (i.e., we canwrite 1

2
    β γ β γ′ = ′ + = +l ) or the inter-layer weight parameter γ (i.e.,

we canwrite 2    β γ β γ′ = + ′ = +l and also define ( )SM
1

2
   = ′ + ′′ l l ).

Consider a supra-graph induced by amultiplexwalkmatrix. The distinction between thematrices SM and

SM ′ is that SM also includes terms of the form  that take into account walks that have an inter-layer step
() followed by an intra-layer step () and then another inter-layer step (). Therefore, in the supra-
graph induced by SM , two nodes in the same layer that are not adjacent in that layer are nevertheless adjacent if
the same physical nodes are adjacent in another layer.

Thematrix l sums the contributions of all node-layer pairs that correspond to the same physical nodewhen
1β γ= = . In otherwords, if we associate a vector of the canonical basis ei to each node-layer pair i and let

u u L(( , )) {( , ) }CΓ α κ κ= ∣ ∈ denote all node-layer pairs that correspond to the same physical node, then

e e (D.4)i

j i

j

( )C

 ∑=
Γ∈

l

produces a vector whose entries are equal to 1 for nodes that belong to the basis vector andwhich are equal to 0
for nodes that do not belong to that vector. Consequently, SM is related to theweighted adjacencymatrix of

TableC1.Clustering coefficients (rows) for the same empirical networks (columns) from table 1 in the
main text. For the Tube and theAirline networks, we only calculate clustering coefficients for non-node-

aligned networks. For local clustering coefficients, we average over all nodes to obtain C
n

C*
1

*u u u, ,∑= .

CC Families Bank Tailor Shop Management Tube Airline

CM′ 0.218 0.289 0.320 0.206 0.070 0.102

CM
(1)

′ 0.289 0.537 0.406 0.436 0.013 0.100

CM
(2)

′ 0.202 0.368 0.338 0.297 0.041 0.173

CM
(3)

′ — 0.227 0.288 0.192 0.314 0.086

C ( , , )M
1

3

1

3

1

3′ 0.164 0.377 0.344 0.309 0.123 0.120

C uCr, 0.342 0.254 0.308 0.150 0.038 0.329

C uBa, 0.195 0.811 0.612 2.019 — —

C uBr, 0.674 1.761 4.289 1.636 — —

CO u, 0.303 0.268 0.260 0.133 — —

C uBe, 0.486 0.775 0.629 0.715 — —

C uBat1, 0.159 0.199 0.271 0.169 — —

C uBat2, — 0.190 0.282 0.179 — —
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the aggregated graph for 1β γ= = . To be precise, we obtain the following relation:

( ) W i l u j l v, for any ( ), ( ). (D.5)
ij

uv = ∈ ∈l l

One can alsowrite themultiplex clustering coefficient induced by equation (2) in terms of the auxiliary
supra-adjacencymatrix by considering equation (3), which is a simplified version of the equation that counts
cycles only in one direction. This yields

2 . (D.6)M
3 = l

Thematrix M is not symmetric, which implies that the associated graph is a directed supra-graph.
Nevertheless, the clustering coefficient induced by M is the same as that induced by its transpose M

T if  is
symmetric.

Appendix E. Expressing clustering coefficients using elementary three-cycles

Wenow give a detailed explanation of the process of decomposing any of ourwalk-based clustering coefficients
into elementary cycles. An elementary cycle is a term that consists of products of thematrices  and  (i.e., there
are no sums) after one expands the expression for a cycle (which is a weighted sumof such terms). Becausewe
are only interested in the diagonal elements of the terms andwe consider only undirected intra-layer supra-
graphs and coupling supra-graphs, we can transpose the terms and still write them in terms of thematrices 
and  rather than also using their transposes. There are alsomultiple ways of writing non-symmetric elementary
cycles (e.g., ( ) ( )ii ii = ).

We adopt a convention inwhichwe transpose all elementary cycles so thatwe select the one inwhich thefirst
element is  rather than  when comparing the two versions of the term from left to right. That is, for two
equivalent terms, we choose the one that comes first in alphabetical order. To calculate the clustering coefficients
that we defined in the appendix (see appendices C andD), we also need to include elementary cycles that start
and end in an inter-layer step. The set of elementary three-cycles is thus {ℰ = , , ,
,  , ,  , } .

