
Small-Packet Flows in Software Defined

Networks: Traffic Profile Optimization

Jose Saldana, David de Hoz, Julián Fernández-Navajas, José Ruiz-Mas
I3A, University of Zaragoza

Ada Byron Building, 50018, Zaragoza, Spain

Email: {jsaldana, dhoz, navajas, jruiz}@unizar.es

Fernando Pascual, Diego R. Lopez, David Florez, Juan A. Castell, Manuel Nuñez
Telefonica I+D

Distrito T, Sur 3, Ronda de la Comunicación s/n, 28050 Madrid, Spain

Email: {fernando.pascualblanco, diego.r.lopez, david.florezrodriguez, juanantonio.castelllucia,

manuel.nunezsanz}@telefonica.com

Abstract— This paper proposes a method for optimizing

bandwidth usage in Software Defined Networks (SDNs)

based on OpenFlow. Flows of small packets presenting a

high overhead, as the ones generated by emerging services,

can be identified by the SDN controller, in order to remove

header fields that are common to any packet in the flow,

only during their way through the SDN. At the same time,

several packets can be multiplexed together in the same

frame, thus reducing the overall number of frames. The

method can be useful for providing QoS while the packets

are traversing the SDN. Four kinds of small-packet traffic

flows are considered (VoIP, UDP and TCP-based online

games, and ACKs from TCP flows). Both IPv4 and IPv6 are

studied, and significant bandwidth savings (up to 68 % for

IPv4 and 78 % for IPv6) can be obtained for the considered

kinds of traffic. The optimization method is also applied to

different public Internet traffic traces, and significant

reductions in terms of packets per second are achieved.

Results show that bandwidth consumption is also reduced,

especially in those traces where the percentage of small

packets is high. Regarding the effect on QoS, the additional

delay can be kept very low (below 1 millisecond) when the

throughput is high, but it may become significant for low-

throughput scenarios. Thus, a trade-off between bandwidth

saving and additional delay appears in those cases.

Index Terms— Software Defined Networks, multiplexing,

traffic optimization, compression, small-packet services

I. INTRODUCTION

Software Defined Networks (SDNs) are a new

approach to networking, based on the radical separation

of the control and data planes, connected by open

interfaces, and including the direct programmability of

the control plane. This allows for a logically centralized

control of the network as a whole, bringing the possibility

of dealing with the network as a single and

programmable entity. This is especially interesting in

current highly virtualized environments, most notably in

cloud computing, because it allows managing network

resources in a much more flexible and efficient way,

making the network able to provide a QoS level adequate

to the nature of each flow. The SDN paradigm is not only

used in wired networks, but it has also been proposed for

adding programmability to wireless solutions: in [2] a

software defined Wi-Fi network architecture was

proposed and tested, where a number of Wi-Fi Access

Points were integrated in a programmable way; in [3],

SDNs were also employed for deploying and managing

an open public wireless network in the UK. OpenFlow

[4] is the most extended and consolidated standard for

SDNs.

At the same time, emerging real-time services (e.g.

VoIP, online gaming) are becoming more and more

widespread on the Internet, and they are not only used in

desktop computers, but also in wireless scenarios. Their

interactivity requirements make them send high rates of

small packets (average payloads of tens of bytes). These

traffic patterns are sometimes known as “small-packet

flows” [5], in order to stress their low efficiency in terms

of payload-header ratio. As an example, an RTP VoIP

packet carrying two samples of the G729a codec requires

40 bytes of headers to carry 20 bytes of voice

information.

Many online games, as e.g. First Person Shooters

(FPSs) employ a similar traffic pattern, i.e. a high rate of

UDP packets is sent (RTP is not used for this service)

from the client to the server and vice versa. The problem

is similar to that in VoIP: latency is very harmful for

interactive game playing, since it may cause

inconsistencies between the statuses of the virtual world

observed by the different players. The size of the payload

is typically of tens of bytes, especially in the client-server

direction, since only the actions of a player are sent to the

server. In the opposite direction, packets are bigger, since

they include information of the rest of the players. These

This research has been partially supported by the EC H2020 Project

“What to do With the Wi-Fi Wild West” (Wi-5), grant agreement no:

644262; Project TAMA, Government of Aragon; European Social
Fund. Corresponding author: Jose Saldana.

A preliminary version of this article appeared in [1]. This version

includes new tests, especially those performed using public Internet

traces (see Section V.B).

176 JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

© 2015 ACADEMY PUBLISHER
doi:10.4304/jnw.10.4.176-187

games also send high rates of packets (inter-packet time

can be about 25 or 50 milliseconds) [6].

In addition, services using TCP also generate large

amounts of ACK packets without payload. These can also

be considered as “small-packet flows,” with 40 bytes of

header and no payload. For example, when a file is

downloaded, a flow of ACKs is sent to the origin of the

communication. For example, a 3 Mbps file download

using packets of 1,500 bytes, may generate 125 ACKs

per second, using the typical TCP parameters (an ACK

sent every 2 downstream packets).

This is also true for certain online game genres, as

Massively Multiplayer Online Role Playing Games

(MMORPGs), which have become very popular in the

last years, with a special significance in Asia [7]. Many

of these games employ TCP flows for communicating the

actions of the player to the server, and for sending

updates of the game status to the client. So a bidirectional

TCP connection is established, piggybacking ACKs into

normal packets. Nevertheless, up to 56 % of the sent

packets are still pure ACKs, i.e. they have no payload, as

reported in [8].

These high rates of tiny packets translate into an

inefficient usage of network resources, so there is a need

for mechanisms able to reduce the overhead introduced

by these low-efficiency flows. Bandwidth savings are

interesting for network operators, since they may

alleviate the traffic load in their networks.

In addition, the reduction of the amount of packets per

second in the network is desirable for two main reasons:

first, network equipment has a limitation in terms of the

number of packets per second it can manage [9], i.e.

many devices are not able to send small packets back to

back due to processing delay; second, a lower amount of

packets per second will reduce energy consumption in

network equipment since, according to [10], internal

packet processing engines and switching fabric require

60% and 18% of the power consumption of high-end

routers respectively.

Thus, reducing the number of packets to be managed

and switched will reduce the overall energy consumption.

The measurements deployed in [11] on commercial

routers corroborate this: a study using different packet

sizes was presented, and the tests with big packets

showed that energy consumption gets reduced, since a

non-negligible amount of energy is associated to header

processing tasks, and not only to the sending of the

packet itself.

Aggregation is an option considered in wireless

protocols: two different methods for multiplexing a

number of frames together are included in 802.11n and

subsequent versions [12]. They are especially useful

when small frames are to be transported, since

aggregation reduces the number of transmissions, thus

increasing the airtime efficiency [13].

