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ABSTRACT 

The oxidation of dimethoxymethane (DMM) has been studied under a wide range of 

temperatures (373-1073 K), pressures (20-60 bar) and air excess ratios (λ=0.7, 1 and 20), 

from both experimental and modeling points of view. Experimental results have been 

interpreted and analyzed in terms of a detailed gas-phase chemical kinetic mechanism for 

describing the DMM oxidation. The results show that the DMM oxidation regime for 20, 40 

and 60 bar is very similar for both reducing and stoichiometric conditions. For oxidizing 

conditions, a plateau in the DMM, CO and CO2 concentration profiles as a function of the 

temperature can be observed. This zone seems to be associated to the peroxy intermediate, 

CH3OCH2O2, whose formation and consumption reactions appear to be important for the 

description of DMM conversion under high pressure and high oxygen concentration 

conditions. 
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Introduction 

Diesel engines are used for transportation because of their high fuel efficiency. However, they 

highly contribute to nitrogen oxides (NOx) and particulate matter (PM) emissions, which are 

difficult to reduce simultaneously in conventional diesel engines (NOx formation is favored 

under fuel-lean conditions, whereas PM is formed when there is a lack of oxygen). The 

addition of oxygenated compounds to diesel fuel can effectively reduce these emissions [1-4]. 

For instance, the reduction of smoke has been reported to be strongly related to the oxygen 

content of blends [5] without increasing the NOx and engine thermal efficiency. 

Dimethoxymethane (methylal or DMM, CH3OCH2OCH3) is a diether considered to be a 

potential fuel additive. In comparison to the simplest ether, dimethyl ether (DME), that has 

been widely proposed and tested for using with diesel fuel as a means of reducing exhaust 

emissions [6-7], DMM has a higher quantity of oxygen, lower vapor pressure, and better 

solubility with diesel fuel. Several studies have analyzed the effect of adding DMM to base 

diesel on emissions of compression ignition engines or direct injection engines (e. g. Ren et 

al. 2006 [8]) and, in general, diesel-DMM blends increase engine performance and decrease 

exhaust emissions. 

Huang et al. [9] studied the combustion and the emissions of a compression ignition engine 

fuelled with blends of diesel-DMM. They found that a remarkable reduction in the exhaust 

CO and smoke can be achieved when operating with diesel-DMM blends, and a simultaneous 

reduction in both NOx and smoke can be obtained with large DMM additions. Sathiyagnanam 

and Saravanan [10] also analyzed the effects of DMM addition to diesel, and obtained an 

appreciable reduction of emissions such as smoke density, particulate matter, and a marginal 

increase in the performance when compared with the normal diesel run. Chen et al. [11] 

developed an experimental and modeling study of the effects of adding oxygenated fuels to 
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premixed n-heptane flames and found that, as oxygenated fuels were added, mole fractions of 

most C1-C5 hydrocarbon intermediates were significantly reduced together with an apparent 

decrease of benzene amount. 

Although a great volume of experiments have been conducted to determine the effects of 

diesel-DMM blends in the CO and smoke emissions, few studies have been focused on the 

combustion characteristics of pure DMM fuel at high temperatures [12] and even less at high 

pressures. 

Daly et al. [13] investigated the oxidation of DMM in a jet-stirred reactor at a pressure of 5.07 

bar, high temperatures of 800-1200 K and equivalence ratios of 0.444 (λ=2.25), 0.889 

(λ=1.13) and 1.778 (λ=0.56), and proposed a sub-mechanism of 50 reactions relevant to 

describe the combustion of DMM, including a significant number of estimated rate constants. 

Recently, Dias et al. [14] have studied lean and rich premixed DMM flames to build a sub-

mechanism taking into account the formation and the consumption of oxygenated species 

involved in DMM oxidation. They were able to build a new mechanism containing 480 

elementary reactions and involving 90 chemical species, by using kinetic data from the 

literature about DMM, mainly drawn from Daly et al. [13], in order to simulate the DMM 

flames. Whatever the availability of oxygen in the flow, they established two main DMM 

conversion routes, with the first one being the fastest: 

CH3OCH2OCH3→CH3OCH2OCH2→CH3OCH2→CH2O    (route 1) 

CH3OCH2OCH3→CH3OCHOCH3→CH3OCHO→CH3OCO→CH3O→CH2O (route 2). 

In this context, a study on DMM oxidation carried out under well controlled tubular flow 

reactor conditions at atmospheric pressure, from pyrolysis to high oxidizing conditions, from 

both experimental and modeling points of view, was previously developed by our research 

group [15]. The results obtained indicate that the initial oxygen concentration slightly 
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influences the consumption of DMM. In general, a good agreement between experimental and 

modeling data was obtained and, accordingly, the final mechanism compiled in that work has 

been taken as the initial mechanism in the present work. 

Therefore, the purpose of the present work is to carry out an experimental study of DMM 

conversion at high-pressure covering a large range of temperature, pressure, and different 

stoichiometries, together with the validation of a kinetic mechanism under high-pressure 

conditions, which would be of interest for diesel applications. Specifically, experiments have 

been performed under well-controlled flow reactor conditions, in the 373-1073 K temperature 

range and for different high-pressures (20, 40 and 60 bar). Under these conditions, the oxygen 

concentration was varied from 1960 to 56000 ppm resulting in different air excess ratios (λ), 

ranging from 0.7 to 20. Additionally, a modeling study to describe the oxidation of DMM was 

performed using the gas-phase detailed chemical kinetic mechanism of our previous work 

[15], which has been updated in the present work to account for working at high pressures. 

 

Experimental 

The experimental installation used in the present work is described in detail elsewhere [16] 

and only a brief description is given here. It consists basically of a gas feeding system, a 

reaction system and a gas analysis system. 