We nowwrite our clustering coefficients using elementary three-cycles.We obtain the normalization
formulas by using the elementary three-cycles and then replacing the second  termwith  . This yields a
standard form for any of ourmultiplex clustering coefficients. For example,

c
t

d*
*

*
, (E.1)i

i

i
,

,

,
=

where

t w w w

w w
w w

w

*
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i

ii

,
⎡⎣

⎤⎦

  
 
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where i is a node-layer pair and the w coefficients are scalars that correspond to theweights for each type of
elementary cycle. Theseweights are different for different types of clustering coefficients; one can choose
whatever is appropriate for a given problem.Note that we have absorbed the parameters β and γ into these
coefficients (see below and table E1).We illustrate the possible elementary cycles infigure 1 of themain text and
infigure E1 .

One can even express the cycles that include two consecutive inter-layer steps in the standard formof
equations (E.2)–(E.3) for node-alignedmultiplex networks, because b b( 1) ( 2)2  = − + − in this case.
Without the assumption that 1β γ= = , the expansion for the coefficient cSM,i is cumbersome because it
includes coefficients k hβ γ with all possible combinations of k and h such that k h 6+ = and h 1≠ .
Furthermore, in the general case, it is also not possible to infer the number of layers inwhich awalk traverses an
intra-layer edge based on the exponents of β and γ for cSM,i and c iSM ,′ . For example, in c iSM ,′ , the intra-layer

elementary triangle  includes a contribution fromboth 3β (i.e., thewalk stays in the original layer) and
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Table E1.Coefficients of elementarymultiplex three-cycle terms w (see equations (E.2) and (E.3)) for differentmultiplex clustering coefficients. For example, w for type-M clustering coefficients (i.e.,CM, CM u, , and cM i, ) is equal to
2 3β . For type-SM′ and type-SMclustering coefficients, we calculate the expansions only for node-alignedmultiplex networks.

C.C. h kβ γ        
3β 2

M 2βγ 2 2 2
3γ 2

3β 1

M′ 2βγ 2 2 1
3γ 2

3β 1

SM′ 2βγ b2( 1)− 2 4 3 1
3γ b2( 2)− b2( 2)− 2 2

SM 6β 1
4 2β γ b2( 1)− 4 4 4 1
3 3β γ b2( 2)− b2( 2)− b4( 2)− 8 4
2 4β γ b( 1)2− b4( 1)− b4( 1)− b( 2)2− b8( 2)− b2( 1)− b2( 2)− 4
1 5β γ b b2( 2)( 1)− − b b2( 2)( 1)− − b2( 2)2− b4( 1)− b4( 2)−

6γ b( 1)2− b b2( 2)( 1)− − b( 2)2−

13

N
ew

J.Phys.17
(2015)073029

E
C
ozzo

etal



2βγ (i.e., thewalk visits some other layer but then comes back to the original layer without traversing any intra-
layer edges while it was gone).Moreover, all of the termswith b arise from awalkmoving to a new layer and then
coming right back to the original layer in the next step. Because there are b 1− other layers fromwhich to
choose, the influence of cycles with such transient layer visits is amplified by the total number of layers in a
network. That is, addingmore layers (even ones that do not contain any edges) changes the relative importance
of different types of elementary cycles.

In table E1, we show the values of the coefficients w for the different ways thatwe define three-cycles in
multiplex networks. In table E2 , we show their corresponding expansions in terms of elementary cycles for the
case 1β γ= = . These cycle decompositions illuminate the difference between cM i, , cM i,′ , c iSM, , and c iSM ,′ . The
clustering coefficient cM i, gives equal weight to each elementary cycle, whereas cM i,′ gives half of theweight to
 and  cycles (i.e., the elementary cycles that include an implicit double-counting) as compared to
the other cycles. Thematrices that correspond to elementary cycles with such double-counting are symmetric,
and the same cycle is thus counted in two different directions.

Appendix F. A simple example

Wenowuse a simple example (see figure F1) to illustrate the differences between the various notions of a
multiplex clustering coefficient. Consider a two-layermultiplex networkwith three nodes in layer a1 and two
nodes in layer a2. The three node-layer pairs in layer a1 form a 2-star, the two node-layer pairs that are not
connected directly to each other on layer a1 are each adjacent via an inter-layer edge to a counterpart node-layer
pair in layer a2, and the two node-layer pairs on layer a2 are adjacent to each other.