Header compression techniques capable to save

bandwidth for long-term flows using small packets

through the public Internet were developed long ago [14].

They are based on the fact that many header fields

(known as NOCHANGE fields) remain the same for

every packet in a flow. They also reduce the number of

bits of increasing fields (e.g. sequence numbers), by

sending the difference with the previous value (DELTA).

To achieve this, they need to define a context, i.e. a set of

variables synchronized between the sender and the

receiver; and a context identifier has to be added to every

packet, in order to allow the reconstruction of the

received packet. The desynchronization between sender

and receiver may result in a burst of erroneous packets.

The compression and decompression of the headers

implies additional processing in the nodes. In addition,

the most recent header compression techniques [15]

provide a more robust synchronization between the

sender and the receiver, including a set of advanced

features that imply a higher computational cost [14].

Furthermore, header compression presents another

limitation: compressed packets can only traverse a single

Layer-3 hop, since they do not include a standard header.

One solution is to compress and decompress them at each

intermediate node. Another option is to use an end-to-end

tunnel, so as to avoid the additional processing caused by

compression and decompression, but in this case the

tunneling overhead cancels the savings obtained by

header compression.

A solution proposed in [16] is jointly to use

multiplexing, header compression and tunneling. Thus, a

number of header-compressed packets belonging to

different flows can be multiplexed together in the same

frame, to share the tunnel overhead, which becomes

relatively smaller as the number of packets multiplexed

in the same frame grows. This combination allows the

packets to travel end-to-end through a public network

while maintaining a good header reduction rate; as an

additional benefit, the amount of packets per second

traversing the intermediate nodes is significantly reduced,

by a factor equivalent to the average number of

multiplexed packets.

In order to pack a number of packets to be sent

together, a multiplexing period PE can be defined in the

device performing the traffic optimization process. A

multiplexed frame is released at the end of the period, so

the longer the period, the higher the number of

multiplexed packets and the higher the savings. However,

a tradeoff appears, since this multiplexing latency has to

be maintained under a threshold in order to assure the

delay requirements of the service.

This reduction in the header-to-payload rate of the

small-packet flows is also desirable in SDNs. In this

context, the contribution of the present paper is the

proposal of an optimization method for providing

significant bandwidth savings in an Openflow-based

SDN, with three main advantages: i) the tunneling layer

is not necessary, since the SDN provides it in a natural

way; ii) the avoidance of the use of standard header

compression techniques [14] which require a context

synchronization between the sender and the receiver; and

iii) multiplexing reduces the number of frames, so a

number of Ethernet fields (header, inter-frame gap) are

sent only once instead of being repeated for each packet.

Four kinds of small-packet traffic flows will be

JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015 177

© 2015 ACADEMY PUBLISHER

considered (VoIP, UDP and TCP-based online games,

and ACKs from TCP flows), and analyses using public

Internet traces will also be presented.

The remainder of the article is as follows: the next

section summarizes the Related Work. The proposed

method is described in detail in Section III. The expected

savings are analytically obtained in Section IV; the tests

and results are presented in Section V and the paper ends

with the Conclusions and Future Work Section.

II. RELATED WORK

The combination of multiplexing and compression was

first proposed in [16], by the joint use of Enhanced

Compressed RTP [17], PPPMux [18] and L2TPv3 [19]

protocols, with the aim of reducing the overhead of VoIP

flows using RTP. In [20] another multiplexing method

for VoIP was proposed, with the idea of maintaining a

good quality level. The extension of [16] for other real-

time services not based on RTP has also been proposed

recently [21], taking into account that some applications

(e.g. certain online game genres) present a traffic profile

consisting of high rates of small UDP packets [9], very

similar to that of VoIP. However, an end-to-end tunnel is

required for sending compressed packets through the

public Internet.

The use of header compression techniques within an

OpenFlow SDN was first proposed in [22], with the aim

of reducing overhead, and saving the compress-

decompress delay at each hop. The controller would play

the role of establishing the end-to-end tunnel. In order to

avoid decompressing at each hop, L2 information was

used to route the packet. By means of Openflow, packets

compressed with standard techniques were still able to be

correctly routed.

As remarked in [22], focused on IPv6 extension

headers, Openflow 1.1 introduced the possibility of

extensible matches, actions, messages and errors, thus

allowing two controllers or switches to agree on different

syntaxes when matching flows. Thus, different sets of

fields can be selected for matching a flow. This feature is

interesting, since additional fields can be included in the

tuple that Openflow uses for defining a flow, and the

value of these fields will be stored in the controller.

The effect of the required additional delay has also

been explored: in real-time services it may have an

influence on subjective quality. In [23] this effect was

explored with VoIP traffic; in [24] a subjective quality

estimator for a UDP-based game was used; and in [25]

the effect on a TCP-based game was studied. In addition,

if a flow of TCP ACKs is multiplexed, the additional

delay may have an impact on TCP dynamics, taking into

account that this protocol is RTT-based. In [26] the effect

of this delay on TCP was explored, showing the

conditions in which the throughput obtained by

multiplexed flows may be penalized.

The method proposed in the present paper is able to

significantly reduce the overhead in an Openflow-based

SDN. In a similar way to [22], it multiplexes a number of

packets, but it does not rely on standard header

compression techniques based on context synchronization

[14] as, e.g. IPHC or ROHC. We rely on the fact that the

controller in an SDN stores the information about the

fields that remain constant for all the packets in a flow.

Thus, the difference with [22] is that the proposed

method removes the fields that are the same for every

packet on a flow, but these fields are not part of a

“context” but are stored in the controller, as part of the

network global state. In addition, our method does not

require a tunneling protocol, since the SDN itself is able

to provide it.

III. PROPOSED OPTIMIZATION METHOD

In this section the method for optimizing the traffic is

presented. We will use the word “optimized” when

referring to compressed packets. Three steps are

considered, which are explained subsequently.

A. Removing Header Fields Present in the Openflow

Tuple

Under Openflow 1.0 [4] all the switches in a

management domain are connected to a central

controller, and each packet is associated to a flow by

means of a 12-field tuple (Fig. 1), which is used for

assigning the output port at each switch consequently.

When a flow traverses a path within an OpenFlow

SDN, the IP and TCP tuple fields of all the packets are

the same for all the tables of the switches of that path,

and also in the controller. Thus, the IP and TCP protocol

fields already included in the tuple are not needed for

switching decisions but only for matching the packets

with a flow. Thus, if we remove these fields and we

substitute them by a flow identifier (FID), the packet can

then travel in an optimized manner within the SDN. A

new value of the protocol field of PPP could be defined,

in order to flag the packet as optimized (Fig. 2): it begins

with the FID, plus the compressed IP and TCP headers

(i.e. the fields not present in the tuple), and the payload.