Gases are supplied from gas cylinders through mass flow controllers. A concentration of 

approximately 700 ppm of DMM is introduced in all the experiments. The amount of O2 used 

has been varied between 1960 and 56000 ppm, and is related to the air excess ratio (λ), 

defined as the inlet oxygen concentration divided by the stoichiometric oxygen. Therefore, 

values of λ lower than 1 refer to fuel rich conditions, and λ values larger than 1, refer to fuel 
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lean conditions. Nitrogen is used to balance, resulting in a constant flow rate of 1000 (STP) 

mL/min. 

The DMM oxidation takes place in a quartz flow reactor (inner diameter of 6 mm and 1500 

mm in length) that is enclosed in a stainless steel tube that acts as a pressure shell. Nitrogen is 

delivered to the shell side of the reactor by a pressure control system, to obtain a pressure 

similar to that inside the reactor avoiding this way the stress in the reactor. 

The reactor tube is placed horizontally in a three-zone electrically heated furnace, ensuring a 

uniform temperature profile within ±10 K throughout the isothermal reaction zone (56 cm). 

The gas residence time, tr, in the isothermal zone, is a function of the reaction temperature and 

pressure, tr(s)=261*P(bar)/T(K). 

Downstream the reactor, the pressure is reduced to atmospheric level. Before analysis, the 

product gases pass through a condenser and a filter to ensure gas cleaning. The outlet gas 

composition is measured using a gas micro chromatograph (Agilent 3000), which is able to 

detect and measure DMM and the main products of its oxidation: methyl formate 

(CH3OCHO), formaldehyde (CH2O), CO, CO2 and CH4. No other products were detected in a 

noticeable amount. The uncertainty of measurements is estimated as ±5%. To evaluate the 

goodness of the experiments, the atomic carbon balance was checked in all the experiments 

and resulted to close always near 100%. 

The experiments were carried out at different pressures (20, 40 and 60 bar) and in the 373-

1073 K temperature range. Table 1 lists the conditions of the experiments. 
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Modeling  

The experimental results have been analyzed in terms of a detailed gas-phase chemical kinetic 

mechanism for describing the oxidation of DMM. The model taken as starting point was the 

kinetic mechanism compiled in the previously appointed work about the DMM oxidation at 

atmospheric pressure by our research group [15]. This one was built by adding different 

reaction subsets found in the literature to the model developed by Glarborg et al. [17] updated 

and extended later [18, 19]. The additional reaction subsets included for the different expected 

or involved compounds of relevance for the present experiments were: dimethyl ether (DME) 

[20], ethanol [21], acetylene [22], and methyl formate (MF) [23]. The last one subset was 

revised by our group [16] to account for high-pressure conditions in the methyl formate 

oxidation, which are similar to those of the present work. For DMM, the Dias et al. reaction 

subset [14] developed for atmospheric pressure was also included. Thermodynamic data for 

the involved species are taken from the same sources as the cited mechanisms. 

The model used in the previous work [15] has been modified in the present work to account 

also for the high-pressure conditions studied in the DMM oxidation. The changes made to the 

mechanism are listed in Table 2 and will be described below. The final mechanism involves 

726 reactions and 142 species. 

Thermal decomposition of DMM is an important initiation step, and can occur through DMM 

breaking, reactions 1 and 2, or by losing a primary or a secondary hydrogen atom, reactions 3 

and 4 respectively. The constants for these reactions were kept, without any modification, 

from the work of Dias et al. [14], originally proposed by Daly et al. [13]. 

For reaction 1, the value of 2.62 x 10
16

 exp(-41369/T) cm
3
 mol

-1
 s

-1
 for the rate constant was 

taken from the estimation made by Dagaut et al. [24] for DME, from a fit of the available 

NIST [25] data. For reaction 2, the value for the rate constant, 2.51 x 10
15

 exp(-38651/T) cm
3
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mol
-1

 s
-1

, estimated by Foucaut and Martin by analogy with diethylether [26] was taken, and 

for reaction 3, the kinetic parameters (4.35 x 10
16

 exp(-50327/T) cm
3
 mol

-1
 s

-1
) were taken 

from the estimation for the similar reaction involving ethane [27]. Finally, for the loss of a 

secondary hydrogen atom from DMM, reaction 4, Dean [27] estimated the rate constant by 

analogy with the rate constant for the loss of a secondary atom of hydrogen from propane, 

with a value of 6.31 x 10
15

 exp(-47660/T) cm
3
 mol

-1
 s

-1
. 

CH3OCH2OCH3 ⇌ CH3 + CH3OCH2O      (1) 

CH3OCH2OCH3 ⇌ CH3O + CH3OCH2      (2) 

CH3OCH2OCH3 ⇌ CH3OCH2OCH2 + H      (3) 

CH3OCH2OCH3 ⇌ CH3OCHOCH3 + H      (4). 

An important pathway for DMM consumption includes hydrogen abstraction reactions by the 

O/H radical pool. For the reactions with H (reactions 5 and 6), the rate expressions were taken 

from the DMM subset proposed by Dias et al. [14], which were, a priori, taken from Daly et 

al. [13]. The rate constant of reaction 5 was taken as that for the reaction between DME and a 

hydrogen atom [28], that is 9.70 x 10
13

 exp(-3125/T) cm
3
 mol

-1
 s

-1
. For reaction 6, the 7.40 x 

10
12

 exp(-1631/T) cm
3
 mol

-1
 s

-1
 rate constant was based on the abstraction of a secondary 

hydrogen atom from diethylether [29]. Although, Dias et al. [14] included an A-factor for this 

reaction divided by 2 in their final mechanism, we adopted the value originally proposed by 

Daly et al. [13], which is 7.40 x 10
12

 cm
3
 mol

-1
 s

-1
. 

