000056130 001__ 56130
000056130 005__ 20200221144131.0
000056130 0247_ $$2doi$$a10.1016/j.nanoen.2015.11.040
000056130 0248_ $$2sideral$$a93184
000056130 037__ $$aART-2016-93184
000056130 041__ $$aeng
000056130 100__ $$aGracia, J.
000056130 245__ $$aNano-heaters: New insights on the outstanding deposition of dielectric energy on perovskite nanoparticles
000056130 260__ $$c2016
000056130 5060_ $$aAccess copy available to the general public$$fUnrestricted
000056130 5203_ $$aIt has been experimentally observed that, in some Mott nanomaterials, outstanding dielectric losses may appear at microwave frequencies, leading to a rapid increase of temperature. This often takes place in association with the insulator to metal transition (IMT) in these materials. However, when other materials with a similar structure and composition are subjected to the same intensity of microwave (MW) irradiation, the observed heating is minimal. Here we show that the electron dynamics of these materials are responsible for their different heating behaviour. More specifically, for LaCoO3 perovskite nanoparticles, the spin shifts causing the IMT are also responsible for the observed heating behaviour. Under suitable conditions, the intense absorption of MW radiation leads to extremely high heating rates, above 600 degrees per second. The insight gained from this study has been used to design a directly heated catalytic system (LaCoO3 perovskite nanoparticles on a MW-transparent cordierite monolith) capable to operate under a stable, significant solid-gas temperature gradient.
000056130 536__ $$9info:eu-repo/grantAgreement/EUR/ERC/HECTOR-267626
000056130 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000056130 590__ $$a12.343$$b2016
000056130 591__ $$aCHEMISTRY, PHYSICAL$$b8 / 145 = 0.055$$c2016$$dQ1$$eT1
000056130 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b6 / 87 = 0.069$$c2016$$dQ1$$eT1
000056130 591__ $$aPHYSICS, APPLIED$$b8 / 147 = 0.054$$c2016$$dQ1$$eT1
000056130 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b12 / 275 = 0.044$$c2016$$dQ1$$eT1
000056130 592__ $$a4.745$$b2016
000056130 593__ $$aElectrical and Electronic Engineering$$c2016$$dQ1
000056130 593__ $$aRenewable Energy, Sustainability and the Environment$$c2016$$dQ1
000056130 593__ $$aMaterials Science (miscellaneous)$$c2016$$dQ1
000056130 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000056130 700__ $$0(orcid)0000-0003-3631-5592$$aEscuin, M.
000056130 700__ $$0(orcid)0000-0002-4758-9380$$aMallada, R.$$uUniversidad de Zaragoza
000056130 700__ $$0(orcid)0000-0003-3363-2912$$aNavascues, N.
000056130 700__ $$0(orcid)0000-0002-8701-9745$$aSantamaria, J.$$uUniversidad de Zaragoza
000056130 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000056130 773__ $$g20 (2016), 20-28$$pNano energy$$tNano energy$$x2211-2855
000056130 8564_ $$s2664240$$uhttps://zaguan.unizar.es/record/56130/files/texto_completo.pdf$$yVersión publicada
000056130 8564_ $$s86496$$uhttps://zaguan.unizar.es/record/56130/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000056130 909CO $$ooai:zaguan.unizar.es:56130$$particulos$$pdriver
000056130 951__ $$a2020-02-21-13:04:32
000056130 980__ $$aARTICLE