This would have some similarities with MPLS or other

technologies in which labels are used for identifying a

flow across the network. However, the idea of a generic

FID would make our solution agnostic of the underlying

technology. Another advantage with respect to those

technologies is that in an SDN the controller has an

overall view of the network, so the ingress and egress

points of the tunnel can be dynamically defined

according to traffic requirements.

An additional advantage of this proposal is that the

FID could be linked to QoS identifiers used in other

networks (e.g. MPLS label, IPv6 flow label, ATM

Virtual Path Identifier VPI and Virtual Channel Identifier

VCI), thus providing quality levels to the packets

traversing the SDN, allowing horizontal QoS mapping

over heterogeneous networks [27], [28].

The authors of [22] proposed an end-to-end header

compression scheme in an SDN context. However, our

proposal does not formally use standard header

compression techniques [14], but it only removes

NOCHANGE fields. The compression of DELTA fields

is not considered, since it would only provide a marginal

increase of the savings, at the cost of some additional

178 JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

© 2015 ACADEMY PUBLISHER

SA,DA,Prot,ToS
In port

SA, DA, type

Ethernet IP TCP

Sport, DPortID, prio

VLAN

Figure 1. Tuple of Openflow 1.0.

complexity. For example, the number of bytes required

by DELTA fields may vary between packets, so

compressed headers with a variable size would appear. In

addition, more processing power would be required for

the compression and decompression of these fields, since

the value of a DELTA field not only depends on the

actual value included in the current packet, but in the

“context”, which depends on the previous ones.

Therefore, when a packet is lost, the potential context

desynchronization can be translated into a burst of bad

packets. The marginal savings to be provided by the use

of DELTA compression would introduce these potential

problems, so we have decided not to consider this feature.

With Openflow 1.0, the skipped fields account for 13

bytes per packet for IPv4/TCP. Considering a 3-byte FID,

10 bytes per packet can be saved, i.e. 25 % of the header,

which may imply a significant bandwidth reduction for

services using small packets.

B. Removing Other Fields

But Openflow 1.1 and subsequent versions also allow

switches and controllers to agree on different flow

matching syntaxes, in order to avoid a too rigid match

structure [29]. Taking advantage of this fact, we consider,

as a second step of our proposal, the inclusion in the tuple

of other NOCHANGE fields of Transport and Network

layers. Although these fields are not strictly required for

identifying a flow, including them in the tuple would

make it possible to remove them from all the packets,

thus allowing even higher header compression ratios. As

a counterpart, we can expect a slight increase of the

storage requirements of the ingress and egress switches

and the controller, but it would only mean 40 bytes per

flow. Furthermore, fields belonging to well-known

application layer protocols can also be included in the

tuple. As an example, RTP is often used for services

based on small packets (VoIP), so removing RTP fields

with a constant value will be translated into significant

savings for these flows.

C. Multiplexing a number of packets in a single frame

Finally, taking advantage of its programmability, the

SDN controller could be able to identify flows sharing a

common path segment within the SDN. In this case,

packets belonging to different flows could be multiplexed

together and sent as a single Eth frame (Fig. 3) in all the

hops of the path. This would require the use of a

multiplexing protocol between the ingress and egress

switches of the common path. PPPMux [18] can be used

for multiplexing.

Finally, the egress switch will use the information

stored in the controller in order to get the value of the

original fields corresponding to each flow (using the

FID). Thus, it will be able to rebuild the packets to their

native form and send them as non-compressed individual

frames.

IV. CALCULATION OF THE EXPECTED SAVINGS

In this section, we present the bandwidth savings that

can be obtained using this traffic optimization method.

The savings are measured as the difference between the

number of bytes required at Eth level when using the

optimization method with respect to the native Openflow

protocol. They are obtained as a function of the number

of multiplexed packets N. We have to consider the Eth

Inter-frame gap in the calculations, since it also limits the

throughput of the network.

Since the time for sending the compressed and the

native traffic is the same, we can define Bandwidth

Savings (BS) as:

native

optimized

Bandwidth

Bandwidth
BS 1

native

optimized

Bytes

Bytes
1 (1)

Bytesnative is defined as (see Fig. 3) the sum of the sizes

of the Eth header (E), the native network and transport

headers (NH), the expected size of the payload (E[P]),

and the Eth trailer (F) and inter-frame gap (G):

 Bytesnative = N • (E+NH+E[P]+F+G) (2)

And the expected size of the multiplexed packet will

be the sum of:

 Ethernet header (E).

 Common header: The PPP headers (PH).

 Multiplex header: The size of the PPPMux
separator included at the beginning of each
multiplexed packet (N•M).

 The flow identifier of each packet (N • FID).

 The compressed Network and Transport level
headers (N • CH).

 The payload of each packet (N • E[P]).

 The Ethernet trailer (F).

 The inter-frame gap (G).

 Bytesoptimized =

 E+PH+N • (M+FID+CH+E[P]) +F+G (3)

If we substitute (3) and (2) in (1), we obtain the

bandwidth savings, which can be separated into a fixed

and a variable term (which depends on the number of

multiplexed packets). The fixed term, which is the

asymptote of the bandwidth savings, can be expressed as:

GFPENHE

PECHFIDM

][

][
1 (4)

And the term which depends on the number of packets,

giving us an idea of how the common header is shared

between the multiplexed packets, is:

GFPENHE

GFPHE

N

][

1
 (5)

JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015 179

© 2015 ACADEMY PUBLISHER

PayloadNative

headers

Payload
Compressed

headers

FID

SDN controller

Ingress

EgressIP TCP TCPIP IP TCPTCPIP

Optimization within SDN

Figure 2. Scheme of the header compression within the SDN.

E

E

IPv4 header: 20 bytes

TCP header: 20 bytes Inter-frame gap: 12 bytes

PPP Common header: 1 byte

PPPMux header: 2 bytes

T

IP

Payload

IPTwo Eth/IPv4/TCP

frames with

P=20bytes:

T P E IP T P

T P IP T P GIP F

G

F GF

One Eth PPP frame including the two packets:

E Eth header: 26 bytes*

G

FID: 3 bytes

F Eth FCS: 4 bytes

P

PH

M

FID

M

FID

M

PH

FID

* The Eth header includes 4 bytes of VLAN 802.1Q

Figure 3. Scheme of two frames multiplexed together (real scale).

Regarding the reduction in the amount of packets per

second, the results are similar to those reported in [21],

i.e. a reduction by a factor of N.