CH3OCH2OCH3 + H ⇌ CH3OCH2OCH2 + H2      (5) 

CH3OCH2OCH3 + H ⇌ CH3OCHOCH3 + H2      (6). 
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In the case of the reactions between DMM and O radicals (reactions 7 and 8), their rate 

constants were taken from the DMM subset proposed by Dias et al. [14] without any 

modification, previously adopted from [30], by analogy with CH3OCH2 for reaction 7, and by 

analogy with diethylether, for reaction 8. 

CH3OCH2OCH3 + O ⇌ CH3OCH2OCH2 + OH      (7) 

CH3OCH2OCH3 + O ⇌ CH3OCHOCH3 + OH      (8). 

Reaction with hydroxyl radicals (OH) is an important step in the oxidation of organic 

compounds in combustion systems [31]. Although it will be discussed later through the 

analysis of the different reaction pathways, the main consumption of DMM occurs through H 

abstraction reactions by OH to form CH3OCH2OCH2 and CH3OCHOCH3 radicals (reactions 

9 and 10). The kinetic parameters of these reactions have been modified from the previous 

work [15]. 

CH3OCH2OCH3 + OH ⇌ CH3OCH2OCH2 + H2O      (9) 

CH3OCH2OCH3 + OH ⇌ CH3OCHOCH3 + H2O      (10). 

In the Dias et al. DMM reaction subset [14], the rate constant of these reactions is estimated 

by analogy with the reaction CH3OCH3 + OH = CH3OCH2 + H2O from DeMore and Bayes 

[32], with a proposed value of 9.10 x 10
12

 exp(-496/T) cm
3
 mol

-1
 s

-1
, determined 

experimentally in the 263-361 K temperature range. Arif et al. [31] determined a rate constant 

of 6.32 x 10
6
 T

2
 exp(327/T) cm

3
 mol

-1
 s

-1
, in the 295-650 K temperature range, which is 

adopted in this study, also used in the work of Alzueta et al. [20], and that is in agreement 

with the high-temperature (923-1423 K) determination of Cook et al. [33]. With this value, 

the latest authors achieved a good fit for both the low and the high temperature measurements. 
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The prevalence of HO2 radicals under high pressure, and preferably lean conditions, should 

make them to play an important role under the conditions of the present work. Reactions 

involving DMM and HO2 radicals (reactions 11 and 12) were not included in the initial 

reaction subset of Dias et al. [14], and we have included them in the present work, 

CH3OCH2OCH3 + HO2 ⇌ CH3OCH2OCH2 + H2O2     (11) 

CH3OCH2OCH3 + HO2 ⇌ CH3OCHOCH3 + H2O2      (12) 

The rate constants for reactions 11 and 12 have not been measured to our knowledge and, 

therefore, there is some degree of uncertainty in their absolute values. For reaction 11, the rate 

parameters have been taken by analogy of the dimethyl ether and HO2 reaction, following the 

same procedure described by Daly et al. [13], and likewise taking the value, 1.00 x 10
13

 exp(-

8900/T) cm
3
 mol

-1
 s

-1
, from the work of Curran et al. [34]. The rate constant for abstraction of 

a secondary hydrogen atom (reaction 12) was estimated by Daly et al. [13] from the value for 

reaction 11, with the A factor divided by a factor of 6. These authors stated that DMM has six 

primary hydrogen atoms and only two secondary ones, so the probability of attack will 

therefore be lower for the attack on the CH2 groups than on the CH3 groups. Also, the 

proximity of two oxygen atoms to the central carbon atom of the molecule will make the 

hydrogen atoms attached to it more labile than those belonging to the methyl groups. As a 

result, the activation energy for reaction 12 should be lower than for reaction 11. Thus, a rate 

constant value of 2.00 x 10
12

 exp(-7698/T) cm
3
 mol

-1
 s

-1
 was proposed for reaction 12 [13], 

which is adopted in the present mechanism. 

The subset proposed by Dias et al. [14] includes reactions involving DMM with molecular 

oxygen (reaction 13 and 14) and their corresponding rate constants, adopted here with no 

modification from the work of Daly et al. [13], were both estimated by analogy with the 

reaction of DME with oxygen. Therefore, the rate parameters for reaction 13 are the same as 
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those considered by Dagaut et al. [24] (although for reaction 13, the values used by Dias et al. 

[14] are not the corresponding ones to the source specified, as also was indicated in the case 

of reaction 6), and the parameters for reaction 14 were estimated by Daly et al. [13] as 

previously done in the case of reactions involving HO2 radicals. 

CH3OCH2OCH3 + O2 ⇌ CH3OCH2OCH2 + HO2      (13) 

CH3OCH2OCH3 + O2 ⇌ CH3OCHOCH3 + HO2      (14). 

Although the reactions of CH3OCH2OCH2 and CH3OCHOCH3 radicals with O2 (reactions 15 

and 16) and HO2 (reactions 17 and 18) were omitted in previous DMM mechanisms [14, 15, 

34], they can play an important role in the oxidation of DMM, particularly under high 

pressure and high oxygen concentration conditions and, therefore, these reactions have been 

included in our final mechanism. 

CH3OCH2OCH2 + O2 ⇌ CH2O + CH3OCHO + OH     (15) 

CH3OCHOCH3 + O2 ⇌ CH2O + CH3OCHO + OH      (16) 

CH3OCH2OCH2 + HO2 ⇌ CH2O + CH3OCH2O + OH     (17) 

CH3OCHOCH3 + HO2 ⇌ CH3OCHO + CH3O + OH     (18). 

