On the formation of gold nanoparticles from [AuIIICl4]- and a non-classical reduced polyoxomolybdate as an electron source: A quantum mechanical modelling and experimental study
Financiación FP7 / Fp7 Funds
Resumen: Polyoxometalate (POM)-mediated reduction and nucleation mechanisms in nanoparticle (NP) syntheses are still largely unknown. We carried out comprehensive theoretical analysis using density functional theory (DFT) to gain insight into the molecular and electronic changes that occur during the reduction of HAuIIICl4 with the Kabanos-type polyoxomolybdate, Na{(MoV2O4)3(µ2-O)3(µ2-SO3)3(µ6-SO3)}2]15-. In the system presented herein the electrons are supplied by the POM, making the computational thermodynamic analysis more feasible. Our results reveal that this particular POM is a multi-electron source and the proton-coupled electron transfer (PCET) greatly promotes the reduction process. Based on the energy and molecular orbital studies of the intermediate species the reduction of AuIII to AuI is shown to be thermodynamically favourable, and a low HOMO-LUMO gap of the POM-Au superstructure is advantageous for electron transfer. By modelling the reduction of three couples of AuIII ¿ AuI by the same POM unit, it is proposed that the reduced polyoxomolybdate is finally fully oxidised. The subjacent idea of using the Kabanos POM was confirmed by comprehensive experimental characterisation of POM-stabilised gold nanoparticles (AuNPs@POM). Present theoretical analysis suggests that protons have a significant influence on the final AuI to Au0 reduction step that ultimately leads to colloidal AuNPs@POM.
Idioma: Inglés
DOI: 10.1039/c5nj02773j
Año: 2016
Publicado en: NEW JOURNAL OF CHEMISTRY 40, 2 (2016), 1029-1038
ISSN: 1144-0546

Factor impacto JCR: 3.269 (2016)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 52 / 166 = 0.313 (2016) - Q2 - T1
Factor impacto SCIMAGO: 0.868 - Chemistry (miscellaneous) (Q1) - Materials Chemistry (Q1) - Catalysis (Q2)

Financiación: info:eu-repo/grantAgreement/EC/FP7/239931/EU/Multifunctional Magnetic Nanoparticles: Towards Smart Drugs Design/NANOPUZZLE
Financiación: info:eu-repo/grantAgreement/ES/MINECO/CTQ2011-29054
Tipo y forma: Article (Published version)
Área (Departamento): Área Química Orgánica (Dpto. Química Orgánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes.


Exportado de SIDERAL (2020-02-21-13:46:22)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2016-07-01, last modified 2020-02-21


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)