V. TESTS AND RESULTS

This section is divided into the following parts: first,

four different traffic patterns of small packets are tested,

in order to calculate the savings expected by the use of

the proposed method; second, different traffic traces

publicly available are tested, in order to estimate the

expected savings that could be obtained when using the

traffic optimization method in a SDN. Finally, the effect

of the additional delays is discussed.

A. Small-packet patterns

In order to evaluate the performance gains of this

approach, four different traffic patterns have been

selected:

a) VoIP using IP/UDP/RTP (40 bytes header for IPv4

and 60 for IPv6) and G.729 codec with 2 samples per

packet (20 bytes payload) every 20 ms.

b) Client-to-server flows of a UDP-based online game

[9] (28 or 48 bytes header), with 24.65 packets per

second, and an average payload of 41.09 bytes.

c) Client-to-server flows of a TCP-based online game

[8] (40 or 60 bytes header) of 9.51 packets per second

with an average payload of 8.74 bytes.

d) IPv4/TCP ACKs of 40 or 60 bytes.

Table I enumerates the fields that present a static

behavior for the considered traffic patterns, and can be

considered as NOCHANGE. Other fields may also be

selected depending on the application and the service

(e.g. in VoIP or TCP ACKs using IPv6, the Payload

Length field could also be avoided, since it is fixed).

The value of the asymptote (4) for the different traffic

patterns is shown in Table II. As a consequence of the

compression of the headers and multiplexing, which

reduces the total amount of Eth frames, up to 72 % of the

bandwidth can be saved if IPv4 is used. When using

IPv6, this figure rises up to 81 %. The savings for all the

flows are above 50 %. The ACKs flow is the one that

obtains the best savings, due to the absence of payload. In

the case of the UDP-based game, the header-to-payload

180 JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

© 2015 ACADEMY PUBLISHER

ratio is the lowest, so it is the pattern which shows the

lowest savings.

The variable term (5) reports the number of packets

required for obtaining significant savings. In order to

study its influence, we have built Fig. 4. It can be seen

that high values of bandwidth savings are obtained not

only when 20 packets are multiplexed, but we also obtain

similar results for smaller numbers of packets (e.g. 10

packets); and even with 2 packets we can still save 40 %

of bandwidth in some cases. These savings are even more

significant if IPv6 is used (Fig. 4 b), since the overhead

of this protocol is higher than that of its predecessor. In

this case, bandwidth savings can reach 78 %.

B. Public Traffic Traces

In this subsection we present a series of tests with the

aim of estimating the savings which can be obtained

when applying the proposed optimization method in

typical network scenarios. For that aim, we have used

some publicly available traffic traces, and applied the

method to them. We have taken an approach based on

establishing a multiplexing period, and sending a

multiplexed packet at the end of each interval. If the

MTU size is reached before the end of the period, the

sending is triggered and a new period begins (Fig. 5). A

multiplexed packet including a number of compressed

ones is sent at the end of each period.

Taking into account that multiplexing achieves high

gains when applied to small packets, a size limit can be

established in the ingress switch (see Fig. 6): packets

above the limit are sent to a queue, whereas those under

the limit are sent to another one, where they are

optimized (header compression and multiplexing) before

being sent.

TABLE I. FIELDS CONSIDERED AS NOCHANGE FOR THE

STUDIED PATTERNS

IPv4 IPv6 TCP/UDP RTP

Version Version Source Port Version

IHL Traffic Class Dest. Port P

DSCP Flow Label Data Offset X

ECN Next Header Reserved CC

Time To Live Hop Limit Urgent Pointer M

Protocol
Source

Address
 PT

Source Address Dest. Address SSRC id

Dest. Address

TABLE II. ASYMPTOTIC SAVINGS FOR THE STUDIED PATTERNS

 VoIP UDP game TCP game TCP ACKs

IPv4 62.75 % 52.21 % 65.02 % 72.62 %

IPv6 72.13 % 62.55 % 74.95 % 81.37 %

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B
a

n
d

w
id

th
 s

a
v
in

g
 p

e
rc

e
n

ta
g

e

number of packets

Bandwidth savings IPv4

VoIP

UDP game

TCP game

ACKs

 (a)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

B
a

n
d

w
id

th
 s

a
v
in

g
 p

e
rc

e
n

ta
g

e

number of packets

Bandwidth savings IPv6

VoIP

UDP game

TCP game

ACKs

 (b)

Figure 4. Bandwidth savings for each pattern a) using IPv4; b) using

IPv6.

Period

. . .

. . .

Native traffic

Optimized traffic

t<Period Period

. . .

. . .

. . .

. . .

. . .

. . .

Figure 5. Multiplexing method scheme.

Size< limit

Size> limit

optimization

Figure 6. Scheme of the queues in the ingress device.

Four public traffic traces have been used, which main

characteristics are summarized in Table III. They have

been selected in order to consider scenarios with very

different throughput levels (only the first 200,000 packets

of each trace have been used for the tests):

JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015 181

© 2015 ACADEMY PUBLISHER

a) Chicago: A trace obtained from CAIDA’s passive

monitor ‘equinix-chicago’ [30], with 1.5 Gbps of traffic.

b) DSL-uplink: Two hundred ADSL customers, mostly

student dorms, are connected to an access network [31].

The resulting throughput is 125 Mbps.

c) Education-downlink: A downlink trace obtained

from a 100 Mbps Ethernet link connecting an educational

organization (around 35 employees and a little over 100

students) to the Internet [31] 1. The average throughput is

only 107 kbps.

d) Education-uplink: The corresponding uplink part of

trace c) 2. The average throughput is even lower: just 13

kbps.

These traces have been exported to Matlab, where

simulations implementing the optimization method have

been performed. The Matlab script first separates the

traffic according to its size, and then implements the

multiplexing and compressing method, producing an

output file with the sizes and departure times of the

optimized frames.

Fig. 7 to 10 represent the obtained packet size

histograms of each of the studied traffic traces. Please

note that a logarithmic scale has been used for the Y axis.

A peak corresponding to very low sizes can be observed

in all the traces, which represents TCP ACKs and other

small-packet flows. Other peak corresponding to near-to-

MTU packets is always present. In the two uplink traces,

the number of small packets is higher than the number of

MTU ones: this corresponds to the fact that people tend

to download files (big packets) and this generates high

rates of ACKs (small packets) in the uplink.

The optimization method has been applied to the

traces, using a multiplexing period (PE) of 100 ms, and

different values for the limit used for defining a packet as

“small”. Fig. 11 to 14 represent the packet size

histograms of the optimized flows when the size limit is

set to 1000 bytes; Fig. 15 presents the reduction in terms

of packets per second of each trace, as a function of the

size limit; finally, Fig. 16 reports the bandwidth savings,

obtained using equation (1).