For reactions 15 and 16, the rate constants have been estimated establishing an analogy with 

the reaction of methoxy-methyl radical (CH3OCH2, generated in the dimethyl ether thermal 

decomposition) and oxygen molecular, as previously done by Daly et al. [13]. In that case, 

they chose the kinetic parameters given by Dagaut et al. [24]; namely, 1.70 x 10
10

 exp(337/T) 

cm
3
 mol

-1
 s

-1
, which were estimated based on C2H5 + O2 kinetics. However, here, we have 

chosen a value of the CH3OCH2 + O2 rate constant of 2.50 x 10
11

 exp(850/T) cm
3
 mol

-1
 s

-1
, 

obtained by Alzueta et al. [20] from averaging three room-temperature determinations [35-
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37], and adopting the temperature dependence reported in Hoyermann and Nacke [37], which 

is significantly faster than that proposed in the mechanism of Dagaut et al. [24]. 

In the same way, the analogy used before in the case of reactions with molecular oxygen 

(CH3OCH2 + O2) has been applied to obtain the rate constants of reactions 17 and 18, i.e. 

CH3OCH2 + HO2. Not much information has been found related to these reactions, and the 

value proposed by Daly et al. [13], based on estimations made by Dagaut et al. [24] has been 

chosen. This value is, for reaction 17, 3.00 x 10
11

 cm
3
 mol

-1
 s

-1
 and, for reaction 18 they 

increased this value to 1.00 x 10
12

 cm
3
 mol

-1
 s

-1
. 

Curran et al. [34] stated that the pathway involving peroxy intermediates may be important at 

low temperatures (below approximately 900 K) and pressures higher than 10 bar, because the 

bimolecular addition of methoxy-methyl radical to O2 has a lower activation energy barrier 

than the β-scission to yield CH2O and CH3, the two main pathways that methoxy-methyl 

radicals can undergo. At atmospheric pressure (e.g. Alzueta et al. [20]), the formation of 

methoxy methyl-peroxy intermediate is not predicted to be significant, except for a minor 

contribution for very lean stoichiometries. 

Under the conditions studied in this work, high pressures (20, 40 and 60 bar) and fuel lean 

conditions (λ=20), the reactions forming peroxy species (reactions 19 and 20) may have an 

important impact on the oxidation chemistry of DMM and, therefore, these reactions have 

been included in our final mechanism. 

CH3OCH2OCH2 + O2 ⇌ CH3OCH2O2 + CH2O     (19) 

CH3OCH2OCH2 + HO2 ⇌ CH3OCH2O2 + CH2OH     (20). 

For reaction 19, the kinetic parameters have been estimated by analogy with the reaction of 

methoxy-methyl radical with molecular oxygen. The 6.40 x 10
12

 exp(-45.80/T) cm
3
 mol

-1
 s

-1
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value for CH3OCH2 + O2 was considered in an earlier mechanism by our group [20]. For 

reaction 20, no values of kinetic parameters were found, and we have considered initially a 

reaction rate of 1.0 x 10
12

 cm
3
 mol

-1
 s

-1
. The results of sensitivity analysis, shown later, 

indicate no significant impact of this estimation. 

Model calculations have been performed using both SENKIN [38] from the CHEMKIN II 

software package [39] and CHEMKIN-PRO [40], considering pressure constant in the 

reaction zone and the corresponding temperature profile. An example of temperature profiles 

inside the reactor can be found in [16]. The full mechanism listing and thermochemistry used 

can be found as Supporting Information. 

 

Results and discussion  

In this work, a study of the oxidation of DMM at different pressures (20, 40 and 60 bar), and 

in the 373-1073 K temperature range, has been carried out. In addition to temperature and 

pressure, the influence of stoichiometry (λ=0.7, 1 and 20) on the oxidation process has also 

been analyzed. As mentioned, the experimental results have been interpreted in terms of the 

detailed kinetic mechanism previously described. 

Figures 1 and 2 show the influence of the temperature and pressure for specific air excess 

ratios, λ=0.7 and λ=1, respectively, on the concentration of DMM and the formation of the 

main products of its oxidation at high pressures: CH2O, CO2, CO, CH3OCHO and CH4. No 

other products have been detected in an appreciable amount. At atmospheric pressure, other 

products such as C2H4, C2H6 and C2H2, were detected through micro GC analysis in amounts 

lower than 100 ppm, and especially for reducing (λ=0.7), very reducing (λ=0.4) and pyrolysis 

(λ=0) conditions [15]. Methanol is highly formed at atmospheric pressure [15], while at 
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higher pressures (20-60 bar) formaldehyde is predominant, although the distinction between 

methanol and formaldehyde with micro-GC techniques sometimes is quite tricky. 

Both Figures 1 and 2 compare experimental (symbols) and model calculation (lines) results. 

Working at 20, 40 or 60 bar, does not have a big effect neither on the oxidation of DMM nor 

on the formation of the main products. The suggested model predicts the general trend of the 

different concentration profiles, although there are some discrepancies between experimental 

and simulation results. These discrepancies are especially remarkable for λ=0.7, where the 

CO2 concentration values at high temperatures are underestimated, whereas the CO values are 

overestimated. It is difficult to isolate the origin of those discrepancies, and may be attributed 

to the uncertainty in the conversion of intermediates. This fact is not observed for the other 

values of λ considered. The oxygen concentration in the reactant mixture slightly influences 

the conversion of DMM, similar to what has been observed in the oxidation behavior of other 

oxygenated compounds such as DME [20] or MF [16]. 