Figure E1. Sketches of elementary cycles for which both thefirst and the last step are allowed to be an inter-layer step. These
elementary cycles are  ,  , and  . The orange node is the starting point of the cycle. The intra-layer edges
are the solid lines, and the intra-layer edges are the dotted curves. In each case, the yellow line represents the second intra-layer step.
Note that the elementary cycle  includes three ‘degenerate’ versions inwhich the three-cycle returns to a previously-
visited layer. The subscripts in the names of the degenerate cycles indicate the number of layers that are used in each cycle.

Table E2.Coefficients of the elementarymultiplex three-cycle terms w (see eqations (E.2) and (E.3)) for differentmultiplex clustering
coefficients when 1β γ= = . For type-SM′ and type-SM clustering coefficients, we calculate the expansions only for node-alignedmultiplex
networks.

C.C.        
M 2 2 2 2 2 0 0 0
M′ 1 2 2 1 2 0 0 0
SM 1b2 2b2 2b2 b2 2b2 b2 2b2 b2

SM′ b2 1− 2 b2 b2 1− 2 1 2 0

Figure F1.A simple, illustrative example of amultiplex network.
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The adjacencymatrix  for the intra-layer supra-graph is

0 1 1 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0

, (F.1)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 =

and the adjacencymatrix  of the coupling supra-graph is

0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0

. (F.2)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 =

Therefore, the supra-adjacencymatrix is

¯

0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 1
0 0 1 1 0

. (F.3)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 =

Themultiplexwalkmatrix M is

2

0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
0 0 1 0 1
0 1 0 1 0

, (F.4)M
3

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 =

andwe note that it is not symmetric. For example, node-layer pair a(2, )2 is reachable from a(1, )1 , but node-
layer pair a(1, )1 is not reachable from a(2, )2 . The edge a a[(1, ),(2, )]1 2 in this supra-graph represents thewalk

a a a{(1, ),(2, ),(2, )}1 1 2 in themultiplex network. The symmetric walkmatrix SM ′ is

0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 1 0

. (F.5)SM

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 =′

Thematrix SM ′ is the sumof M and M
T with rescaled diagonal blocks in order to not double-count the

edges a a[(1, ),(2, )]1 1 and a a[(1, ),(3, )]1 1 . Additionally,

0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

, (F.6)SM

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 =

which differs from SM ′ in the fact that node-layer pairs a(2, )1 and a(3, )1 are connected through themultiplex
walk a a a a{(2, ),(2, ),(3, ),(3, )}1 2 2 1 .

The adjacencymatrix of the aggregated graph is

W
0 1 1
1 0 1
1 1 0

. (F.7)
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

That is, it is a complete graphwithout self-edges.
We now calculate c* i, using different definitions of amultiplex clustering coefficient. To calculate cM i, ,

we need to compute the auxiliary complete supra-adjacencymatrix M
F according to equation (D.6).We

obtain

2 2

0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
0 0 1 0 1
0 1 0 1 0

. (F.8)M
F 3 3

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 = =l
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The clustering coefficient of node-layer pair a(1, )1 , which is part of two triangles that are reachable along the
directions of the edges, is

c
1

2
. (F.9)M a,(1, )1 =

For node-layer pair a(2, )1 , we get

c 1, (F.10)M a,(2, )1 =
which is the same as the clustering-coefficient values of the remaining node-layer pairs.

To calculate c iSM ,′ , we need to compute F
SM ′, whichwe obtain using equation (D.3).We thus obtain

0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

. (F.11)F
SM

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
  = + =′ l l

In the supra-graph associatedwith the supra-adjacencymatrix  +l l , all node-layer pairs are adjacent to all
other node-layer pairs except those that correspond to the same physical nodes. The clustering coefficient of
node-layer pair a(1, )1 , which is part of six triangles, is

c c
1

2
. (F.12)a M aSM ,(1, ) ,(1, )1 1= =′

The clustering coefficient of node-layer pair a(2, )1 , which is part of one triangle, is

c 1. (F.13)aSM ,(2, )1 =′

To calculate c iSM, , we compute F
SM using equation (D.2).We thus obtain

0 1 1 1 1
1 0 2 0 2
1 2 0 2 0
1 0 2 0 2
1 2 0 2 0

. (F.14)F
SM

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
 = =l l

The only difference between the graphs associatedwith thematrices l l and  +l l is theweight of the
edges in l l that take into account the fact that intra-layer edgesmight be repeated in the two layers.

