000056127 001__ 56127
000056127 005__ 20200221144207.0
000056127 0247_ $$2doi$$a10.1016/j.solener.2016.06.065
000056127 0248_ $$2sideral$$a95118
000056127 037__ $$aART-2016-95118
000056127 041__ $$aeng
000056127 100__ $$0(orcid)0000-0001-5561-5457$$aCollado Giménez, Francisco Javier$$uUniversidad de Zaragoza
000056127 245__ $$aTwo-stages optimised design of the collector field of solar power tower plants
000056127 260__ $$c2016
000056127 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056127 5203_ $$aIn solar power tower (SPT) systems, selecting the optimum location of thousands of heliostats and the most profitable tower height and receiver size remains a challenge. Given the complexity of the problem, breaking the optimisation process down into two consecutive steps is suggested here; first, a primary, or energy, optimisation, which is practically independent of the cost models, and then a main, or economic, optimisation. The primary optimisation seeks a heliostat layout supplying the maximum annual incident energy for all the explored combinations of receiver sizes and tower heights. The annual electric output is then calculated as the combination of the incident energy and the simplified (annual averaged) receiver thermal losses and power efficiencies. Finally, the figure of merit of the main optimisation is the levelised cost of electric energy (LCOE) where the capital cost models used for the LCOE calculation are reported by the System Advisor Model (SAM)-NREL and Sandia. This structured optimisation, splitting energy procedures from economic ones, enables the organisation of a rather complex process, and it is not limited to any particular power tower code. Moreover, as the heliostat field layout is already fully optimised before the economic optimisation, the profiles of the LCOE versus the receiver radius for the tower heights explored here are sharp enough to establish optima easily. As an example of the new procedure, we present a full thermo-economic optimisation for the design of the collector field of an actual SPT system (Gemasolar, 20 MWe, radially staggered surrounding field with 2650 heliostats, 15 h of storage). The optimum design found for Gemasolar is reasonably consistent with the scarce open data. Finally, optimum designs are strongly dependent on the receiver cost, the electricity tariff and the assumed maximum receiver surface temperature.
000056127 536__ $$9info:eu-repo/grantAgreement/ES/MINECO/ENE2015-67518-R
000056127 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056127 590__ $$a4.018$$b2016
000056127 591__ $$aENERGY & FUELS$$b21 / 92 = 0.228$$c2016$$dQ1$$eT1
000056127 592__ $$a1.504$$b2016
000056127 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ1
000056127 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ1
000056127 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056127 700__ $$0(orcid)0000-0002-2226-7561$$aGuallar Paracuellos, Jesús$$uUniversidad de Zaragoza
000056127 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000056127 773__ $$g135 (2016), 884-896$$pSol. energy$$tSolar Energy$$x0038-092X
000056127 8564_ $$s1987391$$uhttps://zaguan.unizar.es/record/56127/files/texto_completo.pdf$$yVersión publicada
000056127 8564_ $$s104704$$uhttps://zaguan.unizar.es/record/56127/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056127 909CO $$ooai:zaguan.unizar.es:56127$$particulos$$pdriver
000056127 951__ $$a2020-02-21-13:10:19
000056127 980__ $$aARTICLE