Figure 3 shows a reaction path diagram for DMM oxidation through a reaction rate analysis 

with the mechanism used in the present work. For the conditions analyzed in the present 

work, the main consumption of DMM is through H abstraction reactions by the hydroxyl 

radical (OH) to form CH3OCH2OCH2 and CH3OCHOCH3 radicals (reactions 9 and 10), 

which is in agreement with other previous works [13]. Both reactions have a relative 

importance of 38%. This value increases up to near 50% under oxidizing conditions. 

CH3OCH2OCH3 + OH ⇌ CH3OCH2OCH2 + H2O     (9) 

CH3OCH2OCH3 + OH ⇌ CH3OCHOCH3 + H2O     (10). 

Both radicals react with molecular oxygen to form methyl formate (CH3OCHO) and 

formaldehyde as main products: 
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CH3OCH2OCH2 + O2 ⇌ CH2O + CH3OCHO + OH     (15) 

CH3OCHOCH3 + O2 ⇌ CH2O + CH3OCHO + OH     (16). 

Formaldehyde continues the CH2O→HCO→CO→CO2 reaction sequence with CO2 as final 

product. As shown in Figure 3, MF seems to be an important intermediate in the total 

oxidation of DMM. In previous MF oxidation works, at atmospheric pressure [23] and higher 

pressures [16], the MF oxidation was seen to be initiated by its decomposition reaction to 

methanol (reaction 21). In this work, as an intermediate, MF is directly consumed by 

hydrogen abstraction reactions in order to produce CH2OCHO and CH3OCO radicals 

(reactions 22 and 23), with a relative importance, for example at 20 bar and oxidizing 

conditions (λ=20), of 62% for reaction 22 and 20% for reaction 23. 

CH3OCHO (+M) ⇌ CH3OH + CO (+M)      (21) 

CH3OCHO + OH ⇌ CH2OCHO + H2O       (22) 

CH3OCHO + OH ⇌ CH3OCO + H2O       (23). 

Both radicals decompose thermically, CH2OCHO to give formaldehyde and formyl radical 

and CH3OCO to form methyl radical and CO2, through reactions 24 and 25, respectively: 

CH2OCHO ⇌ CH2O + HCO        (24) 

CH3OCO ⇌ CH3 + CO2        (25). 

As reported in an earlier work by our group for methyl formate oxidation [16], under high-

pressure conditions, high concentration of methyl and hydroperoxy radicals accumulate and 

thus, the interaction of those radicals can generate methoxy radicals through reaction 26, 

which further decomposes to formaldehyde (reaction 27). 

CH3 + HO2 ⇌ CH3O + OH        (26) 
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CH3O (+M) ⇌ H + CH2O (+M)       (27). 

Therefore, formaldehyde is detected instead of methanol (highly formed in both MF oxidation 

[23] and DMM oxidation [15] at atmospheric pressure) when working under high pressure. 

The formaldehyde obtained by this way continues the above mentioned 

CH2O→HCO→CO→CO2 reaction sequence. A fraction of this formaldehyde reacts with 

methyl radicals generating methane (reaction 28), which is detected as final product. 

CH2O + CH3 ⇌ HCO + CH4        (28). 

Figure 4 shows the influence of pressure on the DMM, CO2, CO, CH2O and MF 

concentration profiles as a function of temperature and for very oxidizing conditions, λ=20. 

As previously seen, working under high pressure conditions no appreciable influence of 

pressure on the conversion regime of DMM and products formation is found. Thus, similar 

results have been obtained for 20, 40 and 60 bar, and the slight differences that can be 

observed include a higher amount of methyl formate for 20 bar, while for the other two values 

of pressure, more CO2 is produced. For the pressures of 40 and 60 bar, in the 598-673 K 

temperature range, a constant concentration zone in the DMM profile and in the main 

products, CO2, CO, CH3OCHO and CH2O, can be observed. This zone appears to be 

associated to the oxygenated CH3OCH2O2 species. In the mechanism taken as starting point 

and used in the previous atmosphere work on DMM conversion [15], the formation reactions 

of this species were not included, and thus the predictions of the mechanism were 

significantly worse. Therefore, the formation reactions of this species from the interaction of 

CH3OCH2OCH2 and O2/HO2 (active species under oxidizing and high pressure conditions), 

reactions 19 and 20, were added to the mechanism: 

CH3OCH2OCH2 + O2 ⇌ CH3OCH2O2 + CH2O     (19) 
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CH3OCH2OCH2 + HO2 ⇌ CH3OCH2O2 + CH2OH     (20). 

With these two reactions, the current mechanism has been able to represent the plateau 

observed in DMM, CO2 and CO concentration, in the 598-673 K temperature range. The 

kinetic parameters of these reactions have been estimated due to the lack of literature 

determinations above mentioned, as has been described in the Modeling section. Reaction 

pathway analysis allows us to identify how the species are formed and proceed through the 

following reaction sequence: CH3OCH2O2→CH2OCH2O2H→O2CH2OCH2O2H→ 

HO2CH2OCHO→OCH2OCHO. The last one decomposes to give CH2O and HCOO through 

reaction 29: 

OCH2OCHO ⇌ CH2O + HCOO       (29). 

Formaldehyde continues the CH2O→HCO→CO→CO2 well-known reaction sequence, 

whereas the hydrocarboxyl radical decomposes generating CO2 as final product: 

HCOO ⇌ H + CO2         (30). 

A first-order sensitivity analysis for CO has been performed for all the sets in Table 1. The 

results obtained, shown in Table 3, indicate that the conversion of DMM is highly sensitive to 

the DMM reactions with OH radicals (reactions 9 and 10), which have been previously 

discussed. Reactions involving MF (CH3OCHO) and its radicals also present a high 

sensitivity, as an important intermediate in the DMM oxidation under the conditions studied 

in the present work. 