The clustering coefficient of node-layer pair a(1, )1 , which is part of eight triangles, is

c
8

12

2

3
. (F.15)aSM,(1, )1 = =

The clustering coefficient of node-layer pair a(2, )1 , which is part of four triangles, is

c
4

6

2

3
. (F.16)aSM,(2, )1 = =

Becausewe areweighting edges based on the number of times an edge between two nodes is repeated in
different layers among a given pair of physical nodes in the normalization, none of the node-layer pairs has a
clustering coefficient equal to 1. By contrast, all nodes have clustering coefficients with the same value in the
aggregated network, for which the layer information has been lost. In particular, they each have a clustering-
coefficient value of 1, independent of the definition of themultiplex clustering coefficient.

AppendixG. Further discussion of clustering coefficients inmultiplex ERnetworks

The expected values of the local clustering coefficients in node-alignedmultiplex ERnetworks are

c
b

p p
1

, (G.1)i

L

, ∑= ≡
α

α
∈

c
b

p p
1

, (G.2)i

L

, ∑= ≡
α

α
∈

c
b

p

p

1
, (G.3)i

L

,

2

 ∑=
∑
∑α

κ α κ

κ α κ∈

≠

≠

c
b

p p
1

, (G.4)i

L

, ∑= ≡
α

α
∈
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c
b b

1

( 1)
. (G.5)i

L

p p

p,
; , ∑= −

∑

α∈
∑

κ α μ κ α κ μ

κ α κ

≠ ≠

≠

Note that c cM i i,
(1)

,= and c cM i i,
(3)

,= , but the two-layer clustering coefficient cM i,
(2) arises from a

weighted sumof contributions from three different elementary cycles.
InfigureG1, we illustrate the behavior of the global and local clustering coefficients inmultiplex networks in

which the layers consist of ER networkswith varying amounts of heterogeneity in the intra-layer edge densities.
Although the global andmean local clustering coefficients are equal to each otherwhen averaged over ensembles
ofmonoplex ERnetworks, we do not obtain a similar result formultiplex networks with ER layers unless the
layers have the same value of the parameter p. The global clustering coefficients givemoreweight than themean
local clustering coefficients to denser layers. This is evident for the intra-layer clustering coefficients cM i,

(1) and

CM
(1), for which the ensemble average of themean of the local clustering coefficient cM i,

(1) is always equal to the

mean edge density, whereas the ensemble average of the global clustering coefficient CM
(1) has values that are

greater than or equal to themean edge density. This situation is a good example of a case inwhich transivity in
multiplex networks differs from the results and intuition frommonoplex networks.

In particular, failing to take into account the heterogeneity of edge densities inmultiplex networks can lead
to incorrect ormisleading results when trying to distinguish among values of a clustering coefficient that are
what onewould expect from anER randomnetwork versus those that are a signature of a triadic-closure process
(see figureG1).

AppendixH.Nullmodel for shuffling inter-layer connections

In tableH1, we compare empirical values of layer-decomposed global clustering coefficients with clustering-
coefficient values for a nullmodel in whichwe preserve the topology of each intra-layer network but
independently shuffle the labels of the nodes inside of each layer. That is, for each intra-layer network
G V E( , )=α α α , we choose a permutation V V:π ↦α α uniformly at randomand construct a newmultiplex
network starting from G{ ( )}π α , where G V E( ) ( ( ), ( ))π π π=α α α and E u v u v E( ) {( ( ), ( )) ( , ) }π π π= ∣ ∈α α . In
this way, we effectively randomize inter-layer edges but preserve both the structure of intra-layer networks and
the number of inter-layer edges between each pair of layers. For our comparisons using this nullmodel,most of
the clustering coefficients take values that are significant for our data sets (see tableH1). Because of theway that
we construct the nullmodel, the global single-layer clustering coefficients are exactly the same for the original
data and the nullmodel.

FigureG1. (A), (B), (C)Global and (D), (E), (F) localmultiplex clustering coefficients inmultiplex networks that consist of ER layers.
Themarkers give the results of simulations of 100-node node-alignedmultiplex ER networks that we average over 10 realizations. The
solid curves are theoretical approximations (see equations (12)–(14) of themain text). Panels (A), (C), (D), (F) show results for three-
layer networks, and panels (B), (E) show results for six-layer networks. The ER edge probabilities of the layers are (A), (D)

x{0.1, 0.1, }, (B), (E) x x{0.1, 0.1, 0.1, 0.1, , }, and (C), (F) x x{0.1, , 1 }− .
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