TABLE III. CHARACTERISTICS OF THE USED TRACES

Chicago

DSL
uplink

Education
downlink

Education
uplink

Duration 0.783 sec 7.081 sec 14 882 sec 18 364 sec

Number

of packets
200 000 200 000 200 000 200 000

Throughp

ut
1 547 Mbps 125 Mbps 107 kbps 13 kbps

Packets

per

second

255 332
pps

28 245 pps 13.43 pps 10.8 pps

Average

packet

size

757.7 bytes
553.7
bytes

991.6 bytes 150.9 bytes

1 The trace has been filtered with Wireshark using

‘ip.src!=192.168.0.0/16’ for obtaining the downlink packets.
2 The filter in this case is ‘ip.dst!=192.168.0.0/16’

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a
c
k
e
ts

Packet size [bytes]

Packet size histogram Chicago

Figure 7. Packet size histogram of the Chicago trace.

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a
c
k
e
ts

Packet size [bytes]

Packet size histogram DSL uplink

Figure 8. Packet size histogram of the DSL_uplink trace.

1

10

100

1000

10000

100000

1000000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a

c
k

e
ts

Packet size [bytes]

Packet size histogram Education downlink

Figure 9. Packet size histogram of the education_downlink trace.

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a
c
k
e
ts

Packet size [bytes]

Packet size histogram Education uplink

Figure 10. Packet size histogram of the education_uplink trace.

182 JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

© 2015 ACADEMY PUBLISHER

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a
c
k
e
ts

Packet size [bytes]

Optimized packet size histogram Chicago (size limit=1000 bytes)

Figure 11. Packet size histogram of the optimized Chicago trace.

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a
c
k
e
ts

Packet size [bytes]

Optimized packet size histogram DSL uplink (size limit=1000 bytes)

Figure 12. Packet size histogram of the optimized DSL_uplink trace.

1

10

100

1000

10000

100000

1000000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a

c
k

e
ts

Packet size [bytes]

Optimized packet size histogram Education downlink (size limit=1000 bytes)

Figure 13. Size histogram of the optimized education_downlink trace.

1

10

100

1000

10000

100000

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

N
u

m
b

e
r

o
f

p
a
c
k
e
ts

Packet size [bytes]

Optimized packet size histogram Education uplink (size limit=1000 bytes)

Figure 14. Size histogram of the optimized education_uplink trace.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

P
e
rc

e
n

ta
g

e
 o

f
re

d
u

c
ti

o
n

Size limit [bytes]

Packets per second reduction
Chicago

DSL uplink

Education downlink

Education uplink

Figure 15. Packets per second savings for each trace using a

multiplexing period of 100 milliseconds.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

P
e
rc

e
n

ta
g

e
 o

f
re

d
u

c
ti

o
n

Size limit [bytes]

Bandwidth savings
Chicago

DSL uplink

Education downlink

Education uplink

Figure 16. Bandwidth savings for each trace using a multiplexing

period of 100 milliseconds.

It can be seen that for the two high-throughput traces

(Chicago and DSL_uplink), the small packets can be

almost totally avoided (see Fig. 11 and 12). The cause is

that the amount of packets per second is very high, so a

significant number of small packets can be multiplexed

together. As shown in Fig. 15, this is translated into

significant reduction in the amount of packets per second

(50 % for Chicago and 60 % for DSL_uplink). However,

the reduction is not very significant in terms of

bandwidth (between 1 and 4 %), see Fig. 16. The cause is

that big packets account for the vast majority of the

bandwidth of the trace.

Regarding the two Education traces, it can be seen that

the amount of small packets is significantly reduced in

both cases. However, the savings are higher in the uplink

(75 % of packets per second reduction and 17 % of

bandwidth savings), since the amount of big packets in

the uplink is significantly lower than in the downlink (see

Fig. 9 and 10).

All in all, a conclusion can be drawn: the method is

able to modify the traffic profile of all the flows (compare

Fig. 7 to 10 with their corresponding ones Fig. 11 to 14),

making a sort of “shifting” of the small packets towards

higher sizes. This is translated into significant reductions

in the number of packets to be managed by the network,

which can, in turn, lower the energy consumption, taking

into account that packet processing and switching is the

most energy-consuming task in high-end routers [10].

JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015 183

© 2015 ACADEMY PUBLISHER

Traffic optimization will certainly require an increase

of the processing capacity in the ingress and egress

switches, taking into account that they will have to

optimize and rebuild the packets respectively. However,

this increase would be cancelled out over the network,

since the number of frames to switch would be reduced in

the intermediate elements. As a consequence, the

processing capacity could be increased in the edge

devices and reduced in the intermediate ones.

C. Effect of the Additional Delays

As a counterpart of savings, an additional latency must

be added to the multiplexed packets, caused by the

retention time required in the ingress switch in order to

get a number of packets before building the multiplexed

frame. This new multiplexing delay may have a different

effect depending on the nature of the service which

packets are being multiplexed. As stated in [32], the most

important factors on e.g. a voice conversation are

transmission quality and ease of communication; whereas

in web browsing the most important parameter is the

download time.

Another problem is that the translation between

objective QoS parameters and subjective QoE is not

straightforward. In [33] a generic quantitative relationship

between them was proposed, and an exponential formula

was devised.

In the case of real-time services, the proposed method

should avoid the addition of delays which could impair

user’s experience, so an upper bound must be defined for

the multiplexing period. Another potential problem,

studied in [26], can be the reduction of the sending rate of

TCP flows, since TCP is a closed loop protocol governed

by ACK arrivals. However, as we will next see, these

additional delays can be really small, and in some cases

can be an almost negligible contribution to the end-to-end

latency.

Table IV shows the average delay and jitter (standard

deviation of the delay) added to the packets of the public

traffic traces, as a consequence of the use of the

optimization method. We have repeated the tests using

PE=10 ms, in addition to the value of 100 ms employed

before. The reduction in packets per second and

bandwidth (size limit = 1000 bytes) are also reported.

As it can be seen in the table, in the case of Chicago

and DSL_uplink traces, the additional delay is negligible

(less than 1 ms). This means that the multiplexing period

never expires, but the sending is triggered by the fact of

the multiplexed packet being near the MTU. In fact, it

can be observed that the values are roughly the same for

both values of the period.

However, for the Education traces, the average delay is

roughly PE/2, which would correspond with a delay

uniformly distributed between 0 and PE. The value is

slightly lower taking into account that some periods do

not end because of MTU completion. The value of the

additional jitter is PE/sqrt(12), as explained in [24].