Figure 5 shows the experimental results obtained for stoichiometric conditions by our 

research group for the DMM oxidation at atmospheric pressure [15] and the high-pressure 

results, experimental and modeling, discussed in the present work. Although it can be 

observed a huge shift to lower temperatures when moving from atmospheric pressure to 
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higher ones, the results can not be directly compared because both gas residence times are 

significantly different The gas residence time for the high pressure installation 

(tr(s)=261*P(bar)/T(K)) is longer than at atmospheric pressure (tr(s)=195/T(K)) by a factor of 

27-80 and, therefore, it is not possible to distinguish between the effect of pressure or 

residence time. To overcome this problem, model calculations have been carried out, 

modifying either the residence time or the pressure input value. 

To do this, the kinetic mechanism used to simulate the high pressure experiments of this work 

has also been used to simulate the results obtained in the DMM oxidation at atmospheric 

pressure [15]. 

Figure 6 shows, as an example, a comparison (only for DMM, CO and CO2 concentrations) 

between the modeling results obtained with the initial mechanism [15] (dashed lines) or with 

the mechanism modified in the present work (solid lines) and the experimental results 

(symbols) attained at atmospheric pressure in the 573-1373 K temperature range, for an initial 

concentration of 700 ppm of DMM and stoichiometric conditions [15]. N2 was used to 

achieve a total flow rate of 1000 mL(STP)/min, resulting in a gas residence time dependent of 

the reaction temperature of tr(s)=195/T(K) [15]. As can be seen in Figure 6, the modified 

mechanism generates almost the same results of the mechanism of reference [15] and thus is 

able to predict the main trends of the DMM consumption profile and CO and CO2 formation. 

With the validated kinetic mechanism of the present work, that describes well both low and 

high pressure experimental results, we have made different simulations to try to distinguish 

between the effect of residence time or pressure. 

Figure 7 includes calculations for λ=1 and 20 bar, with a residence time of tr(s)=5220/T(K) 

(solid lines) and for the same conditions (λ=1 and 20 bar) but for a lower residence time of 

tr(s)=261/T(K) (short dashed lines), which would be the same as the residence time 
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corresponding to 1 bar. As a reference, in Figure 7, also the experimental data of set 4 in 

Table 1 are included (λ=1, 20 bar) and denoted by symbols. As can be seen, when only 

residence time is changed, increasing residence time shifts significantly the conversion of 

DMM towards lower temperatures. 

Additionally, Figure 7 also includes calculations made with 1 bar of pressure and the 

residence time of the 20 bar experiments, i.e. tr(s)=5220/T(K) (long-dashed lines). Increasing 

pressure from 1 bar (long-dashed lines) to 20 bar (solid lines) but keeping a given residence 

time of tr(s)=5220/T(K) results in a similar shift of the DMM concentration profile as that 

reported for the change in time residence. 

Thus, both the pressure and the residence time have an appreciable impact and are responsible 

for a significant shift in the oxidation regime of DMM. 

 

Conclusions  

The DMM conversion has been investigated in a quartz flow reactor in the 373-1073 K 

temperature range, for different air excess ratios (λ=0.7, 1 and 20) and pressures (20-60 bar). 

The experimental results have been interpreted in terms of a detailed kinetic mechanism, 

compiled in a previous work about the DMM oxidation at atmospheric pressure by our 

research group [15], and modified in the present work to account also for the high pressure 

conditions studied. The modeling results obtained with the modified mechanism are similar to 

those attained without any modification; that is, the new mechanism is able to predict the 

main trends observed for the DMM oxidation at atmospheric pressure. 

Experimental results and model calculations are, in general, in good agreement, and the main 

trends are well predicted for the theoretical model. Slight differences are noticed when 
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working under stoichiometric or somewhat fuel-rich conditions, although the DMM 

conversion is a bit different for oxidizing conditions. Working at 20, 40 or 60 bar does not 

have a big effect on neither the oxidation of DMM nor the formation of the main products. 

Independently of the conditions (stoichiometric, oxidizing or reducing), the main 

consumption of DMM occurs through H abstraction reactions by the hydroxyl radical (OH). 

Under oxidizing conditions, the conversion of DMM is fast until approximately the 598 to 

673 K temperature zone, where the concentration of DMM presents a plateau and remains 

constant. This zone appears to be associated to the formation of the intermediate CH3OCH2O2 

oxygenated species. The formation reactions of this species from the interaction of 

CH3OCH2OCH2 and O2/HO2, active species under oxidizing and high pressure conditions, 

were not initially considered in the DMM reaction subset taken from the literature [14]. 

Therefore, these reactions were added to the mechanism. 

The analysis of the main reaction pathways involved in the DMM conversion, occurring 

under the conditions studied in the present work, has shown that methyl formate plays an 

important role in this process. 

The experimental results obtained under high-pressure conditions in the present work are 

shifted towards lower temperatures compared to those obtained at atmospheric pressure by 

Marrodán et al. [15], for different residence times. Model calculations have been performed to 

evaluate independently the effect of pressure and gas residence time and results indicate that 

both variables have remarkable influence on the DMM oxidation process. 
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Table captions  

Table 1. Matrix of experimental conditions. The experiments are conducted at constant flow 

rate of 1000 mL(STP)/min, in the temperature interval of 373-1073 K. The balance is closed 

with N2. The residence time depends on the reaction temperature and pressure: 

tr(s)=261*P(bar)/T(K). 

Table 2. Reactions modified or included in the final mechanism in relation to the mechanism 

used in reference [15] and corresponding kinetic parameters. 

Table 3. Linear sensitivity coefficients for CO for sets 1-9 in Table 1. The sensitivity 

coefficients are given as AiδYj/YjδAi, where Ai is the pre-exponential constant for reaction i 
and Yj is the mass fraction of jth species. Therefore, the sensitivity coefficients listed can be 

interpreted as the relative change in predicted concentration for the species j caused by 

increasing the rate constant for reaction i by a factor of 2. 
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Tables 

Table 1. 

Matrix of experimental conditions. The experiments are conducted at constant flow rate of 

1000 mL(STP)/min, in the temperature interval of 373-1073 K. The balance is closed with N2. 

The residence time depends on the reaction temperature and pressure: tr(s)=261*P(bar)/T(K). 

Exp. DMM (ppm) O2 (ppm) λ P (bar) 

Set 1 720 1960 0.7 20 

Set 2 770 1960 0.7 40 

Set 3 770 1960 0.7 60 
Set 4 757 2800 1 20 

Set 5 720 2800 1 40 

Set 6 720 2800 1 60 
Set 7 688 56000 20 20 

Set 8 778 56000 20 40 

Set 9 706 56000 20 60 
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Table 2. 

Reactions modified or included in the final mechanism in relation to the mechanism used in 

reference [15] and corresponding kinetic parameters. 

Number Reaction A n Ea Source 

9 

 

10 

 

11 

12 

15 

CH3OCH2OCH3 + OH ⇌ CH3OCH2OCH2 + H2O 

 

CH3OCH2OCH3 + OH ⇌ CH3OCHOCH3 + H2O 

 

CH3OCH2OCH3 + HO2 ⇌ CH3OCH2OCH2 + H2O2 

CH3OCH2OCH3 + HO2 ⇌ CH3OCHOCH3 + H2O2 

CH3OCH2OCH2 + O2 ⇌ CH2O + CH3OCHO + OH 

6.32 x 10
6
 

 

6.32 x 106 

 

1.00 x 10
13

 

2.00 x 10
12

 

2.50 x 1011 

2.00 

 

2.00 

 

0.00 

0.00 

0.00 

-652 

 

-652 

 

17686 

15296 

-1700 

[22, 32, 34, 

see text] 

[22, 32, 34, 

see text] 

[35] 

[13] 

[22] 

16 CH3OCHOCH3 + O2 ⇌ CH2O + CH3OCHO + OH 2.50 x 1011 0.00 -1700 [22] 

17 

18 

19 

20 

CH3OCH2OCH2 + HO2 ⇌ CH2O + CH3OCH2O + OH 

CH3OCHOCH3 + HO2 ⇌ CH3OCHO + CH3O + OH 

CH3OCH2OCH2 + O2 ⇌ CH3OCH2O2 + CH2O 

CH3OCH2OCH2 + HO2 ⇌ CH3OCH2O2 + CH2OH 

3.00 x 1011 

1.00 x 10
12

 

6.40 x 10
12

 

1.00 x 10
12

 

0.00 

0.00 

0.00 

0.00 

0 

0 

91 

0 

[13] 

[13] 

see text 

see text 

A in units of cm3, mol, s; Ea in cal/mol 
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Table 3. 

Linear sensitivity coefficients for CO for sets 1-9 in Table 1. The sensitivity coefficients are given as AiδYj/YjδAi, where Ai is the pre-exponential 

constant for reaction i and Yj is the mass fraction of jth species. Therefore, the sensitivity coefficients listed can be interpreted as the relative 

change in predicted concentration for the species j caused by increasing the rate constant for reaction i by a factor of 2. 

Reaction 
set 1 

(623 K) 

set 2 

(623 K) 

set 3 

(573 K) 

set 4 

(673 K) 

set 5 

(623 K) 

set 6 

(523 K) 

set 7 

(548 K) 

set 8 

(548 K) 

set 9 

(548 K) 