TABLE IV. ADDITIONAL DELAY AND JITTER ADDED TO EACH

TRACE (MILLISECONDS)

PE [ms] Chicago
DSL

uplink
Education
downlink

Education
uplink

10

ms

delay 0.057 0.439 5.01 4.96

jitter 0.050 0.384 2.91 2.90

pps

savings
48.95 % 62.63 % 9.55 % 45.63 %

BW

savings
1.59 % 3.62 % 0.17 % 8.68 %

100

ms

delay 0.057 0.439 46.05 45.92

jitter 0.050 0.397 29.77 29.67

pps
savings

48.95 % 62.64 % 25.71 % 77.78 %

BW

savings
1.59 % 3.63 % 0.86 % 17.59 %

Regarding bandwidth and pps savings, they remain the

same for the Chicago and DSL_uplink traces, despite the

value of the multiplexing period, since in fact the period

never expires. However, the savings become lower for

the Education traces if the period gets reduced from 100

to 10 ms: in the uplink, the pps savings get reduced from

77 to 45 %, and the bandwidth saving becomes only 8 %.

In the downlink, the pps savings drop from 25.7 to 9.5 %.

Bandwidth savings are marginal in both cases. The cause

of the savings being reduced with the period is clear: if

the period is shorter, a lower number of packets can be

multiplexed. However, the savings in terms of packets

per second are still significant, especially in the uplink,

and only 5 ms of latency are added.

In [34] a study of the factors influencing subjective

quality for mobile users was presented, and the increase

of the delay was related to MOS reduction. However, in

that study the values of the RTT were much higher than

the ones considered in the current proposal. In addition,

the influence of the delays caused by optimization

techniques on subjective quality for real-time services has

been explored before for VoIP [20], [23] and online

games [24], and it has been shown that user’s perceived

quality can be maintained in acceptable levels.

The provision of a good quality is possible because of

three facts: first, the high rates of real-time traffic

patterns: VoIP generates a packet every 20 ms; inter-

packet time for the studied games are 40 and 105 ms

respectively; and a 100 pps ACK flow can be easily

found on the Internet. If the aggregated traffic is high

enough, the delay can be kept low. Second, an upper

bound can be set on the added delay, by the use of a

suitable value of the multiplexing interval. For this aim,

traffic classification based on flows’ statistics can

automatically detect traffic patterns corresponding to

certain services, and this information can be used to

establish the interactivity requirements of a given flow

[35], and to set the multiplexing period accordingly.

Third, significant bandwidth savings are obtained even if

only two packets are multiplexed.

184 JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

© 2015 ACADEMY PUBLISHER

VII. CONCLUSIONS AND FUTURE WORK

A method able to save bandwidth, and to reduce the

amount of packets per second, for services using small

packets in OpenFlow SDNs, has been proposed. It is

based on multiplexing together different flows sharing a

common network path, and compressing packet headers.

For this aim, the fields that are the same for all the

packets in a flow are included in the Openflow tuple, and

then avoided in the intermediate hops.

Bandwidth savings up to 68 % for IPv4 and 78 % for

IPv6 can be obtained for isolated flows of small-packet

services. As a counterpart, latency would be slightly

increased, but the additional delay can be kept under

tolerable limits for services sending high packet rates.

The optimization method has also been applied to four

public Internet traffic traces, and significant reductions in

terms of packets per second have been demonstrated.

Bandwidth is also reduced, especially in those traces

where the percentage of small packets is high. The

additional delay can be kept very low (below 1

millisecond) if the throughput is high, but it may become

significant for low-throughput traces. Thus, a trade-off

between bandwidth saving and additional delay appears

in those cases.

Some lines for future work have been identified: a

prototype of the proposed traffic optimizer would allow

an extensive battery of measurements, including e.g. the

processing delays which would appear when compressing

the packets. In addition, a running implementation would

permit to study the trade-off between the energy savings

(mainly produced by the reduction in terms of packets per

second), and the increase of the processing charge at the

ingress and egress elements. Finally, the use of machine-

learning methods for automatic identification of traffic

patterns would enable a better control of the optimization

period, so as not to add undesired delays to services with

delay limits.

REFERENCES

[1] J. Saldana, F. Pascual, D.de Hoz, J. Fernandez-Navajas, J.

Ruiz-Mas, D. R. Lopez, D. Florez, J. A. Castell, M. Nunez,

“Optimization of Low-efficiency Traffic in OpenFlow

Software Defined Networks,” Proc. International

Symposium on Performance Evaluation of Computer and

Telecommunication Systems SPECTS 2014, pp. 550-555,

Monterey, CA, USA, July 6-10, 2014.

[2] J. Schulz-Zander, L. Suresh, N. Sarrar, A. Feldmann, T.

Hühn, R. Merz, “Programmatic orchestration of wifi

networks,” In 2014 USENIX Annual Technical

Conference (USENIX ATC 14) (pp. 347-358). USENIX

Association.

[3] A. Sathiaseelan, C. Rotsos, C. S. Sriram, D. Trossen, P.

Papadimitriou, J. Crowcroft, “Virtual Public Networks,”

Second European Workshop on Software Defined

Networking (EWSDN), Berlin, October 2013.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, J. Turner, “OpenFlow: enabling

innovation in campus networks,” in ACM SIGCOMM

Computer Communication Review, 38(2), pp. 69-74, 2008.

[5] Huawei, “Smartphone Solutions White Paper”, Issue 2,

2012.07.17. Available at: http://www.huawei.com/ilink/en/

download/HW_193034

[6] S. Ratti B. Hariri, S. Shirmohammadi, “A Survey of First-

Person Shooter Gaming Traffic on the Internet,” IEEE

Internet Computing 14, 5: 60-69, 2010.

[7] K-T. Chen, P. Huang, C-Y. Huang, C-L. Lei. “Game

traffic analysis: An MMORPG perspective,” Computer

Networks 50.16 (2006): 3002-3023.

[8] P. Svoboda, W. Karner, M. Rupp, “Traffic Analysis and

Modeling for World of Warcraft,” in Proc. IEEE

International Conference on Communications, ICC,

Urbana-Champaign, IL, USA, 2007.

[9] W.C. Feng, F. Chang, W. Feng, J. Walpole, “A traffic

characterization of popular on-line games,” IEEE/ACM

Transactions on Networking 13.3: 488-500, 2005.

[10] R. Bolla, R. Bruschi, F. Davoli, F .Cucchietti, “Energy

Efficiency in the Future Internet: A Survey of Existing

Approaches and Trends in Energy-Aware Fixed Network

Infrastructures”, Communications Surveys & Tutorials,

IEEE, vol.13, no.2, pp.223-244, Second Quarter 2011.

[11] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang,

S. Wright, “Power Awareness in Network Design and

Routing”, INFOCOM 2008. The 27th Conference on

Computer Communications. IEEE, vol., no., pp.457-465,

13-18 Apr. 2008.