(9) CH3OCH2OCH3+OH=CH3OCH2OCH2+H2O 1.019 0.958 0.989 1.303 0.974 1.160 1.397 1.350 1.303 

(10) CH3OCH2OCH3+OH=CH3OCHOCH3+H2O -0.219 -0.230 -0.352 -0.479 -0.251 -0.392 -0.487 -0.485 -0.479 

(11) CH3OCH2OCH3+HO2=CH3OCH2OCH2+H2O2 0.112 0.126 0.025 0.025 0.097 0.046 0.022 0.025 0.025 

(12) CH3OCH2OCH3+HO2=CH3OCHOCH3+H2O2 0.126 0.124 0.022 0.033 0.087 0.086 0.035 0.036 0.033 

(14) CH3OCH2OCH3+O2=CH3OCHOCH3+HO2 - - 0.001 0.001 - 0.017 0.007 0.003 0.001 

(16) CH3OCH2OCH2+O2=CH2O+CH3OCHO+OH -0.184 -0.177 -0.216 -0.302 -0.182 -0.280 -0.322 -0.312 -0.302 

(19) CH3OCH2OCH2+O2(+M)=CH3OCH2O2+CH2O(+M) 0.179 0.174 0.214 0.301 0.179 0.279 0.317 0.309 0.301 

CH3OCH2+O2=CH2O+CH2O+OH -0.021 -0.017 -0.008 -0.001 -0.017 -0.002 -0.001 -0.001 -0.001 

CH2OCH2O2H=CH2O+CH2O+OH -1.479 -1.223 -0.705 -0.024 -1.164 -0.167 -0.075 -0.037 -0.024 

CH3OCH2O2=CH2OCH2O2H 0.001 0.001 0.001 0.006 0.001 0.016 0.017 0.009 0.006 

O2CH2OCH2O2H=CH2OCH2O2H+O2 1.503 1.242 0.725 0.028 1.183 0.296 0.107 0.045 0.028 

HO2CH2OCHO=OCH2OCHO+OH -0.028 -0.008 0.559 1.468 -0.006 1.659 1.795 1.614 1.468 

CH3OCHO+OH=CH2OCHO+H2O 0.071 0.059 0.023 -0.031 0.061 -0.054 -0.057 -0.044 -0.031 

CH3OCHO+OH=CH3OCO+H2O 0.002 0.004 -0.011 -0.021 0.004 -0.017 -0.023 -0.022 -0.021 

CH2OCHO+HO2=HO2CH2OCHO 0.011 0.017 0.007 -0.010 0.017 -0.002 -0.007 -0.009 -0.010 

H+O2+N2=HO2+N2 -0.014 -0.010 -0.001 0.000 -0.005 0.000 0.000 0.000 0.000 

OH+HO2=H2O+O2 -0.006 -0.005 -0.001 -0.002 -0.005 -0.002 -0.006 -0.003 -0.002 

HO2+HO2=H2O2+O2 -0.160 -0.234 -0.056 -0.039 -0.192 -0.063 -0.026 -0.036 -0.039 

H2O2+M=OH+OH+M 0.091 0.310 0.008 0.001 0.291 0.000 0.000 0.001 0.001 

H2O2+OH=H2O+HO2 -0.012 -0.030 -0.027 -0.025 -0.037 -0.002 -0.008 -0.017 -0.025 

CH2O+OH=HCO+H2O -0.851 -0.749 -0.608 -0.732 -0.735 -0.692 -0.811 -0.771 -0.732 

CH2O+HO2=HCO+H2O2 0.094 0.231 0.063 0.037 0.209 0.013 0.013 0.027 0.037 

HCO+M=H+CO+M 0.014 0.009 0.003 0.000 0.004 0.001 0.000 0.000 0.000 

HCO+O2=HO2+CO -0.016 -0.012 0.095 0.001 -0.007 0.255 0.006 0.003 0.001 
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Figure captions 

Fig. 1. Influence of pressure on the DMM, CO2, CO, CH2O, CH3OCHO and CH4 

concentration profiles as a function of temperature for a given air excess ratio (λ=0.7). Sets 1-

3 in Table 1. 

Fig. 2. Influence of pressure on the DMM, CO2, CO, CH2O, CH3OCHO and CH4 

concentration profiles as a function of temperature for a given air excess ratio (λ=1). Sets 4-6 

in Table 1. 

Fig. 3. Reaction path diagram for DMM oxidation according to the current kinetic model in 

the 373-1073 K temperature range. Solid lines represent the main reaction pathways for all 

the conditions considered in the present work. Dashed lines refer to reaction paths that 

become more relevant under oxidizing conditions (λ=20) and increasing pressure. 

Fig. 4. Influence of pressure on the DMM, CO2, CO, CH2O and CH3OCHO concentration 

profiles as a function of temperature for a given air excess ratio (λ=20). Sets 7-9 in Table 1. 

Fig. 5. Results for stoichiometric conditions, at 1 bar (experimental) from Marrodán et al. [15] 

and at high-pressure (experimental and modeling) from the present work [pw], sets 4-6 in 

Table 1. 

Fig. 6. Comparison (for DMM, CO and CO2 concentrations) between modeling calculations 

obtained with the initial mechanism [15] and the mechanism used in the present work for the 

experimental results obtained at atmospheric pressure and λ=1, for the conditions indicated in 

[15]. 

Fig. 7. Evaluation through model calculations of the effect of gas residence time (comparison 

between solid lines, tr(s)=5220/T(K), and short-dashed lines, tr(s)=261/T(K)) and pressure 

(comparison between solid lines, tr(s)=5220/T(K), and long-dashed lines, tr(s)=5220/T(K)) for 

a selected example under the conditions indicated in set 4, Table 1. 
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Fig. 1. Influence of pressure on the DMM, CO2, CO, CH2O, CH3OCHO and CH4 

concentration profiles as a function of temperature for a given air excess ratio (λ=0.7). Sets 1-

3 in Table 1. 
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Fig. 2. Influence of pressure on the DMM, CO2, CO, CH2O, CH3OCHO and CH4 

concentration profiles as a function of temperature for a given air excess ratio (λ=1). Sets 4-6 

in Table 1. 
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Fig. 3. Reaction path diagram for DMM oxidation according to the current kinetic model in 

the 373-1073 K temperature range. Solid lines represent the main reaction pathways for all 

the conditions considered in the present work. Dashed lines refer to reaction paths that 

become more relevant under oxidizing conditions (λ=20) and increasing pressure. 
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Fig. 4. Influence of pressure on the DMM, CO2, CO, CH2O and CH3OCHO concentration 

profiles as a function of temperature for a given air excess ratio (λ=20). Sets 7-9 in Table 1. 
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Fig. 5. Results for stoichiometric conditions, at 1 bar (experimental) from Marrodán et al. [15] 

and at high-pressure (experimental and modeling) from the present work [pw], sets 4-6 in 

Table 1. 

 

  

Page 33 of 35

ACS Paragon Plus Environment

Energy & Fuels

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



34 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Comparison (for DMM, CO and CO2 concentrations) between modeling calculations 

obtained with the initial mechanism [15] and the mechanism used in the present work for the 

experimental results obtained at atmospheric pressure and λ=1, for the conditions indicated in 

[15]. 
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Fig. 7. Evaluation through model calculations of the effect of gas residence time (comparison 

between solid lines, tr(s)=5220/T(K), and short-dashed lines, tr(s)=261/T(K)) and pressure 

(comparison between solid lines, tr(s)=5220/T(K), and long-dashed lines, tr(s)=5220/T(K)) for 

a selected example under the conditions indicated in set 4, Table 1. 
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