[12] B. Ginzburg, A. Kesselman, “Performance analysis of A-

MPDU and A-MSDU aggregation in IEEE 802.11n,”

Sarnoff Symposium, 2007 IEEE.

[13] A. Saif, M. Othman, S. Subramaniam, N. AbdulHamid,

“Impact of aggregation headers on aggregating small

MSDUs in 802.11n WLANs,” Computer Applications and

Industrial Electronics (ICCAIE), 2010 International

Conference on , pp.630,635, 5-8 Dec. 2010.

[14] E. Ertekin, C. Christou, “Internet protocol header

compression, robust header compression, and their

applicability in the global information grid,” IEEE

Communications Magazine, vol. 42, pp. 106-116, Nov.

2004.

[15] K. Sandlund, G. Pelletier, L-E. Jonsson, “The RObust

Header Compression (ROHC) Framework,” RFC 5795,

2010.

[16] B. Thompson, D. Wing, T. Koren, “Tunneling Multiplexed

Compressed RTP (TCRTP),” RFC4170. 2005.

[17] T. Koren, S. Casner, J. Geevarghese, B. Thompson, P.

Ruddy, “Enhanced Compressed RTP (CRTP) for Links

with High Delay, Packet Loss and Reordering,” RFC 3545,

2003.

[18] R. Pazhyannur, I. Ali, C. Fox, “PPP Multiplexing,” RFC

3153, 2001.

[19] J. Lau, M. Townsley, I. Goyret, “Layer Two Tunneling

Protocol - Version 3 (L2TPv3),” RFC 3931, 2005.

[20] R. M. Pereira, L.M. Tarouco, “Adaptive Multiplexing

Based on E-model for Reducing Network Overhead in

Voice over IP Security Ensuring Conversation Quality,” in

Proc. Fourth international Conference on Digital

Telecommunications, Washington, DC, pp. 53–58, Jul.

2009.

[21] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, D. Wing,

M. Perumal, M. Ramalho, G. Camarillo, F. Pascual, D. R

Lopez, M. Nunez, D. Florez, J.A. Castell, T. de Cola, M.

Berioli, “Emerging real-time services: optimizing traffic by

smart cooperation in the network,” Communications

Magazine, IEEE, vol.51, no.11, pp.127,136, Nov 2013.

[22] S. Jivorasetkul, M. Shimamura, K. Iida, “End-to-End

Header Compression over Software-Defined Networks: A

Low Latency Network Architecture,” in Proc. Int. Conf. on

Intelligent Networking and Collaborative Systems,

Washington DC, USA, pp. 493-494, 2012.

JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015 185

© 2015 ACADEMY PUBLISHER

[23] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, J. Murillo,

E. Viruete, J. I. Aznar, “Evaluating the Influence of

Multiplexing Schemes and Buffer Implementation on

Perceived VoIP Conversation Quality,” Computer

Networks (Elsevier), vol 56, Issue 7, pp. 1893-1919, May

2012.

[24] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, E. Viruete

Navarro, L. Casadesus, “Online FPS Games: Effect of

Router Buffer and Multiplexing Techniques on Subjective

Quality Estimators,” Multimedia Tools and Applications,

Vol. 71, Issue 3, pp 1823-1856, Aug 2014, Springer.

[25] J. Saldana, “The Effect of Multiplexing Delay on

MMORPG TCP Traffic Flows,” Consumer

Communications and Networking Conference, CCNC

2014. Las Vegas, pp 447-452, Jan 2014.

[26] J. Saldana, J. Fernandez-Navajas, J. Ruiz-Mas, “Can We

Multiplex ACKs without Harming the Performance of

TCP?,” Consumer Communications and Networking

Conference, CCNC 2014. Las Vegas, pp 921-922, Jan

2014.

[27] M. Marchese, “Quality of Service over Heterogeneous

Networks,” Wiley & Sons, Chichester, UK, 2007.

[28] T. Braun, M. Diaz, J.E. Gabeiras, T. Staub, “End-to-End

Quality of Service Over Heterogeneous Networks,”

Springer Science & Business Media, 2008.

[29] R.R. Denicol, E.L. Fernandes, C.E. Rothenberg, Z.L. Kis,

“On IPv6 support in OpenFlow via Flexible Match

Structures,” Nov 2011.

[30] The CAIDA UCSD equinix-chicago- 20140619-130100,

https://data.caida.org/datasets/passive-2014/equinix-

chicago/20140619-130000.UTC/

[31] R. R. R. Barbosa, R. Sadre, A. Pras, R. Meent,

“Simpleweb/university of Twente traffic traces data

repository, 2010”.

DSL trace: https://traces.simpleweb.org/traces/TCP-

IP/location4/loc4-20040207-2001.bz2

Education trace: https://traces.simpleweb.org/traces/TCP-

IP/location6/loc6-20070615-1644.gz

[32] S. Jelassi, G. Rubino, H. Melvin, H. Youssef, G. Pujolle,

“Quality of Experience of VoIP Service: A Survey of

Assessment Approaches and Open Issues,”

Communications Surveys & Tutorials, IEEE, Vol. 14,

Issue 2, 2012.

[33] M. Fiedler, T. Hossfeld, P. Tran-Gia, “A generic

quantitative relationship between quality of experience and

quality of service,” Network, IEEE, Vol. 24, Issue: 2,

2010, pp. 36-41.

[34] S. Ickin, K. Wac, M. Fiedler, L. Janowski, J.H. Hong, A.K.

Dey, “Factors influencing quality of experience of

commonly used mobile applications,” Communications

Magazine, IEEE, Vol. 50, Issue: 4, 2012, pp 48-56.

[35] T. T. Nguyen, G. Armitage, P. Branch, S. Zander, “Timely

and continuous machine-learning-based classification for

interactive IP traffic,” IEEE/ACM Trans. on Networking,

20(6), pp 1880-1894, 2012.

Jose Saldana, San Sebastian, 1974, received his B.S. and M.S.

in Telecommunications Engineering from University of

Zaragoza, in 1998 and 2008, respectively. He received his Ph.D.

degree in Information Technologies in 2011.

He is currently a research fellow in the Department of

Engineering and Communications of the same University. He

has published a number of research articles, as “First person

shooters: can a smarter network save bandwidth without

annoying the players?, Communications Magazine, IEEE 49

(11), 190-198; “Evaluating the influence of multiplexing

schemes and buffer implementation on perceived VoIP

conversation quality,” Computer Networks 56 (7), 1893-1919.

His research interests focus on Quality of Service in Real-time

Multimedia Services, as VoIP and networked online games.

Dr. Saldana is a Member of IEEE and ISOC. He has

participated in the Organization and Technical Committees of

international conferences, as IEEE CCNC, Globecom or ICC.

Jorge David de Hoz Diego was born in Valladolid, Spain in

1983. He received his Telecommunications Engineering degree

from the University of Valladolid in 2008, and his M.S. from

the University of Zaragoza, Spain in 2013.

He worked from 2008 to 2009 at FURIA government

consortium. He focused on researching and the validation of

DVB-H/DVB-SH standards and involved technologies. In 2011

he cofounded Ateire Tecnología y Comunicación in Zaragoza,

Spain where participated developing Digital Signage

technology. In 2013 he also cofounded Servicios de TI de

Durango in Mexico as a subsidiary of the Spanish firm. He is

currently leading in this business a research project partially

funded by CONACY about Digital Signage networks and its

architecture.

Julián Fernández-Navajas was born in Alfaro (La Rioja,

Spain), graduating with honours in Telecommunications

Engineering degree from the Polytechnic University of

Valencia, Spain, in 1993, and receiving his Ph.D. degree "cum

Laude" from University of Zaragoza, Spain, in 2000. He is

currently an Associate Professor in the Centro Politécnico

Superior, Universidad de Zaragoza.

His professional research interests are in Quality of Service

(QoS), Network Management, Telephony over IP, Mobile

Networks, online gaming and other related topics. He is and was

responsible investigator in several national and international

projects related to the research mentioned above and has

published several research works on impact journals and

magazines such as IEEE Communications Magazine, IEEE

Communications Letters, Computer Networks, Multimedia

Tools and Applications, International Journal of Medical

Informatics and so on.

José Ruiz Mas received the Engineer of Telecommunications

degree from the Universitat Politècnica de Catalunya (UPC),

Spain, in 1991 and the Ph.D. degree from the University of

Zaragoza (UZ) in 2001. He worked as a software engineer at the

company TAO Open Systems from 1992 to 1994. In 1994 he

joined the Higher Engineering and Architecture School of UZ

as an Assistant Professor until 2003, when he became an

Associate Professor.

He is with the Department of Electronics Engineering and

Communications in the Higher Engineering and Architecture

School of UZ. He is member of the Aragón Institute of

Engineering Research (I3A). He is co-investigator since 1995 of

research grants from the Ministry of Science and Technology,

the Sanitary Research Funds and the Government of Aragon

(Spain) in the areas of distributed multimedia systems and

wireless networks. At present his research activity lies in the

area of Quality of Service in Multimedia Services with special

emphasis on the provision of methodologies and tools to assess

the perception of the end-user (Quality of Experience, QoE).

Fernando Pascual Blanco, Madrid, 1983, received his

Telecommunications Engineering degree from the Alcalá de

Henares University (UAH) in 2007, and his Master’s in

Information Technologies and Communications, major in

Computer Engineering and Networks, from the same university

in 2011.

186 JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015

© 2015 ACADEMY PUBLISHER

He has worked at Telefonica I+D since 2006, and his

professional career is focused on network intelligence and M2M

services development for the Telefonica group. He is currently

working for Telefonica Global CTO department where his

responsibilities are focused on the mobile core networks as core

network engineer expert.

Diego R. Lopez, PhD, joined Telefonica I+D in 2011 as a

Senior Technology Expert on network middleware and services.

He is currently in charge of the Technology Exploration

activities within the GCTO Unit of Telefónica I+D. Before

joining Telefónica he spent some years in the academic sector,

dedicated to research on network service abstractions and the

development of APIs based on them. During this period he was

appointed as member of the High Level Expert Group on

Scientific Data Infrastructures by the European Commission.

Dr. Lopez is currently focused on identifying and evaluating

new opportunities in technologies applicable to network

infrastructures, and the coordination of national and

international collaboration activities. His current interests are

related to network virtualization, infrastructural services,

network management, new network architectures, and network

security. Diego is actively participating in the ETSI ISG on

Network Function Virtualization (chairing its Technical

Steering Committee), the ONF, and the IETF WGs connected to

these activities.

David Flórez was born in Madrid on 28/05/1967. He finished

his high school education in 1984 and obtained a Degree in

Telecommunications Engineering for the ETSIT of Madrid,

Spain in 1990.

He served his military term in the Spanish Army during

1991. In 1992 started working in the Image Processing Group of

the ETSIT of Madrid, year when he also joined Telefonica,

where he currently works in charge of coordinating the

signaling strategy and procurement for the Telefonica group,

located in Madrid, Spain. In the past he has been involved in the

European projects EMN, RAMA, Mintour, Mobicome, Vital++,

Secured, R2D2 and Romeo, the last two ones as coordinator. He

also collaborated in the multigroup PSSBA project and its

follow-up PSA, for the DSL deployment in South America,

where he contributed as software quality expert. Before that he

worked as programmer in the project VEMMI, SIMMA and

Connected Life and to coordinate later the GIE, AvisaBuzon

and LM for Telefonica online site.

Juan Antonio Castell was born in Madrid, 1970. He holds a

Technical Engineering Degree from the Polytechnic University

of Madrid (Spain) in 1991.

He currently works as Technological Expert at Telefonica, in

the Global CTO office, sited at Madrid, Spain. He is in charge

of the architectural solution for the data access (elements like

the PCRF, DPI, network proxy, etc.) from the technical point of

view. Since 2010 until December 2013 he was the technical

coordinator of the Telefónica I+D innovation activities related

with network intelligence and signaling/control protocols. In his

professional beginning, he started working as analyst-

programmer in different companies always for

telecommunications projects; after that, he joined Telefónica

I+D where the first requested task as employee was to

implement the first AAA server for its IP network, Infovia+, in

1997. Since that moment until 2010 he was responsible of the

AAA and DNS implementations for Telefonica Spain IP

services.

He is also author or contributor of several patents regarding

these concepts.

Manuel Núñez Sanz received a six years degree in

Telecommunications Engineering from the Polytechnic

University of Madrid (Spain) in 1997. That same year he was

employed as research engineer in Telefónica I+D and he is

currently head of core network in TEF Global CTO where he is

in charge of technological coordination and economical control

in core network topics.

He is author or coauthor of several international patents in

control technologies and network signaling (see

WO2012065658, EP2782320, etc.). He has collaborated in

some published articles (see “Emerging Real-Time Services…”

in IEEE Communications Magazine in November 2013) and

books (see “3D Future Internet Media” by Springer) and has

been invited as speaker in some international forums (WebRTC

Global Summit 2014 London, IMS World Forum 2014

Barcelona).

JOURNAL OF NETWORKS, VOL. 10, NO. 4, APRIL 2015 187

© 2015 ACADEMY PUBLISHER

